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Abstract

We consider words w over the alphabet Σ = {0, 1, 2}. It is shown that there are
irreducibly square-free words of all lengths n except 4,5,7 and 12. Such a word
is square-free (i.e., it has no repetitions uu as factors), but by removing any one
internal letter creates a square in the word.
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1. Introduction

Grytczuk et al. [1] showed that there are infinitely many ‘extremal’ square-
free ternary words where one cannot augment a single new letter anywhere
without creating a square; see also Mol and Rampersad [2] for further results.
In this article we consider the dual problem of this and show that there are
square-free ternary words of all lengths, except 4, 5, 7 and 12, where removing
any single interior letter creates a square. Although the problems resemble
each other, the results and the proof techniques are quite different.

Let Σ= {0,1,2} be a fixed ternary alphabet and denote by Σ∗ and Σω the
sets of all finite and infinite length words over Σ, respectively. A finite word u
is called a factor of a word w ∈ Σ∗ ∪Σω if w = w1uw2 for some, possibly empty,
words w1 and w2. Moreover, w is square-free if it does not have a nonempty
factor of the form uu.

Let w ∈ Σ∗ be a square-free word with a factorization w = w1aw2 where
a ∈ Σ. We say that the occurrence of the letter a is disposable if w1w2 is square-
free. The definition extends naturally to infinite words. An occurrence of a
letter a is interior, if w1 and w2 are both nonempty.
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If a square-free word w ∈ Σ∗ ∪Σω does not have disposable occurrences of
interior letters then w is said to be irreducibly square-free, i.e., by deleting any
interior occurrence of a letter results in a square in the remaining word.

The nonemptiness condition on the prefixes and suffixes is required since
all prefixes and suffixes of square-free words are disposable.

Remark 1. The words of length at most two have no internal letters, and therefore
we consider the property of being irreducibly square-free only for words of length
at least three.

Example 1. Let τ: Σ∗→ Σ∗ be the morphism determined by

τ(0) = 012, τ(1) = 02, τ(2) = 1 .

The Thue word t is the fixed point t = τω(0) of τ obtained by iterating τ on the
start word 0. Then t is an infinite square-free word; see, e.g., Lothaire [3]:

t= 012021012102012021020121012021012 · · ·

We show that the Thue word is not irreducibly square-free. For this, we first
notice that t avoids 010 and 212 as factors. Also, it avoids 1021, since this
word would have to be a factor of τ(212). Deleting the letter 2 at the third
position results in a square-free word 01021012102012 · · · . Indeed, a potential
square would have to start either from the beginning, but the prefix 010 does
not occur in t, or from the second position, but 1021 does not occur in t.

Later checking of irreducibility of (infinite) words is based on the following
procedure that depends on a morphism α: Σ∗→ Σ∗ for which |α(a)|> 1 for all
letters a.

Procedure I.

1 Check that the morphism α generates an infinite square-free word; say,
αω(0) or α(w), where w is a given infinite square-free word.

2 For any pair (a, b) of different letters, check that α(ab) is irreducibly
square-free. This takes care that the last letter of α(a) and the first letter of
α(b) are not disposable in α(ab). This guarantees that these occurrences
are not disposable in any α(w) where w= w1abw2 is square-free.

The first item of Procedure I is often taken care of by Crochemore’s crite-
rion [4]:

Theorem 2. A morphism α: Σ∗→ Σ∗ preserves square-free words if and only if
it preserves square-freeness of words of length five.
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2. Irreducibly square-free words of almost all lengths

By a systematic search we find that there are no irreducibly square-free
words of lengths 4,5,7 and 12. In the following table we have counted the
irreducibly square-free words of lengths 3, . . . , 30 up to isomorphism (produced
by permutations of the letters) and reversal (mirror image) of the words. For
instance, 010212010 is the only irreducibly square-free word of length nine up
to isomorphism and reversal. It is a palindrome. The table suggests that the
irreducibly square-free words are quite rare among the square-free words, e.g.,
there are (up to isomorphism and reversal) 202 square-free words of length
20, but only 12 of those are irreducibly square-free. Counting the numbers of
(irreducibly) square-free words must take into consideration those words that
are palindromes or isomorphic to their reversals.

length card
3 1 4 0 5 0 6 1 7 0 8 1 9 1

10 1 11 3 12 0 13 3 14 4 15 4 16 7
17 9 18 7 19 12 20 12 21 16 22 18 23 23
24 24 25 34 26 36 27 48 28 55 29 69 30 78

Table 1: The number of irreducibly square-free words of lengths from 3 to 30 up to isomorphism
and reversal.

Theorem 3. There exists an infinite irreducibly square-free word.

Proof. Let ϕ be the following uniform palindromic morphism of length 17, i.e.,
ϕ(1) = π(ϕ(0)) and ϕ(2) = π2(ϕ(0)) for the permutation π= (0 1 2) of the
letters:

ϕ(0) = 01202120102120210

ϕ(1) = 12010201210201021

ϕ(2) = 20121012021012102

By Theorem 2, ϕ preserves square-freeness. It is easy to check that ϕ(0), and so
also the isomorphic copies ϕ(1) and ϕ(2), are irreducibly square-free. Finally,
Procedure I entails that deleting the ‘middle’ 17th letters 0 of ϕ(01) and of
ϕ(02) gives squares: 11 and 02120212, respectively. Similarly, deleting the
18th letter of ϕ(01) and of ϕ(02) gives squares: 10201020 and 00, respectively.
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These observations suffice for the proof of the theorem, since now ϕ(w) is
irreducibly square-free for all square-free, finite or infinite, words w.

Remark 4. The morphism ϕ has an alignment property, i.e., for all letters a, b, c
if ϕ(bc) = uϕ(a)v then u or v is empty, and a = b or a = c, respectively.

The morphism ϕ has an infinite fixed point

Φ= ϕω(0)

that is the limit of the sequence ϕ(0),ϕ2(0), . . ..
Note that the finite prefixes of Φ are not always irreducibly square-free. For

instance, none of the prefixes of Φ of length n with 19≤ n≤ 29 are irreducibly
square-free. However, we do have the following result with the help of ϕ.

Theorem 5. There are irreducibly square-free words of all lengths n except 4,5,7
and 12.

Proof. Table 2 gives an example for the cases n≤ 17.

3 010 13 0102012101202
6 010212 14 01020120212010
8 01020121 15 010201210120212
9 010212010 16 0102012021201020

10 0102012101 17 01202120102120210
11 01020120212

Table 2: Small irreducibly square-free words. There are no examples for the lengths 4,5,7 and
12.

For n ≥ 18, we rely on the morphism ϕ in order to have solutions for the
lengths n≡ p (mod 17) for p = 0, 1, . . . , 16.

Claim A. Let w be a nonempty suffix of ϕ(1) or ϕ(2) of length |w|< 17. Then
the word wΦ is square-free (but not necessarily irreducibly square-free).

The word w is a suffix of exactly one of the words ϕ(a), a ∈ Σ. Suppose
there is a square in wΦ and assume that w is of minimal length with this
property. Then wΦ has a prefix uu for u = wϕ(x)z for some words x and z with
|z|< 17 (when |x | is chosen to be maximal). Hence uu = wϕ(x)zwϕ(x)z, and
so zw= ϕ(a) for a ∈ Σ. Therefore z is nonempty. By the alignment property,
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uu must be followed in wΦ by the word w. This delivers a square in Φ, namely
ϕ(x)zwϕ(x)zw = ϕ(xaxa); a contradiction since Φ is square-free. This proves
Claim A.

Clearly, there are irreducibly square-free words of lengths n≡ 0 (mod 17),
since we can take a prefix of Φ of length n/17 and apply ϕ to it. Next we extend
Φ to the left by considering words of the form uw, where w is a prefix of Φ.

Claim B. The words 121Φ and 0102Φ are square-free.
First, the words 121ϕ(0) and 0102ϕ(0) are not factors of Φ, since ϕ has

the alignment property and the given words are not suffixes of any ϕ(a), a ∈ Σ.
Therefore, if 121Φ contains a square, then the square must be a prefix 21v of
21Φ for some v (and 1Φ is square-free by Claim A).

Assume that 21v = 21u21u where v = u21u is a prefix of Φ. Now, |v| >
|ϕ(a)| = 17, since 21 is not followed by the first letter of u in any ϕ(a), i.e.,
u21 = ϕ(z)ϕ(1) for some z, since only ϕ(1) ends in 21. We have then that
ϕ(1) = y21 and u = ϕ(z)y. This means that the square 21v = 21ϕ(z1z)y
is necessarily continued by the rest of ϕ(1), i.e., by 21, giving a prefix v21=
u21u21 of Φ; a contradiction, since Φ is square-free.

In the case of 0102Φ, Claim A guarantees that 102Φ is square-free. For the
full prefix 0102, the claim follows since the prefix 01020120 of 0102Φ does not
occur in Φ. This proves Claim B.

The special words wi of Table 3 are chosen such that

(iii) |wi|= i,

(iv) wiΦ is square-free. By Claim A, this follows for i = 1,2,4,5 and 10. By
Claim B, the claim follows for the other cases.

(v) wiϕ(0) is irreducibly square-free (by a simple computer check) .

The words wi, themselves, are not (and, indeed, cannot be) all irreducibly
square-free, but they are square-free.

Finally, let n = 17k+ i. By Table 2, we can assume that n ≥ 18. We then
choose wi from Table 3, and pick a prefix ϕ(v) of Φ of length 17k. This creates
an irreducibly square-free word wiϕ(v) of length n.

3. Problems on Longer Words to Dispose

The property of being irreducibly square-free can be generalized to longer
factors than just letters. Let w ∈ Σ∗ be a square-free word with a factorization
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w1 = 1 w9 = 121020121
w2 = 02 w10 = 2021012102
w3 = 121 w11 = 10121020121
w4 = 2102 w12 = 101202120121
w5 = 12102 w13 = 0210121020121
w6 = 020121 w14 = 01021201020121
w7 = 2120102 w15 = 010201202120121
w8 = 01020121 w16 = 0201021201020121

Table 3: The special words with wi ≡ i (mod 17). The words wi with i > 1 that end in 121 or
0102 as called for by Claim B.

w = w1vw2 such that both w1 and w2 are nonempty. We say that the (occurrence
of the) factor v is disposable if also w1w2 is square-free. If a finite or infinite
square-free word w does not have disposable factors of length k then w is called
k-irreducibly square-free.

Example 2. We show that τ2n(0) is not 2-irreducibly square-free, for all n≥ 2.
Indeed,

τ2(0) = 012021

τ2(1) = 0121

τ2(2) = 02

Now, for n ≥ 2, the word τ2n(0) has the suffix 121 since τ2(1) has this suffix
and τ2(0) ends with the letter 1. But a 2-irreducibly square-free word cannot
be of the form w121, since by removing the pair 12, we obtain a (square-free)
prefix of w1 of w121.

However, the limit t = τω(0) is 2-irreducibly square-free. To see this, we
consider the 5-th powers of the morphism τ:

τ5(0) = 012021012102012021020121012021012102012101202102

τ5(1) = 01202101210201202102012101202102

τ5(2) = 0120210121020121

where the lengths of the images are 48,32 and 16, respectively. These images
have a common prefix p = 012021 (and even longer ones). A computer
check shows that the words τ5(a)p are 2-irreducibly square-free for a = 1,2.
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Moreover, deleting an internal occurrence of a pair cd from τ5(0)p results in a
square-free word only for cd = 20 and cd = 02 that lie inside p. This proves
that the infinite word t is 2-irreducibly square-free.

These considerations raise many problems.

Problem 1. Given k ≥ 1, does there exist an infinite ternary word that is k-
irreducibly square-free?

Theorem 6. Every infinite ternary square-free word w does have an infinite
number of integers k for which w is not k-irreducibly square-free.

Proof. We need only to consider repetitions of the first letter of w, say w =
auaw0. Deleting the factor ua gives aw0, a (square-free) suffix of w.

We have seen that Problem 1 has a positive solution for k = 1 and k = 2.
For small values of k a solution may be found using square-free morphisms.
E.g., the morphism

α3(0) = 0121012

α3(1) = 01020120212

α3(2) = 0102101210212

generates a 3-irreducibly square-free word αω(0). This follows from the fact
that α3(ab) is 3-irreducibly square-free for all different letters a and b.

Problem 2. Does there exist, for every k, a bound N(k) such that there exist
k-irreducibly square-free words of all lengths n≥ N(k)?

Finally, we state a problem of the opposite nature:

Problem 3. Does there exist an infinite square-free word w such that w is k-
irreducibly square-free for no k ≥ 1?
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