
Dynamic Data Structures for Interval Coloring I

Girish Raguvir Ja, Manas Jyoti Kashyopa, N. S. Narayanaswamya

aDepartment of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

We consider the dynamic graph coloring problem restricted to the class of interval graphs in the incremental
and fully dynamic setting. The input consists of a sequence of intervals that are to be either colored, or
deleted, if previously colored. For the incremental setting, we consider the well studied optimal online
algorithm (KT-algorithm) for interval coloring due to Kierstead and Trotter [1]. We present the following
results on the dynamic interval coloring problem.

� Any direct implementation of the KT-algorithm requires Ω(∆2) time per interval in the worst case.

� There exists an incremental algorithm which supports insertion of an interval in amortized O(log n+ ∆)
time per update and maintains a proper coloring using at most 3ω − 2 colors.

� There exists a fully dynamic algorithm which supports insertion of an interval in O(log n+ ∆ logω)
update time and deletion of an interval in O(∆2 log n) update time in the worst case and maintains a
proper coloring using at most 3ω − 2 colors.

The KT-algorithm crucially uses the maximum clique size in an induced subgraph in the neighborhood of a
given vertex. We show that the problem of computing the induced subgraph among the neighbors of a given
vertex has the same hardness as the online boolean matrix vector multiplication problem [2]. We show that

� Any algorithm that computes the induced subgraph among the neighbors of a given vertex requires at
least quadratic time unless the OMv conjecture [2] is false.

Finally, we obtain the following result on the OMv conjecture.

� If the matrix and the vectors in the online sequence have the consecutive ones property, then the OMv
conjecture [2] is false.

Keywords: Dynamic graph algorithms; Interval coloring; Lower bound.

1. Introduction

Maintenance of data structures for graphs in the dynamic setting has been extensively studied. In the
dynamic setting, a graph has a fixed set of vertices whereas the edge set keeps evolving by means of edge
updates. An edge update consists of either insertion of a new edge or deletion of an existing edge. A dynamic
graph is thus a sequence of graphs, G = {G0, G1,, Gt}, where t is the total number of edge updates, initial
graph G0 = (V, φ) is an empty graph and graph Gi is obtained from Gi−1 by a single edge update. In our
work, Gi is an interval graph and an update consists of an interval to be inserted or deleted. Therefore, in

IPreliminary version of this work appeared in 25th International Computing and Combinatorics Conference(COCOON),pages
478-489, 2019

Email addresses: girishraguvir@gmail.com (Girish Raguvir J), manasjk@cse.iitm.ac.in (Manas Jyoti Kashyop),
swamy@cse.iitm.ac.in (N. S. Narayanaswamy)

1

ar
X

iv
:1

90
4.

00
69

2v
2

 [
cs

.D
S]

 2
6

Ja
n

20
20

our dynamic setting, a single update may insert or delete many edges in the underlying interval graph. This
is different from the commonly studied case in the area of dynamic graph algorithms where on each edge
update a single edge is inserted or deleted.

The graph coloring problem is one of the most extensively studied problems. In the dynamic setting,
graph coloring problem is as follows: there is an online sequence of edge updates and the goal is to maintain
proper coloring after every update. Several works ([3],[4],[5] and [6]) propose heuristic and experimental
results on the dynamic graph coloring problem. To the best of our knowledge, the formal analysis of data
structures for dynamic graph coloring have been done in [7], [8], [9], [10], [11], and [12]. We continue the
study of dynamic data structures for graph coloring. We focus on interval graphs in the incremental as well
as in the fully dynamic setting. The online update sequence consists of intervals and our goal is to maintain
a proper coloring of the intervals with as few colors as possible while maintaining a small update time. In the
incremental setting, each update in the online update sequence consists of an interval to be colored. In the
fully dynamic setting, each update in the online update sequence consists of either an interval to be colored
or a previously colored interval to be deleted.

In the incremental setting, intervals in the update sequence are inserted one after the other and we aim
to efficiently maintain a proper coloring of the intervals using as few colors as possible after every update.
Our approach is to consider efficient implementations of well-studied online algorithms for interval coloring.
Online algorithms for interval coloring and variants is a rich area with many results [13]. Note that an online
algorithm is not allowed to re-color a vertex during the execution of the algorithm. On the other hand,
an incremental algorithm is not restricted in anyway during an update step except that we desire that the
updates be done as efficiently as possible. Naturally, an online interval coloring algorithm which is efficiently
implementable is a good candidate for an incremental interval coloring algorithm as it only assigns a color
to the current interval, and does not change the color of any of the other intervals. For the online interval
coloring problem, Kierstead and Trotter presented a 3 competitive algorithm (KT-algorithm) and they also
proved that their result is tight [1]. The tightness is proved by showing the existence of an adaptive adversary
that forces an online algorithm to use 3ω − 2 colors where ω is the maximum clique size in the interval graph
formed by the given set of intervals. On the other hand, the KT-algorithm uses at most 3ω − 2 colors.

1.1. Our Results

Our goal is to design incremental and fully-dynamic algorithms for interval coloring. Towards this, we
study efficient implementations of the KT-algorithm. The KT-algorithm computes a coloring in which
each color is a 2-tuple (p(v), o(v)), where p(v) is the level value of v and o(v) is the offset of v. In the
incremental and fully-dynamic setting, we design efficient 3-approximation algorithms for interval coloring.
In the incremental case our results leave open the possibility of improving the number of colors used by
sacrificing the constraint in online algorithms that an interval cannot be re-colored. We start by considering
the efficiency of a direct implementation of the KT-algorithm. A direct implementation uses a data structure
that only maintains the intervals and responds to intersection queries by reporting the intervals which intersect
a queried interval. We show the following result in Section 2.2.

• Any direct implementation of the KT-algorithm requires Ω(∆2) time per interval in the worst case,
where ∆ is the maximum degree of a vertex in the associated interval graph. (Theorem 2)

We then show that a comparison based data structure which supports the insertion of a new interval or
computes the number of intervals intersecting a given interval requires Ω(log n) comparisons for at least one
of the operations (Lemma 3). In Section 2.3, our next result is a different approach to compute the level
value for an interval. This approach avoids the lower bound for a direct implementation by maintaining
additional information associated with the intervals that have been colored. While our approach, called
Algorithm KT-SLS, uses the same number of colors as the KT-algorithm, we show that the level value for each
interval computed by our approach is at most the level value computed by the KT-algorithm (Lemma 5).
We show an example where for an interval the level value computed by Algorithm KT-SLS is smaller than
the level value computed by the KT-algorithm. We design an incremental interval coloring algorithm which
implements Algorithm KT-SLS in Section 3 and show that it uses at most 3ω − 2 colors.

2

• There exists an incremental algorithm which supports insertion of an interval in amortized O(log n+ ∆)
time per update, where n is the total number of intervals in the update sequence and ∆ is the maximum
degree of a vertex in the interval graph formed by those intervals. (Theorem 7)

In Section 4, in the fully dynamic setting, an interval that has already been colored can be deleted, apart
from the insertions. At the end of each update, our aim is to maintain a 3ω − 2 coloring of the remaining
set of intervals, where ω is the maximum clique in the interval graph associated with the remaining set of
intervals. In order to bound the number of colors to 3ω − 2, deletion of an interval may trigger a change
in the colors of some of the remaining intervals creating a set of dirty intervals. Cleaning up of those dirty
intervals may in turn create more dirty intervals resulting in a cascading effect. We design an approach to
efficiently compute the set of such dirty intervals after a deletion. Thus, we present a fully dynamic algorithm
for 3ω − 2 interval coloring in the fully dynamic setting.

• There exists a fully dynamic algorithm which supports insertion of an interval in O(log n+ ∆ logω)
update time and deletion of an interval in O(∆2 log n) update time in the worst case, where n is the
total number of intervals inserted and ∆ is the maximum degree of a vertex in the interval graph formed
by those intervals. (Theorem 16)

Our final contribution is motivated by the fact that the KT-algorithm computes the maximum clique size
in an induced subgraph of the neighbors of the current interval. In our attempt to design efficient data
structures to report the neighborhood of a vertex we encountered a connection to the online boolean matrix
vector multiplication problem and the related OMv conjecture, which is due to Henzinger et. al [2]. We
present a reduction in Section 5 where we show the following result.

• Any algorithm that needs to compute induced subgraph among the neighbors of a given vertex requires at
least quadratic time unless online boolean matrix vector multiplication conjecture is false.(Theorem 20)

Finally, we use the well-known interval tree data structure to obtain the following result on online boolean
matrix vector multiplication conjecture.

• In the online boolean matrix vector multiplication problem, if the boolean matrix and the vectors in
the online sequence have consecutive ones property then the OMv conjecture is false. (Theorem 21)

2. Kierstead-Trotter algorithm and Supporting Line Segment

Let the set I = {I1, I2, . . . , In} denote a sequence of n intervals, and let G(I) denote the associated
interval graph. For 1 ≤ j ≤ n, let Ij = [lj , rj] where lj and rj represent the left and right endpoint of Ij ,
respectively. Let σ = v1, v2, v3, . . . , vn be the ordering of vertices of interval graph G = G(I) where vertex vj
is the j-th vertex in σ and it corresponds to the interval Ij in I. Let ω(G), ∆(G), and χ(G) denote the size
of the maximum cardinality clique in G, the maximum degree of a vertex in G, and the chromatic number of
G, respectively. It is well-known that for interval graphs ω(G) = χ(G). When the graph G is clear, refer to
these numbers as ω, ∆, and χ.

2.1. Kierstead-Trotter algorithm - overview

The intervals in the sequence I are presented to the online KT-algorithm. For i ≥ 0, let Ii be the interval
presented and let vi be the corresponding vertex in σ. The KT-algorithm computes a color based on the color
given to the vertices v1, . . . , vi−1. The color assigned to a vertex v is a tuple of two values and is denoted as
(p(v), o(v)). p(v) is called the level value, o(v) ∈ {1, 2, 3} is called the offset, and v is said to be in level p(v).
p(v) is computed in Step I and in Step II o(v) is computed. The key property is that for each edge {u, v},
the tuple (p(u), o(u)) is different from (p(v), o(v)).
Step I: For r ≥ 0, let Gr(vi) denote the induced subgraph of G on the vertex set {vj |vj ∈ V (G), j <
i, p(vj) ≤ r, (vi, vj) ∈ E(G)}. Define p(vi) = min{r|ω(Gr(vi)) ≤ r}.

3

Key Properties maintained by Step I [1]:

• For each vertex vi, p(vi) ≤ ω − 1.

• Property P : The set {v|p(v) = 0} is an independent set. For each i, 1 ≤ l ≤ ω − 1, the subgraph of
G induced on {v | p(v) = l} has maximum degree at most 2.

Step II: o(vi) is chosen to be the smallest value from the set {1, 2, 3} which is different from the offset of
each of the at most two neighbors whose level is p(vi).
Analysis: Since the vertices with level value 0 form an independent set, the offset for all these vertices is 1.
Therefore, the color for all the vertices in level 0 is (0, 1). By Property P, for each level 1 ≤ l ≤ ω − 1, the
maximum degree in the graph induced by vertices in the level l is 2. Therefore, the algorithm uses at most
3 colors, (l, 1), (l, 2), and (l, 3), to color the vertices in level l. Hence, total number of colors used by the
algorithm is at most 1 + 3(ω − 1) = 3ω − 2.

2.2. Quadratic lower bound for computing the ω in the graph induced by a subset of neighbors of a vertex

We start by considering implementations of the KT-algorithm in which the data structures are designed
only to store the input intervals and support only intersection queries among intervals. We refer to such
an implementation as a direct implementation and prove a lower bound on the running time of a direct
implementation. This lower bound motivates the additional data structures that are necessary to obtain an
implementation of the KT-algorithm with a better running time. We start by observing a lower bound on
the time to identify the size of a maximum clique in a given set of intervals.

Lemma 1. A deterministic algorithm which computes the maximum clique size in the interval graph formed
by a given set of n intervals has running time Ω(n).

Proof. The proof is by contradiction. Let B be a deterministic algorithm such that on each input consisting
of a set of n intervals, it reports the maximum clique size in the corresponding interval graph in o(n) time.
Due to this assumption, it follows that algorithm B does read the entire input on n intervals. Let us consider
the execution of B on interval sequence I1 = {[0, x1], [0, x2], . . . , [0, xj], . . . , [0, xn]}. Let 1 ≤ j ≤ n be the
index such that during the execution, B does not read the j-th interval. Consider I2 obtained from I1 by
replacing the j-th interval by an interval disjoint from all the other n− 1 intervals. Since the execution of
B does not read the j-th interval, the output on both I1 and I2 will both be the same. However, both the
outputs cannot be correct since the maximum clique size for I1 is n and for I2 is n − 1. Therefore, for a
deterministic algorithm B to compute the maximum clique size on all inputs, it must read all the intervals in
the input, and thus its running time is Ω(n). Hence the Lemma.

Using Lemma 1 we prove that a direct implementation of the KT-algorithm will have a Ω(∆2) running time.

Theorem 2. A direct implementation of the KT-algorithm has Ω(∆2) running time where ∆ is the maximum
degree of a vertex in the associated interval graph.

Proof. For each i ≥ 1 and r ≥ 0, to check if p(vi) = r, the KT-algorithm computes the maximum clique
size in the interval graph formed by the intervals with level value at most r and intersecting with the input
interval Ii. From Lemma 1, computing the size of the maximum clique takes Ω(∆) time. The KT-algorithm
repeats this computation for the values of r starting from 0 until the value for which ω(Gr(vi)) ≤ r is true.
The worst case is reached for the input sequence I1 in Lemma 1 for which the clique will be computed in
the graphs G0(vi), G1(vi), . . . , Gi(vi). The running time of a direct implementation on I1 is Ω(ω2) which is
Ω(∆2). Therefore, a direct implementation of the KT-algorithm takes Ω(∆2) time in the worst case. Hence
the Theorem.

While our subsequent results show that we can maintain additional information to circumvent the lower
bound faced by a direct implementation, we observe that any comparison based data structure to maintain
the given set of intervals and respond to intersection queries uses Ω(log n) comparisons.

4

Lemma 3. Let D be a comparison based data structure which supports the following operations on an interval
[l, r]:

• D.Insert([l, r]): Inserts interval [l, r] into D.

• D.Query([l, r]): Returns the total number of intervals in D which are intersecting with [l, r].

Let cu be the number of comparisons performed during D.Insert([l, r]) before inserting [l, r]. Let cq be the
number of comparisons performed during D.Query([l, r]) before responding to the query. Then either cu or cq
is Ω(log n).

Proof. It is possible to use data structure D to design a comparison based sorting algorithm which is defined as
follows: Let x1, x2, . . . , xn be n distinct numbers given as input for comparison sorting. For every 1 ≤ i ≤ n,
perform D.Insert([xi, xi]). A linear search is performed on x1, x2, . . . , xn to find the minimum denoted by min.
Finally, to compute the sorted order, for each 1 ≤ i ≤ n, perform D.Query([min, xi]). If query D.Query([min, xi])
returns j, then xi is the j-th element in the sorted order. Thus, the total number of comparisons required
to find the sorted order is n · cu + n + n · cq. It is well-known that any comparison sorting of n numbers
performs Ω(n log n) comparisons [14]. Therefore, n · cu + n + n · cq is Ω(n log n). This implies that either cu
= Ω(log n) or cq = Ω(log n). Hence the Lemma.

The result in Lemma 3 shows that any interval tree based approach which maintains the input intervals
and computes intersecting intervals will use Ω(log n) comparisons. On the other hand, in Section 2.3 we
overcome the lower bound presented in Theorem 2 by maintaining additional information about the coloring
computed by the KT-algorithm. This additional information plays a crucial role in an efficient data structure
for the KT-algorithm.

2.3. Supporting Line Segment (SLS)-a geometric handle

To overcome the limitation of computing a maximum clique in an induced subgraph, we maintain the size
of some cliques, and use the structure of interval graphs to conclude that these cliques indeed represent a
maximum clique in the neighborhood of each interval. The algorithm can be seen as an efficient version of
the KT-algorithm and we refer to it as KT-SLS (KT-algorithm using supporting line segment).

For each i ≥ 1, L(Ii) ∈ {0, 1, . . . , ω − 1} and p(vi) denote the level value computed by KT-SLS and the
KT-algorithm, respectively. Further, for each i ≥ 1, o(Ii) and o(vi) denote the offset computed by KT-SLS
and the KT-algorithm, respectively. Let t be a non-negative real number and It be the set of all intervals

in I which contain the point t. For the set It, define the set levels(It) =
⋃
I∈It

{L(I)} to be the set of levels

assigned to intervals in It. Define ht = min({y ∈ {0, 1, . . . , ω − 1}|y /∈ levels(It)}). In other words, ht is
the smallest non-negative integer which is not the level value for an interval containing t. For ht ≥ 1, the
Supporting Line Segment(SLS) at t is defined to be the set et = {(t, 0) . . . (t, ht − 1)}, and ht is called the
height of the SLS et. Note that the set It is of size at least ht, and there are ht intervals in It for which the
level values are 0 to ht − 1.
Algorithm KT-SLS: For i ≥ 1, the color (L(Ii), o(Ii)) for Ii is computed as follows:

1. Step I: For each t ∈ Ii, compute the height, ht, of the SLS et. Define L(Ii) = max
t∈Ii

ht.

Key Properties maintained by Step I

• For each interval Ii, L(Ii) ≤ p(vi) ≤ ω − 1(Lemma 5).

• Property P : The set {I|L(I) = 0} is an independent set. For each i, 1 ≤ i ≤ ω−1, the subgraph
of G induced on {I | L(I) = i} has maximum degree at most 2 (Lemma 6).

2. Step II: : Compute o(Ii) to be the smallest value from the set {1, 2, 3} that is different from the offset
of the neighbours of Ii which have the level L(Ii).

5

0 1 2 3 4 5 6 7 8 9 10

Level 0

Level 1

Level 2

Level 3

Level 4

I1

(0, 1)

I2

(0, 1)

I5

(0, 1)

I3

(1, 1)

I4

(1, 2)

I6

(3, 1)

I1 = [1, 2], I2 = [8, 9], I3 = [1, 7], I4 = [3, 9],I5 = [4, 6], and I6 = [4, 6]

Figure 1: For 1 ≤ i ≤ 6, color (p(vi), o(vi)) is shown along with the interval Ii. For 1 ≤ i ≤ 5, (p(vi), o(vi)) = (L(Ii), o(Ii)).
For I6, (L(I6), o(I6)) = (2, 1), whereas ((p(v6), o(v6)) = (3, 1).

Remark: We show an example in Figure 1, where for interval I6, the level value computed by KT-SLS is
strictly less than the level value computed by the KT-algorithm. The intervals arrive in the following order :
I1 = [1, 2], I2 = [8, 9], I3 = [1, 7], I4 = [3, 9], I5 = [4, 6], and I6 = [4, 6]. Intervals I1, I2, and I5 get level value
0. KT-algorithm computes p(v6) = 3 and KT-SLS computes L(I6) = 2. The portion colored as gray is the
overlapping portion between interval I3 and interval I4.
Correctness of Algorithm KT-SLS. We start by proving that the level value computed by Algorithm
KT-SLS depends only on the set of endpoints of the intervals. This finite set is denoted by E and we refer to
the points in the set as endpoints.

Lemma 4. For each real number t, E ∩
⋂
I∈It

I 6= ∅. Further, there is an endpoint p ∈ E such that hp ≥ ht.

Proof. If t is an endpoint of an interval, then t ∈ E and hence the Lemma is proved. Suppose t is not an
endpoint. Let lt denote the largest left endpoint among all the intervals in It and rt denote the smallest
right endpoint among all the intervals in It. By definition, lt ∈ E and rt ∈ E . Since It is a set of intervals, it
follows that lt and rt are present in all the intervals in It. Further, since both lt and rt are present in each
interval in It, it follows that the set of intervals that contain them is a superset of It. Therefore, the height
of the SLS at lt and rt is at least the height of the SLS at t. Hence the Lemma.

From the description in Section 2.1, we know that the level value of Ii computed by the KT-algorithm is
given by p(vi) = min{r|ω(Gr(vi)) ≤ r}. Further in Algorithm KT-SLS, L(Ii) is defined to be the maximum
height of the SLS at the endpoints contained in Ii. We next prove that L(Ii) ≤ p(vi) ≤ ω − 1.

Lemma 5. For each i ≥ 1, p(vi) is at least the maximum height of the SLS at any endpoint contained in the
interval Ii.

Proof. By definition, L(Ii) is the maximum height of SLS at any endpoint contained in Ii. By the definition
of the height of an SLS at an endpoint t, we know that for each 0 ≤ r ≤ ht − 1 there is an interval I ∈ It
such that L(I) = r, and all these intervals form a clique of size ht. Therefore, it follows that GL(Ii)(vi) has a
clique of size at least L(Ii). Therefore, it follows that p(vi) ≥ L(Ii). Hence the Lemma.

We prove in Lemma 6 that the level values computed by Algorithm KT-SLS satisfy Property P.

6

Lemma 6. Algorithm KT-SLS satisfies Property P and thus uses at most 3ω − 2 colors.

Proof. We first prove that the set {I|L(I) = 0} is an independent set. To show this, we prove that for a pair
of intersecting intervals I and J , at least one of L(I) or L(J) is more than 0. Without loss of generality, let
us assume that the interval I appeared before J . If L(I) > 0, then our claim is correct. We now consider the
case when L(I) = 0. Since I and J intersect, it follows that an endpoint of one of them is contained in the
other. Therefore, after J is presented to Algorithm KT-SLS, the SLS of one of the endpoints in I ∪ J is more
than 0. By the definition of L(J) in Algorithm KT-SLS, it follows that L(J) > 0. Therefore, {I|L(I) = 0} is
an independent set. The same argument also shows that if L(I) = L(J), then I 6⊆ J and J 6⊆ I.

We now prove that the level value computed by Algorithm KT-SLS satisfies Property P. Let I be the first
interval during the execution of the algorithm which has at least 3 intersecting intervals in level l = L(I).
Let these intervals be J1, J2, J3. Since there cannot be a containment relationship between two intersecting
intervals with the same level value, it follows that two intervals contain a common endpoint with L(I).
Without loss of generality, let J1 and J2 contain a common endpoint of I. Further, we know by the Helly
property for intervals that one of the intervals is contained in the union of the other two [15]. Consequently,
one of the 3 intervals contains a point t for which the SLS has height l + 1. This contradicts the hypothesis
that L(I) = l. Therefore, our assumption that an interval I has at least 3 neighbours in L(I) is wrong.
Consequently, all the intervals with the same level value are assigned an offset from {1, 2, 3}. Further, if two
intervals with the same level value intersect, then they get different offsets as described in Step II. From
Lemma 5, we know that for any interval Ii, we have L(Ii) ≤ p(vi). Therefore, maximum level value of any
interval is ω − 1. For level 0 we use one color and for every other level we use at most 3 colors. Therefore,
the number of colors used by ALgorithm KT-SLS is 3(ω − 1) + 1 = 3ω − 2. Hence the Lemma.

In the rest of the paper we design data structures that are useful in an efficient implementation of Algorithm
KT-SLS in both the incremental and fully dynamic settings. Apart from data structures to maintain
intervals, we also use data structures to maintain supporting line segments. The data structures to maintain
the supporting line segments are crucial in overcoming the limitations of a direct implementation of the
KT-algorithm. The necessary data structures are described in Section 2.4.

2.4. Dynamic Data Structures for Algorithm KT-SLS

Procedure Incremental Fully Dynamic
compute-SLS(I, t):Maintains the SLS for endpoint t Worst case Worst case
(i) in the Incremental case: as a dynamic array At O(log(n) + ω) O(log(n) + ω logω)
and doubly linked list Qt. (Lemma 9) (Lemma 17)
(ii) in the Fully Dynamic case: Red Black Tree Zt and NZt. Return value At, Qt Return value Zt, NZt
compute-max-SLS(E , Ii): From the interval tree E , Worst case Worst case
computes the set of endpoints S contained in the interval Ii O(log(n) + ∆) O(log(n) + ∆ logω)
and returns h = max{ht|t ∈ S} (Lemma 10) (Lemma 18)

Return value S, h Return value S, h
update-Endpoints(S,L(Ii)): Updates the endpoints in S Amortized Worst case
on addition of interval Ii at level L(Ii). For each t ∈ S O(∆) O(∆ logω)
(i) Incremental case: updates At and Qt (Lemma 11) (Lemma 19)
(ii) Fully Dynamic case: updates Zt and NZt
compute-Offset(Ii): Assigns an offset value to Ii from {1, 2, 3} Worst case Worst case
by considering the offset of the intervals O(log(n)) O(log(n))
intersecting it in T [L(Ii)] (Lemma 8) (Lemma 8)

Table 1: Comparison of Procedures in Incremental and Fully Dynamic cases

In this section, we present the various data structures used to implement KT-SLS in the incremental and fully
dynamic setting. For this purpose, we come up with the procedures listed in Table 1. The procedures in the

7

incremental setting differ from their counterparts in the fully dynamic setting on the data structures used to
store SLS. The running time of the incremental and the fully dynamic algorithms are governed by the running
times of these procedures. Detailed descriptions of the procedures are given in Section 3.1 for incremental
setting and in Section 4.4 for fully dynamic setting. Next, we describe the different data structures which are
used to implement the procedures in Table 1. Running time of different operations on these data structures
are listed in Table 2.

Interval Tree I [16]
Method Description Running Time Return

Value
I.insert(I) Inserts interval I into I O(log(|I|)) worst case -
I.delete(I) Deletes interval I from I O(log(|I|)) worst case -
I.intersection(I) Returns a set of intervals SI in I O(log(|I|) + |SI |) SI

that intersect with I worst case

Doubly linked list Q [17]
Q.insert(x) Inserts element x into list Q O(1) worst case -
Q.delete(x) Deletes element x from list Q O(1) worst case -
Q.begin() Returns the first element x of list Q O(1) worst case x

Set U [18]
U .insert(x) Inserts a new element x into U O(1) amortized -
U .begin() Iterator to the first element of the set O(1) worst case -
U .end() Iterator to the last element of the set O(1) worst case -

Dynamic Array A [19]
A.at(i) Inserts at i-th position of array A. O(1) amortized -

Doubles the array size after initialization
if array is full

A.size() Returns the size of array A O(1) worst case size

Red-Black Tree R [20]
R.insert(x) Inserts element x into R O(log(|R|)) worst case -
R.delete(x) Deletes element x from R O(log(|R|)) worst case -
R.max() Returns the maximum element x in R O(log(|R|)) worst case x
R.min() Returns the minimum element x in R O(log(|R|)) worst case x
R.empty() Checks if the tree R is empty O(1) worst case 0/1

Table 2: Data Structures used in dynamic setting

Interval Trees to store intervals and endpoints:

1. Set of intervals I. The set of intervals I is maintained as an interval tree. Therefore, I is an interval
tree such that for each i ≥ 1, interval Ii is maintained as its left and right endpoints li and ri. Further,
the level value and offset L(Ii) and o(Ii) are computed at the time of insertion, and updated as necessary
in the fully dynamic case. The index of the update when Ii is inserted is also stored and referred as
time of insertion whenever necessary.

2. Set of endpoints E. The set of endpoints of the intervals in I is stored as an interval tree denoted by
E . For every interval Ii=[li, ri], we maintain the left endpoint and the right endpoint as intervals [li, li]
and [ri, ri] respectively in E .

3. Hash table T points to set of intervals with same level value. For a non-negative integer h,
T [h] points to the interval tree which maintains the set of intervals with level value h.

8

Data Structures to store supporting line segments: At every endpoint t ∈ E , the SLS et and the
height, ht, of et is maintained. In the incremental setting, the height of an SLS is non-decreasing with the
updates and this need not be true in the fully dynamic case. Thus we have different data structures to
represent SLS in the incremental setting and the fully dynamic setting.

1. Incremental setting: In the incremental setting, the SLS et is maintained using a dynamic array
At. For a level value l, At[l] is defined to be 1 if there is an interval containing t whose level value is
t. Otherwise, At[l] is defined to be 0. Clearly, the height ht of the supporting line segment et is the
smallest index l such that At[l] = 0. To respond to queries for ht efficiently, a doubly linked list Qt and
a dynamic array A′t are used as follows. The head of the doubly linked list Qt contains the value of
ht, and following it, the set {l | At[l] = 0} as a doubly linked list in increasing order of the value of l.
To maintain ht, we define a doubly linked list Qt which stores every index i in At where At[i] is 0 in
the increasing order of the value of i. Note that the value stored at the head node of Qt is ht. The
dynamic array A′t is defined as follows: for each l ≥ 0, if At[l] = 1, then A′t[l] stores a pointer to the
node in Qt which stores the index l; otherwise, A′t[l] = NULL. Using the dynamic array A′t, insert,
delete, and search operations in Qt can be performed in constant time. Insertion into a dynamic array
takes amortized constant time [19]. A query for the value of ht can be answered in constant time by
returning the value stored in the head node of Qt.

2. Fully dynamic setting: SLS et is maintained using two Red-Black trees, Zt and NZt. A level value
l is stored in NZt if there is an interval in I which contains t and whose level value is l. Otherwise, a
level value l is stored in Zt. To compute the height ht, we do the following: if Zt is non-empty, then the
minimum value in Zt is the required height ht. If Zt is empty, then ht is one more than the maximum
value in NZt. The number of nodes in the trees Zt and NZt is at most ω. Therefore, the time required
to compute ht is O(logω).

3. Incremental Interval Coloring using Algorithm KT-SLS

We present the incremental algorithm handle-Insert which is an implementation of Algorithm KT-SLS. The
pseudo code of handle-Insert is presented in Algorithm 1 along with the corresponding steps. The procedures
used in handle-Insert described in Section 3.1. The amortized update time of handle-Insert is given by the
Theorem 7.

1. Computing L(Ii):
Step 1: Insert Ii into the set of intervals
I (Line 1 in Algorithm 1). Check if the
endpoint li is already present in the set of
endpoints E (Line 4 in Algorithm 1). If
not, then compute the SLS at endpoint li
(Line 5 in Algorithm 1) and insert li into
the set E (Line 6 in Algorithm 1). Repeat
for endpoint ri (Line 8-11 in Algorithm 1).
Step 2: Compute the set S = E ∩ Ii. For
each t ∈ S, compute ht, the height of the
SLS et at t. Assign L(vi) = max

t∈S
ht (Line

12-13 in Algorithm 1).
Step 3: Update the SLS et for each point
t ∈ S (Line 14 in Algorithm 1).

2. Computing o(Ii): Compute o(Ii) to be the
smallest value from the set {1, 2, 3} which
is different from the offset of the neighbours
of Ii which have the level L(Ii) (Line 15 in
Algorithm 1).

Algorithm 1 handle-Insert(Ii = [li, ri]) is used
to handle insertion of interval Ii

1: I.insert(Ii)
2: I li ← [li, li]
3: Iri ← [ri, ri]
4: if (| E .intersection(I li) | = 0) then
5: Ali , Qli ← compute-SLS(I,li)
6: E .insert(I li)
7: end if
8: if (| E .intersection(Iri) | = 0) then
9: Ari , Qri ← compute-SLS(I,ri)

10: E .insert(Iri)
11: end if
12: S, h← compute-max-SLS(E ,Ii)
13: L(Ii)← h
14: update-Endpoints(S,L(Ii))
15: compute-Offset(Ii)

9

Theorem 7. handle-Insert is an incremental algorithm which supports insertion of a sequence of n intervals
in amortized O(log n+ ∆) time per update.

Proof. We analyze the running time for computing L(Ii) and o(Ii).
Analysis for computing L(Ii): Computing L(Ii) involves 3 steps.

1. Step 1 in computing L(Ii) takes O(log n+ ω) time: Insertion of Ii = [li, ri] into I takes O(log n) time.
Let I li = [li, li]. Checking if I li is present in E by an intersection query takes O(log n) time in the
worst case. If I li is in E , then no further processing is done. On the other hand, if I li is not in E then
procedure compute-SLS(I, li) is invoked. From Lemma 9, procedure compute-SLS takes O(log n+ ω)
time. The same steps are repeated for Iri = [ri, ri]. Hence Step 1 in computing L(Ii) for interval Ii
takes O(log n+ ω) time.

2. Step 2 in computing L(Ii) takes O(log n+ ∆) time: Procedure compute-max-SLS(E , Ii) is invoked to
perform this step. From Lemma 10, procedure compute-max-SLS(Algorithm 4) takes O(log n+ ∆) time.
Hence Step 2 in computing L(Ii) for interval Ii takes O(log n+ ∆) time.

3. Step 3 in computing L(Ii) takes amortized O(∆) time: Procedure update-Endpoints(S,L(Ii)) is invoked
to perform this step. From Lemma 11, procedure update-Endpoints(Algorithm 5) takes amortized O(∆)
time. Hence Step 3 in computing L(Ii) for interval Ii takes amortized O(∆) time.

Analysis for computing o(Ii): To compute the offset value of interval Ii with level value L(Ii), procedure
compute-Offset(Ii) is invoked. From Lemma 8, procedure compute-Offset(Ii) takes O(log n) time.
Therefore, total time taken by handle-Insert for insertion of n intervals is the total time taken for Step 1,
Step 2, Step 3, and the total time spent in computing the offset. For interval graphs, it is well known that
ω = χ ≤ ∆ + 1. Thus the running time is O(n log n + n∆). Therefore, the amortized update time over a
sequence of n interval insertions is O(log n+ ∆). Hence the Theorem.

3.1. Procedures used in handle-Insert

The data structures used in designing these pro-
cedures are listed in Table 2.

Lemma 8. Procedure compute-Offset takes as
input interval I, computes the offset value for
interval I and takes O(log n) time in the worst
case.

Proof. Hash table T is used to access the interval
tree T [L(I)]. If T [L(I)] is NULL, then an interval
tree T [L(I)] is created with I as the first interval
(Line 2-3 in Algorithm 2). Otherwise, T [L(I)]
is the interval tree which stores all the intervals
with level value same as L(I). An intersection
query is performed on T [L(I)] with I to obtain
all the intervals that intersect with I (Line 5 in
Algorithm 2). From Property P, the maximum
number of intervals returned by the above query is
2. The offset value of interval I, o(I), is set to be
the smallest value from {1, 2, 3} not assigned to
any of the at most two neighbors of I in level L(I)
(Line 6 in Algorithm 2). Interval I is inserted to
T [L(I)] (Line 7 in Algorithm 2).
Running time of compute-Offset is dominated by
intersection query in Line 5 and insertion of inter-
val I in Line 7. Since |I| ≤ n, worst case running
time of compute-Offset is O(log n). Hence the
Lemma.

Algorithm 2 compute-Offset(I) is used to com-
pute the offset value of the interval I with level
value L(I).

1: procedure compute-Offset(I)
2: if T [L(I)] is NULL then
3: T [L(I)]← Interval Tree()
4: end if
5: S ← T [L(I)].intersection(I)
6: o(I) ← The minimum value in the set
{1, 2, 3} which is not the offset value of any
interval in S.

7: T [L(I)].insert(I)
8: end procedure

10

Lemma 9. Procedure compute-SLS takes set of
intervals I and endpoint t as input, maintains
SLS at t using dynamic array At and doubly linked
list Qt, and takes O(log n+ ω) time in the worst
case.

Proof. compute-SLS performs an intersection
query on I with interval [t, t] (Line 2 in Algo-
rithm 3). Let It denote the set returned by
the intersection query. Maximum height ht =
max(levels(It)) and the set U = levels(It) are
computed (Line 7-9 in Algorithm 3). For every
i in the range [0, ht], At[i] is set to 0 and i is
inserted to Qt (Line 11-13 in Algorithm 3). For
every i in the range [0, ht], At[i] is reset to 1 if
i ∈ levels(It) and i is deleted from Qt (Line 15-17
in Algorithm 3). It returns At and Qt.
Running time of compute-SLS is dominated by
the intersection query in Line 2, loop in Line
7-9, loop in Line 11-13, and loop in Line 15-17.
At any level, SLS et intersects with at most 2
intervals and we have ω many levels. Hence, |It|
= O(ω), ht ≤ ω+ 1, and |U | ≤ ω. Again, |I| ≤ n.
Therefore, time taken by procedure compute-SLS
in the worst case is O(log n + ω). Hence the
Lemma.

Lemma 10. Procedure compute-max-SLS takes
set of endpoints E and interval I as input, com-
putes the set of endpoints S contained in I and
maximum among the height of the SLS at the end-
points in S, and takes O(log n+ ∆) time in the
worst case.

Proof. Procedure compute-max-SLS performs an
intersection query of I on E (Line 2 in Algo-
rithm 4). This query returns the set S of all
the endpoints which intersect with I. It com-
putes the maximum among the height of the SLS
at endpoints in S, denoted by h (Line 4-11). The
procedure returns h and the set S.
Running time of compute-max-SLS is dominated
by intersection query in Line 2 and loop from
Line 4-11. Since ∆ is the maximum degree in the
associated interval graph, interval I can intersect
with at most ∆ intervals. Therefore, |S| = O(∆).
Further, |E| ≤ 2n. Thus the worst case time taken
by compute-max-SLS is O(log n+ ∆). Hence the
Lemma.

The different procedures used in handle-Insert are
described and analyzed below.

Algorithm 3 compute-SLS(I,t) computes the
supporting line segment at endpoint t.

1: procedure compute-SLS(I,t)
2: It ← I.intersection([t, t])
3: ht ← 0
4: U ← Empty Set
5: At ← []
6: Qt ← Empty doubly linked list
7: for I in It do
8: ht ← max(ht, L(I))
9: U .insert(L(I))

10: end for
11: for i in {0, 1, 2, ...ht} do
12: At.at(i)← 0
13: Qt.insert(i)
14: end for
15: for i in U .begin() to U .end() do
16: At.at(i)← 1
17: Qt.delete(i)
18: end for
19: return At, Qt
20: end procedure

Algorithm 4 compute-max-SLS(E ,I) computes
the set S of endpoints contained in interval I and
the maximum value among the heights of the SLS
at these points.

1: procedure compute-max-SLS(E ,I)
2: S ← E .intersection(I)
3: h← 0
4: for t in S do
5: if Qt.begin() is NULL then
6: ht ←0
7: else
8: ht ← Qt.begin()
9: end if

10: h← max(h, ht)
11: end for
12: return S, h
13: end procedure

11

Procedure update-Endpoints(S,L(I)): This
procedure, described in Algorithm 5, is used to
update the SLS at the endpoints contained in set
S: let l = L(I). For every endpoint t ∈ S, size of
At is checked.

1. Case A: If l < At.size(). In this case, At[l]
is set to 1. The pointer stored in A′t[l] is
used to delete the node in Qt which stores
the value l and A′t[l] is set to NULL subse-
quently. If the deleted node in Qt was the
head node, then the head node is updated
to the next node in Qt and thus the value
of ht also gets updated.

2. Case B: If l ≥ At.size(). In this case, the
standard doubling technique for expansion
of dynamic arrays [19] is used to increase
the size of At until At.size() becomes strictly
greater than l. A′t is also expanded along
with At and appropriate nodes are inserted
to Qt. Once At.size() > l, the remaining
operations are same as in the case A.

Algorithm 5 update-Endpoints(S,L(I)) is used
to update the supporting line segments at the end-
points contained in set S for level value L(I). In
this procedure, SLS is maintained using dynamic
array and doubly linked list.

1: procedure update-Endpoints(S,L(I))
2: l← L(I)
3: for t in S do
4: if l > At.size() then
5: for i in {At.size()+1, l} do
6: At.at(i)← 0
7: Qt.insert(i)
8: end for
9: end if

10: At.at(l)← 1
11: Qt.delete(l)
12: ht ← Qt.begin()
13: end for
14: end procedure

Lemma 11. Procedure update-Endpoints takes
O(∆) amortized time.

Proof. For every endpoint t ∈ S, size of At is
checked in constant time. To analyze the time re-
quired in update-Endpoints, we observe that every
update must perform the operations as described
in case A. We refer to these operations as task
M (M stands for mandatory). Some updates have
to perform additional operations as described in
case B. We refer to these operations as task A(A
stands for additional). The time taken by each
update to perform task M is |S| ×O(1) = O(|S|).
Since ∆ is the maximum degree, it follows that
|S| ≤ ∆. Therefore, every update takes O(∆)
time to perform task M in the worst case. To
analyze the time required to perform task A, we
crucially use the fact that our algorithm is incre-
mental and hence only expansions of the dynamic
arrays take place. Since ω is the size of the maxi-
mum clique, it follows that the maximum size of
a dynamic array throughout the entire execution
of the algorithm is upper bounded by 2ω. Over
a sequence of n insertions, the total number of
endpoints is upper bounded by 2n. Therefore, we
maintain at most 4n dynamic arrays. For every
such array, total number of inserts in the array
and the associated doubly linked list is at most 2ω
in the entire run of the algorithm. An insertion
into the dynamic array takes constant amortized
time and insertion into doubly linked list takes
constant worst case time. Therefore, during the
entire run of the algorithm total time required
to perform task A on one dynamic array and its
associated doubly linked list is O(ω). This im-
plies that during the entire run of the algorithm
total time spent on task A over all the updates is
≤ 4n × O(ω). Let T be the total time spent on
update-Endpoints at the end of n insertions. This
is the sum of the total time for task A and the
total time for task M. Further, since ω ≤ ∆ + 1, it
follows that T = O(n∆). Hence the Lemma.

12

4. Fully dynamic interval coloring

An update in the update sequence in the fully dynamic setting consists of an interval to be colored or a
previously colored interval to be deleted. The i-th update is Insert(Ii) where Ii is the interval presented to
the algorithm. The update Delete(Ii) is to delete the interval Ii that was inserted during the i-th update.
At the end of each update, the invariants are maintained such that it follows that the intervals are colored
with at most 3ω − 2 colors, where ω is the size of the maximum clique in the interval graph just after the
update. For an insert update, we use handle-Insert (Algorithm 1) to ensure that the invariants are maintained
at the end of the update. However, to get a good bound on the update time, we use a different set of data
structures to maintain SLS (see Section 2.4). Therefore, the major result in this section is to handle the
delete of a previously colored interval. There are two aspects in the algorithm: the first one is to ensure that
the invariants are maintained after a delete, and the second one is to ensure that the update is efficient.

4.1. Algorithm handle-Delete for Delete(Ii)

Let (L(Ii), o(Ii)) be the color of Ii at the beginning of the update. The pseudo code and steps of Algorithm
handle-Delete are presented in Algorithm 6.

Step 1: Remove interval Ii from the set of inter-
vals I and hash table T [L(Ii)].(Line 1 and Line 2
in Algorithm 6)
Step 2: Compute the set of endpoints contained
in Ii. Let Ei = E ∩ Ii. (Line 3 in Algorithm 6)
Step 3: For each endpoint t ∈ Ei, update SLS et
to reflect the deletion of interval Ii. (Line 4 to 8
in Algorithm 6)
Step 4: Compute the set of intervals intersecting
with Ii and with level value strictly greater than
L(Ii). Let DIRTY = {I|L(I) > L(Ii), Ii ∩ I 6= φ}
(Line 10 in Algorithm 6). Sort DIRTY in the in-
creasing order of level value and break the ties
in the increasing order of time of insertion. For
every interval I in DIRTY, repeat the following
steps:
• Compute the set of endpoints intersecting

with I. Let S = E ∩ I. For every endpoint
t ∈ S compute the height ht of the SLS et.
Compute h = max{ht|t ∈ S} (Line 11 in
Algorithm 6).

• If h ≥ L(I) then no further processing is
required for interval I.

• If h < L(I) then following steps are exe-
cuted (Line 17 to 25 in Algorithm 6):

– Change level value of I from L(I) to
h.

– Recompute the offset value o(I) for I
with the new level value h.

– Update SLS et for every point t ∈ S
to reflect the change in level value of
I.

Algorithm 6 handle-Delete(Ii = [li, ri]) is used
to handle deletion of interval Ii

1: T [L(Ii)].delete(Ii)
2: I.delete(Ii)
3: Ei ← E .intersection(Ii)
4: for t in Ei do
5: if | T [L(Ii)].intersection(t) | = 0 then
6: NZt.delete(L(Ii)
7: Zt.insert(L(Ii))
8: end if
9: end for

10: Compute DIRTY ← {I|L(I) > L(Ii), Ii ∩ I 6= φ}.
Sort DIRTY in the increasing order of level
value and break the ties in the increasing
order of time of insertion.

11: for I in DIRTY do
12: S, h← compute-max-SLS(E ,I)
13: if h ≥ L(I) then
14: continue
15: end if
16: T [L(I)].delete(I)
17: T [h].insert(I)
18: for t in S do
19: if | T [L(I)].intersection(t) | = 0 then
20: NZt.delete(L(I)
21: Zt.insert(L(I))
22: end if
23: NZt.insert(h)
24: Zt.delete(h)
25: end for
26: L(I)← h
27: compute-Offset(I)
28: end for

13

4.2. Correctness of handle-Delete

The first crucial property maintained by Algorithm handle-Delete is that at the end of the update, for each
interval I, there exists a point t in I such that the height of the SLS at t is at least L(I). We refer to this
property as Invariant C. The second crucial property maintained is property P. The following lemma proves
a bound on the number of colors used.

Lemma 12. At the end of each update, the number of colors used is at most 3ω − 2, where ω is the size of
the maximum clique in the interval graph just after the update.

Proof. We start by assuming that prior to the update the invariant C and Property P is satisfied by the
coloring. We show that after the update they continue to be satisfied. For update Insert(Ii) invariant C
and Property P are satisfied by the coloring at the end of the update. This follows from Lemma 5 which
shows that invariant C is maintained by Algorithm handle-Insert and Lemma 6 which proves that Algorithm
handle-Insert maintains Property P.

For update Delete(Ii) we know from Lemma 13 that the set DIRTY consists of those intervals whose
level values are changed by Algorithm handle-Delete to ensure that invariant C is maintained. Algorithm
handle-Delete iterates over each interval I in DIRTY and ensures, by modifying L(I) if necessary, that there is
a point t ∈ I such that ht ≥ L(I). Whenever L(I) is modified, it is modified to be the maximum ht, over all
t ∈ I. This choice of L(I) also ensures that I has at most two neighbors in the level L(I) and none of the
neighbors with level number L(I) has a containment relationship with I. The proof uses the same argument
in Lemma 6. Thus Property P is maintained by Algorithm handle-Delete.

Therefore, it follows that after the update, Property P is satisfied by the level values of the intervals and
from invariant C it follows that the largest level value of any interval is at most ω − 1. Further, the intervals
whose level values are 0 form an independent set. Therefore, the number of colors used by the algorithm at
the end of an update is 3ω − 2. Consequently, the algorithm uses at most 3ω − 2 colors after each update
step. Hence the Lemma.

We now prove that on the update Delete(Ii), it is sufficient for Algorithm handle-Delete to consider the set
DIRTY which is defined to be DIRTY = {I|L(I) > L(Ii), Ii ∩ I 6= φ}. On update Delete(Ii), an interval
is called dirty if during execution of Algorithm handle-Delete invariant C is violated for that interval. An
interval which is not dirty during the execution of Algorithm handle-Delete is called clean. In Lemma 13, we
show that DIRTY is a super set of all such intervals which become dirty.

Lemma 13. During the execution of Algorithm handle-Delete on the update Delete(Ii), if an interval I
becomes dirty, then I ∈ DIRTY.

Proof. On deletion of Ii, the supporting line segments are naturally classified into two sets: those whose
height reduces and those whose height does not reduce. Let t be a point for which the height does not reduce.
First we consider an interval I which contains t, ht ≥ L(I), and L(I) ≤ L(Ii), and show that I does not
become dirty during the execution of Algorithm handle-Delete. This is because, during the execution of the
algorithm, only intervals with level value greater than L(Ii) are considered for a reduction in level value.
Therefore, the height of t will remain at least L(I) throughout the execution of the algorithm. Therefore, I
does not become dirty during the execution of Algorithm handle-Delete.

Next, let us consider an interval I which contains t, ht ≥ L(I), and L(I) > L(Ii). The algorithm considers
the intervals I ′ ∈ DIRTY in increasing order of level number. Thus, it follows that the level value of an
interval I ′ which contains t and for which L(I ′) ≤ L(I) will not reduce during the execution of Algorithm
handle-Delete. Therefore, the height of the SLS at t does not change throughout the execution of Algorithm
handle-Delete, and thus I does not become dirty during the execution of Algorithm handle-Delete. Therefore,
an interval I which becomes dirty during the execution of Algorithm handle-Delete must contain a t whose
height reduces on the deletion of Ii. Thus, I intersects with Ii at t, and as we have proved above, I must
have level value more than L(Ii). In other words it must be an element of DIRTY. Hence the Lemma.

14

4.3. Worst-case analysis of runtime of handle-Delete and handle-Insert

Lemma 14. Algorithm 6 implements handle-Delete in O(∆2 log n) time.

Proof. It is clear from the description that Algorithm 6 implements each of the steps of handle-Delete. The
most expensive steps in Algorihtm 6 are the computation and sorting of DIRTY, and updating the level values
of the intervals in DIRTY, if necessary, in lines 11-28. DIRTY is computed by an intersection query to the
interval tree E and the worst-case running time is O(log n+ ∆), where ∆ is the number of endpoints in E
which is the number of intervals intersecting with Ii. Subsequently, sorting DIRTY takes time O(∆ log ∆)
time. Each iteration in lines 11-28 is for an interval I ∈ DIRTY, and the running time of an iteration is
dominated by the iteration in lines 18-25. The number of times lines 18-25 is executed is O(∆) which the
number of endpoints in S, where S is E ∩ I. In each of these iterations, the Red-Black trees are updated to
reflect the height of the corresponding supporting line segment, and this takes O(log n) time, using the fact
that the number of values in each Red-Black tree is at most ω. Thus the running time of Algorithm 6 is
O(∆2 log n). Hence the Lemma.

We next analyze handle-Insert which is implemented by Algorithm 1 in the fully-dynamic setting by
representing supporting line segments as Red-Black trees. Recall that in the incremental case they were
represented by dynamic arrays and a doubly linked list.

Lemma 15. Algorithm 1 with supporting line segments represented as Red-Black trees implement handle-Insert
in the fully-dynamic setting. Algorithm 1 inserts an interval in worst case O(log n+ ∆ logω) time.

Proof. In Lemma 17, Lemma 18, and Lemma 19, respectively, we prove that in the fully-dynamic setting,
with SLS represented as Red-Black trees, compute-SLS, compute-max-SLS, and update-Endpoints correctly
implement Step 1, Step 2, and Step 3, of handle-Insert correctly. Therefore, it follows that handle-Insert is
implemented by Algorithm 1 correctly. Further, these Lemmas also show that the worst-case running times
of these functions is O(log n+ω logω), O(log n+ ∆ logω), O(∆ logω), respectively. Therefore, the worst-case
running time, of handle-Insert implemented by Algorithm 1, with SLS represented as Red-Black trees, is
O(log n+ ∆ logω). Hence the Lemma.

Our fully-dynamic algorithm for interval coloring follows by combining Lemma 14 and Lemma 15.

Theorem 16. There exists a fully dynamic algorithm which supports insertion of an interval in O(log n+
∆ logω) and deletion of an interval in O(∆2 log n) worst case time.

4.4. Procedures used in handle-Delete and handle-Insert

The procedures compute-SLS, compute-max-SLS, and update-Endpoints which are defined in Section 3.1 are
defined in this section with Red-Black trees used to represent supporting line segments. The worst-case
running time of these procedures differ from their running times in Section 3.1. The data structures used in
designing these procedures are listed in Table 2.

15

Lemma 17. Procedure compute-SLS takes as in-
put the set of intervals I and endpoint t, main-
tains SLS at t as Red-Black trees Zt and NZt,
and takes O(log n + ω logω) time in the worst
case.

Proof. compute-SLS performs an intersection
query on I with [t, t] (Line 2 in Algorithm 7). The
query returns all the intervals in I which contain
endpoint t. Let It denote the set returned by the
intersection query. Set U = levels(It) and height
ht = max(levels(It)) are computed (Line 5-8 in
Algorithm 7). For every i in the range [0, ht],
i is inserted to Zt (Line 11-13 in Algorithm 7).
For every i in the set U , i is deleted from Zt
and inserted to NZt (Line 14-17 in Algorithm 7).
compute-SLS returns Zt and NZt.
Running time of compute-SLS is dominated by the
intersection query in Line 2, and loops in Line 11-
13 and Line 14-17. At any level, SLS et intersects
with at most 2 intervals and we have ω many levels.
Hence, |It| = O(ω). Again, |I| ≤ n. Therefore,
intersection query takes O(log n + ω). Further,
a single insertion in Zt and NZt takes O(logω)
time. Therefore, total time taken by the loops
is O(ω logω). This implies that the worst case
time taken by compute-SLS is O(log n+ ω logω).
Hence the Lemma.

Lemma 18. Procedure compute-max-SLS takes
as input set of endpoints E and interval I, com-
putes the maximum height of SLS contained in
interval I, and takes O(log n + ∆ logω) time in
the worst case.

Proof. compute-max-SLS works as follows (Algo-
rithm 8): an intersection query is performed on
E with I (Line 2). Let S be the set returned by
the intersection query. For every endpoint t ∈ S,
to compute the height ht of SLS et, the follow-
ing steps are used: If Zt is non empty then the
minimum value in Zt is assigned to ht (Line 10).
Otherwise, ht is assigned a value which is one
more than the maximum value in NZt (Line 8).
The maximum value of the height of an SLS at any
endpoint in S is computed as h = max{ht|t ∈ S}
(Line 12). The procedure returns the set S and
value h.
Running time of compute-max-SLS is dominated
by the intersection query in Line 2 and the
loop in Line 4-13. We know that |S| ≤ ∆ and
|E| ≤ 2n. Therefore, worst case time taken by
compute-max-SLS is O(log n + ∆ logω). Hence
the Lemma.

Algorithm 7 compute-SLS(I,t) is used to com-
pute the supporting line segment at endpoint t.

1: procedure compute-SLS(I,t)
2: It ← I.intersection([t, t])
3: ht ← 0
4: U ← Initialize to empty set
5: for I in It do
6: U.insert(L(I))
7: ht ← max(ht, L(I))
8: end for
9: Zt ← Empty Red-Black tree

10: NZt ← Empty Red-Black tree
11: for i in {0, 1, 2, ...ht} do
12: Zt.insert(i)
13: end for
14: for i in U .begin() to U .end() do
15: NZt.insert(i)
16: Zt.delete(i)
17: end for
18: return Zt, NZt
19: end procedure

Algorithm 8 compute-max-SLS(E ,I) is used to
compute the set S of endpoints contained in inter-
val I and compute the maximum height h of all
the supporting line segments at these endpoints.

1: procedure compute-max-SLS(E ,I)
2: S ← E .intersection(I)
3: h← 0
4: for t in S do
5: if Zt.empty() & NZt.empty() then
6: ht ← 0
7: else if Zt.empty() then
8: ht ← NZt.max() + 1
9: else

10: ht ← Zt.min()
11: end if
12: h← max(h, ht)
13: end for
14: return S, h
15: end procedure

16

Lemma 19. Procedure update-Endpoints takes
set of endpoints S and L(I) as input, update the
SLS at the endpoints contained in set S and takes
O(∆ logω) time in the worst case.

Proof. The procedure works as follows (Algo-
rithm 9): for every t ∈ S, L(I) is deleted from
Zt and L(I) is inserted to NZt. For one SLS
et it takes O(logω) time and |S| ≤ ∆. There-
fore, worst case time taken by update-Endpoints
is O(∆ logω). Hence the Lemma.

Procedure compute-Offset(I): This procedure
is same as the one described in Section 3.1.

Algorithm 9 update-Endpoints(S,L(I)) is used
to update the supporting line segments at the
endpoints contained in set S for level value L(I).

1: procedure update-Endpoints(S,L(I))
2: for t in S do
3: if ¬Zt.empty() then
4: ht ← Zt.min()
5: end if
6: if Zt.empty() then
7: ht ← NZt.max() + 1
8: end if
9: q = ht

10: while q < L(I) do
11: Zt.insert(q)
12: q ← q + 1
13: end while
14: if L(I) in Zt then
15: Zt.delete(L(I))
16: end if
17: NZt.insert(L(I))
18: end for
19: end procedure

5. Quadratic lower bound for induced neighborhood subgraph computation

In Section 2.2 we showed that a direct implementation of the KT-algorithm will not run in sub-quadratic
time. From Section 2.1 the crucial step is to compute maximum clique in an induced subgraph of the
neighborhood of the interval inserted during an update. In this section we explore an interesting connection
between computing the induced subgraph of the neighborhood of a vertex in a graph and the well-known
OMv conjecture due to Henzinger et al., [2]. Formally, we define the following problem:
Induced Neighborhood Subgraph Computation: The input to the Induced Neighborhood Subgraph
Computation problem consists of the adjacency matrix M of a directed graph and a set S of vertices. The
goal is to compute the graph induced by Nout(S) ∪ S and output the subgraph as adjacency lists. Here
Nout(S) is the set of those vertices which have a directed edge from some vertex in S. In other words, there
is a directed edge from vj to vk iff the entry M [k][j] is 1.
We show that Induced Neighborhood Subgraph Computation problem is at least as hard as the following
problem.
Online Boolean Matrix-Vector Multiplication (OMv)[2]: The input for this online problem consists
of an n× n matrix M , and a sequence of n boolean column vectors v1, . . . , vn, presented one after another to
the algorithm. For each 1 ≤ i ≤ n− 1, the online algorithm should output M · vi before vi+1 is presented to
the algorithm. Note that in this product, a multiplication is an AND operation and the addition is an OR
operation.

The current best algorithm for the OMv problem has an expected running time of O(n3

2
√

log n) [21]. The
following conjecture, due to Henzinger et al., [2], is well known about the OMv problem.
OMv conjecture: The Online Boolean Matrix-Vector Multiplication (OMv) problem does not have a
O(n3−ε) algorithm for any ε > 0.
In Theorem 20 we reduce OMv problem to Induced Neighborhood Subgraph Computation problem. As
a conseuqence of our reduction an efficient algorithm for Induced Neighborhood Subgraph Computation
problem implies an efficient algorithm for the OMv problem.

17

Theorem 20. Any algorithm for Induced Neighborhood Subgraph Computation problem needs at least quadratic
time unless OMv conjecture is false.

Proof. We show that an algorithm to solve the Induced Neighborhood Subgraph Computation problem can
be used to solve the Online Boolean Matrix-Vector Multiplication problem. Let A be an algorithm for the
Induced Neighborhood Subgraph Computation problem with the running time of A being O(n2−ε), for some
ε > 0. We use algorithm A to solve the Online Boolean Matrix-Vector Multiplication problem in O(n3−ε)
time as follows : Let M be the input matrix for the Online Boolean Matrix-Vector Multiplication problem
and let V1, . . . Vn be the column vectors presented to the algorithm one after the other. For the column
vector Vi, let set Si = {vj |Vi[j] = 1, 0 ≤ j ≤ n− 1}. To compute M · Vi, we invoke A on input {M,Si}. Let
GSi

denote the induced subgraph on Nout(Si) ∪ Si ⊆ V computed by the algorithm A. Note that GSi
is an

induced subgraph of the directed graph whose adjacency matrix is M . To output the column vector M · Vi,
we observe that the j-th row in the output column vector is 1 if and only if vj ∈ GSi and there is an edge
(u, vj) in GSi such that u ∈ Si. Given that GSi has been computed in O(n2−ε) time, it follows that the
number of edges in GSi

is O(n2−ε) and consequently the column vector M · Vi can be computed in O(n2−ε)
time. Therefore, using the O(n2−ε) algorithm A we can solve Boolean Matrix-Vector Multiplication problem
in O(n3−ε) time. If we believe that the OMv conjecture is indeed true, then it follows that the Induced
Neighborhood Subgraph Computation problem cannot have an O(n2−ε) algorithm for any ε > 0. Hence the
Theorem.

5.1. OMv conjecture is false for instances with the consecutive ones property

A 0-1 matrix is said to have the consecutive ones property if in each row, the column indices which have a 1
form an interval. A 0-1 column vector satisfies the consecutive ones property if the row indices which have a
1 in the column form an interval. We consider a special case of the OMv problem where the input matrix M
and the sequence of online vectors {v1, v2, . . . , vn} satisfy consecutive ones property. Each row in the matrix
M corresponds to an interval and every column index is a point on the number line. In particular, in the i-th
row if l and r are the least and largest column index, respectively, such that M [i][l] = M [i][r] = 1, then the
i-th row corresponds to the interval Ii = [l, r]. For each 1 ≤ j ≤ n, if p and q are the least and largest indices
in vj such that vj [p] = vj [q] = 1 then the vector vj is interpreted as the interval Ivj = [p, q].
Now, using the data structures described in Table 2 in Section 2.4 we design an algorithm to solve OMv
problem in quadratic time for this special case.

Theorem 21. OMv conjecture is false if the input matrix and the vectors in the online vector sequence have
the consecutive ones property.

Proof. The proof is by presenting an algorithm to solve the OMv problem. The algorithm has a preprocessing
step in which the intervals corresponding to the rows of the matrix are maintained in an interval tree.
Subsequently, the matrix vector product is computed using queries to the interval tree.
Preprocessing step: The interval corresponding to the rows in M are computed. Let row = {I1, I2, . . . , In}
denote the set of intervals corresponding to the rows in M . Computing the set row takes O(n2) time. An
interval tree Trow is constructed using the set row. The construction of Trow takes O(n log n) time. Therefore,
total time required in the preprocessing step is O(n2).
Computing M ·vj: For 1 ≤ j ≤ n, when vector vj is presented, interval Ij corresponding to vj is computed
in O(n) time. Let H be the set returned by the intersection query Trow.intersection(Ij). Since, |H| ≤ n,
from Table 2 the time required by the query is O(log n+ n). vout = M · vj is now computed as follows: for
each 1 ≤ i ≤ n, if interval Ii is present in H then the i-th position in the vector vout is set to 1, otherwise 0.
Thus vout can be computed in O(n) time. Therefore, total time required for computing M · vj is O(n). Thus
the OMv problem on such instances can be solved in time O(n2). Hence the Theorem.

18

References

[1] H. A. Kierstead, W. T. Trotter, An extremal problem in recursive combinatorics, Congressus Numerantium
33 (143-153) (1981) 98.

[2] M. Henzinger, S. Krinninger, D. Nanongkai, T. Saranurak, Unifying and strengthening hardness for
dynamic problems via the online matrix-vector multiplication conjecture, in: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC, 2015, pp. 21–30.

[3] D. O. Antonie Dutot, Frederic Guinand, Y. Pign, On the decentralized dynamic graph coloring problem,
in: Complex Systems and Self Organization Modelling, 2007, pp. 259–261.

[4] L. Ouerfelli, H. Bouziri, Greedy algorithm for dynamic graph coloring, in: Communications, Computing
and Control Applications, 2011, pp. 1–5.

[5] S. P. M. G. M. R. Scott Sallinen, Keita Iwabuchi, R. A.Pearce, Graph coloring as a challenge problem
for dynamic graph processing on distributed systems, in: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 347–358.

[6] R. L. Bradley Hardy, J. Thompson, Tackling the edge dynamic graph coloring problem with and without
future adjacency information, in: In Journal of Heuristics, 2017, pp. 1–23.

[7] M. Henzinger, P. Peng, Constant-time dynamic (∆+1)-coloring and weight approximation for minimum
spanning forest: Dynamic algorithms meet property testing, CoRR abs/1907.04745 (2019).

[8] S. Bhattacharya, F. Grandoni, J. Kulkarni, Q. C. Liu, S. Solomon, Fully dynamic (∆+1)-coloring in
constant update time, CoRR abs/1910.02063 (2019).

[9] S. Solomon, N. Wein, Improved dynamic graph coloring, in: 26th Annual European Symposium on
Algorithms, ESA, 2018, pp. 72:1–72:16.

[10] S. Bhattacharya, D. Chakrabarty, M. Henzinger, D. Nanongkai, Dynamic algorithms for graph coloring,
in: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
2018, pp. 1–20.

[11] L. Barenboim, T. Maimon, Fully-dynamic graph algorithms with sublinear time inspired by distributed
computing, in: International Conference on Computational Science, ICCS, 2017, pp. 89–98.

[12] L. Barba, J. Cardinal, M. Korman, S. Langerman, A. van Renssen, M. Roeloffzen, S. Verdonschot,
Dynamic graph coloring, in: Algorithms and Data Structures - 15th International Symposium, WADS,
2017, pp. 97–108.

[13] L. Epstein, M. Levy, Online interval coloring and variants, in: Automata, Languages and Programming,
32nd International Colloquium, ICALP, 2005, pp. 602–613.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Third Edition,
Chapter 8, pages 191–192, 3rd Edition, The MIT Press, 2009.

[15] M. C. Golumbic, Algorithmic graph theory and perfect graphs academic, second edition, chapter 4, page
92, New York (1980).

[16] M. De Berg, O. Cheong, M. Van Kreveld, M. Overmars, Computational Geometry: Algorithms and
Applications, chapter 10, pages 220–226, Springer, 2008.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Third Edition,
Chapter 10, page 236, 3rd Edition, The MIT Press, 2009.

19

[18] B. Stroustrup, The C++ Programming Language, Fourth Edition, Chapter 31, page 885–926, 4th
Edition, Addison-Wesley Professional, 2013.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Third Edition,
Chapter 17, pages 463–467, 3rd Edition, The MIT Press, 2009.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Third Edition,
Chapter 13, pages 308–338, 3rd Edition, The MIT Press, 2009.

[21] K. G. Larsen, R. R. Williams, Faster online matrix-vector multiplication, in: Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2017, pp. 2182–2189.

20

	1 Introduction
	1.1 Our Results

	2 Kierstead-Trotter algorithm and Supporting Line Segment
	2.1 Kierstead-Trotter algorithm - overview
	2.2 Quadratic lower bound for computing the in the graph induced by a subset of neighbors of a vertex
	2.3 Supporting Line Segment (SLS)-a geometric handle
	2.4 Dynamic Data Structures for Algorithm KT-SLS

	3 Incremental Interval Coloring using Algorithm KT-SLS
	3.1 Procedures used in handle - Insert

	4 Fully dynamic interval coloring
	4.1 Algorithm handle - Delete for Delete(Ii)
	4.2 Correctness of handle - Delete
	4.3 Worst-case analysis of runtime of handle - Delete and handle - Insert
	4.4 Procedures used in handle - Delete and handle - Insert

	5 Quadratic lower bound for induced neighborhood subgraph computation
	5.1 OMv conjecture is false for instances with the consecutive ones property

