
Structural Parameters for Scheduling with Assignment
Restrictions∗

Klaus Jansen1, Marten Maack1, and Roberto Solis-Oba2

1University of Kiel, Kiel, Germany, {kj,mmaa}@informatik.uni-kiel.de
2Western University, London, Canada, solis@csd.uwo.ca

October 8, 2018

Abstract

We consider scheduling on identical and unrelated parallel machines with job
assignment restrictions. These problems are NP-hard and they do not admit polynomial
time approximation algorithms with approximation ratios smaller than 1.5 unless
P=NP. However, if we impose limitations on the set of machines that can process
a job, the problem sometimes becomes easier in the sense that algorithms with
approximation ratios better than 1.5 exist. We introduce three graphs, based on
the assignment restrictions and study the computational complexity of the scheduling
problem with respect to structural properties of these graphs, in particular their tree-
and rankwidth. We identify cases that admit polynomial time approximation schemes
or FPT algorithms, generalizing and extending previous results in this area.

1 Introduction
We consider the problem of makespan minimization for scheduling on unrelated parallel
machines. In this problem a set J of n jobs has to be assigned to a setM of m machines
via a schedule σ : J → M. A job j has a processing time pij for every machine i and
the goal is to minimize the makespan Cmax(σ) = maxi

∑
j∈σ−1(i) pij . In the three-field

notation this problem is denoted by R||Cmax. On some machines a job might have a very
high, or even infinite processing time, so it should never be processed on these machines.
This amounts to assignment restrictions in which for every job j there is a subset M(j) of
machines on which it may be processed. An important special case of R||Cmax is given
if the machines are identical in the sense that each job j has the same processing time
pj on all the machines on which it may be processed, i.e., pij ∈ {pj ,∞}. This problem is
sometimes called restricted assignment and is denoted as P |M(j)|Cmax in the three-field
notation.

We study versions of R||Cmax and P |M(j)|Cmax where the restrictions are in some sense
well structured. In particular we consider three different graphs that are defined based
∗This work was partially supported by the DAAD (Deutscher Akademischer Austauschdienst) and by

the German Research Foundation (DFG) project JA 612/15-1.

1

ar
X

iv
:1

70
1.

07
24

2v
1

 [
cs

.D
S]

 2
5

Ja
n

20
17

on the job assignment restrictions and study how structural properties of these graphs
affect the computational complexity of the corresponding scheduling problems. We briefly
describe the graphs. In the primal graph the vertices are the jobs and two vertices are
connected by an edge, iff there is a machine on which both of the jobs can be processed. In
the dual graph, on the other hand, the machines are vertices and two of them are adjacent,
iff there is a job that can be processed by both machines. Lastly we consider the incidence
graph. This is a bipartite graph and both the jobs and machines are vertices. A job j is
adjacent to a machine i, if i ∈M(j). In Figure 1 an example of each graph is given. These
graphs have also been studied in the context of constraint satisfaction (see e.g. [22] or [20])
and we adapted them for machine scheduling.

We consider the above scheduling problems in the contexts of parameterized and
approximation algorithms. For α > 1 an α-approximation for a minimization problem
computes a solution of value A(I) ≤ αOPT(I), where OPT(I) is the optimal value for a
given instance I. A family of algorithms consisting of (1 + ε)-approximations for each ε > 0
with running times polynomial in the input length (and 1/ε) is called a (fully) polynomial
time approximation scheme (F)PTAS. Let π be some parameter defined for a given problem,
and let π(I) be its value for instance I. The problem is said to be fixed-parameter tractable
(FPT) for π, if there is an algorithm that given I and π(I) = k solves I in time O(f(k)|I|c),
where c is a constant, f any computable function and |I| the input length. This definition
can easily be extended to multiple parameters.

1

2

3

4

5

6

A

B

C

D

A B

C D

1

2 3

4

56

Figure 1: Primal,
dual and incidence
graph for an in-
stance with 6 jobs
and 4 machines.

Related work. In 1990 Lenstra, Shmoys and Tardos [15] showed, in
a seminal work, that there is a 2-approximation for R||Cmax and that
the problem cannot be approximated with a ratio better than 1.5 unless
P=NP. Both bounds also hold for P |M(j)|Cmax and have not been
substantially improved since that time. The case where the number
of machines is constant is weakly NP-hard and there is an FPTAS for
this case [11]. In 2012 Svensson [21] presented an interesting result
for P |M(j)|Cmax: A special case of the restricted assignment problem
called graph balancing was studied by Ebenlendr et al. [6]. In this
variant each job can be processed by at most 2 machines and therefore
an instance can be seen as a (multi-)graph where the machines are
vertices and the jobs edges. They presented a 1.75 approximation for
this problem and also showed that the 1.5 inapproximability result
remains true. Lee et al. [14] studied the version of graph balancing
where (in our notation) the dual graph is a tree and showed that there
is an FPTAS for it. Moreover, the special case of graph balancing where
the graph is simple has been considered. For this problem Asahiro et al.
[2] presented among other things a pseudo-polynomial time algorithm
for the case of graphs with bounded treewidth. For certain cases of
P |M(j)|Cmax with job assignment restrictions that are in some sense
well-structured PTAS results are known. In particular for the path-
and tree-hierarchical cases ([18] and [7]) in which the machines can be
arranged in a path or tree and the jobs can only be processed on subpaths starting at the
leftmost machine or at the root machine respectively, and the nested case ([17]), where
M(j) ⊆M(j′), M(j′) ⊆M(j) or M(j) ∩M(j′) = ∅ holds for each pair of jobs (j, j′).

2

The study of R||Cmax from the FPT perspective has started only recently. Mnich and
Wiese [16] showed that R||Cmax is FPT for the pair of parameters m and the number of
distinct processing times. The problem is also FPT for the parameter pair max pij and
the number of machine types [12]. Two machines have the same type, if each job has the
same processing time on them. Furthermore Szeider [23] showed that graph balancing on
simple graphs with unary encoding of the processing times is not FPT for the parameter
treewidth under usual complexity assumptions.

Results. In this paper we present a graph theoretical viewpoint for the study of schedul-
ing problems with job assignment restrictions that we believe to be of independent interest.
Using this approach we identify structural properties for which the problems admit approxi-
mation schemes or FPT algorithms, generalizing and extending previous results in this area.
The results are based on dynamic programming utilizing tree and branch decompositions of
the respective graphs. For the approximation schemes the dynamic programs are combined
with suitable rounding approaches.

Tree and branch decompositions are associated with certain structural width parameters.
We consider two of them: treewidth and rankwidth. In the following we denote the
treewidth of the primal, dual and incidence graph with twp, twd and twi, respectively. For
the definitions of these concepts we refer to Section 2.

We now describe our results in more detail. Let J(i) be the set of jobs the machine i
can process. In the context of parameterized algorithms we show the following.

Theorem 1. R||Cmax is FPT for the parameter twp.

Theorem 2. R||Cmax is FPT for the pair of parameters k1, k2 with k1 ∈ {twd, twi} and
k2 ∈ {OPT,maxi |J(i)|}.

Note that R||Cmax with constant k2 remains NP-hard [6]. In the context of approxima-
tion we get:

Theorem 3. R||Cmax is weakly NP-hard, if twd or twi is constant and there is an FPTAS
for both of these cases.

The hardness is due to the hardness of scheduling on two identical parallel machines
P2||Cmax. The result for the dual graph is a generalization of the result in [14] and resolves
cases that were marked as open in that paper. All results mentioned so far are discussed
in Section 3. In the following section we consider the rankwidth:

Theorem 4. There is a PTAS for instances of P |M(j)|Cmax where the rankwidth of the
incidence graph is bounded by a constant.

It can be shown that instances of P |M(j)|Cmax with path- or tree-hierarchical or
nested restrictions are special cases of the case when the incidence graph is a bicograph.
Bicographs are known to have a rankwidth of at most 4 (see [9]) and a suitable branch
decomposition can be found very easily. Therefore we generalize and unify the known
PTAS results for P |M(j)|Cmax with structured job assignment restrictions.

3

2 Preliminaries
In the following I will always denote an instance of R||Cmax or P |M(j)|Cmax and most of
the time we will assume that it is feasible. We call an instance feasible if M(j) 6= ∅ for
every job j ∈ J . A schedule is feasible if σ(j) ∈ M(j). For a subset J ⊆ J of jobs and
a subset M ⊆M of machines we denote the subinstance of I induced by J and M with
I[J,M]. Furthermore, for a set S of schedules for I we let OPT(S) = minσ∈S Cmax(σ),
and OPT(I) = OPT(S) if S is the set of all schedules for I. We will sometimes use
OPT(∅) =∞. Note that there are no schedules for instances without machines. On the
other hand, if I is an instance without jobs, we consider the empty function a feasible
schedule (with makespan 0), and have therefore OPT(I) = 0 in that case.

Dynamic programs for R||Cmax. We sketch two basic dynamic programs that will
be needed as subprocedures in the following. The first one is based on iterating through
the machines. Let OPT(i, J) = OPT(I[J \ J, [i]]) for J ⊆ J and i ∈ [m] := {1, . . . ,m},
assuming M = [m]. Then it is easy to see that OPT(i, J) = minJ⊆J ′⊆J max{OPT(i −
1, J ′),

∑
j∈J ′\J pij}. Using this recurrence relation a simple dynamic program can be

formulated that computes the values OPT(i, J). It holds that OPT(I) = OPT(m, ∅) and
as usual for dynamic programs an optimal schedule can be recovered via backtracking. The
running time of such a program can be bounded by 2O(n) ×O(m), yielding the following
trivial result:
Remark 5. R||Cmax is FPT for the parameter n.

The second dynamic program is based on iterating through the jobs. Let λ ∈ ZM≥0. We
call λ a load vector and say that a schedule σ fulfils λ, if λi =

∑
j∈σ−1(i) pij . For j ∈ [n]

let Λ(j) be the set of load vectors that are fulfilled by some schedule for the subinstance
I[[j],M], assuming J = [n]. Then Λ(j) can also be defined recursively as the set of vectors
λ with λi∗ = λ′i∗+pi∗j and λi = λ′i for i 6= i∗, where i∗ ∈M(j) and λ′ ∈ Λ(j−1). Using this,
a simple dynamic program can be formulated that computes Λ(j) for all j ∈ [n]. OPT(I)
can be recovered from Λ(n) and a corresponding schedule can be found via backtracking.
Let there be a bound L for the number of distinct loads that can occur on each machine,
i.e., |{

∑
j∈σ−1(i) pij |σ schedule for I}| ≤ L for each i ∈M. Then the running time can be

bounded by LO(m) ×O(n), yielding:
Remark 6. R||Cmax is FPT for the pair of parametersm and k with k ∈ {OPT,maxi |J(i)|}.

For this note that both OPT and 2maxi |J(i)| are bounds for the number of distinct loads
that can occur on any machine. This dynamic program can also be used to get a simple
FPTAS for R||Cmax for the case when the number of machines m is constant. For this let
B be an upper bound of OPT(I) with B ≤ 2OPT. Such a bound can be found with the
2-approximation by Lenstra et al. [15]. Moreover let ε > 0 and δ = ε/2. By rounding the
processing time of every job up to the next integer multiple of δB/n we get an instance I ′
whose optimum makespan is at most εOPT(I) bigger than OPT(I). The dynamic program
can easily be modified to only consider load vectors for I ′, where all loads are bounded by
(1 + δ/n)B. Therefore there can be at most n/δ + 2 distinct load values for any machine
and an optimal schedule for I ′ can be found in time (n/ε)O(m) ×O(n). The schedule can
trivially be transformed into a schedule for the original instance without an increase in the
makespan.

4

Tree decompostion and treewidth. A tree decomposition of a graph G is a pair
(T, {Xt | t ∈ V (T)}), where T is a tree, Xt ⊆ V (G) for each t ∈ V (t) is a set of vertices of
G, called a bag, and the following three conditions hold:
(i)

⋃
t∈V (T)Xt = V (G)

(ii) ∀{u, v} ∈ E(G)∃t ∈ V (T) : u, v ∈ Xt

(iii) For every u ∈ V (G) the set Tu := {t ∈ V (T) |u ∈ Xt} induces a connected subtree of
T .

The width of the decomposition is maxt∈V (T)(|Xt|− 1), and the treewidth tw(G) of G is the
minimum width of all tree decompositions of G. It is well known that forests are exactly
the graphs with treewidth one, and that the treewidth of G is at least as big as the biggest
clique in G minus 1. More precisely, for each set of vertices V ′ ⊆ V (G) inducing a clique
in G, there is a node t ∈ V (T) with V ′ ⊆ Xt (see e.g. [4]). For a given graph and a value
k it can be decided in FPT time (and linear in |V (G)|) whether the treewidth of G is at
most k and in the affirmative case a corresponding tree decomposition with O(k|V (G)|)
nodes can be computed [3]. However, deciding whether a graph has a treewidth of at most
k, is NP-hard [1].

Branch decomposition and rankwidth. It is easy to see that graphs with a small
treewidth are sparse. Probably the most studied parameter for dense graphs is the
cliquewidth cw(G). In this paper however we are going to consider a related parameter
called the rankwidth rw(G). These two parameters are equivalent in the sense that
rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1 [19]. Furthermore it is known that cw(G) ≤ 3× 2tw(G)−1

[5]. On the other hand tw(G) cannot be bounded by any function in cw(G) or rw(G),
which can easily be seen by considering complete graphs.

A cut of G is a partition of V (G) into two subsets. For X,Y ⊆ V (G) let AG[X,Y] =
(axy) be the |X|×|Y | adjacency submatrix induced byX and Y , i.e., axy = 1 if {x, y} ∈ E(G)
and axy = 0 otherwise for x ∈ X and y ∈ Y . The cut rank of (X,Y) is the rank of
AG[X,Y] over the field with two elements GF(2) and denoted by cutrkG(X,Y). A branch
decomposition of V (G) is a pair (T, η), where T is a tree with |V (G)| leaves whose internal
nodes have all degree 3, and η is a bijection from V (G) to the leafs of T . For each
e = {s, t} ∈ E(T) there is an induced cut {Xs, Xt} of G: For x ∈ {s, t} the set Xx contains
exactly the nodes η−1(`), where ` ∈ V (T) is a leaf that is in the same connected component
of T as x, if e is removed. Now the width of e (with respect to cutrkG) is cutrkG(Xs, Xt)
and the rankwidth of the decomposition (T, η) is the maximum width over all edges of T .
The rankwidth of G is the minimum rankwidth of all branch decompositions of G. It is
well known that the cliquewidth of a complete graph is equal to 1 and this is also true for
the rankwidth. For a given graph and fixed k there is an algorithm that finds a branch
decomposition of width k in FPT-time (cubic in |V (G)|), or reports correctly that none
exists [10].

3 Treewidth Results
We start with some basic relationships between different restriction parameters for R||Cmax,
especially the treewidths of the different graphs for a given instance. Similar relationships
have been determined for the three graphs in the context of constraint satisfaction.

5

Remark 7. twp ≥ maxi |J(i)| and twd ≥ maxj |M(j)|.
To see this note that the sets J(i) and M(j) are cliques in the primal and dual graphs,

respectively.
Remark 8. twi ≤ twp+1 and twi ≤ twd+1. On the other hand twp ≤ (twi+1) maxi |J(i)|−1
and twd ≤ (twi + 1) maxj |M(j)| − 1.

These properties were pointed out by Kalaitis and Vardi [13] in a different context. Note
that this Remark together with Theorem 1 implies the results of Theorem 2 concerning
the parameter maxi |J(i)|. Furthermore, in the case of P ||Cmax with only 1 job and m
machines, or n jobs and only 1 machine the primal graph has treewidth 0 or n− 1 and the
dual m− 1 or 0, respectively, while the incidence graph in both cases has treewidth 1.

Dynamic Programs

We show how a tree decomposition (T, {Xt | t ∈ V (T)}) of width k for any one of the
three graphs can be used to design a dynamic program for the corresponding instance I of
R||Cmax. Selecting a node as the root of the decompostion, the dynamic program works in
a bottom-up manner from the leaves to the root. We assume that the decomposition has
the following simple form: For each leaf node t ∈ V (T) the bag Xt is empty and we fix
one of these nodes as the root a of T . Furthermore each internal node t has exactly two
children `(t) and r(t) (left and right), and each node t 6= a has one parent p(t). We denote
the descendants of t with desc(t). A decomposition of this form can be generated from
any other one without increasing the width and growing only linearly in size through the
introduction of dummy nodes. The bag of a dummy node is either empty or identical to
the one of its parent.

For each of the graphs and each node t ∈ V (T) we define sets J̌t ⊆ J and M̌t ⊆M of
inactive jobs and machines along with sets Jt and Mt of active jobs and machines. The
active jobs and machines in each case are defined based on the respective bag Xt, and the
inactive ones have the property that they were active for a descendant t ∈ desc(t) of t but
are not at t. In addition there are nearly inactive jobs J̃t and machines M̃t, which are the
jobs and machines that are deactivated when going from t to its parent p(t) (for t = a
we assume them to be empty). The sets are defined so that certain conditions hold. The
first two are that the (nearly) inactive jobs may only be processed on active or inactive
machines, and the (nearly) inactive machines can only process active or inactive jobs:

M(J̌t ∪ J̃t) ⊆Mt ∪ M̌t (1)
J(M̌t ∪ M̃t) ⊆ Jt ∪ J̌t (2)

Where M(J∗) =
⋃
j∈J∗M(j) and J(M∗) =

⋃
i∈M∗ J(i) for any sets J∗ ⊆ J and M∗ ⊆M.

Furthermore the (nearly) inactive jobs and machines of the children of an internal t form a
disjoint union of the inactive jobs and machines of t, respectively:

J̌t = J̌`(t) ∪̇ J̃`(t) ∪̇ J̌r(t) ∪̇ J̃r(t) (3)
M̌t = M̌`(t) ∪̇ M̃`(t) ∪̇ M̌r(t) ∪̇ M̃r(t) (4)

Where A ∪̇ B for any two sets A,B emphasizes that the union A ∪ B is disjoint, i.e.,
A∩B = ∅. Now at each node of the decomposition the basic idea is to perform three steps:

6

(i) Combine the information from the children (for internal nodes).
(ii) Consider the nearly inactive jobs and machines:

• Primal and incidence graph: Try all possible ways of scheduling active jobs on
nearly inactive machines.
• Dual and incidence graph: Try all possible ways of scheduling nearly inactive
jobs on active machines.

(iii) Combine the information from the last two steps.
For the second step the dynamic programs described in Section 2 are used as subprocedures.
We now consider each of the three graphs.

The primal graph. In the primal graph all the vertices are jobs, and we define the
active jobs of a tree node t to be exactly the jobs that are included in the respective bag,
i.e., Jt = Xt. The inactive jobs are those that are not included in Xt but are in a bag of
some descendant of t and the nearly inactive one are those that are active at t but inactive
at p(t), i.e., J̌t = {j ∈ J | j 6∈ Xt ∧ ∃t′ ∈ desc(t) : j ∈ Xt′} and J̃t = Jt \ Jp(t). Moreover
the inactive machines are the ones on which some inactive job may be processed, and the
(nearly in-)active machines are those that can process (nearly in-)active jobs and are not
inactive, i.e., M̌t = M(J̌t), Mt = M(Jt) \ M̌t and M̃t = M(J̃t) \ M̌t. For these definitions
we get:

Lemma 9. The conditions (1)-(4) hold, as well as:

J(M̃t) ⊆ Jt (5)
M(J̌t ∪ J̃t) = M̃t ∪ M̌t (6)

Proof. (1) and (6):

M(J̌t ∪ J̃t) = M(J̌t) ∪M(J̃t) = M̌t ∪ (M(J̃t) \ M̌t) = M̌t ∪ M̃t

This yields (6) and (6) implies (1).
(2) and (5): Let i ∈ M̌t∪M̃t and j ∈ J(i). We first consider the case that i ∈ M̌t. Then

there is a job j′ ∈ J̌t with i ∈M(j′). If j = j′, we have j ∈ J̌t and otherwise {j, j′} ∈ E(G).
Because of (T2) there is a node t′ ∈ V (T) with j, j′ ∈ Jt′ . Since j′ ∈ J̌t, we have j′ 6∈ Jt.
This together with (T3) gives t′ ∈ desc(t). Now j 6∈ Jt implies j ∈ J̌t. Therefore we have
j ∈ Jt ∪ J̌t. Next we consider he case that i ∈ M̃t. In this case there is a job j′ ∈ J̃t
with i ∈M(j′) and for each job j′′ ∈ J̌t we have i 6∈M(j′′). If j = j′ we have j ∈ Jt and
otherwise {j, j′} ∈ E(G). Because of (T2) there is again a node t′ ∈ V (T) with j, j′ ∈ Jt′ .
Since j, j′ 6∈ J̌t, j′ 6∈ Jp(t) and j′ ∈ Jt we get j ∈ Jt using (T3). This also implies (5).

(3): All but (J̌`(t) ∪ J̃`(t)) ∩ (J̌r(t) ∪ J̃r(t)) = ∅ follows directly from the definitions.
Assuming there is a job j ∈ (J̌`(t) ∪ J̃`(t)) ∩ (J̌r(t) ∪ J̃r(t)) we get j ∈ Jt because of (T3),
yielding a contradiction.

(4): Because of (3) and the definitions we get M̌t = M̌`(t) ∪ M̃`(t) ∪ M̌r(t) ∪ M̃r(t),
and M̌s(t) ∩ M̃s(t) for s ∈ {`, r} is clear by definition. Therefore it remains to show
(M̌`(t) ∪ M̃`(t))∩ (M̌r(t) ∪ M̃r(t)) = ∅. We assume that there is a machine i in this cut. Then
there are jobs js ∈ J̌s(t) ∪ J̃s(t) for s ∈ {`, r} with i ∈ M(js). We have {j`, jr} ∈ E and

7

because of (T2) there is a node t′ with j`, jr ∈ Jt′ . Because of j`, jr 6∈ Jt and (T3) we have
a contradiction.

For J ⊆ J and M ⊆ M let Γ(J,M) = {J ′ ⊆ J | ∀j ∈ J ′ : M(j) ∩M 6= ∅}. Let
t ∈ V (T), J ∈ Γ(Jt, M̌t) and J ′ ∈ Γ(Jt \ J̃t, M̌t ∪ M̃t). We set S(t, J) and S̃(t, J ′) to be
the sets of feasible schedules for the instances I[J̌t ∪ J, M̌t] and I[J̌t ∪ J̃t ∪ J ′, M̌t ∪ M̃t]
respectively. We will consider OPT(S(t, J)) and OPT(S̃(t, J ′)).

First note that OPT(I) = OPT(S(a, ∅)), where a is the root of T . Moreover, for
a leaf node t there are neither jobs nor machines and OPT(S(t, ∅)) = OPT(S̃(t, ∅)) =
OPT({∅}) = 0 holds. Hence let t be a non-leaf node. We first consider how OPT(S(t, J))
can be computed from the children of t (Step (i)). Due to Property (iii) of the tree
decomposition and (1) the jobs from J are already active on at least one of the direct
descendants of t. Because of this and (4), J may be split in two parts J`∪̇Jr = J , where
Js ∈ Γ(Js(t) \ J̃s(t), M̌s(t) ∪ M̃s(t)) for s ∈ {`, r}. Let Φ(J) be the set of such pairs (J`, Jr).
From (3), (4) and (6) we get:

Lemma 10. OPT(S(t, J)) = min(J`,Jr)∈Φ(J) maxs∈{`,r}OPT(S̃(s(t), Js)).

Proof. Let σ∗ ∈ S(t, J) be optimal. Since J ⊆ Jt, we have J ∩ J̃s(t) = ∅ for s ∈ {`, r}.
Let J∗s = σ′∗−1(M̌s(t) ∪ M̃s(t)) ∩ J . Because of (4) we have J = J∗` ∪̇J∗r and J∗s ∈ Γ(Js(t) \
J̃s(t), M̌s(t) ∪ M̃s(t)) obviously holds. Let σ∗s = σ∗|J ′s∪J̃s(t)

. Because of (6) we have σ∗s ∈
S̃(s(t), J∗s) and (3) implies σ∗ = σ∗` ∪ σ∗r . This yields:

OPT(S(t, J)) = Cmax(σ∗)
= max

s∈{`,r}
Cmax(σ∗s)

≥ max
s∈{`,r}

OPT(S̃(s(t), J∗s))

≥ min
(J`,Jr)∈Φ(J)

max
s∈{`,r}

OPT(S̃(s(t), Js))

Now let (J`, Jr) ∈ Φ(J) minimizing the righthand side of the equation and σs ∈ S̃(s(t), Js)
optimal. Then (3) and (4) imply that σ := σ` ∪ σr is in S(t, J). Therefore we have
Cmax(σ) ≥ Cmax(σ∗). Since Cmax(σ) also equals the right hand side of the equation the
claim follows.

Consider the computation of OPT(S̃(t, J ′)) (Step (iii)). We may split J ′ and J̃t into a
set going to the nearly inactive and a set going to the inactive machines. We set Ψ(J ′) to
be the set of pairs (A,X) with J ′ ∪ J̃t = A∪̇X, A ∈ Γ(J̃t ∪ J ′, M̃t) and X ∈ Γ(J̃t ∪ J ′, M̌t).
Because of (3)-(5) we have:

Lemma 11. OPT(S̃(t, J ′)) = min(A,X)∈Ψ(J ′) max{OPT(S(t,X)),OPT(I[A, M̃t])}.

Proof. Let σ∗ ∈ S̃(t, J ′) be optimal. Because of (5) we have σ∗−1(M̃t) ⊆ J ′ ∪ J̃t. We set
A∗ = σ∗−1(M̃t) and X∗ = (J ′ ∪ J̃t) \ A. Then (A∗, X∗) ∈ Ψ(J ′). Let σ̌∗ = σ∗|J̌t∪X∗ and
σ̃∗ = σ∗|A. Then σ̌∗ ∈ S(t,X∗) and σ̃∗ is a feasible schedule for I[A∗, M̃t]. Because of (3)

8

and (4), we have σ = σ̌∗ ∪̇ σ̃∗ and:

OPT(S̃(t, J ′)) = Cmax(σ∗)
= max{Cmax(σ̌∗), Cmax(σ̃∗)}
≥ max{OPT(S(t,X∗)),OPT(I[A∗, M̃t])}
≥ min

(A,X)∈Ψ(J ′)
max{OPT(S(t,X)),OPT(I[A, M̃t])}

Now let (A,X) ∈ Ψ(J ′) minimizing the right hand side of the equation, σ̌ ∈ S(t,X) and σ̃
a feasible schedule for I[A, M̃t]. Then (3) and (4) yield σ := σ̌ ∪̇ σ̃ ∈ S̃(t, J ′), and therefore
Cmax(σ) ≥ Cmax(σ∗). Since Cmax(σ) also equals the right hand side of the equation, the
claim follows.

Determining the values OPT(I[A, M̃t]) corresponds to Step (ii). Note that these values
can be computed using the first dynamic program from Section 2 in time 2O(k) ×O(m).

The dual graph. For the dual graph the (in-)active jobs and machines are defined
dually: The active machines for a tree node t are the ones in the respective bag, the
inactive machines are those that were active for some descendant but are not active for t,
and the nearly inactive machines are those that are active at t but inactive at its parent,
i.e., Mt = Xt, M̌t = {i ∈ M| i 6∈ Mt ∧ ∃t′ ∈ desc(t) : i ∈ Xt′} and M̃t = Mt \ M̌p(t).
Furthermore the inactive jobs are those that may be processed on some inactive machine
and the (nearly in-)active ones are those that can be processed on some (nearly in-)active
machine and are not inactive, i.e., J̌t = J(M̌t), Jt = J(Mt) \ J̌t and J̃t = J(M̃t) \ J̌t. With
these definitions we get analogously to Lemma 9:

Lemma 12. The conditions (1)-(4) hold, as well as:

M(J̃t) ⊆Mt (7)
J(M̌t ∪ M̃t) = J̃t ∪ J̌t (8)

We will need some extra notation. Like we did in Section 2 we will consider load
vectors λ ∈ ZM≥0, where M ⊆M is a set of machines. We say that a schedule σ fulfils λ, if
λi =

∑
j∈σ−1(i) pij for each i ∈M . For any set S of schedules for I we denote the set of load

vectors for M that are fulfilled by at least one schedule from S with Λ(S,M). Furthermore
we denote the set of all schedules for I with S(I), and for a subset of jobs J ⊆ J , we write
Λ(J,M) as a shortcut for Λ(S(I[J,M]),M). Let t ∈ V (T). We set S(t) = S(I[J̌t, M̌t∪Mt])
and S̃(t) = S(I[J̌t ∪ J̃t, M̌t ∪Mt]). Moreover, for λ ∈ Λ(S(t),Mt) and λ′ ∈ Λ(S̃(t),Mt) we
set S(t, λ) ⊆ S(t) and S̃(t, λ′) ⊆ S̃(t) to be those schedules that fulfil λ and λ′ respectively.
We now consider OPT(S(t, λ)) and OPT(S̃(t, λ′)).

First note OPT(I) = OPT(S(a, ∅)). Moreover, for a leaf node t we have neither jobs nor
machines and Λ(S(t),Mt) = Λ(S̃(t),Mt) = {∅}. Therefore OPT(S(t, ∅)) = OPT(S̃(t, ∅)) =
OPT({∅}) = 0. Hence let t be a non-leaf node. Again, we first consider how OPT(S(t, λ))
can be computed from the children of t. Because of (3) λ may be split into a left and
a right part. For two machine sets M,M ′ let τM,M ′ : ZM≥0 → ZM ′≥0 be a trasformation

9

function for load vectors, where the i-th entry of τM,M ′(λ) equals λi for i ∈M ∩M ′ and 0
otherwise. We set Ξ(λ) to be the set of pairs (λ`, λr) with λ = τM`(t),Mt(λ`) + τMr(t),Mt(λr),
and λs ∈ Λ(S̃(s(t)),Ms(t)) for s ∈ {`, r}. Because of (1), (3) and (4), we have:

Lemma 13. OPT(S(t, λ)) = min(λ`,λr)∈Ξ(λ) maxs∈{`,r}OPT(S̃(s(t), λs)).

Proof. Let σ∗ ∈ S(t, λ) be optimal. Because of (1) we have σ∗(J̌s(t) ∪ J̃s(t)) ⊆Ms(t) ∪ M̌s(t)
for s ∈ {`, r}. Let σ∗s = σ∗|J̌s(t)∪J̃s(t)

and λ∗s the load vector that σ∗s fulfils on Ms(t). Then
we have σ∗s ∈ S̃(s(t), λ∗s) and (λ∗` , λ∗r) ∈ Ξ(λ). Because of (3) and (4) we have σ∗ = σ∗` ∪̇ σ∗r .
Because of the objective function we have:

OPT(S(t, λ)) = Cmax(σ∗)
= max

s∈{`,r}
Cmax(σ∗s)

≥ max
s∈{`,r}

OPT(S̃(s(t), λ∗s))

min
(λ`,λr)∈Ξ(λ)

max
s∈{`,r}

OPT(S̃(s(t), λs))

Now let (λ`, λr) ∈ Ξ(λ) minimizing the right hand side of the equation and σs ∈ S̃(s(t), λs)
optimal. Then σ := σ` ∪ σr is in S(t, λ) and Cmax(σ) equals the right hand side of the
equation. Since furthermore Cmax(σ) ≥ Cmax(σ∗) the claim follows.

Now we consider OPT(S̃(t, λ′)). We may split λ′ into the load due to inactive and that
due to nearly inactive jobs. Note that the nearly inactive jobs can only be processed by
active machines (7). We set Υ(λ′) to be the set of pairs (α, ξ) with λ′ = α+ξ, α ∈ Λ(J̃t,Mt)
and ξ ∈ Λ(S(t),Mt). Now (3), (4) and (7) yield:

Lemma 14. OPT(S̃(t, λ′)) = min(α,ξ)∈Υ(λ′) max({OPT(S(t, ξ))} ∪ {λ′i | i ∈Mt}).

Proof. Let σ∗ ∈ S̃(t, λ′) be optimal. Then (7) implies σ∗(J̃t) ⊆Mt. We set σ̃∗ = σ∗|J̃t
and

σ̌∗ = σ∗|J̌t
. Furthermore let α∗ be the load vector fulfilled by σ̃∗ and ξ∗ the one fulfilled

by σ̌∗ on Mt. Then σ̃∗ is a feasible schedule for I[J̃t,Mt] fulfilling α∗, σ̌∗ ∈ S(t, ξ∗) and
(α∗, ξ∗) ∈ Υ(λ′). Furthermore (3) yields σ∗ = σ̃∗ ∪̇ σ̌∗. We get:

OPT(S̃(t, λ′)) = Cmax(σ∗)
= max({Cmax(σ̌∗)} ∪ {λ′i | i ∈Mt})
≥ max({OPT(S(t, ξ∗))} ∪ {λ′i | i ∈Mt})
≥ min

(α,ξ)∈Υ(λ′)
max({OPT(S(t, ξ))} ∪ {λ′i | i ∈Mt})

Now let (α, ξ) ∈ Υ(λ′) minimizing the right hand side of the equation, σ̌ ∈ S(t, ξ) and
σ̃ a feasible schedule for I[J̃t,Mt] fulfilling α. Then σ := σ̌ ∪ σ̃ ∈ S̃(t, λ′) and therefore
Cmax(σ) ≥ Cmax(σ∗). Since Cmax(σ) also equals the right hand side of the equation, the
claim follows.

The set Λ(J̃t,Mt) can be computed using the second dynamic program described in
Section 2 in time LO(k) ×O(n) if L is again a bound on the number of distinct loads that
can occur on each machine.

10

The incidence graph. For the incidence graph we combine the ideas that we used for
the two other graphs. The situation is slightly more complicated because we have to handle
the jobs and machines simultaneously. All the job sets are defined like in the primal, and
all the machine sets like in the dual graph case. With these definitions the conditions
(1)-(4) follow almost directly from the definitions together with (T2) and (T3). The proofs
for the recurrence relations in this paragraph have the same structure as the proofs for the
other recurrence relations and no new ideas are needed. Therefore they are omitted.

Let t ∈ V (t), J ∈ Γ(Jt, M̌t) and J ′ ∈ Γ(Jt \ J̃t, M̌t ∪ M̃t). We set S(t, J) to be the set
of feasible schedules σ for I[J̌t ∪ J, M̌t ∪Mt] that schedule the jobs from J on inactive
machines, i.e., σ(j) ∈ M̌t for each j ∈ J . Moreover, S̃(t, J ′) is the set of schedules for
I[J̌t ∪ J̃t ∪ J ′, M̌t ∪ Mt] that schedule the jobs from J ′ on (nearly) inactive machines
M̃t ∪ M̌t. The sets of schedules that in addition fulfil a load vector λ ∈ Λ(S(t, J),Mt) or
λ′ ∈ Λ(S̃(t, J ′) are denoted by S(t, J, λ) and S̃(t, J ′, λ′). We consider OPT(S(t, J, λ)) and
OPT(S̃(t, J ′, λ′)).

First note OPT(I) = OPT(S(a, ∅, ∅)). For a leaf note t there are neither jobs nor
machines and therefore OPT(S(t, ∅, ∅)) = OPT(∅)) = 0. Hence let t be a non-leaf node.
Like before, we first consider OPT(S(t, J, λ)). Both J and λ may be split into a left and a
right part and we set Φ(J) like before. Moreover, for (J`, Jr) ∈ Φ(J) we define Ξ(λ, (J`, Jr))
to be the set of pairs (λ`, λr) with λs ∈ Λ(S̃(s(t), Js),Ms(t)) for s ∈ {`, r}. Due to (1)-(4)
we have:

Lemma 15. OPT(S(t, J, λ)) = min(J`,Jr),(λ`,λr) maxs∈{`,r}OPT(S̃(s(t), Js, λs)).

Next we consider OPT(S̃(t, J ′, λ′)). The set J ′ again may be split into a part going to
the inactive and a part going to the nearly inactive machines, while the nearly inactive jobs
J̃t have to be split into a part going to the inactive and a part going to the active machines
(note that in this case (7) does not hold). Therefore, we set Ψ(J ′) to be the set of pairs
(A,X) with J ′ = A∪̇X, A∩J ′ ∈ Γ(J ′, M̃t), A∩ J̃t ∈ Γ(J̃t,Mt) and X ∈ Γ(J̃t∪J ′, M̌t). The
splitting of λ′ is more complicated as well, because in this case all of the active machines
may receive load from the nearly inactive jobs, and the nearly inactive machines may
additionally receive load from the active but not nearly inactive jobs ((5) does not hold).
Therefore we set Υ(λ′, (A,X)) to be the set of triplets (α, β, ξ) with α ∈ Λ(A ∩ J ′, M̃t),
β ∈ Λ(A ∩ J̃t,Mt), ξ ∈ Λ(S(t,X),Mt) and λ′ = τM̃t,Mt

(α) + β + ξ. Due to (3) and (4) we
have:

Lemma 16. OPT(S̃(t, J ′, λ′)) = min(A,X),(α,β,ξ) max({OPT(S(t,X, ξ))}∪{λ′(i) | i ∈Mt}).

Note that the sets Λ(A ∩ J ′, M̃t) and Λ(A ∩ J̃t,Mt) can be computed in time LO(k)

using the second dynamic program described in Section 2, if L is again a bound on the
number of distinct loads that can occur on each machine.

Results. Using above arguments, we can design dynamic programs with running time
2O(k) × O(nm) in the primal case and LO(k) × O(nm) in the dual and incidence graph
cases. Optimal schedules can be found via backtracking proving the Theorems 1 and 2.
Theorem 3 follows by the combination of the dynamic programs and a rounding scheme
similar to that in Section 2.

11

4 Rankwidth Results
First we want to argue that there is not much to be gained when considering primal or
dual graphs with bounded rankwidth. For this consider any instance I of P |M(j)|Cmax.
By adding a job with processing time OPT(I) that can be processed on every machine,
and a machine that can only process this new job, we get a modified instance I ′. Any
schedule for one of the instances can trivially be transformed into a schedule for the other
without an increase in the makespan. However, while the rankwidth of the primal or dual
graph of I could have been arbitrarily high, the rankwidth of the primal and dual graph of
I ′ are both equal to one, because these graphs are complete.

We study the case when the rankwidth of the incidence graph is bounded by a constant
k. Moreover we assume that also the number d of distinct job sizes is bounded by a
constant, which we can do because of the following result. Let I be some class of instances
of P |M(j)|Cmax, which is invariant with respect to changing the processing times of jobs
and the introduction of copies of jobs.

Lemma 17 (Rounding Lemma). If there is a PTAS for instances from I, for which the
number of distinct processing times is bounded by a constant, then there is also a PTAS
for any instance from I.

Proof. Let I ∈ I, ε > 0 and B an upper bound of OPT(I) with B ≤ 2OPT. Such a bound
B can be found in polynomial time for example with the 2-approximation by Lenstra et al.
[15]. Moreover let δ := min{1/3, ε/7}. We call jobs j big, if pj > δB and otherwise small.
Next, we construct a modified instance I ′. This instance has the same machine set and
for each big job j a job with the same restrictions and processing time p′j := δ2Bd pj

δ2B e is
included in the job set. This yields p′j ≤ pj + δ2B ≤ (1 + δ)pj . For each small job j in I
we introduce dnpj

δB e ∈ O(n) many jobs with the same restrictions as j, and with processing
time δB

n .
Note that I ′ has a has at most 1/δ + 1 many distinct processing times and that I ′ ∈ I.

Moreover the size of I ′ is polynomial in the size of I.
Given an optimal solution of I, consider the solution of I ′ we get by scheduling both

the big and the small jobs in I ′ the same way as there analogues in I. The big jobs on a
machine can cause an increase of the processing time of at most factor (1 + δ), while for
each small job of I there may be an increase of at most δB

n . Therefore we get:

OPT(I ′) ≤ OPT(I) + δOPT(I) + δB ≤ (1 + 3δ)OPT(I)

Now given a PTAS for instances of I for which the number of distinct processing times is
bounded by a constant, we can compute a schedule σ′ for I ′ with Cmax(σ) ≤ (1+δ)OPT(I ′)
in polynomial time. We use σ′ to construct a schedule for σ for I. In this schedule the big
jobs are assigned in the same way as there analogous in I ′. For the small jobs we need some
additional consideration. Let S and S′ be the set of small jobs in I and I ′ respectively.
Moreover, for j ∈ S let S′(j) be the set of small jobs that were inserted in I ′ due to j. The
assignment of S(j) in σ′ can be seen as a fractional assignment of j. We find a rounding
for this fractional assignment of the small jobs. For each machine i and small job j ∈ S let
xij = |{j′ ∈ S(j) |σ′(j) = i}|/|S(j)|. Furthermore let ti be the summed up processing time
that machine i receives in the schedule σ′ from small jobs, i.e., ti = |{j′ ∈ S′ |σ′(j) = i}| δBn .

12

Then (xij) is a solution of the following linear program:∑
iM(j)

xij = 1 ∀j ∈ S (9)

∑
j∈S

pjxij ≤ ti ∀i ∈M (10)

xij ≥ 1 ∀j ∈ S, i ∈M

Using the rounding approach by Lenstra et al. [15], we can transform this in polynomial
time into an integral solution fulfilling the constraint (9) and instead of (10) the modified
constraint: ∑

j∈S
pjxij ≤ ti + max

j∈S
pj ∀i ∈M

We set σ to assign the small jobs according to (xij). Since maxj∈S pj ≤ δB we get
Cmax(σ) ≤ Cmax(σ′) + δB and together with the above considerations:

Cmax(σ) ≤ ((1 + δ)(1 + 3δ) + 2δ)OPT(I) ≤ (1 + ε)OPT(I)

While all of the used techniques are well known they have—to the best of our knowledge—
not been used in the indicated way up to now.

It can be easily seen that the class of instances of P |M(j)|Cmax, for which the rankwidth
of the incidence graph is bounded by a constant k, is invariant with respect to changing
the processing time of jobs and the introduction of copies of jobs.

Dynamic Program

We present a dynamic program to solve P |M(j)|Cmax using a branch decomposition (T, η)
with rankwidth k for the incidence graph. First we give some intuition on why a bounded
rankwidth is useful.

For any Graph (V,E) and X ⊆ V , we say that u, v ∈ V have the same connection type
with respect to X if N(u) ∩X = N(v) ∩X. If X is clear from the context we say that u
and v have the same connection type. Now, let e = {a, b} ∈ E(T) be some edge of the
branch decomposition and {Xe,a, Xe,b} the respective cut of T , i.e., Xe,x for x ∈ {a, b} is
the set of vertices of T that are in the same connected component as x when the edge
e is removed. Then {Xe,a, Xe,b} induces a partition of both the jobs and machines by
Je,x := {j ∈ J | η(j) ∈ Xe,x} and Me,x := {i ∈M| η(j) ∈ Xe,x} for x ∈ {a, b}.
Remark 18. Let x, y ∈ {a, b} with x 6= y. The number of distinct connection types of Je,x
with respect to Me,y is bounded by 2k.

We actually use that the number of distinct connection types of the jobs is bounded.
In the rest of this section we first show how the branch decomposition can be used in

a straightforward way to solve P |M(j)|Cmax (with exponential running time). The basic
idea for this is that each edge of the decomposition corresponds to a partition of the job
and machine sets and an optimal solution may be found by trying all possible ways of

13

moving jobs between partitions. At the machine-leafs all arriving jobs have to be processed,
with no jobs going out, and at the job-leafs all jobs have to be send away, with no jobs
coming in. From this the procedure can work up to some root edge. Next we argue that it
is sufficient to consider only certain locally defined classes of job sets. The crucial part
here is that the number of these classes can be polynomially bounded, because the number
of distinct sizes and connection types of jobs are constant.

b

a

e

Xe,a

Xe,b

~Ja,b

~Jb,a

Figure 2:
Edge e

Job sets. Let e = {a, b} ∈ E(T) again be some edge of the tree T and
{Xe,a, Xe,b} the corresponding cut of T . We fix a schedule σ and make some
basic observations. There is a set of jobs ~Ja,b ⊆ Je,a that σ assigns to machines
from Me,b. We will use the intuition that ~Ja,b is sent through e from a to b
(see also Figure 2). The node b may be an inner node or a leaf. Moreover, if
b is a leaf, η−1(t) may be a job j∗ or a machine i∗. In the first case σ sends
no jobs to t, and j∗ to a. In the second case no jobs are sent to a and the
jobs send to b should be feasible on i∗. Now any set that is sent through an
edge and arrives at an internal node, will be split into two parts: one going
forth through the second and one through the third edge. And looking at it
the other way around: Any set that is sent by a schedule through an edge
coming from an inner node, is put together from two parts, one coming from
the second and one coming from the third edge.

u t

v

w

~Jt,u

~Jv,t,u

~Jw,t,u

~Ju,t

~Ju,t,v

~Ju,t,w

Figure 3: Job-
sets are split.

We formalize this notion. Let t be an internal node of T , with neighbours
u, v, w ∈ V (T). Then for each pair of neighbours x, y of t there are job
sets ~Jx,t,y ⊆ ~Jx,t ∩ ~Jt,y, such that:

~Ju,t = ~Ju,t,v∪̇ ~Ju,t,w ~Jt,u = ~Jv,t,u∪̇ ~Jw,t,u (11)

See also Figure 3. It is rather easy to see that sets ~Js,t that are feasible at
the leafs and fulfil the conditions (11) uniquely define a feasible schedule.

Using these observations, we now discuss how (the value of) an optimal
schedule can be found by considering different job sets that may be sent
through the edges. For this we use an intuition of up and down, with
a above and b below. Let J̌ = ~Ja,b ⊆ Je,a and Ĵ = ~Jb,a ⊆ Je,b be some
candidate sets to be sent up and down respectively through e. We set
Ie,x(Ĵ , J̌) = I[(Je,x \ ~Jx,y)∪ ~Jy,x,Me,x] for x, y ∈ {a, b} with x 6= y, i.e., the
subinstances of I induced by e, if Ĵ and J̌ are send up or down respectively.
Note that the instance I is split into the two subinstances. Moreover let Γe be the set of
pairs (Ĵ , J̌). Then:

OPT(I) = min
(Ĵ ,J̌)∈Γe

max{OPT(Ie,a(Ĵ , J̌)),OPT(Ie,b(Ĵ , J̌))} (12)

We now consider the computation of OPT(Ie,b(Ĵ , J̌)) for the two cases when b is an
internal node or a leaf. If b is a leaf, it may correspond to a job or a machine, i.e.,
η−1(b) = j∗ or η−1(b) = i∗. In the first case we get OPT(Ie,b(Ĵ , J̌)) =∞ if Ĵ 6= {j∗} = Je,b
or J̌ 6= ∅, and OPT(Ie,b(Ĵ , J̌)) = 0 otherwise. In the second case Ĵ is empty since there are
no jobs at b. We get OPT(Ie,b(Ĵ , J̌)) =

∑
j∈J̌ pj if J̌ ⊆ M(i∗) and OPT(Ie,b(Ĵ , J̌)) = ∞

otherwise.

14

b

a

e

` r

e` er

Figure 4: Inner
node b

Now let b be an internal node that is connected to two lower nodes
` and r via edges e` and er (Figure 4). We say that ` and e` are on
the left, while r and er are on the right. Recursively we assume that
for any (L̂, Ľ) ∈ Γe`

and (R̂, Ř) ∈ Γer we know OPT(Ie`,`(L̂, Ľ)) and
OPT(Ier,r(R̂, Ř)) respectively. We want to identify the set Λe(Ĵ , J̌) of
tuples (L̂, Ľ, R̂, Ř) that for fixed (Ĵ , J̌) may occur in a schedule, i.e., fulfil
condition (11) for all edges from {e, e`, er} . For Ĵ it is clear which part
is coming from the left and which from the right and we set Ĵ` ⊆ Je`,`

and Ĵr ⊆ Jer,r accordingly, such that Ĵ = Ĵ`∪̇Ĵr. The other four sets in
which the job sets going up and down could be split can all be tried. More precisely, for
each J̌`, J̌r ⊆ J̌ with J̌ = J̌`∪̇J̌r, L̂r ⊆ (Je`,` ∩ J) \ Ĵ` and R̂` ⊆ (Jer,r ∩ J) \ Ĵr the tuple
(L̂r∪̇Ĵ`, J̌`∪̇R̂`, R̂`∪̇Ĵr, J̌r∪̇L̂r) is in Λe(Ĵ , J̌) and the set is defined by such tuples. We get:

OPT(Ie,b(Ĵ , J̌)) = min
(L̂,Ľ,R̂,Ř)

max{OPT(Ie`,`(L̂, Ľ)),OPT(Ier,r(R̂, Ř))} (13)

Using these considerations P |M(j)|Cmax can be solved by choosing a root edge e∗ = {a∗, b∗}
that is incident to a leaf a∗ corresponding to a job and designing a dynamic program
working from leaf edges to the root edge using (13). Now (12) for e = e∗ together with the
considerations for leaf nodes yield OPT(I) = OPT(Ie∗,b∗(∅, η−1(a∗))). The running time
of such an algorithm is exponential in the input length.

Classes of Jobs. Let J̌ , J̌ ′ ⊆ Je,a. There are some cases in which J̌ and J̌ ′ are in some
sense similar and it holds that OPT(Ie,b(Ĵ , J̌)) = OPT(Ie,b(Ĵ , J̌ ′)). This is the case if there
is a bijection α : J̌ → J̌ ′ such that j and α(j) have the same connection type with respect
to Me,b and pj = pα(j) for each j ∈ Ĵ . By this, an equivalence relation ∼e,a can be defined,
and analogously a relation ∼e,b. Now the observation (12) can be reformulated in terms of
equivalence classes:

Lemma 19. OPT(I) = min([Ĵ],[J̌]) max{minĴ ′ OPT(Ie,a(Ĵ ′, J̌)),minJ̌ ′ OPT(Ie,b(Ĵ , J̌ ′))}.

Note that in this equation equivalence classes [J̌] and [Ĵ] are considered belonging to
the relations ∼e,a and ∼e,b respectively. Ĵ and J̌ are arbitrary representatives of these
classes. We will now develop a sensible representation for the equivalence classes.

We drop the notion of up and down for the following considerations, i.e., b ∈ e is just
one of two nodes of some edge e. We assume some ordering of the different processing
times, with p(i) denoting the i-th processing time for i ∈ [d]. Any set of jobs J ′ induces
a vector λ ∈ Zd≥0 where λi is the number of jobs in J ′ that have the i-th processing
time, i.e., λi = |{j ∈ J ′ | pj = p(i)}|. We set p(λ) =

∑
i∈[d] p(i)λi. Let κ(e, b) be the

number of connection types of jobs from Je,b with respect to Me,a. Note that due to
Remark 18 we get κ(e, b) ≤ 2k. Again assuming some ordering, for i ∈ [κ(e, b)] let ϕe,b(i)
be the size vector induced by the i-th connection type of Je,b with respect to Me,a and
Me,a(i) ⊆Me,a the machines from Me,a the respective jobs may be processed on. Moreover
let ϕe,b = (ϕe,b(1), . . . , ϕe,b(κ(e, b))). Now the equivalence classes of ∼e,b can naturally be
represented and characterized by vectors ι ≤ ϕe,b.
Remark 20. For each e ∈ E(T) and b ∈ e there are at most nκ(e,b)d different vectors
ι ≤ ϕe,b.

15

We now study the splitting behaviour of job classes at inner nodes. Consider a set J ′
that is sent through an edge f = {u, v} and then forth through an incident edge g = {v, w}.
Then there are vectors ιf and ιg representing J ′ in the context of f and g respectively.
However, some other set J ′′ represented by ιf will also be represented by ιg, that is ιf
translates uniquely into ιg. We formalize this notion by the definition of a translation
function τf,g : {ι | ι ≤ ϕf,u} → {ι′ | ι′ ≤ ϕg,v}. For each i ∈ [κ(f, u)] there is a unique
i′ ∈ [κ(g, v)] with Mf,v(i)∩Mg,w = Mg,w(i′), i.e., the i-th connection type of Jf,u translates
into the i′-th connection type of Jg,v. Let υf,g : [κ(f, u)] → [κ(g, v)] be given by i 7→ i′.
Now for each ι ≤ ϕf,u we set τf,g(ι) = (ι′(1), . . . , ι′(κ(g, v))), with ι′(i′) ∈ Zd≥0 and more
precisely ι′(i′) =

∑
i∈υ−1

f,g
(i′) ι(i). With this we can formulate an analogue of (11). For a

fix schedule σ let ιa,b be the representative of the set of jobs that σ sends from a to b.
Now let t be an inner node with neighbours u, v, w. For neighbours x, y of t, the set ~Jx,t,y
considered in the last paragraph now has a representative in the contexts of {x, t} and
{t, y}. Fixing the first one ιx,t,y ≤ ιx,t, the second one can be obtained via a transformation
function, yielding:

ιu,t = ιu,t,v + ιu,t,w ιt,u = τ({v,t},{u,t})(ιv,t,u) + τ({w,t},{u,t})(ιw,t,u) (14)

From now on we will use the up and down notion like before (e = {a, b} ∈ E(T) with
a above and b below). Let ι̂ ≤ ϕe,b and ι̌ ≤ ϕe,a be candidate job classes to be send
up and down e. Considering Lemma 19 we set OPT(e, ι̂, ι̌) to be the minimum value
OPT(Ie,t(Ĵ , J̌)) where Ĵ is represented by ι̂ and J̌ by ι̌.

For the case when b is a leaf not much changes. If η−1(b) is a job j∗, the class of {j∗}
has only one element and is represented by ϕe,b. Therefore we get that OPT(e, ι̂, ι̌) = 0
for ι̂ = ϕe,b and ι̌ = 0, and OPT(e, ι̂, ι̌) = ∞ otherwise. If η−1(b) is a machine i∗, we
have ϕe,b = 0 and there are only two possible connection types for jobs from Je,a, because
jobs can be processed on i∗ or not, i.e., κ(e, a) ≤ 2. In any case we get OPT(e, ι̂, ι̌) =∑
i∈[κ(e,a)] p(ι̌(i)).
Now let b be an inner node again with lower neighbours ` and r to which it is

connected via edges e` and er. We may assume that we know the values OPT(e`, λ̂, λ̌)
and OPT(er, ρ̂, ρ̌) for candidate job classes (λ̂, λ̌, ρ̂, ρ̌) to go up or down the left or right
edge respectively. We want to identify the set Ξe(ι̂, ι̌) of quadruples (λ̂, λ̌, ρ̂, ρ̌) that are
compatible with ι̂ and ι̌, i.e., that fulfil (14). For this let ι̌`, ι̌r ≤ ι̌ with ι̌` + ι̌r = ι̌,
λ̂`, λ̂r ≤ ϕe`,` with λ̂` + λ̂r ≤ ϕe`,`, and ρ̂`, ρ̂r ≤ ϕer,r with ρ̂` + ρ̂r ≤ ϕer,r, such that
τe`,e(λ̂`) + τer,e(ρ̂r) = ι̂. By setting λ̂ = λ̂` + λ̂r, λ̌ = τe,e`

(ι̌`) + τer,e`
(ρ̂`), ρ̂ = ρ̂` + ρ̂r and

ρ̌ = τe,er (ι̌r) + τe`,er (λ̂r)) we get such a tuple and the set Ξe(ι̂, ι̌) is defined by such tuples.

Lemma 21. OPT(e, ι̂, ι̌) = min(λ̂,λ̌,ρ̂,ρ̌) max{OPT(e`, λ̂, λ̌),OPT(er, ρ̂, ρ̌)}.

Proof. If the righthand side equals ∞, it is easy to see that the equation holds, and we
will therefore assume OPT(e, ι̂, ι̌) < ∞. For given ι̂ ≤ ϕe,a and ι̌ ≤ ϕe,b let J̌ ⊆ Je,a be
any set represented by ι̌ and Ĵ∗ ⊆ Je,b an optimal one represented by ι̂, i.e., minimizing
OPT(Ie,b(Ĵ , J̌)). Let σ∗ be an optimal schedule for Ie,b(Ĵ , J̌). Furthermore let L̂∗, Ľ∗, R̂∗
and Ř∗ be the sets that σ∗ sends up or down through e` or er respectively, and let λ̂∗, λ̌∗,

16

ρ̂∗ and ρ̌∗ their classes. Than σ∗ induces schedules σ∗` and σ∗er for Ie,` and Ie,r. We get:

Cmax(σ∗) = max{Cmax(σ∗`), Cmax(σ∗r)}
≥ max{OPT(e`, λ̂∗, λ̌∗),OPT(er, ρ̂∗, ρ̌∗)}
≥ min

(λ̂,λ̌,ρ̂,ρ̌)∈
Ξe(ι̂,ι̌)

max{OPT(e`, λ̂, λ̌),OPT(er, ρ̂, ρ̌)}

Now let (λ̂, λ̌, ρ̂, ρ̌) ∈ Ξe(ι̂, ι̌) minimizing the right hand side of of the considered equation
with corresponding splitting vectors ι̌`, ι̌r, λ̂`, λ̂r, ρ̂`, ρ̂r. Moreover let L̂ and R̂ be optimal
sets represented by λ̂ and ρ̂ respectively. Splitting L̂, R̂ and J̌ corresponding to the
splitting of their job classes we can obtain sets Ľ, Ř and Ĵ that are represented by λ̌,
ρ̌ and ι̂ respectively and fulfil (11). We have now OPT(e`, λ̂, λ̌) = OPT(Ie`,`(L̂, Ľ)) and
OPT(er, ρ̂, ρ̌) = OPT(Ier,r(R̂, Ř)). Let σ` and σr be respective optimal schedules. Than
σ := σ` ∪ σr is a schedule for Ie,b(Ĵ , J̌) and Cmax(σ) equals the right hand side of the
considered equation. Since σ∗ was chosen optimal with an optimal class representative we
have furthermore Cmax(σ) ≥ Cmax(σ∗). This yields:

OPT(e, ι̂, ι̌) = Cmax(σ∗) = Cmax(σ)
= min

(λ̂,λ̌,ρ̂,ρ̌)∈
Ξe(ι̂,ι̌)

max{OPT(e`, λ̂, λ̌),OPT(er, ρ̂, ρ̌)}

Moreover we get that Ĵ is optimal as well.

Results. With these considerations a dynamic program for P |M(j)|Cmax can be defined.
This can be done in a way such that its running time is in O(m2nO(d2k)), proving Theorem
4 together with the Rounding Lemma and the considerations of Section 2.

Bi-cographs

We show that the path- and tree-hierarchical and nested cases are all special cases of the
case that the incidence graph is a bi-cograph. Bi-cographs were introduced as a bipartite
analogue of cographs [8].

Definition 22. For a bipartite graph G = (A∪̇B,E) the bi-complement of G is the graph
(A∪̇B, {{a, b} | a ∈ A, b ∈ B, {a, b} 6∈ E}). A graph is called bi-cograph, iff it is bipartite
and can be reduced to isolated vertices by recursively bi-complementing its connected
bipartite subgraphs.

It is known [9] that their cliquewidth and therefore also their rankwidth is bounded by 4.
Furthermore by recursively bi-complementing the connected bipartite subgraphs, a certain
decomposition of a given bi-cograph can be found in linear time that is similar to cotrees
of cographs [8]. This decomposition can easily be turned into a branch decomposition, for
which in the application studied here the number of connection types of jobs κ(e, u) for
every edge e of the decomposition and v ∈ e is bounded by 2.

Lemma 23. Let I be an instance of P |M(j)|Cmax with path- or tree-hierarchical or nested
restrictions. Then the incidence graph of I is a bi-cograph.

17

Proof. We first consider the case that I has tree hierarchical restrictions. Let T be a
corresponding rooted tree with V (T) =M. Then there is at least one machine (the root of
T) that can process all jobs. After bi-complementing the connected bipartite subgraphs of
the incidence graph this machine is isolated. This can be repeated: After bi-complementing
two more times the nearest descendants of the root in T that cannot process all jobs will
be isolated. Iterating this, at some point all machines and therefore also all jobs will be
isolated.

Now let I be an instance with nested restrictions. Note that the jobs j ∈ J with
maximalM(j) (with respect to ⊆) are all in different connected components of the incidence
graph and connected to all machines in their component. Hence they are isolated after
bi-complementing the first time. If we bi-complement a second time and remove these jobs
we get a new instance with nested restrictions and less jobs. By iterating this argument
the claim follows.

Acknowledgements. The Rounding Lemma in the presented form was formulated by
Lars Rohwedder and Kevin Prohn as part of a student project.

References
[1] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding

embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987.

[2] Yuichi Asahiro, Eiji Miyano, and Hirotaka Ono. Graph classes and the complexity of
the graph orientation minimizing the maximum weighted outdegree. Discrete Applied
Mathematics, 159(7):498–508, 2011.

[3] Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

[4] Hans L Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theo-
retical computer science, 209(1):1–45, 1998.

[5] Derek G Corneil and Udi Rotics. On the relationship between clique-width and
treewidth. SIAM Journal on Computing, 34(4):825–847, 2005.

[6] Tomáš Ebenlendr, Marek Krčál, and Jiří Sgall. Graph balancing: A special case of
scheduling unrelated parallel machines. Algorithmica, 68(1):62–80, 2014.

[7] Leah Epstein and Asaf Levin. Scheduling with processing set restrictions: Ptas results
for several variants. International Journal of Production Economics, 133(2):586–595,
2011.

[8] Vassilis Giakoumakis and Jean-Marie Vanherpe. Bi-complement reducible graphs.
Advances in Applied Mathematics, 18(4):389–402, 1997.

[9] Vassilis Giakoumakis and Jean-Marie Vanherpe. Linear time recognition of weak
bisplit graphs. Electronic Notes in Discrete Mathematics, 5:138–141, 2000.

18

[10] Petr Hlinenỳ and Sang-il Oum. Finding branch-decompositions and rank-
decompositions. SIAM Journal on Computing, 38(3):1012–1032, 2008.

[11] Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM (JACM), 23(2):317–327, 1976.

[12] Dušan Knop and Martin Kouteckỳ. Scheduling meets n-fold integer programming.
arXiv preprint arXiv:1603.02611, 2016.

[13] Phokion G Kolaitis and Moshe Y Vardi. Conjunctive-query containment and constraint
satisfaction. In Journal of Computer and System Sciences, 1998.

[14] Kangbok Lee, Joseph Y-T Leung, and Michael L Pinedo. A note on graph balancing
problems with restrictions. Information Processing Letters, 110(1):24–29, 2009.

[15] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical programming, 46(1-3):259–271,
1990.

[16] Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability.
Mathematical Programming, 154(1-2):533–562, 2015.

[17] Gabriella Muratore, Ulrich M Schwarz, and Gerhard J Woeginger. Parallel machine
scheduling with nested job assignment restrictions. Operations Research Letters,
38(1):47–50, 2010.

[18] Jinwen Ou, Joseph Y-T Leung, and Chung-Lun Li. Scheduling parallel machines with
inclusive processing set restrictions. Naval Research Logistics (NRL), 55(4):328–338,
2008.

[19] Sang-il Oum and Paul Seymour. Approximating clique-width and branch-width.
Journal of Combinatorial Theory, Series B, 96(4):514–528, 2006.

[20] Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth
revisited. Journal of Computer and System Sciences, 76(2):103–114, 2010.

[21] Ola Svensson. Santa claus schedules jobs on unrelated machines. SIAM Journal on
Computing, 41(5):1318–1341, 2012.

[22] Stefan Szeider. On fixed-parameter tractable parameterizations of sat. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pages 188–202.
Springer, 2003.

[23] Stefan Szeider. Not so easy problems for tree decomposable graphs. In International
Conference on Discrete Mathematics, 2008.

19

	1 Introduction
	2 Preliminaries
	3 Treewidth Results
	4 Rankwidth Results

