Disposability in Square-Free Words

Tero Harju

Department of Mathematics and Statistics, University of Turku, Finland

Abstract

We consider words *w* over the alphabet $\Sigma = \{0, 1, 2\}$. It is shown that there are irreducibly square-free words of all lengths *n* except 4,5,7 and 12. Such a word is square-free (i.e., it has no repetitions *uu* as factors), but by removing any one internal letter creates a square in the word.

Keywords: Square-free ternary words, irreducibly square-free, Thue word 2000 MSC: 68R15

1. Introduction

Grytczuk et al. [1] showed that there are infinitely many 'extremal' squarefree ternary words where one cannot augment a single new letter anywhere without creating a square; see also Mol and Rampersad [2] for further results. In this article we consider the dual problem of this and show that there are square-free ternary words of all lengths, except 4, 5, 7 and 12, where removing any single interior letter creates a square. Although the problems resemble each other, the results and the proof techniques are quite different.

Let $\Sigma = \{0, 1, 2\}$ be a fixed ternary alphabet and denote by Σ^* and Σ^{ω} the sets of all finite and infinite length words over Σ , respectively. A finite word u is called a *factor* of a word $w \in \Sigma^* \cup \Sigma^{\omega}$ if $w = w_1 u w_2$ for some, possibly empty, words w_1 and w_2 . Moreover, w is *square-free* if it does not have a nonempty factor of the form uu.

Let $w \in \Sigma^*$ be a square-free word with a factorization $w = w_1 a w_2$ where $a \in \Sigma$. We say that the occurrence of the letter *a* is *disposable* if $w_1 w_2$ is square-free. The definition extends naturally to infinite words. An occurrence of a letter *a* is *interior*, if w_1 and w_2 are both nonempty.

Preprint submitted to Theoretical Computer Science

Email address: harju@utu.fi (Tero Harju)

If a square-free word $w \in \Sigma^* \cup \Sigma^{\omega}$ does not have disposable occurrences of interior letters then *w* is said to be *irreducibly square-free*, i.e., by deleting any interior occurrence of a letter results in a square in the remaining word.

The nonemptiness condition on the prefixes and suffixes is required since all prefixes and suffixes of square-free words are disposable.

Remark 1. The words of length at most two have no internal letters, and therefore we consider the property of being irreducibly square-free only for words of length at least three.

Example 1. Let $\tau: \Sigma^* \to \Sigma^*$ be the morphism determined by

 $\tau(0) = 012, \quad \tau(1) = 02, \quad \tau(2) = 1.$

The *Thue word* **t** is the fixed point $\mathbf{t} = \tau^{\omega}(0)$ of τ obtained by iterating τ on the start word 0. Then **t** is an infinite square-free word; see, e.g., Lothaire [3]:

```
t = 012021012102012021020121012021012\cdots
```

We show that the Thue word is *not* irreducibly square-free. For this, we first notice that **t** avoids 010 and 212 as factors. Also, it avoids 1021, since this word would have to be a factor of $\tau(212)$. Deleting the letter 2 at the third position results in a square-free word 01021012102012.... Indeed, a potential square would have to start either from the beginning, but the prefix 010 does not occur in **t**, or from the second position, but 1021 does not occur in **t**.

Later checking of irreducibility of (infinite) words is based on the following procedure that depends on a morphism $\alpha \colon \Sigma^* \to \Sigma^*$ for which $|\alpha(a)| > 1$ for all letters *a*.

Procedure I.

- 1 Check that the morphism α generates an infinite square-free word; say, $\alpha^{\omega}(0)$ or $\alpha(w)$, where *w* is a given infinite square-free word.
- 2 For any pair (a, b) of different letters, check that $\alpha(ab)$ is irreducibly square-free. This takes care that the last letter of $\alpha(a)$ and the first letter of $\alpha(b)$ are not disposable in $\alpha(ab)$. This guarantees that these occurrences are not disposable in any $\alpha(w)$ where $w = w_1 a b w_2$ is square-free.

The first item of Procedure I is often taken care of by Crochemore's criterion [4]:

Theorem 2. A morphism $\alpha: \Sigma^* \to \Sigma^*$ preserves square-free words if and only if it preserves square-freeness of words of length five.

2. Irreducibly square-free words of almost all lengths

By a systematic search we find that there are no irreducibly square-free words of lengths 4,5,7 and 12. In the following table we have counted the irreducibly square-free words of lengths 3,..., 30 up to isomorphism (produced by permutations of the letters) and reversal (mirror image) of the words. For instance, 010212010 is the only irreducibly square-free word of length nine up to isomorphism and reversal. It is a palindrome. The table suggests that the irreducibly square-free words are quite rare among the square-free words, e.g., there are (up to isomorphism and reversal) 202 square-free words of length 20, but only 12 of those are irreducibly square-free. Counting the numbers of (irreducibly) square-free words must take into consideration those words that are palindromes or isomorphic to their reversals.

length	card												
3	1	4	0	5	0	6	1	7	0	8	1	9	1
10	1	11	3	12	0	13	3	14	4	15	4	16	7
17	9	18	7	19	12	20	12	21	16	22	18	23	23
24	24	25	34	26	36	27	48	28	55	29	69	30	78

Table 1: The number of irreducibly square-free words of lengths from 3 to 30 up to isomorphism and reversal.

Theorem 3. There exists an infinite irreducibly square-free word.

Proof. Let φ be the following uniform palindromic morphism of length 17, i.e., $\varphi(1) = \pi(\varphi(0))$ and $\varphi(2) = \pi^2(\varphi(0))$ for the permutation $\pi = (0\ 1\ 2)$ of the letters:

 $\varphi(0) = 01202120102120210$ $\varphi(1) = 12010201210201021$ $\varphi(2) = 20121012021012102$

By Theorem 2, φ preserves square-freeness. It is easy to check that $\varphi(0)$, and so also the isomorphic copies $\varphi(1)$ and $\varphi(2)$, are irreducibly square-free. Finally, Procedure I entails that deleting the 'middle' 17th letters 0 of $\varphi(01)$ and of $\varphi(02)$ gives squares: 11 and 02120212, respectively. Similarly, deleting the 18th letter of $\varphi(01)$ and of $\varphi(02)$ gives squares: 10201020 and 00, respectively.

These observations suffice for the proof of the theorem, since now $\varphi(w)$ is irreducibly square-free for *all* square-free, finite or infinite, words *w*.

Remark 4. The morphism φ has an alignment property, i.e., for all letters a, b, c if $\varphi(bc) = u\varphi(a)v$ then u or v is empty, and a = b or a = c, respectively.

The morphism φ has an infinite fixed point

$$\Phi = \varphi^{\omega}(0)$$

that is the limit of the sequence $\varphi(0), \varphi^2(0), \ldots$

Note that the finite prefixes of Φ are not always irreducibly square-free. For instance, none of the prefixes of Φ of length *n* with $19 \le n \le 29$ are irreducibly square-free. However, we do have the following result with the help of φ .

Theorem 5. There are irreducibly square-free words of all lengths n except 4,5,7 and 12.

Proof. Table 2 gives an example for the cases $n \leq 17$.

3	010	13	0102012101202
6	010212	14	01020120212010
8	01020121	15	010201210120212
9	010212010	16	0102012021201020
10	0102012101	17	01202120102120210
11	01020120212		

Table 2: Small irreducibly square-free words. There are no examples for the lengths 4,5,7 and 12.

For $n \ge 18$, we rely on the morphism φ in order to have solutions for the lengths $n \equiv p \pmod{17}$ for $p = 0, 1, \dots, 16$.

Claim A. Let *w* be a nonempty suffix of $\varphi(1)$ or $\varphi(2)$ of length |w| < 17. Then the word $w\Phi$ is square-free (but not necessarily irreducibly square-free).

The word *w* is a suffix of exactly one of the words $\varphi(a)$, $a \in \Sigma$. Suppose there is a square in $w\Phi$ and assume that *w* is of minimal length with this property. Then $w\Phi$ has a prefix *uu* for $u = w\varphi(x)z$ for some words *x* and *z* with |z| < 17 (when |x| is chosen to be maximal). Hence $uu = w\varphi(x)zw\varphi(x)z$, and so $zw = \varphi(a)$ for $a \in \Sigma$. Therefore *z* is nonempty. By the alignment property,

uu must be followed in $w\Phi$ by the word *w*. This delivers a square in Φ , namely $\varphi(x)zw\varphi(x)zw = \varphi(xaxa)$; a contradiction since Φ is square-free. This proves Claim A.

Clearly, there are irreducibly square-free words of lengths $n \equiv 0 \pmod{17}$, since we can take a prefix of Φ of length n/17 and apply φ to it. Next we extend Φ to the left by considering words of the form uw, where w is a prefix of Φ .

Claim B. The words 121Φ and 0102Φ are square-free.

First, the words $121\varphi(0)$ and $0102\varphi(0)$ are not factors of Φ , since φ has the alignment property and the given words are not suffixes of any $\varphi(a)$, $a \in \Sigma$. Therefore, if 121Φ contains a square, then the square must be a prefix 21ν of 21Φ for some ν (and 1Φ is square-free by Claim A).

Assume that 21v = 21u21u where v = u21u is a prefix of Φ . Now, $|v| > |\varphi(a)| = 17$, since 21 is not followed by the first letter of u in any $\varphi(a)$, i.e., $u21 = \varphi(z)\varphi(1)$ for some z, since only $\varphi(1)$ ends in 21. We have then that $\varphi(1) = y21$ and $u = \varphi(z)y$. This means that the square $21v = 21\varphi(z1z)y$ is necessarily continued by the rest of $\varphi(1)$, i.e., by 21, giving a prefix v21 = u21u21 of Φ ; a contradiction, since Φ is square-free.

In the case of 0102Φ , Claim A guarantees that 102Φ is square-free. For the full prefix 0102, the claim follows since the prefix 01020120 of 0102Φ does not occur in Φ . This proves Claim B.

The special words w_i of Table 3 are chosen such that

- (iii) $|w_i| = i$,
- (iv) $w_i \Phi$ is square-free. By Claim A, this follows for i = 1, 2, 4, 5 and 10. By Claim B, the claim follows for the other cases.
- (v) $w_i \varphi(0)$ is irreducibly square-free (by a simple computer check).

The words w_i , themselves, are not (and, indeed, cannot be) all irreducibly square-free, but they are square-free.

Finally, let n = 17k + i. By Table 2, we can assume that $n \ge 18$. We then choose w_i from Table 3, and pick a prefix $\varphi(v)$ of Φ of length 17k. This creates an irreducibly square-free word $w_i\varphi(v)$ of length n.

3. Problems on Longer Words to Dispose

The property of being irreducibly square-free can be generalized to longer factors than just letters. Let $w \in \Sigma^*$ be a square-free word with a factorization

$w_9 = 121020121$
$w_{10} = 2021012102$
$w_{11} = 10121020121$
$w_{12} = 101202120121$
$w_{13} = 0210121020121$
$w_{14} = 01021201020121$
$w_{15} = 010201202120121$
$w_{16} = 0201021201020121$

Table 3: The special words with $w_i \equiv i \pmod{17}$. The words w_i with i > 1 that end in 121 or 0102 as called for by Claim B.

 $w = w_1 v w_2$ such that both w_1 and w_2 are nonempty. We say that the (occurrence of the) factor v is *disposable* if also $w_1 w_2$ is square-free. If a finite or infinite square-free word w does not have disposable factors of length k then w is called *k-irreducibly square-free*.

Example 2. We show that $\tau^{2n}(0)$ is *not* 2-irreducibly square-free, for all $n \ge 2$. Indeed,

$$\tau^{2}(0) = 012021$$

 $\tau^{2}(1) = 0121$
 $\tau^{2}(2) = 02$

Now, for $n \ge 2$, the word $\tau^{2n}(0)$ has the suffix 121 since $\tau^2(1)$ has this suffix and $\tau^2(0)$ ends with the letter 1. But a 2-irreducibly square-free word cannot be of the form *w*121, since by removing the pair 12, we obtain a (square-free) prefix of *w*1 of *w*121.

However, the limit $\mathbf{t} = \tau^{\omega}(0)$ is 2-irreducibly square-free. To see this, we consider the 5-th powers of the morphism τ :

$$\begin{aligned} \tau^{5}(0) &= 012021012102012021020121012021012102012101202102\\ \tau^{5}(1) &= 01202101210201202102012101202102\\ \tau^{5}(2) &= 0120210121020121 \end{aligned}$$

where the lengths of the images are 48,32 and 16, respectively. These images have a common prefix p = 012021 (and even longer ones). A computer check shows that the words $\tau^5(a)p$ are 2-irreducibly square-free for a = 1, 2.

Moreover, deleting an internal occurrence of a pair *cd* from $\tau^5(0)p$ results in a square-free word only for *cd* = 20 and *cd* = 02 that lie inside *p*. This proves that the infinite word **t** is 2-irreducibly square-free.

These considerations raise many problems.

Problem 1. Given $k \ge 1$, does there exist an infinite ternary word that is k-irreducibly square-free?

Theorem 6. Every infinite ternary square-free word w does have an infinite number of integers k for which w is not k-irreducibly square-free.

Proof. We need only to consider repetitions of the first letter of w, say $w = auaw_0$. Deleting the factor ua gives aw_0 , a (square-free) suffix of w.

We have seen that Problem 1 has a positive solution for k = 1 and k = 2. For small values of k a solution may be found using square-free morphisms. E.g., the morphism

$$\alpha_3(0) = 0121012$$

 $\alpha_3(1) = 01020120212$
 $\alpha_3(2) = 0102101210212$

generates a 3-irreducibly square-free word $\alpha^{\omega}(0)$. This follows from the fact that $\alpha_3(ab)$ is 3-irreducibly square-free for all different letters *a* and *b*.

Problem 2. Does there exist, for every k, a bound N(k) such that there exist k-irreducibly square-free words of all lengths $n \ge N(k)$?

Finally, we state a problem of the opposite nature:

Problem 3. Does there exist an infinite square-free word w such that w is k-irreducibly square-free for no $k \ge 1$?

Acknowledgements. I would like to thank the referees of this journal for their comments that improved the presentation of this paper.

References

- [1] J. Grytczuk, H. Kordulewski, A. Niewiadomski, Extremal square-free words, ArXiv: 1920.06226 (2019).
- [2] L. Mol, N. Rampersad, Lengths of extremal square-free ternary words, Arxiv: 2001.11763 (2020).
- [3] M. Lothaire, Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1997. doi:10.1017/ CB09780511566097.
- [4] M. Crochemore, Sharp characterizations of squarefree morphisms, Theoret. Comput. Sci. 18 (2) (1982) 221–226. doi:10.1016/0304-3975(82) 90023-8.