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Abstract

We bound the performance guarantees that follow from Turdn-like bounds for unweighted
and weighted independent sets in bounded-degree graphs. In particular, a randomized approach
of Boppana forms a simple 1-round distributed algorithm, as well as a streaming and preemptive
online algorithm. We show it gives a tight (A + 1)/2-approximation in unweighted graphs of
maximum degree A, which is best possible for 1-round distributed algorithms. For weighted
graphs, it gives only a A-approximation, but a simple modification results in an asymptotic ex-
pected 0.529A-approximation. This compares with a recent, more complex A-approximation [5],
which holds deterministically.

1 Introduction

Independent sets are among the most fundamental graph structures. A classic result of Turdn [20]
says that every graph G = (V, E) contains an independent set of size at least TURAN(G) = n/(d+1),
where n = |V| is the number of vertices and d = 2|E|/n is the average degree. Turan’s bound is
tight for regular graphs, but for non-regular graphs an improved bound was given independently
by Caro [9] and Wei [21]:

a(G) > CAROWEI(G) = > (1)

= dv) +1

where a(G) is the cardinality of a maximum independent set in G and d(v) is the degree of vertex
veV.
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There are numerous proofs of the Caro-Wei bound, some involving simple greedy algorithms.
Arguably the simplest argument known is a probabilistic one:

Uniformly randomly permute the vertices, and output the set of vertices )
that precede all their neighbors in the permutation.

Each node v precedes its neighbors with probability 1/(d(v)+ 1), so by linearity of expectation the
size of the set output matches exactly CAROWEI(G). This argument, which first appeared in the
book of Alon and Spencer [2], is due to Boppana [8]. It clearly leads to a very simple local decision
rule once the permutation is selected.

An alternative formulation of the algorithm is practical in certain contexts.

Each vertex v picks a random real number x, from [0,1]. The vertex
joins the independent set if its random number is larger than that of its (3)
neighbors.

It suffices to select the numbers with precision 1/n3, for which collisions are very unlikely.

This leads to a fully 1-local algorithm, in which each node decides whether to join the indepen-
dent set after a single round of communication with its neighbors. The same O(logn) bits a node
transmits go to all of its neighbors, which matches the Broadcast-CONGEST model of distributed
algorithms. Furthermore, it is asynchronous. This is just about the simplest distributed algorithm
one could hope for.

The simplicity of the approach also allows for other applications. The basic algorithm works
well with edge streams, storing only the permutation and the current solution as a bit-vector. The
storage can be reduced with an e-min-wise permutation, at a small cost in performance. This can
also be viewed as a preemptive online algorithm, where edges can cause nodes to be kicked out of
the solution but never reenter.

Our contribution. The main purpose of this essay is to analyze the performance guarantees of
Boppana’s algorithm on graphs of maximum degree A. We show that it achieves a tight (A+1)/2-
approximation, which then also gives a bound on the fidelity of the Caro-Wei bound. In terms
of the average degree d, the performance is at most (d + 2)/1.657. We also show that the Turdn
bound has strictly worse performance than the Caro-Wei bound, but asymptotically the same for
bounded-degree graphs or (A +1)/2 + 1/(8A).

We then address the case of weighted graphs, and find that unchanged Boppana’s algorithm gives
only a (A + 1)-approximation. However, a slight modification yields an improved approximation
which asymptotically approaches 0.529(A + 1).

1.1 Related work

Turdn [20] showed that «(G) > TURAN(G). Caro [9] and Wei [21] independently showed (in
unpublished technical reports) that a(G) > CAROWEI(G). The bound can also be seen to follow
from an earlier work of Erdés [I3], who showed that the bound is tight only for disjoint collections
of cliques. Observe that CAROWEI(G) > TURAN(G), for every graph G.

The min-degree greedy algorithm iteratively adds a minimum-degree node to the graph, removes
it and its neighbors and repeats. It achieves the Caro-Wei bound [21] (see also [13]). Griggs [14] (see
also Chvétal and McDiarmid [I1]) showed that the max-degree greedy algorithm also attains the
Caro-Wei bound, where the algorithm iteratively removes the vertex of maximum degree until the



graph is an independent set. Sakai et al. [I9] analyzed three greedy algorithms for weighted indepen-
dent sets and showed them to achieve certain absolute bounds as well as a (A + 1)-approximation.

The best sequential approximation known is O(A/ log? A)E by Bansal et al. [4], which uses semi-
definite programming. This matches the inapproximability result known, up to doubly-logarithmic
factors, that holds assuming the Unique Games Conjecture [3]. The problem is known to be
NP-hard to approximate within an O(A/log* A) factor [10]. For small values of A, a (A + 3)/5-
approximation [6] is achievable combinatorially, but requires extensive local search. As for simple
greedy algorithms, it was shown in [16] that the performance guarantee of the min-degree greedy
algorithm is (A 4 2)/3, and also pointed out that the max-degree algorithm attains no better than
a (A +1)/2 ratio.

Most works on distributed algorithms have focused on finding maximal independent sets, rather
than optimizing their size. Boppana’s algorithm corresponds to the first of O(logn) rounds of
Luby’s maximal independent set algorithm (see also Alon et al. [?]). As for approximations, n®(1/%)-
approximation is achievable and best possible for local algorithms running in & rounds [7], where the
upper bound assumes both unlimited bandwidth and computation. Recently, Bar-Yehuda et al. [5]
gave a A-approximation algorithm for weighted independent sets using the local ratio technique that
runs in time O(MIS -log W) rounds, where MIS is the number of rounds needed to compute a max-
imal independent set and W is the ratio between the largest and smallest edge weight. We improve
this approximation ratio by nearly a factor of 2 using only a single round, but at the price of obtain-
ing a bound only on expected performance. Alon [I] gave nearly tight bounds for testing indepen-
dence properties; his lower bound carries over to distributed algorithms, as we shall see in Sec. 2.4
For matchings, which correspond to independent sets in line graphs, Kuhn et al. [I8] showed that
achieving any constant factor approximation requires Q(max(log A/loglog A, +/logn/loglogn))
rounds.

Halldé6rsson and Konrad [?] examined how well the Caro-Wei bound performs in different sub-
classes of graphs. They also gave a randomized one-round distributed algorithm where nodes broad-
cast only a single bit that yields an independent set of expected size at least 0.24 - CAROWEI(G)
on every graph G. This is provably the least requirement for an effective distributed algorithm, as
without degree information, the bounds are polynomially worse.

Streaming algorithms (including Boppana’s) achieving Turén-like bounds in graphs and hyper-
graphs were considered in [I5], and streaming algorithms for approximating CAROWEI(G) were
given recently by Cormode et al. [?].

Motivated by a packet forwarding application, Emek et al. [12] considered the online set packing
problem that corresponds to maintaining strong independent sets of large weight in hypergraphs
under edge additions. We give a tight bound on their method for the special case of graphs.

2 Performance of Caro-Wei-Turan Bounds

We examine here how well the Caro-Wei and the Turdn bounds perform on (unweighted) bounded-
degree and sparse graphs.

Let OPT be an optimal independent set of size « = a(G) and let V/ =V \ opT. We say that
a bound B(G) has a performance ratio f(A) if, for all graphs G with A(G) = A it holds that
a(G) > B(G) > a(G)/f(A).

1O(-) suppresses log log n factors.



2.1 Caro-Wei in Bounded-Degree Graphs

Theorem 1. CAROWEIL has performance ratio (A +1)/2.

Proof. Let G be a graph. Let O;, fori =1,2,...,A, denote the number of vertices in OPT of degree
1. Our approach is to separate the contributions of the different O;s to the Caro-Wei bound. The
nodes of high degree have a smaller direct contribution, but also have an indirect contribution in
forcing more nodes to be in V.

Let mgopr be the number of edges with an endpoint in OPT. Each such edge has the other
endpoint in V’, whereas nodes in V' are incident on at most A edges. Thus,

> i 05 =mopr <AV (4)
We then obtain

CAROWEI(G) = Z ﬁ = ZOZ- : L
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obtaining the approximation upper bound claimed. Observe that the bound is tight only if all
nodes in OPT are of degree A or A — 1.

To see that the ratio attained is no better than (A 4 1)/2, observe that in any regular graph,
the algorithm achieves a solution of exactly n/(A-+1), while in bipartite regular graphs the optimal
solution has size n/2. O

Remark. Selkow [?] generalized the Caro-Wei bound by extending Boppana’s algorithm to two
rounds. Namely, it adds also the nodes with no neighbor ordered earlier among those that did not
get removed in the first round. For regular graphs, however, his bound reduces to the Caro-Wei
bound, and thus does not attain a better performance ratio, given our lower bound construction.

2.2 Caro-Wei in Sparse Graphs

We now analyze the performance of the Caro-Wei bound in terms of the average degree d = 2|E|/n.
We shall use a certain application of the Cauchy-Schwarz inequality, which we state more generality
in hindsight of its application in the following section.
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Lemma 1. If x1,29,...,xn and wy,ws, ..., wyN are positive reals, then Z —+ > N
=1 i D i1 Ti
Proof. The Cauchy-Schwarz inequality implies that for ui, us,...,un and vy, vs,...,vN,
N 2 N N
() = () (3)
i=1 i=1 i=1
The claim now follows using u; = /x; and v; = w;/\/T;. O

Note that applying Lemma [Il with w, = 1 and x,, = d(v) + 1 yields that

1 n? n .
CAROWEI(G) = 1;/ i) T > RO T TURAN(G) .

Theorem 2. CAROWEI has performance ratio at most (d + 2)/1.657.

Proof. Let OPT be an optimal independent set of size & = «(G) and let V/ = V' \ oPT. Observe
that when |V’/| = n — a > «, the Turdn bound gives n/(d + 1) > « - 2/(d + 1), for a performance
ratio of at most (d 4+ 1)/2. We assume therefore that o > in.

Our approach is to first apply Lemma [I] separately on the parts of CAROWEI(G) corresponding
to oPT and V’. We then show that the worst case occurs when all edges cross from OPT to V/,
indeed when the graph is bipartite with regular sides. Optimizing over the possible sizes of the
sides then yields a tight upper and lower bounds.

Let mopr denote the number of edges with endpoint in OPT, my the number of edges with both
endpoints in V' and m = mepr + mys be the total number of edges. Observe that > d(v) =
Mopr While Y 1) = mopr + 2my.

Lemma [ (with w, = 1 and x,, = d(v) + 1) applied to OPT and V' separately yields that

VEOPT

CAROWEI(G) = ) % +Y 1 > o’ n (n—a)? |
veom A0 +1 0 =, d(v) +1 = mopr +@ = Mopr + 2myr + (0 — @)
Denoting t = mopr/m, we get that
o? (n —a)?

> .
CAROWEI(G) = t'm+a+ 2—tim+n—a

Considered as a function f of ¢, the r.h.s. of (B has derivative

dt  (tm+a)2 (2—-tm+n—a)?’

ﬁ B a? (n — a)?

Since we assume o« > n/2, it holds that a?(m +n — a)? > (n — a)?(m + a)?, and thus df /dt < 0
for all ¢t € [0, 1]. Hence, denoting 7 = «/n, we obtain that

2 _ 2 _ 2
CAROWEI(G) > — 4 (n=9) :a<_ LA Gk /T>. (6)
m+a m+n—o /2471 d/2+1—-71




The expression in the parenthesis then upper bounds the reciprocal of the performance guarantee
of CAROWEIL.

To see that (@) is tightest possible, consider bipartite graphs G with regular sides. Let 7 be
such that 7n is the size of the larger side and ¢ is the degree of those vertices. Then the number of
edges is m = ¢ - 7n, average degree is d = 2m/n = 2qr, and the degree of the nodes on the other
side is m/((1 — 7)n) = d/(2(1 — 7)). Clearly a(G) = tn, while the Caro-Wei bound gives

. ™ (1—7’)7”L o 1 (1_7—)/7—
CaroWel®) = Ty 1 Y Tea -1 A9 (8/(27) 1 G-+ 1> ’

which matches ([@]).
If we round up the lower order terms in the denominator of (6l), we obtain a simpler expression
for the asymptotic performance with d:

CAROWEI(G) > o(G) <T+E(/12%2/T> :

which is minimized when 7 = 1/ V2, for a performance ratio at most (d + 2)/(4(v/2 — 1))
(d +2)/1.657.

HRVA

2.3 Turan Bound

Recall Turén’s theorem that o(G) > TURAN(G) = EL-H = ﬁ We find that the guarantee of
the Turan bound is strictly weaker than that of Caro-Wei, yet asymptotically equivalent.
(2A+1)2 A+1 N 1

8A 2 8A’
Proof. Because OPT = V' \ V' is independent, each of the |E| edges of G is incident to at least one
vertex in V’/. Conversely, each vertex in V' is incident to at most A edges. So by counting edges,

Theorem 3. TURAN has performance ratio

we get
|E| < AV = A(n — «).

Therefore
2|E|+n <2A(n—a)+n=2A+1)n —2Aq.

Multiplying by 8Aa and using the inequality 4xy < (z + y)? gives
8Aa(2m +n) < 4(2A0)[(2A + 1)n — 2Aa] < [(2A + 1)n)? .

Dividing both sides by 8A(2m + n) gives

2A +1)2 n? 2A +1)2 )
ag( SA) -2m+n:( 8A)TURAN(G).

The argument above shows that the performance ratio of Turan’s bound is at most (2%721)2.
This performance ratio is tight as a function of A. To see why, given A > 0, let A, B, and C
be disjoint sets of size 2A — 1, 2A — 1, and 2, respectively. Let G be any A-regular bipartite
graph with parts A and B, together with two isolated vertices in C. We can check that n = 4A,
|E| = (2A — 1)A, TURAN(G) = %ﬁl, and a(G) = 2A + 1. So the performance ratio of Turdn’s

. . (2A+41)?
bound on this graph is indeed ““—=gx—. O




2.4 Limitations of Distributed Algorithms

We may assume that we are equipped with unique labels from a universe of N labels, where
N > A -n. The nodes have knowledge of n, A and N, and have unlimited bandwidth and
computational ability. The nodes have distinct ports for communication with their neighbors, but
do not initially know there labels.

Our result for Boppana’s algorithm is optimal for 1-round algorithms. Observe that the lower
bounds below hold also for randomized algorithms.

Theorem 4. FEvery 1-round distributed algorithm has performance ratio at least (A + 1)/2, even
on unweighted reqular graphs.

Proof. In a single round, each node can only learn the labels of their neighbors and their random
bits.

Consider the graph G; = Ka+1, and Ga, which is any A-regular bipartite graph. Distributions
over neighborhoods are identical. Hence, no 1-round algorithm can distinguish between these
graphs.

All nodes will join the independent set with the same probability, averaged over all possible
labelings, since they share the same views. This probability can be at most 1/(A + 1), as otherwise
the algorithm would produce incorrect answers on Kay1. The size of the solution is then at most
n/(A+1), while on every A-regular bipartite graphs, the optimal solution contains n/2 nodes. [

It is not clear if better results can be obtained when using more rounds. A weaker lower bound
holds even for nearly logarithmic number of rounds.

Theorem 5. There are positive constants ¢y and cy such that the following holds: Every ciloga n-
round distributed algorithm has performance ratio at least caA/log A.

Proof. Alon [I] constructs a A-regular graph G of girth Q(logn/log A) with independence number
O(n/A -log A), and notes that it is well known that there exist a bipartite A-regular graph Go of
girth Q(logn/log A). The distributions over the k-neighborhoods of these graphs are identical, for
k = O(logn/log A). Hence, no k-round distributed algorithm can distinguish between the two. O

3 Approximations for Weighted Graphs

In the weighted setting, each node v is assigned a positive integral weight w(v) and the objective
is to find an independent set I maximizing the total weight »° _; w(v). For a set X C V, denote
w(X) = pex w(®).
Boppana’s algorithm can be applied unchanged to weighted graphs, producing a solution B of
expected weight )
Elw(B)] = Z w(v) - W )
vEB
by linearity of expectation. This immediately implies that E[w(B)] > w(V')/(A + 1), for a perfor-
mance ratio at most A 4+ 1. To see that this is also the best possible bound, consider the complete
bipartite graphs Ky, n, where the nodes on one side have weight 1 and on the other side weight
Q, for a parameter @ > A%, The expected weight of the algorithm solution is (N + NQ)/(A + 1),



while the optimal solution is of weight N@Q. The performance ratio is then (A +1)/(1 + 1/Q),
which goes to A + 1 as () gets large.
We therefore turn our attention to modifications that take the weights into account.

3.1 Modified algorithm

We consider now a variation, MAX, previously considered in an online setting in [12].

Each node v picks a random real number z, uniformly from [0, 1]. It broadcasts the

values z, and w, to its neighbors, who compute from it r, = le,/ " As before, each
node u joins the solution if its value r, is the highest among its neighbors.

The only difference is the computation of r,, which now depends on the weight w,. Again the
algorithm runs in a single round of Broadcast-CONGEST, with correctness following as before.
The algorithm was previously shown in [12] to attain a A-approximation.

We obtain a tight bound, which does not have a nice closed expression.

Theorem 6. The performance ratio p(A) of MAX, as a function of A, is given by

1 , z? Lt

— = min .

p 2<1\A+zx zA+1
We prove Theorem [f] in the following subsection.

If we focus on the asymptotics as A gets large, we can ignore the additive terms in the denom-
inators, obtaining that the performance ratio approaches

1
PA) T BF Y

This is maximized when z = 271/3 for a ratio of 22/3(A +1)/3 ~ (A 4 1)/1.89 ~ 0.529(A +1).
Theorem 7. The asymptotic performance ratio of MAX is 22/3(A +1)/3 ~ 0.529(A +1).

Figure [ shows p(A)/(A + 1) as a function of A. For A = 2, we find that 1/p ~ 0.593, or
p ~ 1.657 ~ 0.562(A + 1), which is about 6% larger than 0.529(A + 1), but 20% smaller than A.
For A =1, the algorithm can made optimal by preferring nodes with higher weight than their sole
neighbor.

3.2 Analysis

The key property of the MAX rule that leads to improved approximation is that the probability that
a node is selected is now proportional to the fraction of its weight within its closed neighborhood
(consisting of itself and its neighbors). We then obtain a bound in terms of weights of sets of nodes
— the optimal solution and the remaining nodes — using the Cauchy-Schwarz inequality. We safely
upper bound the degree of each node by A, but the main effort then is to show that the worst
case occurs when the graph is bipartite with equal sides. This leads to matching upper and lower
bounds.

Let N(v) denote the set of neighbors of vertex v and N[v] = {v}UN(v) its closed neighborhood.
Let MAX also refer to the set of nodes selected by Max.

The key property of the MAX rule is that the probability that a node is selected is now propor-
tional to the fraction of its weight within its closed neighborhood. We provide a proof for the next
lemma for completeness.
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Figure 1: Bounds on performance ratio, for small values of A.

w(v)

Lemma 2 ([12]). For each vertex v € V, we have that Plv € MAX] = ———— .
(020 (N [o])

Proof. Let rypax = max{r, : u € N(v)}. By independence of the random choices we have, for
a € [0,1], that

Plrmax <al = [[ Plra<al= [[ Plea < a®®] = aZuene M) = o)
ueN (v) u€N(v)

It follows that ryayx has distribution D,y (), Where the distribution D, has density f.(a) = za*~",
for a € [0, 1]. Hence,

1 1
]P[Tv > Tmax] = / ]P)[Tmax < a] : f?“v (a)da = / aw(N(v)) : w(v)aw(v)—lda =
0 0

as required. O

Note that by Lemma [2] and linearity of expectation, we have that

Efw(S N Max)] = Y Plv e Max] - w(v) =Y w(v)® (7)

s o5 WD

for any subset S C V. Applying Lemma [ (with =, = w(N[v])) gives:
w(S)?
Lemma 3. For any subset S C'V we have that Efw(S N MAX)] > =————— .
2 ves WN[V])
Applying Lemma [ with S = V gives an absolute lower bound on the solution size.

WV w(V) w(V)
Lemma 4. Elw(MAX)] 2 &= N0 = Soey @) + Du() ~ A+ 1

We need the following lemma when showing that worst case occurs for bipartite graphs.




Lemma 5. Leta>b>0andlet Z —Y > X > 0. Then

min - + b —L—FE
o] | Y +tX  Z+(1-)X[] Y+X Z°

B ET RN VAR (=P

Proof. Let f(t + . We have that € — aX bX ___ which is negative
= YHix Z+(1 DX “dt
for any ¢t € [0,1], since a >band Y +tX < Z + (1 —t)X. O

Now we are ready to prove Theorem

Proof of Theorem[d. Let OPT be an optimal solution, and define V' = V \ opPT, and § =
w(V')/w(opT). When § > 1, Lemma @ implies that the performance ratio is at most (A + 1)/2.
We therefore focus on the case where 5 < 1.

We first apply Lemma [3] separately on OPT and on V', obtaining:

w(oPT)? N w(V')?
Z’UEOPT w(N[v]) Zve\/’ w(N[v])

Let W =3 cpvw(v)-|N(v)NorPT| =3 oor w(N(v)) be the weighted degree of the nodes of
V' into oPT, which can be viewed as the total of the weights of neighborhoods of nodes in OPT.
Thus,

w(MaX) = w(MAX N OPT)) + w(MaxN V') > (8)

> w(N[]) = w(opr) + > w( v) NoPT| = w(oPT) + W . (9)
. veor v

> w(Np)) =w(V')+ > w(iN(v

eV vev’
=w(V)+ 3 wl) INWNV+ Y w): NNV
< w(V') + ISUP(LPT) + > w(v) - (AUjN(v) N oprT|)
= w(V') + Aw(opPT) + sz(v/) —-W. (10)

Applying (@) and () to (§) gives
w(Max) > w(opT)? w(V')?

w(opT)+ W — w(V’') + Aw(oprT) + Aw(V') =W °

Since B < 1 and W < Aw(V’) we can use Lemma [f] with a = w(orT)?, b = w(V')?, Y = w(opPT),
Z =w(V')+ Aw(oprT), X = Aw(V'), and t = W/X. Hence,
2 "2 2
w(OPT) w(V") 1 n B > oo

w(oPT) 1 Aw(V) T w(v) + Awiorn) V0P <1 TA3 TBYA

w(MAX) >

The upper bound of the theorem therefore follows.
To see that bound (II]) is tight, consider any A-regular bipartite graph G = (V, E) with V
partitioned into two sets L and R, where |L| = |R|. Set the weight of nodes in L and in R as 1

10



and f3, respectively, for some § < 1. Clearly, the weight of the optimal solution is w(opPT) = |L]|.
Observe that

M =|L L R 5__ ! p
wMAX) = |21 s + IR e = wtorn)- (15 4 55 )

matching (IIJ). O
Remark. Sakai et al. [I9] considered the following greedy algorithm (named GWMIN2): add the
vertex v maximizing w(v)/w(N[v]) to the solution, remove its closed neighborhood, and recurse
on the remaining graph. They derived a (A + 1)-approximation upper bound but not a matching

lower bound. Since their algorithm attains the bound (7)) (see [19]), our analysis implies that it
also attains the bound of Theorem

4 Conclusion

It’s surprising that the best distributed approximations known of independent sets are obtained
by the simplest algorithm. Repeating the algorithm on the remaining graph will certainly give a
better solution — the challenge is to quantify the improvement.
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