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Abstract
For the game of Cops and Robbers, it is known that in 1-cop-win graphs, the cop can capture
the robber in O(n) time, and that there exist graphs in which this capture time is tight. When
k ≥ 2, a simple counting argument shows that in k-cop-win graphs, the capture time is at most
O(nk+1), however, no non-trivial lower bounds were previously known; indeed, in their 2011
book, Bonato and Nowakowski ask whether this upper bound can be improved. In this paper,
the question of Bonato and Nowakowski is answered on the negative, proving that the O(nk+1)
bound is asymptotically tight for any constant k ≥ 2. This yields a surprising gap in the capture
time complexities between the 1-cop and the 2-cop cases.
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1 Introduction

The game of Cops and Robbers is a perfect information two-player zero-sum game played
on an undirected n-vertex graph G = (V,E), where the first player is identified with k ≥ 1
cops, indexed by the integers 0, . . . , k − 1, and the second player is identified with a single
robber. In round 0, the cop player chooses the initial (not necessarily distinct) cop locations
c0(0), . . . , ck−1(0) ∈ V and following that, the robber player chooses the initial robber location
r(0) ∈ V . Then, in round t = 1, 2, . . . , the cop player chooses the next (not necessarily
distinct) cop locations c0(t), . . . , ck−1(t) ∈ V under the constraint that ci(t) ∈ N +(ci(t− 1))
for every 0 ≤ i ≤ k − 1, where N +(v) denotes the neighborhood of vertex v in G including v
itself; following that, the robber player chooses the next robber location r(t) ∈ N +(r(t− 1)).

The goal of the cop player is to ensure that r(t− 1) ∈ {c0(t), . . . , ck−1(t)} for some finite
round t, referred to as capturing the robber. Conversely, the goal of the robber player is to

∗ A full version of this paper can be found at http://www.disco.ethz.ch/publications/
icalp2017-copsandrobbers.pdf.

† This work was partially supported by ERC Grant No. 336495 (ACDC).

EA
T

C
S

© Sebastian Brandt, Yuval Emek, Jara Uitto, and Roger Wattenhofer;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 82; pp. 82:1–82:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.82
http://www.disco.ethz.ch/publications/icalp2017-copsandrobbers.pdf
http://www.disco.ethz.ch/publications/icalp2017-copsandrobbers.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


82:2 A Tight Lower Bound for the Capture Time of the Cops and Robbers Game

avoid being captured indefinitely. Graph G is said to be a k-cop-win graph if it admits a cop
strategy S that guarantees capture. The capture time of S is defined to be the maximum
number of rounds until capture is achieved, assuming optimal play by the robber. The
capture time of graph G is then defined to be the minimum capture time of any cop strategy
over G (notice that in this definition, it is assumed that k is clear from the context).

Bonato et al. [7] studied the capture time in single cop games and proved that every 1-cop-
win graph admits a cop strategy that captures the robber in O(n) rounds. By considering
a path, it is straightforward to verify that this bound is asymptotically tight. A simple
configuration-counting argument (see, e.g., [5, 7]) shows that for any constant k ≥ 2, if G
is a k-cop-win graph, then its capture time is O(nk+1). One may suspect that this simple
upper bound can be improved as it does not generalize the tight O(n) bound in the 1-cop
setting. Answering an open question from Bonato and Nowakowski’s book [9, Chapter 8],
the main result of our paper is that perhaps surprisingly, this is not the case.

I Theorem 1. There exist a universal positive constant α such that for every k ≥ 2, there
exists an infinite family G of k-cop-win graphs such that the capture time of any n-vertex
graph G ∈ G is at least (n/ (αk))k+1. Moreover, the smallest graph in G has n = O(k2)
vertices.

Notice that for constant k ≥ 2, this theorem provides an (existential) Ω(nk+1) lower
bound on the capture time in k-cop-win graphs. Furthermore, it can be extended to non-
constant values of k = k(n) up to the conjectured maximum of k(n) = Θ(

√
n) (see the

related literature discussion), stating that in some k-cop-win graphs, the capture time is
exponential in k and stretched exponential in n.

Related Literature

The Cops and Robbers game with a single cop was introduced by Quilliot [21] and independ-
ently by Nowakowski and Winkler [19] who also provided a full characterization of 1-cop-win
graphs. This was generalized to the multiple cop setting by Aigner and Fromme [2] who
defined the cop number of graph G to be the minimum number of cops that guarantees
that the robber can be captured (that is, the minimum k for which G is a k-cop-win graph).
Cast in this terminology, Aigner and Fromme proved that the cop number of any planar
graph is at most 3. An upper bound of O(r2) on the cop number of graphs excluding Kr

as minor was established by Andreae [4]; this result lies at the heart of the recent graph
decomposition technique of Abraham et al. [1] for the same family of graphs. For general
graphs, the maximum possible cop number is still an open question: the famous Meyniel’s
Conjecture [14, 6] states that this number is Θ(

√
n), where the state of the art is that it

is bounded between Ω(
√
n) [20] and O(n/2(1−o(1))

√
log n) [17]. Several characterizations of

graphs with cop number k are presented in [11].
As mentioned earlier, Bonato et al. [7] established a tight linear bound on the capture time

in 1-cop-win graphs. For k > 1 cops, non-trivial bounds on the capture time in k-cop-win
graphs were obtained mainly in the context of special graph classes, e.g., hypercubes [8] and
Cartesian products of trees [18]. To the best of our knowledge, the linear lower bound of [7]
is the (asymptotically) best previously known lower bound on the capture time in any class
of graphs for any k ≥ 1.

The capture time has been studied also for variants of the classic Cops and Robbers
game. For example, the multiple robber setting was investigated by Förster et al. [13] who
showed that the capture time may increase linearly with the number of robbers. Kehagias
and Pralat [16] analyzed the expected capture time of a drunk robber whose strategy is
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simply a random walk on the graph. For a broader overview of the results on the game of
Cops and Robbers, the reader is referred to the book of Bonato and Nowakowski [9] and
recent surveys [3, 10, 12, 15].

Techniques

Our lower bound proof relies on designing a bad (from the perspective of the cops) graph
G that consists of several components, of which each has a different role (see the overview
in Section 2.1). Here, we provide a glimpse into this design from an alternative (strictly
informal and somewhat inaccurate) angle that may shed additional light on the techniques
we use. At the heart of our construction lies the concept of forcing each entity (cop or
robber) to follow a designated (non-simple) path in G, where in the scope of this discussion,
we assume that every vertex in G admits a self-loop so that these paths may include null
moves. Specifically, graph G contains equally long paths χ0, . . . , χk−1 and ρ, referred to in
this discussion as the canonical paths of the cops and robber, respectively. The best strategy
of the cop player is then to assign one cop, say Cop i, to each path χi so that ci(t) = χi(t)
for every t; in response to that, the best strategy of the robber is to play r(t) = ρ(t). This
induces a sequence σ of (distinct) configurations and the analysis is completed by showing
that σ is sufficiently long and that the robber is captured only at its end.

The most challenging part in the design of such canonical paths is to prove that the
aforementioned strategies are indeed optimal. To that end, we show that if the robber
deviates from her canonical path at time t, then she is either captured immediately or the
game shifts forward to a more advanced configuration σ(t′) for some t′ > t. Conversely, if
some cop deviates from her canonical path at time t, then the game shifts backwards to a
less advanced configuration σ(t′) for some t′ < t. The main feature in the latter argument is
an exit component X ; if the robber manages to reach X , then she can force the game to shift
backwards to the beginning, i.e., to σ(0). This threat is the key ingredient in the analysis of
the cop strategy: we construct the cops’ components so that they must strictly follow their
canonical paths in order to cover all exits in X .

Due to the verbosity of our construction and to the space limitations, we defer all the
proofs and the discussion of the case of more than 2 cops to the full version.

Technical Terminology

We call the set {c0(t), c1(t), . . . , ck−1(t)}, for some t, a cop combination. We say that Cop i
covers node v at time t if v ∈ N +(ci(t)). We may omit t if it is clear from the context. We
extend this covering notion to more than one cop and more than one node, e.g., we say that
the cops cover a set of nodes {v1, v2, . . . , vj} if each of the vi is covered by at least one of the
cops. Also, we say that a node is covered, resp. uncovered, if at least one cop covers it, resp.
if no cop covers it.

2 The Case of 2 Cops

2.1 Overview
In this section, we construct a family {Gn̂}n̂≥3,n̂≡0 (mod 3) of 2-cop-win graphs, where
n̂ ∈ Θ(n).1 Then, we show that the capture time for 2 cops in Gn̂ is Ω(n3) by giving an

1 Throughout the paper, we denote the number of nodes of a graph by n.

ICALP 2017
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Figure 1 The graph Gn̂ with its different components.

explicit strategy for the robber that achieves this capture time against any cop strategy.
We conclude by presenting a cop strategy for 2 cops that achieves a capture time of O(n3)
against any robber strategy, which also serves as a proof that the graphs are indeed 2-cop-win.
The other reason for explicitly specifying such a cop strategy (which must exist in 2-cop-win
graphs, by the aforementioned simple configuration-counting argument) is that it forms the
basis for a generalized cop strategy in the case of k ≥ 2 cops. For a simplified overview of
our graph construction, please refer to Figure 1.

The general idea behind the graph construction and the specified strategies for the cops
and the robber is as follows: Our graph Gn̂ contains a U component, where the robber
cannot be captured, simply because each node in U has enough neighbors so that 2 cops
cannot cover all of these neighbors simultaneously. Moreover, the robber can always stay in
U (because each node in U has enough neighbors in U) except if the cops go to two special
nodes S0 and S1 which together cover all of U .

When the robber is thereby flushed out of U , she has to go to the R component of the
graph. Note that the nodes of R induce a simple path on Gn̂ and that after being flushed
out of U , the robber is located in the middle of this path. Now, the cops will continuously
prevent the robber from escaping R and slowly force the robber to one end of the path
where they will finally capture her. In order for this to take a long time, each node in R is
connected to a set of so-called exits which are nodes that together form the X component
of the graph. If the robber should manage to get to some exit, then she will be able to go
back to her preferred U component, unless the cops go again to the special S0 and S1 nodes,
in which case the robber can go back to the middle of the R path and thereby revert to a
previous configuration. Hence, in order to capture the robber, the cops have to continuously
cover these exits.

Unfortunately for the cops, there are only a few cop combinations that actually cover
all exits of a node in R. Moreover, only some of these cop combinations are proper in the
sense that they also prevent the robber from moving back on the R path towards the middle
which is essential for the cops in order to capture the robber. These proper exit-covering
cop combinations are described in the following. For an illustration of the underlying graph
structure, we refer to Figure 2.
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Figure 2 A part of the structure of Gn̂ around the X nodes. A C node and a D node together
cover the exits of an R node if and only if they have the same color.

One cop, say Cop 0, has to be in the C component of Gn̂ and the other one (Cop 1) in
the D component. The nodes in the C (resp., D) component induce a simple cycle on Gn̂.
Assume for simplicity that the number of nodes in these two cycles are both multiples of 3.
Now, we can imagine that the nodes in the C cycle are consecutively colored 0, 1, 2, 0, 1, 2, . . .
and that the nodes in the D cycle are colored 0, . . . , 0, 1, . . . , 1, 2, . . . , 2, resulting in three
equally-sized monochromatic blocks. Now, the nodes in C and D are connected to the nodes
in X in so that Cop 0 (in C) and Cop 1 (in D) cover all exits of an R node if and only if the
nodes the two cops are occupying have the same color. Thus, if Cop 0 wants to move, e.g.,
clockwise, in her C cycle, then between any two consecutive steps, she has to wait for Cop 1
to travel roughly a third of her D cycle.

Similarly, using an independent color pallet, we color the nodes along the R path
3, 4, 5, 3, 4, 5, . . . and color the nodes along the C cycle 3, . . . , 3, 4, . . . , 4, 5, . . . , 5. To prevent
the robber from moving back towards the middle of her R path, we construct Gn̂ so that
a C node covers an R node if and only if they do not have the same color. Thus, if Cop
0 proceeds along her C cycle, then as soon as the color of the C node changes, the robber
is forced to move one step forward along the R path. This accounts for Cop 0 traversing
roughly a third of the C cycle for each step of the robber along the R path. The direction of
the robber’s movement (towards either end of the R path) is determined by the direction
(clockwise or counterclockwise) of the movement of Cop 0 along the C cycle. We refer to
Figure 3 for an illustration of how the robber is pushed along the R by a cop residing in C.

Now, we design the graph Gn̂ so that the C, D, and R components consist of roughly n̂
nodes. Thus, the robber takes Ω(n̂) steps until she is captured, for each of her steps Cop 0

ICALP 2017
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R−1 R0 R1 R2R−2

· · · · · ·

C3

C0

C1
C2

C4

C5

C8
C7

C6

Figure 3 The edge structure between the C nodes and the R nodes. If a cop is in a C node and
the robber in an R node, then the robber has to make sure that that these two nodes have the same
color in order to avoid capture in the next move. By circling clockwise in C, the cop can force the
robber towards one end of the R path, by circling counterclockwise towards the other.

has to take Ω(n̂) steps, and for each step of Cop 0, Cop 1 has to take Ω(n̂) steps, resulting
in a total capture time of Ω(n̂3). Since every component of the Gn̂ except R, C and D is
of constant size, n̂ is linear in the number n of nodes. Hence, we obtain a capture time of
Ω(n3) for the graph class {Gn̂}n̂≥3,n̂≡0 (mod 3).

Before proceeding to the exact details of the graph construction, four remarks are in order.
Firstly, when the robber is flushed out of U to R, there is an intermediate step between
leaving U and arriving in R for technical reasons: Flushed out of U , the robber actually has
to go to a graph component called A. Then, one cop moves to another graph component
denoted T from which she covers all of A while ensuring that all nodes in U the robber could
go to are covered. Thus, the robber is flushed out of A and is forced to go to R so that we
can proceed as explained above.

Secondly, since Cop 0 has to be able to cover nodes from R when she is in C, there have
to be edges between R and C. To prevent the robber from escaping R by going to a node in
C via one of these edges, we augment the graph with a special P node. If, after the robber
indeed moves to the C component, Cop 1 moves to P and Cop 0 moves to S0, then together
they cover all C nodes and all their neighbors, ensuring that the robber will be captured in
the next round.

Thirdly, the robber does not have to start in U , but in fact it is best for her if she does
(in the sense of increasing the capture time against the best cop strategy), provided that she
cannot be captured immediately. In turn, this means that the cops should start in S0 and S1
in order to force the robber to start elsewhere. Even if the robber starts elsewhere, the cop
strategy explained above forces the robber to the R component. Moreover, the robber can
simply start in the middle of the R path and the cops cannot avoid having to go through
the exit-covering routine explained above.

Fourthly, while the cop strategy explained above chases the robber from the middle of
the R path to one of its ends, for simplicity, we will formally present a slightly simplified
version where the end of the path the robber is chased to is fixed in advance (so the robber
will be chased from one end of the path to the other end in the worst case for the cops).
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(0, 10)
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Figure 4 The construction of U . On the left side, we see the 11 × 11 grid constituting E and
three example lines L0,0, L0,1 and L2,0 from L. On the right side, we see the nodes of the bipartite
graph GE,L where the left-hand column of nodes constitutes (a part of) one side of the bipartition,
L, and the right-hand grid the other side, E . The edges between E and L are determined by the
incidence relation of the nodes and lines in the left-hand 11× 11 grid.

2.2 The Graph Construction
As explained above, the graphs Gn̂ we are about to construct contain a component U in
which the robber cannot be captured and from which the robber can only be flushed out by
a specific cop combination outside of U . Hence, the subgraph of any Gn̂ induced by (the
respective) U cannot be a 2-cop-win graph. As we want to generalize our graph construction
to the case of more than 2 cops, we thus need a way to construct a graph where k cops
cannot capture the robber. For this, inspired by the use of projective planes for constructing
graphs with high cop numbers in [20], we will use incidence graphs of objects resembling
affine planes. An explicit construction (for the case of 2 cops) is given in the following. For
an illustration of the construction, we refer to Figure 4.

Let E = {Ei,j | 0 ≤ i ≤ 10 ∧ 0 ≤ j ≤ 10} be a set of elements which we can imagine as
arrayed in an 11× 11 grid. Let L = {Li,j | 0 ≤ i ≤ 9 ∧ 0 ≤ j ≤ 10} be a set of lines where
each Li,j is defined as Li,j = {Eh,h(i+1)+j (mod 11) | 0 ≤ h ≤ 10}. Thus, each line Li,j may
be considered as a “line modulo 11” in our grid which goes through the element E0,j and
whose slope is determined by the parameter i (or more precisely i+ 1).

Now consider the incidence graph GE,L for E and L which is defined as follows: The
nodes of GE,L are exactly the elements and lines defined above, i.e., V (GE,L) = E ∪ L, and
there is an edge between some node Ei,j and some node Li′,j′ if and only if Ei,j is contained
in the set Li′,j′ (i.e., if and only if Ei,j lies on the line Li′,j′). There are no other edges, hence
GE,L is bipartite where one side of the bipartition is given by E and the other side by L.

I Lemma 2. In GE,L, any two nodes in E have at most one common neighbor in L. Also,
any two nodes in L have at most one common neighbor in E.

I Lemma 3. Let i ∈ {0, . . . , 10} be fixed. Any node from L has exactly one neighbor in GE,L
of the form Ei,j and exactly one neighbor in GE,L of the form Ej,i.

I Lemma 4. Let i ∈ {0, . . . , 9} be fixed. Any node from E has exactly one neighbor in GE,L
of the form Li,j.

For the construction of Gn̂, we will borrow nodes from GE,L and we will assume that the
borrowed nodes take along their relationship concerning edges between them, i.e., there is an

ICALP 2017
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edge between two borrowed nodes in our graph construction if and only if there is an edge
between those two nodes in GE,L.

We construct Gn̂ as given in the following. The vertex set of Gn̂ is defined as the (disjoint)
union of smaller vertex sets that constitute different parts of the graph with different purposes:

V (Gn̂) = E ∪ L∗ ∪ S ∪ A ∪ T ∪R ∪ C ∪ D ∪ {P} ∪ X , where
L∗ = {Li,j | 0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 10}
S = {S0,S1}
A = {A0, . . . ,A3}
T = {T0, . . . , T3}
R = {R−n̂, . . . ,Rn̂}
C = {C0, . . . , Cn̂−1}
D = {D0, . . . ,Dn̂−1}
X = X 0 ∪ X 1 ∪ X 2

X j = {X j
0 , . . . ,X

j
5 } for all 0 ≤ j ≤ 2

The edges of Gn̂ are specified in Table 1. Moreover, we set U = E ∪L∗. Furthermore, we call
the nodes in X exits, and for each node Ri ∈ R we call the nodes from X , that are connected
to Ri, the exits of Ri.

The node subsets E and L∗ are borrowed from GE,L, but also the (renamed) nodes in X
are borrowed from GE,L: We consider X as a subset of L \ L∗. To ensure that no node in E
covers too many exits of some R node, the exits of any R node are borrowed (disjointly)
from a set of L \ L∗ nodes of the same slope. More precisely,

X 0 is borrowed from {L4,j | 0 ≤ j ≤ 10} ,
X 1 is borrowed from {L5,j | 0 ≤ j ≤ 10} ,
X 2 is borrowed from {L6,j | 0 ≤ j ≤ 10} .

As long as the above conditions are met, we do not care about the explicit choice of X as a
subset of L \ L∗. We obtain the following corollary from Lemma 2:

I Corollary 5. Any two nodes in E have at most one common neighbor in L∗. Any two
nodes in L∗ ∪ X have at most one common neighbor in E.

2.3 Observations
Before specifying asymptotically best strategies for the robber and the cops in Gn̂, we gather
some useful observations about the structure of Gn̂. In particular, we examine which cop
combinations cover certain neighbors of certain nodes. We start by showing that the cops
have to be in S0 and S1 in order to flush the robber out of U .

I Lemma 6. Consider any u ∈ U . The only cop combination not containing u that covers
all neighbors of u in U is {S0,S1}.

We proceed by showing that if the robber has been flushed out of U to some node Ai,
then the cops can only make progress by going to {S0, Ti} because otherwise the robber can
go back to U (or there is no progress if the cops simply stay in {S0,S1}).

I Lemma 7. Consider any Ai. The only cop combinations not containing Ai that cover all
neighbors of Ai in U are {S0,S1} and {S0, Ti}.
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Table 1 A listing of the edges of Gn̂. In each block, the nodes listed in the right column are the
neighboring nodes of the node listed in the left column. For simplicity, we omit a separate block for
specifying the neighbors of the X nodes. They can be inferred from the other blocks. The X nodes
do not have any edges connecting them to each other since they are borrowed from the L part of
GE,L.

Node Neighbors
Ei,j L∗ nodes as determined by GE,L

Si (mod 2)
Aj (mod 4)
Tj (mod 4) if i (mod 2) = 1
X nodes as determined by GE,L

Li,j E nodes as determined by GE,L

Si (mod 2)
Ai (mod 4)
Ti (mod 4)

Node Neighbors
Ri Aj for all j if i = 0

Rj for j = i− 1 and j = i + 1
Cj for all 0 ≤ j ≤ n̂/3 if i (mod 3) = 0
Cj for all n̂/3 ≤ j ≤ 2n̂/3 if i (mod 3) = 1
C0 and Cj for all 2n̂/3 ≤ j ≤ n̂− 1 if i (mod 3) = 2
P
X j

h where j = i (mod 3) and h ∈ {0, 1, 2, 3, 4, 5}
Ci S0

Rj for all j (mod 3) = 0 if 0 ≤ i ≤ n̂/3
Rj for all j (mod 3) = 1 if n̂/3 ≤ i ≤ 2n̂/3
Rj for all j (mod 3) = 2 if i = 0 or 2n̂/3 ≤ i ≤ n̂− 1
Cj for j ≡ i− 1 (mod n̂) and j ≡ i + 1 (mod n̂)
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 1, 3} if i (mod 3) = 0
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 2, 3} if i (mod 3) = 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 2, 3} if i (mod 3) = 2
Di Aj for all j

Tj for all j

Dj for j ≡ i− 1 (mod n̂) and j ≡ i + 1 (mod n̂)
P
X j

h where j ∈ {0, 1, 2} and h ∈ {2, 4, 5} if 0 ≤ i ≤ n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {1, 4, 5} if n̂/3 ≤ i ≤ 2n̂/3− 1
X j

h where j ∈ {0, 1, 2} and h ∈ {0, 4, 5} if 2n̂/3 ≤ i ≤ n̂− 1
P Ti for all i

Ri for all i

Di for all i

X j
i where j ∈ {0, 1, 2} and i = 3

Node Neighbors
S0 Ci for all i

X j
i , where j ∈ {0, 1, 2} and i ∈ {0, 1, 2}

every Ei,j with i (mod 2) = 0
every Li,j with i (mod 2) = 0

S1 Ti for all i

X j
i , where j ∈ {0, 1, 2} and i ∈ {3, 4, 5}

every Ei,j with i (mod 2) = 1
every Li,j with i (mod 2) = 1

Ai Tj for all j

R0

Dj for all j

Ej,h for all h (mod 4) = i

Lj,h for all j (mod 4) = i

Ti S1

Aj for all j

Tj for all j 6= i

Dj for all j

P
X j

h , where j ∈ {0, 1, 2} and h ∈ {3, 4, 5}
Ej,h for all j (mod 2) = 1 and h (mod 4) = i

Lj,h for all j (mod 4) = i

The following lemma shows that if the cops allow the robber to go to an exit of some R
node, then they have to go back to {S0,S1} in order to prevent the robber from going to U .

I Lemma 8. Consider any X j
i . The only cop combination not containing X j

i that covers all
neighbors of X j

i in U is {S0,S1}.

As Lemma 8 already indicates, the cops do not want the robber to be able to go to an
exit from an R node. The next lemma characterizes the cop combinations from where they
can prevent the robber from doing that.

I Lemma 9. Consider any Ri. The only cop combinations not containing any Rj with j ≡ i
(mod 3) that cover all exits of Ri are {S0,S1}, {S0, Tj} for any j, and {Cj ,Dh} for any pair
(j, h) satisfying one of the following three conditions:
1. j (mod 3) = 0 and 0 ≤ h ≤ n̂/3− 1,
2. j (mod 3) = 1 and n̂/3 ≤ h ≤ 2n̂/3− 1,
3. j (mod 3) = 2 and 2n̂/3 ≤ h ≤ n̂− 1.

Observe that the cop combinations from Lemma 9 are independent of the choice of the
considered Ri which implies that these cop combinations cover all nodes in X . We call such
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Table 2 The robber’s strategy.

{c0(t), c1(t)} r(t− 1) r(t)

6= {S0,S1} some node in U some uncovered node in U
{S0,S1} some node in U some node in A

{S0,S1} or {S0, Ti} Ai R0

6= {S0,S1} and 6= {S0, Ti} Ai some uncovered node in U
not covering all exits of Ri Ri some uncovered exit of Ri

covering all exits of Ri Ri the uncovered node from {Ri−1,Ri,Ri+1}
with smallest absolute index; if all are

covered, stay in Ri

6= {S0,S1} X j
i some uncovered node in U

{S0,S1} X j
i some node from {R−1,R0,R1}

a cop combination exit-blocking. Furthermore, we call an exit-blocking cop combination
proper if it does not contain a node from S (i.e., it consists of a node from C and a node
from D). Lastly, we call a proper exit-blocking cop combination {Ci,Dj} forcing if there
exist h, h′ ∈ {−1, 0, 1}, h 6= h′, such that the cops cover all Rh (mod 3) and all Rh′ (mod 3).
A close look at the construction of Gn̂ shows that a proper exit-blocking cop combination
{Ci,Dj} is forcing if and only if i ∈ {0, n̂/3, 2n̂/3}.

Proper exit-blocking cop combinations prevent the robber from going back (too much)
towards the middle of the R path since they contain a C node which by its nature is connected
to every third R node. Thus, in order to be able to chase the robber towards one end of the
R path, the cops have to stay in proper exit-blocking cop combinations.

The C node in a forcing proper exit-covering cop combination covers more R nodes than
the C node in a usual proper exit-covering cop combination and thereby forces the robber to
move one step towards the end of her R path. In order to chase the robber another step, the
cops have to go to a forcing proper exit-covering cop combination containing a different C
node. The following lemma shows a lower bound on the time it takes the cops to go from
one forcing proper exit-covering cop combination to another with a different C node, while
using only proper exit-covering cop combinations on the way. Refer to Figures 2 and 3 for
illustrations of the underlying idea.

I Lemma 10. Let ({Ci,Dj} = {c0(t), c1(t)}, {c0(t+ 1), c1(t+ 1)}, . . . , {c0(t+h), c1(t+h)} =
{Ci′ ,Dj′}) be a sequence of proper exit-blocking cop combinations describing the combined
movement of the two cops from time t to time t+ h. If {Ci,Dj} and {Ci′ ,Dj′} are forcing
and i 6= i′, then h ≥ n̂/3 · (n̂/3− 1) ∈ Ω(n̂2).

2.4 The Robber’s Strategy
Here, we explicitly specify a strategy for the robber that ensures that 2 cops need time Ω(n3)
to capture the robber in Gn̂:

If the cops are in S0 and S1 in round 0, then the robber starts in R0, otherwise the robber
starts in some node in U that is not covered by any of the cops (which exists by Lemma 6).
Depending on where the cops are, the robber moves as specified in Table 2 (as long as she is
not captured yet).

We show now that the specified strategy is well-defined, i.e., that the robber can perform
any step in the strategy and that no other situations than the specified ones can occur if the
robber follows the strategy. For the first part, we go through the table line by line:
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Table 3 The cops’ strategy.

r(t− 1) (c0(t− 1), c1(t− 1)) (c0(t), c1(t))

Ai (S0,S1) (S0, Ti)
6= Ai for all i (S0,S1) (S0, Tj) for some j

arbitrary (S0, Ti) (C0,D0)
6= Ch for all h (Ci,Dj)

(
Ci+1 (mod n̂),Dj+1 (mod n̂)

)
if this covers all nodes in X(

Ci,Dj+1 (mod n̂)
)
otherwise

Ch (Ci,Dj) (S0,P)

By Lemma 6, if the robber is in some node u ∈ U , then she can always go to some
uncovered node in U , provided the cops are not in S0 and S1. She can also go from u to
some node in A since any node in U has some node in A as a neighbor, by the construction
of Gn̂. Similarly, the robber can go from any node in A to R0. By Lemma 7, if the robber is
in some node Ai, then she can always go to some uncovered node in U , provided the cops
are not in S0 and S1 or in S0 and Ti. The instructions where to go to from Ri are trivially
satisfiable. From X j

i , the robber can always go to some uncovered node in U if the cops are
not in S0 and S1, by Lemma 8. She can also go to either R−1, R0 or R1 from X j

i since each
X j

i is connected to exactly one of those three R nodes, by the construction of Gn̂.
Moreover since the robber starts in a node in U or R, Table 2 covers all situations where

the robber is in some node in U , A, R or X , and each instruction ends with the robber being
in one of those nodes, the presented strategy specifies what the robber has to do for every
possibly occurring situation.

2.5 The Cops’ Strategy
Now, we explicitly specify a strategy for the cops that ensures that the robber is captured in
time O(n3) in Gn̂:

Cop 0 starts in S0 and Cop 1 starts in S1 in round 0. Depending on where the robber is,
the cops move as specified in Table 3. There is one exception however: If a cop can capture
the robber immediately, then she does so, overriding any possible instruction from the table.

We show now that the specified strategy is well-defined, i.e., that the cops can actually
perform any step in the strategy and that no other situations than the specified ones can
actually occur2 if the cops follow the strategy:

The construction of Gn̂ ensures that the cops can actually move from the cop combinations
at time t− 1 given in Table 3 to the cop combinations at time t. Since the cops start in S0
and S1, the only thing that is left to show is that from (S0,P) (which is the only output
combination that is not dealt with on the input side) the cops can capture the robber at
time t+ 1, provided that the robber is in some Ch at time t− 1. For that, it is sufficient to
observe that any neighbor of Ch, and Ch itself, is covered by S0 or P.

2.6 A Lower Bound for the Robber’s Strategy
Here, we show that the strategy for the robber specified in Table 2 ensures that the cops
need time Ω(n3) to capture the robber in Gn̂. For convenience, we assume throughout the

2 More precisely, if a situation occurs that is not specified in Table 3, then the cops can capture the
robber immediately.
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following lower bound considerations that if a cop can capture the robber immediately, then
she does so. This certainly cannot worsen any strategy the cops follow.

We start by observing that the set of R nodes can be partitioned into three roughly
equally-sized sets such that the R nodes in each such set have exactly the same exits. As the
following lemma shows, if the robber is in an R node, then she does not need to worry about
a cop being in another R node that has (and therefore covers) the same exits, since such a
situation cannot occur if the robber follows the specified strategy.

We proceed by determining the nodes the robber can be captured in. Then, using
Lemma 11 and Lemma 12, we give a lower bound on the capture time of Gn̂.

I Lemma 11. If the robber follows the strategy specified in Section 2.4, then the following
holds: If the robber is in some node Ri at time t and is not captured at time t + 1, then
neither of the 2 cops can be in some node Rj with j ≡ i (mod 3) at time t+ 1.

I Lemma 12. If the robber follows the strategy specified in Section 2.4, then she can only be
captured in Rn̂ or R−n̂.

I Lemma 13. If the robber follows the strategy specified in Section 2.4, then 2 cops need
time Ω(n̂3) to capture the robber in Gn̂.

2.7 An Upper Bound for the Cops’ Strategy
While the aim of this work is a lower bound, we need to show that 2 cops can actually
capture the robber in Gn̂, in order to use Gn̂ as a lower bound graph for the capture time
for 2 cops in 2-cop-win graphs. We start by showing that from a proper exit-blocking cop
combination the cops can always go to another proper exit-blocking cop combination by
doing one of the following: Both cops move to the next node in their respective cycle or only
the cop in the D cycle moves to the next node.

I Lemma 14. If (Ci,Dj) is an exit-blocking cop combination, then it holds that at least one
of (Ci,Dj+1 (mod n̂)) and (Ci+1 (mod n̂),Dj+1 (mod n̂)) is an exit-blocking cop combination.

The following lemma shows that, once the cops reach C0 and D0, the robber cannot
ever leave R without being captured in the next two moves. Then, using Lemma 14 and
Lemma 15, we give an upper bound on the capture time of Gn̂.

I Lemma 15. Let r(t) ∈ R and (c0(t+ 1), c1(t+ 1)) = (C0,D0) for some point in time t. If
the robber leaves R at some later point in time t′, i.e., if r(t′) /∈ R for some t′ > t, then the
robber will be captured at time t′′ ≤ t′ + 2, provided the two cops follow the strategy specified
in Section 2.5.

I Lemma 16. If the two cops follow the strategy specified in Section 2.5, then they capture
the robber in time O(n̂3) in Gn̂.

Finally, by Lemma 13 we get that for the case of 2 cops, the capture time of the graph
family {Gn̂}n̂≥3,n̂≡0 (mod 3) is Ω(n̂3) ⊆ Ω(n3) and by Lemma 16 we get that every graph in
{Gn̂}n̂≥3,n̂≡0 (mod 3) is 2-cop-win. Together, these lemmas yield Theorem 1 for 2 cops.

The Case of k > 2

Our graph construction and the corresponding lower bound proofs follow closely the design
of the case of two cops. To accommodate a third cop, Cop 2, we essentially copy the D
component and ensure, that for every step of Cop 1, Cop 2 has to perform Ω(n̂) steps. For
the case of k > 3 cops, we simply apply this trick inductively. Due to space limitations, we
defer the detailed discussion of the case of k > 2 cops to the full version.
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