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Abstract

The notion of string attractor has recently been introduced in [Prezza, 2017]
and studied in [Kempa and Prezza, 2018| to provide a unifying framework
for known dictionary-based compressors. A string attractor for a word w =
wiws -+ w, is a subset I' of the positions {1,...,n}, such that all distinct
factors of w have an occurrence crossing at least one of the elements of I'.
In this paper we explore the notion of string attractor by focusing on
its combinatorial properties. In particular, we show how the size of the
smallest string attractor of a word varies when combinatorial operations are
applied and we deduce that such a measure is not monotone. Moreover, we
introduce a circular variant of the notion of string attractor to provide a
characterization of the conjugacy classes of standard Sturmian words.
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1. Introduction

This paper focuses on the notion of string attractor that has been recently
introduced and studied in [32, 16] to find a common principle underlying the
main techniques constituting the fields of dictionary-based compression. It is
defined as a subset of the text’s positions such that all distinct factors have
an occurrence crossing at least one of the string attractor’s elements. On one
hand the problem of finding the smallest string attractor of a word has been
proved to be NP-complete, on the other hand most well-known compres-
sion schemes, such as straight-line programs, Run-Length Burrows-Wheeler
transform, macro schemes, collage systems, and the compact directed acyclic
word graphs, can be interpreted as algorithms approximating the smallest
string attractor for a given word [16]. In particular, the size of the string at-
tractors induced by the compression schemes can be bounded by the repet-
itiveness measures associated to such compressors. This fact can allow to
discover asymptotic relations between the output sizes of different compres-
sors (cf. [17]), with several applications in designing new data structures and
techniques, especially for indexing compressed massive and highly-repetitive
data (see for instance [6, 13] and references therein).

In this paper we use some results related to the compressors based on the
Burrows-Wheeler Transform and the dictionary-based compressors.

The Burrows-Wheeler Transform (BWT) is a reversible transformation
that was introduced in 1994 in the field of Data Compression and it is also
largely used for self-indexing data structures. It has several combinatorial
properties that make it a versatile tool in several contexts and applications
33, 34, 24, 30, 35, 29, 15].

Dictionary-based compressors are mainly based on a technique originated
in two theoretical papers of Ziv and Lempel [37, 38]. Such compressors,
that are able to combine compression power and compression/decompression
speed, are based on a paper in which combinatorial properties of word fac-
torization are explored [22]. The relationship between LZ77 and BWT has
been investigated from the algorithmic point of view in [31].

The main goal of this paper is to explore the combinatorial properties of
string attractors. More in detail, we are interested in how the size of the
smallest string attractor of a word varies when combinatorial operations are
applied. We also show that one of the consequences of these combinatorial
properties is that the complexity measure defined by the size of the string
attractors is not monotone. This answers to an open problem posed in [20].



Furthermore, we are interested to consider the problem of computing string
attractors for infinite families of words that are well known in the field of
Combinatorics on Words: standard Sturmian words, Thue-Morse words and
de Bruijn words. In particular, we prove that the size of the smallest string
attractor for standard Sturmian words is 2 and it contains two consecutive
positions. For the de Bruijn words the size of the smallest string attractor
grows asymptotically as %, where n is the length of the word. In [21] it
has been proved that Thue-Morse words have a smallest string attractor of
size 4.

Finally, a circular variant of the notion of string attractor is here in-
troduced to characterize the conjugacy classes of standard Sturmian words.
This notion may have an interest independent of this result.

A preliminary version of the results here presented can be found in [27].

2. Preliminaries

Let ¥ = {ay,as,...,a,} be a finite ordered alphabet with a; < ay <
... < a,, where < denotes the standard lexicographic order. We denote by
>* the set of words over ¥. Given a finite word w = wyws, -+ - w,, € X2* with
each w; € ¥, the length of w, denoted |w|, is equal to n.

Given a finite word w = wyws - - - w,, with each w; € ¥, a factor of a word
w is written as wli, j] = w; - --w; with 1 <7 < 5 < n. A factor of type w|l1, j]
is called a prefiz, while a factor of type wl[i,n] is called a suffiz. We also
denote by w(i] the i-th letter in w for any 1 <4 < n. Let us denote by f, (k)
the number of distinct factors of w having length k. The function f,, is called
factor complexity of w. An (equal-letter) run in a word w is a maximal factor
a®, with k£ > 0 and a € 3. Therefore, a word w can be uniquely written as
w = uyus - - - U, where u; are equal-letter runs of w and r is called number of
runs of w.

We denote by W the reversal of w, given by W = wy, - -wowy. If wis
a word that has the property of reading the same in either direction, i.e. if
w = ﬁ, then w is called a palindrome.

We say that two words x,y € X* are conjugate, if * = wv and y = vu,
where u,v € ¥*. Conjugacy between words is an equivalence relation over
>*. We say that u has a circular occurrence in w if u is a factor of a conjugate
of w. In this case we say that u is a circular factor of w. More formally,
an occurrence of a circular factor v of w is identified by a pair (,j), with



i,7 €{1,2,...,n}, such that

wli, j] ifi<j
V=
wli,n] - w[l,j] ifi>j.

For instance aa is a circular factor of abbbba, but it is not a factor. Let us
denote by ¢, (k) the number of distinct circular factors of w having length
k. The function ¢, is called circular factor complexity of w. It is easy to see
that f, (k) < c,(k), for each k > 1.

Given a finite word w, w* denotes the word obtained by concatenating k
copies of w. A nonempty word w € X7 is primitive if w = v implies w = u
and h = 1. Given a word z, a positive integer p < |z| is a period of x if
x[i] = z[j] when ¢ = j mod p.

The Burrows-Wheeler Transform (BWT) is a word transformation and
it was introduced in the field of Data Compression [8]. More formally, given
a word w € 3*, the output of BWT is the pair (bwt(w), I), where bwt(w)
is the permutation of the letters in the input word w obtained by consid-
ering the matrix M containing the lexicographically sorted list of the cyclic
rotations of w, and by concatenating the letters of the last column L of M;
I is the position where the original word w appears in M. An important
property that assures the reversibility of BWT is that for each letter ¢, the
1-th occurrence of ¢ in the last column L of the matrix M corresponds to the
1-th occurrence of c¢ in its first column F. Such a correspondence is called
LF-mapping. In fact, given the output of BWT, the original word w can be
recovered as follows: w[n — k] = L[LF*[I]] for 0 < k < n—1. Note that if an
end-of-string symbol § ¢ 3 (and smaller than any symbol in 3) is appended
to the word w, lexicographically sorting the cyclic rotations of w$ can be
reduced to sorting its suffixes [14, 3, 4, 28]. Therefore, adding the $ symbol
at the end of w changes the output of BWT compared with BWT(w). In
fact, as shown in Fig. 1, both the index I and the words bwt(w) and bwt(w$)
may be quite different.

The LZ-parsing of a word w is its factorization s = p; - - - p, built left to
right in a greedy way by the following rule: each new factor (also called an
LZ-phrase) p; is either the leftmost occurrence of a letter in w or the longest
prefix of p; - - - p, which occurs, as a factor, in p; -+ - p;_1.



F L F L
b l 4 \
1 a aaaabaaaalb 1 $aaabaaaaalda
2 a aaabaaaaadbd 2 a $aaabaaaaalb
3 aaaabaaaabdba 3 aaaaabalaaalbd
4 a aabaaaaabdba 4 a aaabalaaabda
5 a aabaaa abaa 5 a aabalaaabdaoa
6 a abaaaaabaa 6 a aabaaaaabal
7 a abaaaadb aaa 7 aaba$aaabaaa
8 a baaaaab aaa 8 aabaaaaabala
9 a baaaadb aaaa 9 a ba$%aaabaaaa
10 b aaaaab a aaa 10 a baaaaabalaa
11 b aaaaba a aaa 11 b a $aaabaaaaa
12 b aaaaabalaaa
(a) (b)

Figure 1: (a) The matrix lexicographically sorted cyclic rotations of the word w =
aaabaaaaaba. The last column of the matrix is bwt(w) = bbaaaaaaaaa and I = 4.
(b) The matrix of lexicographically sorted cyclic rotations of the word w$. Then,
bwt(w$) = abbaa$aaaaaa and I = 6.

3. String Attractor of a word

In this section we describe the notion of string attractor that is a com-
binatorial object introduced in [32, 16] to obtain a unifying framework for
dictionary compressors.

Definition 1. A string attractor of a word w € X" is a set of v positions
I' = {j1,...,j} such that every factor wli,j| has an occurrence w[i’, j'| =
wli, j| with ji, € [, j'], for some jj, € T

Simply put, a string attractor for a word w is a set of positions in w
such that all distinct factors of w have an occurrence crossing at least one of
the attractor’s elements. Note that, trivially, any set that contains a string
attractor for w, is a string attractor for w as well. Note also that a word can
have different string attractors that are not included into each other. We are
interested in finding a smallest string attractor, i.e. a string attractor with a
minimum number of elements. We denote by +*(w) the size of the smallest



string attractor for w. Note that all the factors made of a single letter should
be covered, and therefore v*(w) > |X|.

Example 2. Let w = adcbaadcbadc be a word on the alphabet ¥ = {a,b,c,d}.
A string attractor for w is for instance I' = {1,4,6,8,11}. Note that posi-
tion 1 can be removed from T', since all the factors that cross position 1
have a different occurrence that crosses a different position in I'. Therefore
IV = {4,6,8,11} is also a string attractor for w with a smaller number of
elements. The positions of I are underlined in

w = adcbaadcbadc.

[ is also a smallest string attractor since |I"| = |X|. Then v*(w) = 4.
Remark that the sets {3,4,5,11} and {3,4,6,7,11} are also string attractors
forw. It is easy to verify that the set A = {1,2,3,4} is not a string attractor
since, for instance, the factor aa does not intersect any position in A.

In [16] the authors show that many of the most well-known compression
schemes reducing the texts size by exploiting its repetitiveness can induce
string attractors whose sizes are bounded by the repetitiveness measures
associated to such compressors. In particular, straight-line programs, Run-
Length Burrows-Wheeler transform, macro schemes, collage systems, and the
compact directed acyclic word graph are considered. Here we report some
results related to the Burrows-Wheeler transform and Lempel-Ziv 77 (that
is a particular macro-scheme) that provide upper bounds on the size of the
smallest string attractor for a given word. Such bounds will be used in next
sections to compute the string attractors for known infinite families of words.

Let v be a word of length n and let BWT(v) = (bwt(v), ). Let us denote
by Tyt (v) the set

{n—k|LFFI]=1or LILF*[I] - 1] # L[LF*[I]},

i.e. Tyt is the set of positions of the symbols in v that correspond to the
first occurrence of a symbol in each equal-letter run in bwt(v) (alternatively,
we can consider the set I'y . defined as the set of positions at the end of
equal-letter runs in bwt(v)).

The following theorem, proved in [16], states a relation between a string
attractor of a word and the runs of its bwt when a $-symbol is appended.



Theorem 3 ([16]). Let ¥ be a finite alphabet and $ & ¥ is a symbol smaller
than any symbol in . Let w € ¥* and r be the number of equal-letter runs
in the bwt(w$). Then, 'y (w$) is a string attractor for w$ and v*(w$) < r.

Example 4. Let us consider the word w = aaabaaaaaba. The lexicographi-
cally sorted cyclic rotations of

1234561789 10 11 12
w$ = aaabaaaaa b a $

are shown in Figure 1(b). By applying Theorem 3 we can construct the
string attractor {5,7,10,11} for w obtained by considering the position in w
(in bold) of the symbols appearing at the beginning of each equal-letters run
and by removing the position 12 from Ty, (wS$).

Remark 5. In general, for a given word w, the string attractor constructed
by using Theorem 3 is not necessarily the smallest one. For instance, it is
easy to see that the string attractor defined in Example 4 for w = aaabaaaaaba
is not the smallest one, because the set {4,9} is a string attractor too. Note
also that if the $-symbol is not appended to the word w, the positions that
correspond to the symbols at the beginning of equal-letter runs in dbwt(w) (or
alternatively the symbols at the end of equal-letter runs in dbwt(w)) is not
in general a string attractor. In fact, the set {4,5} (corresponding to the
positions in w of the first b and the first a in the runs of bwt(w)) is not a
string attractor for w since the factor aaaab has no occurrence crossing any
position in such a set.

When the $-symbol is not used, a result analogous to Theorem 3 can be
obtained if the occurrences of circular factors are considered.
Given a word w of length n and a set I' C [1, n], we say that the occurrence
of a circular factor v of w, specified by the pair (i, j), crosses a position p € I'
if
p € i, j] ifi <j
p€Eli,n]UL,j] ifi>j.
By using the previous definition and adapting the proof of Theorem 3 to
the context of circular factors, we can derive the following:

Theorem 6. Let X be a finite alphabet, w € ¥* and r be the number of equal-
letter runs in the bwt(w). Then, each circular factor of w has a occurrence
that crosses a position in Ty, (w).



PRrOOF. To prove that each circular factor u of w has an occurrence (i, j)
crossing at least a position in 'y, consider the index J = LF"7[I], i.e.
the index of the cyclic rotation such that wlj] corresponds to L[J] in M.
Moreover, let ¢ be the length of w, and let [ly, ro], [l1,71], .., [le—1,7¢-1] be
the sequence of equal-letter runs visited in the column L while applying
the LF-mapping from wlj] to wli], i.e. Ll[l;,r] contains L[LF*[J]] for any
t € [0,¢ — 1]. Consider the value A = min{LF*[J] — I;|t € [0,¢ — 1]}. Recall
that T'pee = {ps|w[ps] corresponds to L[l,] for any s € [0,7 — 1]}. Hence, if
A = LF™[J] —l,, = 0 for some m € [0,¢ — 1], then LF™[J] = l,, and the
occurrence (i, 7) of u has a symbol which crosses a position in T'yy. Otherwise,
assume A = LF™[J] — 1, > 0. Tt is easy to see that if two positions py, ps
belong to the same equal-letter run in L then L{ps] = Lipi] + (p2 — p1).
Thus, if we pick J' = J — A, at any step we have L[LF*[J']] = L|LF'[J]] for
any t € [0,¢ — 1], which means that there exists another circular occurrence
(i',5'") of u, where J' = LE"7'[I]. Since w[LF™[J'] corresponds to Ll[l,),
the circular occurrence (i, j') contains a position from ['pys. O

Example 7. Let us consider the word w = aaabaaaaaba. The lexicographi-
cally sorted cyclic rotations of
123456789 10 11
w =a a a b aaa
are shown in Figure 1(a). By applying Theorem 6 we can construct the set
{4,5} for w obtained by considering the position in w of the symbols (in bold)
appearing at the beginning of each equal-letters run. As shown in Remark 5,

the factor w[6,10] = aaaab has not any occurrence crossing the set {4,5},
but its circular occurrence (11,4) crosses position 4.

The following result, proved in [16], states the relationship between a
string attractor of a word w and the number of phrases in the LZ-parsing of
w. In particular, a string attractor can be constructed by considering the set
of positions at the end of each phrase.

Theorem 8 ([16]). Given a word w, there ezists a string attractor of w of
size equal to the number of phrases of its LZ-parsing.



4. Combinatorial properties of string attractors

In this section we explore some combinatorial properties of the string
attractors and in particular how the sizes of smallest string attractors are
affected by the application of different operations on strings.

The following two propositions, proved in [32], are useful in order to derive
a lower bound on the value of v*.

Proposition 9 ([32]). Let T be a string attractor for the word w. Then,
fuw(k) < ||k, for every 1 < k < |w|.

Proposition 10 ([32]). Let w € X* and let ¢ be the length of its longest

repeated factor. Then it holds v*(w) > 5.

The next proposition states the relation between the string attractor of
a word and a string attractor of its reverse.

Proposition 11. Let w be a word and let W denote its reverse. Then,
7 (w) =7 (W).

PrROOF. Let I' = {p1,p2,....0y | 1 < p; < |w|,1 < i < v} be a string
attractor for w and consider the corresponding positions ={n—p,+
IL,n—p,1+1,...,n—p+1} in . Let v be any factor of . Then its
reverse w is a factor of w. Since I is a string attractor for w, then there
exists a position p; € I' that intercepts an occurrence of . Therefore an
occurrence of v is intercepted by n —p; +1 € I, i.e. ? is a string attractor
for . In particular if ' is a smallest string attractor for w, then is a

smallest string attractor for W, since otherwise we could find a smaller string
attractor for w, in contradiction with the hypothesis of minimality. 0

When a word w is obtained as a concatenation of two factors u and v,
an upper bound for v*(w) can be expressed in terms of v*(u) and v*(v), as
stated in the following theorem.

Proposition 12. Let u and v two words, then v*(uv) < ~v*(u) +~v*(v) + 1.

PROOF. Let I'"(u) and I'*(v) be smallest string attractors for u and v, re-
spectively. Then I'*(u) U {p + |u| | p € I'*(v)} covers all the factors of u and
v but might not cover some of new factors that appear across the concate-
nation point of © and v. In this case it is sufficient to add the last position
of the prefix u (or the first position of the suffix v) to have a string attractor
for uv. 0J



Example 13. The bound defined in the previous proposition is tight. In
fact, let u = baaaba and v = cdcced be two words in which the positions of
the respective smallest string attractors are underlined. If we consider the
concatenation uv = baaabacdccced, the set underlined positions represent one
of the smallest string attractors for uv, as one can verify, having cardinality

5.

Although ~* is sensitive to the concatenation operation, the following
proposition shows that it is not a monotone measure, in the sense that there
exist words w = wwv such that v*(u) > 7*(w). This answers to a problem
posed in [20].

Proposition 14. The measure v* is not monotone.

PrROOF. We show the statement by showing an example where monotonicity
does not hold. For each n > 0, let us consider w = abbba™ab. In this case
v*(w) = 3 since by exhaustive search {2, 4, n+5} is a smallest string attractor
for w. On the other hand it is easy to verify that {4, n+5} is a string attractor
for wb = abbba"abb, then ~*(wb) = 2. O

The following proposition gives an upper bound for v*, when a power of
a given word is considered.

Proposition 15. Let w a word over the alphabet . Then ~v*(w™) < v*(w)+
1. Moreover, v*(w™) = v*(w?) for any n > 2.

PROOF. Let I'*(w) denote a smallest string attractor for w. The positions of
['*(w) cover all the factors that are contained in each occurrence of w in w",
then no further position is needed to cover these factors. The only factors of
w™ that might not be covered by I'*(w) are the ones across the end of the first
occurrence of w and the beginning of the following occurrence. Therefore it
is sufficient to add the last position of the first (or any) occurrence of w in
order to cover all these factors.

To prove that v*(w") = v*(w?) for any n > 2, we show that for any
smallest string attractor for I'*(w") we can deduce a string attractor of at
most the same size for w? and the other way around. Given a smallest
string attractor I'™*(w™) with n > 2, we can create the set A = {1+ (p — 1)
mod ¢ | p € T (w™)}, where £ = |w| (note that |A| < *(w")). Consider the
set I' = A\ {p1} U{p1 +/}, where py = min A, i.e. I' contains the positions of

10



A with only its leftmost position moved to the second occurrence of w. We
now show that I' is a string attractor for w?. All the factors u that do not
have occurrences overlapping two consecutive w’s are covered in w” by some
position p’ € T*(w™), i.e. p' € [i,j] where w"[i, j] = u. Since ¢ is a period of
w", it is easy to see that w[l+ (¢ —1) mod ¢,1+4(j—1) mod )] = u, hence
either u crosses 1+ (p'—1) mod ¢ in the first occurrence of w or, if 14 (p'—1)
mod ¢ = py, u crosses (p; + ¢). For all the factors u = wli, ] - w[1, j] that
overlap two consecutive w’s, if i < p, or j > p; (where p, = maxA), then
u crosses p, or (py + {) respectively, so let us assume i > p, and j < p;.
By construction of I" we can deduce that u occurs also in w™[¢’, j'] with (¢’
mod ¢) # (i mod £) and (j* mod ¢) # (j mod ¢) which crosses a position
in I['"*(w™). Given the periodicity of w™, it is easy to see that either u occurs
in w or u occurs again overlapping two consecutive w’s. In both cases u
crosses one of the positions in T'.

Let now I'*(w?) be a smallest string attractor and consider the set IV =
*(w?) if all of its positions lie within the second occurrence of w, otherwise
I"={p+ /(]| pe ' (w?} Since w" has period ¢, it is easy to see that
the positions in I point to the same symbols of I'*(w?), possibly moved in
the following occurrence of w. Therefore, all the factors of w™ that are also
factors of w? are already covered. The remaining factors are of the type
u = wli,l] - w* - wll,j], with k € [1,n —2], 1 < 4,7 < £ In this case, there
is also an occurrence of u starting at the first or at the second w. Therefore,
since all the positions of I'" lie within the second or possibly within the third
occurrence of w, u has to cross a position in I”. O

Example 16. The bound given by Proposition 15 is tight. In fact consider
the word u = abbaab. It is easy to check that the only smallest string attrac-
tors for u are I'y = {2,4} and I'ys = {3,5}.

In order to find a smallest string attractor for u?> = abbaababbaab, we
remark that neither T'y nor I'y (neither any string attractor obtained from
them by moving some position from the first to the second occurrence of
u) cover all the new factors that appear after the concatenation. A way to
get a smallest string attractor for u? is to add to I'y or T'y, the position
corresponding either to the end of the first occurrence of u or the beginning
of the second occurrence. For instance, I' = {2,4,6} is a smallest string
attractor for u?.

Example 17. We show that v*(u"™) can be equal to v*(u) although differ-
ent points for the string attractor may have to be chosen. For instance, let

11



u = ababcbe be a word whose smallest string attractor is {2,3,5} (the under-
lined letters). Then u* = ababcbcababcbe has a string attractor {3,6,7} of
cardinality 3. Remark that {2,3,5} is not a string attractor for u?.

The following proposition rectifies what stated in [27], i.e. shows that
v (u) — v*(u™) could become arbitrarily large.

Proposition 18. For each t > 0, there exists an alphabet ¥; and a word
wy € XF, such that v*(wy) — v*(w}) > t, for each n > 2.

PROOF. Let us consider m = t+3. We can define the string w; = v1v2v30405
over the alphabet 3; = {a,b,¢,d} U {$1,$2,..., 82,1} such that

-2 gm—1
vy ="M TS,
vy = amflgbmflbcmflgdmflc_t
vy = H;n:—21$kam—kbm—lgck—17

vy = sz:—ll $m_1+kbm—kgcm—2dk7

vs = $9,, 10" D" e

Y

where II denotes the concatenation of a set of words. The positions in a
smallest string attractor for w; are underlined. We note that the factors
a™ymle, am I, with 2 < j <m — 1, and b e il with 1 < 5 <
m — 1, appear once in vs, v3 and vy, respectively. So, v*(w;) = 4m + 1. If
we consider w?, all the above mentioned factors occur in vsv; and they are
crossed by the rightmost position of vs. Moreover, every other factor that
appears in vz, vy or vs which does not contain any $; symbol, has another
occurrence that is crossed either by the rightmost position in v5 or by one of
the underlined positions in vs. Therefore, in order to obtain a smallest string
attractor for w? we can remove the rightmost positions from each block of v
and vy. Then, v*(w?) = 4m + 1 — (2m — 3) = 2m + 4. This means that, by
Proposition 15, y*(w;) — v*(wl) = v*(w;) — v (w?) =4m+1— (2m +4) =
2m -3 =2t+3 > t. OJ

A consequence of previous proposition is that the difference between the
string attractors of two conjugates can be arbitrarily large.

Corollary 19. For each t > 0, there exists an alphabet ¥; and a word w; =
uv € Xf, such that v*(uv) — y*(vu) > t.

PRroOOF. The thesis follows by considering the word w; = vivouzv4v5 defined
in the proof of Proposition 18 and its conjugate w; = v9v304050;. O

12



5. String Attractors in Standard Sturmian words

In this section we explore a relationship between some combinatorial
properties of strings and the structure of the correspondent smallest string
attractor. In particular, we consider standard Sturmian words [23]. They
represent a very well known family of binary words that are the basic bricks
used for the construction of infinite Sturmian words, in the sense that every
characteristic Sturmian word is the limit of an infinite sequence of standard
Sturmian words (cf. Chapter 2 of [23]). These words have several char-
acterizations and appear as extreme case in a very great range of contexts
(19, 25, 26, 36, 11, 9, 1, 10, 12]. More formally, standard Sturmian words
can be defined in the following way which is a natural generalization of the
definition of the Fibonacci word.

Let qo,q1,- - qn, ... be any sequence of natural integers such that ¢y > 0
and g >0(i=1,...,n,...), called directive sequence. The sequence {s, },>0
can be defined inductively as follows: sy = b, s1 = a, ;41 = (8;)%1s;_1, for
1 > 1. We denote by Stand the set of all words s,, n > 0, constructed for
any directive sequence of integers. Such words are called standard Sturmian
words.

A characterization of standard Sturmian words is related to the Burrows
Wheeler transform (BWT) since, for binary alphabets, the application of
the BWT to standard Sturmian words produces a total clustering of all the
instances of any character (cf. [30]), as reported in the following theorem.

Theorem 20 ([30]). Let w € {a,b}*. Then w is a conjugate of a word in
Stand if and only if bwt(w) = bPa? with ged(p,q) = 1.

Remark 21. Note that, as already shown in Figure 1, if we append a $-
symbol to a conjugate v of a word in Stand, the number of equal-letter runs
of bwt(v$) can be greater than 3. Moreover, it may not be the same for
different conjugates. For instance, consider the standard Sturmian word
s = ababaababaabababa and its conjugates t = ababaababaababaab (that
also belongs to Stand) and v = baabababaababaaba. One can verify that
bwt(s$) = abbbbbbbSaaaaaaaaa has 4 runs, dbwt(t$) = bbbbabbbaa$aaaaaaa
has 6 equal-letter runs and bwt(v$) = abbbbabbabaaaa$aaa has 9 equal-letter
runs. By using Theorem 3, we can deduce that, for each of the above men-
tioned strings, it is possible to construct string attractors Iy, with different

SZ.ZG, Z@ |Fbwt(8$)| = 4, |Fbwt(t$)| == 6, |Fbwt(/U$)| = 9
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5.1. Minimum size string attractors

In this subsection, we study the problem of finding a smallest string
attractor for the infinite family of standard Sturmian words. In particular,
the following Theorem 22 shows that, for each standard Sturmian word, it is
possible to find a string attractor having cardinality 2, whose positions are
strictly related with particular decompositions of such words depending on
their periodicity. In particular, we recall that Stand = {a,b} U PER{ab,ba}
(cf. [25]), where PER is the set of all words v having two periods p and
q such that ged(p,q) = 1 and |v| = p+ ¢ — 2. Given a word w € Stand,
we denote by m(w) its prefix of length |w| — 2, belonging to the set PER,
uniquely defined by using previous equality. By using a property of words
in PER (cf. [25]), 7(w) = QayP = PyxzQ, where x # y are characters and
() and P are uniquely determined palindromes. So, a standard Sturmian
word w = m(w)ba can be decomposed as w = QryPba = PyxQba. We call
P FE R-decompositions such factorizations of w.

Theorem 22. For each w € Stand with |w| > 2, let n be the length of the
longest palindromic proper prefiz of m(w), the set 'y = {n+ 1,7+ 2} or the
set I'y = {Jw| —n — 3,|w| —n — 2} is a smallest string attractor for w.

PROOF. Let us suppose that w = 7(w)ba. By using PFE R-decompositions,
a Standard sturmian word can be decomposed as w = QryPba = PyxQba,
m(w) = QryP = Pyx(Q, where x # y are characters and ) and P are
uniquely determined palindromes. Let us suppose that |Q| > |P|. So, n =
|Q|. Firstly we suppose the case x = b. This means that w = QbaPba =
PabQba. From a result in [2] aPabQb and bQbaPa are the smallest and the
greatest conjugates in the lexicographic order, respectively. Let us consider
the set I'y = {|w| —n — 3, |w| —n — 2} of the positions in w corresponding to
the two characters following the prefix P of length |w| —n — 4. This means
that such positions are exactly the positions corresponding to the end of each
run in the output of bwt(w). By Theorem 20 and by Theorem 6, each factor
u in w has a circular occurrence in w crossing the position of I's. Such an
occurrence could not be entirely contained in w. In order to prove that I'y
is a string attractor of w, we have to show that w also admits an occurrence
of the factor u crossing the positions of I's. If |u| < |P|+ 1, then its circular
occurrence crossing a position in I'; is entirely contained in w. Let us suppose
|u| > |P|+2. If u is entirely contained in 7(w) and | P|+2 is a period of 7(w),
then there exists an occurrence of u crossing the position |P|+ 1 or |P| + 2.
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Let us suppose u is not entirely contained in 7(w). If u doesn’t cross the
positions |P| 41 or |P|+ 2 then u = zba or u = xb, where x is suffix of Q. It
means that there exists an occurrence of u entirely contained in 7(w), so the
thesis follows. Now, we suppose z = a. Then, w = QabPba = PbaQba. In
this case aQabPb and bPbaQ)a are the smallest and the greatest conjugates
in the lexicographic order, respectively. In this case the ending positions of
each run in bwt(w) correspond to the two characters following the prefix Q.
So, we consider I'y = {n+ 1,7+ 2} and we prove that it is a string attractor
for w. Let us consider a factor u of w. If |u| < |P|+ 3 then each circular
occurrence of u crossing a position of I'y is entirely contained in w. Let us
consider |u| > |P|+ 4. If u is not entirely contained in 7(w) then it crosses
at least a position in I';. If u is entirely contained in 7(w), then, since |P|+2
is a period of m(w) and 7(w) is palindrome, there exists an occurrence of u
crossing a position in I';.

The case w = 7(w)ab can be proved analogously by considering the start-
ing characters of each run in the clustered output of bwt(w). U

Example 23. Given w = ababaababaabababa € Stand, the PER-decompo-
sitions of w are ababaababa.ab.aba.ba = aba.ba.ababaababa.ba, then {11,12}
is a (smallest) string attractor for w, since n = 10.

Given v = abaababaababa, its PE R-decompositions are abaaba.ba.aba.ba =
aba.ab.abaaba.ba and n = 6. So, {4,5} is a smallest string attractor for v.

Given s = aaaaaa.ba.aaaaa.ab, we can deduce that {7,8} is a string
attractor for s. Let us consider the word t = aa.ba.aaaaa.ab.aaaa, that is
a conjugate of s. One can check that, even if we can find a smallest string
attractor T'*(t) = {3,10} of size 2, there is not any string attractor for t
containing two consecutive positions.

The previous theorem shows an infinite family of finite binary words such
that the size of the smallest string attractor is minimum. We remark that, in
general, this is not the only family of binary words having a smallest string
attractor with size 2, as shown in the following example.

Example 24. A possible set of smallest string attractor for the words u =
a"b™ orw = b"a™ is {n,n+1}. Moreover, words of the form u = (ab)™ (ba)™
or v = (ba)" (ab)™ have a smallest string attractor of the form {2nq,2n; +
2”2}.

An open question is to characterize all the binary words with a string
attractor of size 2. The question of characterizing all the words with string
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attractors having size equal to the cardinality of the alphabet is also open for
alphabets with more than two letters. Some examples of infinite families of
words over an alphabet with cardinality greater than 2, with minimum size
string attractors can be found in [27].

The large number of combinatorial properties of standard Sturmian words
and their peculiarity of appearing as extremal cases for several string algo-
rithms, makes it interesting to explore how some functions that measure
the repetitiveness of strings and their compressibility behave if applied to
standard Sturmian words. As shown in previous example, note that neither
the size of the smallest string attractor nor its structure (two consecutive
positions) are able, by themselves, to characterize the family of standard
Sturmian words. The problem of characterizing standard Sturmian words by
using string attractors is studied in next subsection.

5.2. Characterizing Standard Sturmian words via circular string attractors

In previous subsection we proved that for standard Sturmian words one
can always find smallest string attractors whose positions are consecutive.
Such a particular structure of the string attractor leads to investigate whether
it can characterize some combinatorial properties of binary words. In this
subsection we prove that the structure of the string attractor of a binary
word is closely related to the (circular) factor complexity of the word it-
self. Furthermore, Example 23 shows that there exist conjugates of standard
Sturmian words such that none of their smallest string attractors has two
consecutive positions. In this subsection we provide a new characterization
of the conjugacy classes of the standard Sturmian words by using a circular
variant of string attractor. In particular, we introduce the new notion of
circular string attractor which we use in this subsection as an investigative
tool for the conjugacy classes of standard Sturmian words, but it could have
an independent interest.

Definition 25. Let w € ¥* and n = |w|. A set of 5. positions I'. =
{71,J2- - Jv.} € [1,n] is a circular string attractor of a word w if each cir-
cular factor of w has at least a circular occurrence that crosses a position
of I'.. Moreover, we denote with 7 the size of the smallest circular string
attractor.

Before stating the main result of this subsection (Theorem 34), we show
some combinatorial properties of circular string attractors. Despite the sim-
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ilar definition, the concept of string attractor and circular string attractor
can be considered as independent.

Example 26. Let w = abbbcaaacaaa be a word over the alphabet Y =
{a,b,c}. The set T' = {2,5,8} is a string attractor for w, since it covers
any of its factors, but it is not a circular string attractor since the circular
factor (in blue) caaaa escapes from it.

On the other hand, the set I'. = {1,4,9} is a circular string attractor
for w = abbbcaaacaaa but it is not a string attractor. In fact, the factor
aaa (in blue), fully contained in w, is covered only if we consider its circular
occurrence.

Although ~+* could arbitrarily increase when a conjugate of a word is
considered (see Corollary 19), the behaviour of 4 is different, as it can be
seen in the following statement easily inferred from the definition.

Proposition 27. Let w,w’ be two words of the same conjugacy class. Then,
Ve(w) =72 (w').

In the following proposition we derive an upper bound on v} by consid-
ering the minimum size of the smallest string attractor of the words in the
conjugacy class.

Proposition 28. Let w a word in X*. Then, vi(w) < v*(v) + 1 for each v
conjugate of w.

PROOF. Let I'*(v) be a string attractor having minimum size for v. If I'*(v)
is also a circular string attractor then we are done. Otherwise, there must
be some strictly circular factor that overlaps two consecutive occurrences of
w which is not fully contained in w and that is not covered by any position
j € T'*(v). Note that these factors must cross the end and the beginning of
two occurrences of w. Hence, the set I'*(v) U {1} and I'*(v) U {n} are both
circular string attractors of w. ([l

The following corollary shows that the size of a smallest circular string
attractor of a word can be arbitrarily lower than the size of a smallest string
attractor of the word itself.

Corollary 29. For eacht > 0, there exists an alphabet ¥y and a word w; €
Y5, such that v*(wy) — v (wy) > t.
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Proor. Consider the word w; = wvivouzvsvs defined in the proof of the
Proposition 18 and its conjugate w; = v9vzvavsv;. By using the same ar-
guments as in Proposition 18 and by Proposition 28, it follows that v*(w;) —
Yi(we) >y (wy) —y(w)) —1=(2t+3)—1=2t+2 > . O

It is easy to verify that the notion of circular string attractor of a word
w is strictly related to the notion of string attractor of w3, as proved in the
following

Lemma 30. Let w € ¥" and I'c = {j1,J2,..-jr.} C [1,n] a set of positions
inw. Then, I'. is a circular string attractor of w if and only if I = {ji. +n |
Ik € FC} is a string attractor of w3,

PROOF. ( = ) Note that the positions in I correspond to the positions
of I'. in the central occurrence of w. Moreover, it is easy to check that any
k-length factor u of w? is a circular factor of w, with & = 1,2...,n. In
fact, if u lies entirely in an occurrence of w, then it is a circular factor of
w as well. Otherwise, u overlaps two consecutive occurrences of w, which
is still a circular factor of w. Moreover, as we have picked the positions in
I, every factor u has an occurrence crossing a position j; € I, either this
occurrence is fully contained in w or lies across two consecutive w’s. For any
factor v such that |v| > n, if v = w[i,n] - w- w1, 7], with 1 <4, j < n, then
v has an occurrence which crosses all the positions in I, since it contains
the central occurrence of w in w?®. Otherwise, v = w[i,n] - w[l, ], with
lw[i,n]| + |w[l, ]| > n. Since v appears twice in w?® and w?® has period n,
one of the two occurrences of v has to cross a position j; € IV in the central
occurrence of w.

(<= Since I" is a string attractor for w® and, as mentioned above, any

k-length factor v in w? is a circular factor of w with k = 1,2,...,n, using the
previous reasoning we can easily verify that I', is a circular string attractor
for w. ([l

Example 31. Let w = aabaacaabe be a word on the alphabet ¥ = {a,b,c}.
A circular string attractor of the word w is I'. = {3,5,10}. In fact, every
factor fully contained in w has an occurrence crossing a position j € I =
{13,15,20}, except for u = caab and its prefives ca and caa. However, u also
occurs between two consecutive occurrences of w:

w? = aabaacaabe - aabaacaabe - aabaacaabe.
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As we can see, u and its prefizes cross the position 20 € T". For what concerns
any other factor that lies in w - w but does not appear in w, note that the
position 20 covers them all too.

Remark 32. Due to the distribution of the circular factors in w, w? may

not be sufficient to our purpose. For instance, consider the word w =
aababaa that admits the set T% = {3,6} as smallest circular string attrac-
tor (the underlined positions). Note that, if one would consider the word
w? = aababaa.aababaa, neither Ay = {3,6} (underlined positions) nor Ay =
{10,13} (overlined positions) are string attractors for w?, since the factors
aaab and baaa escape from Ay and Ao respectively. On the other hand, pick-
ing the positions of T in the central occurrence of w in w* covers them both

w? = aababaa.aababaa.aababaa.

Clearly, the same argument holds for any w"™ with n > 3 and picking the
positions of 't within any internal occurrence of w (i.e. every occurrence of
w except the first and the last).

In the following lemma we consider a binary word w = ajas...a, that
admits a smallest circular string attractor I'! = {i,j}, with ¢ < j. Let
d =min{j —i,n— j+i} be the distance between the positions i and j. Note
that d < 5. If d = 1 the two positions ¢ and j are called consecutive. Set
d=n—d=max{j —i,n—j+i}. Onehas 1 <d < § <d <n—1. The
next lemma provides an upper bound for the circular factor complexity of
the word w. Since f,, (k) < ¢,(k), for each k > 1, an analogous bound for f,,
also holds.

Lemma 33. Let w = ajay...a, be a binary word that admits a smallest
circular string attractor I's = {i, j} consisting of two positions at distance d.
Then, for 1 <k <n —1, we have:

2%k,  ifk<d
colk) < k+d, ifd<k<d
n ifk>d

PROOF. Let us distinguish the three cases:
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e (k < d) Since a position is crossed by at most k distinct circular factors
of length £ and that any of these does not cross both ¢ and j, we have
that the number of distinct k-length circular factors in w is bounded
by |T%|k = 2k.

e (d < k < d) In this case, there are some factors of size k that cross
both the positions ¢ and j. Let us suppose that d = j — <. Then, we
can count these factors by sliding a k-length circular window from the
factor ending in j to the one starting in . Since ¢ and j are at distance
d, these factors are k — d. Thus, the bound on the number of distinct
factors for d < k < d' is given by 2k — (k — d) = k + d. The case
d = n— 7+ 1 can be treated analogously by sliding the circular window
from the circular factor ending in ¢ to the one starting in j, obtaining
the same bound.

e (k > d') Like the previous case, we have to further remove the other
circular factors that are longer than the maximum distance d’ and cross
both positions ¢ and j (this time from the other side). Hence, these
factors are 2k — (k —d) — (k—d') =d+d =n. O

By refining a result stated in [27], we show that the notion of circular
string attractors can be used to state the main result of this subsection
providing a new characterization of the conjugacy classes of the standard
Sturmian words.

Theorem 34. Let w be a primitive word. The word w is a conjugate of a
standard Sturmian word if and only if w admits a smallest circular string
attractor consisting of two consecutive positions.

In the proof of the Theorem 34 we use the following result, proved in
[5], that states that the conjugates of standard Sturmian words are uniquely
characterized by the circular factor complexity.

Theorem 35 ([5]). Let w be a word of length n > 2. The following state-
ments are equivalent:

1. w s conjugate of a standard Sturmian word;

2. fork=0,1,....,n—1, c,(k) =k +1;
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3. cpy(n—2)=n—1 and w is primitive.

PROOF (OF THEOREM 34). ( = ) By combining the Theorem 20 and The-
orem 6, we can find a circular string attractor by taking the position of the
first or the last occurrence from each run of equal-letter in the bwt(w). In
particular, the two minimum circular string attractors obtained correspond
to the string attractors built for standard Sturmian words in Theorem 22,
which contain two consecutive positions.
( <= ) From Theorem [5, Lemma 4.1], we know that a word w is primitive
if and only if ¢, (k) > k+ 1, for k = 1,...,n — 1. Moreover, in Lemma 33
we have proved that a circular string attractor with two elements defines an
upper-bound on the number of distinct circular factors of length & in w. Since
the positions in the minimum circular string attractor are consecutive, d = 1
and d =n —1. For k =1 (i.e. the case k < d) we have ¢,(1) = 2 distinct
factors, which are the letters of the alphabet {a,b}. For k =2,... , n—1 (i.e.
the case d < k < d') we have ¢,(k) = k +d = k + 1 distinct factors. Note
that it does not exist a value of k = 1,2,...,n — 1 greater than d’, meaning
that we can ignore the third case. Since lower and upper-bound overlap, we
can stand that for any & € {1,...,n — 1} we have ¢,(k) = k + 1. Finally,
using Theorem 35, we have that w is conjugate to a standard Sturmian word.
OJ

Remark 36. [t is known that each conjugacy class of standard Sturmian
words exactly contains two standard Sturmian words Xab and Xba, where
X € PER. This means that each word in the conjugacy class has two circular
string attractors consisting of 2 consecutive positions, as depicted in Figure

2.

6. String Attractors in other infinite families of words

String attractors have been introduced, in the field of Data Compression,
as a measure of the compressibility of repetitive strings. The notion of repet-
itiveness can be described in various ways in Combinatorics on Words and it
is however related to how frequently the factors of a word appear. In this sec-
tion we describe the problem of finding string attractors for other well known
infinite families of words, such as Thue-Morse words and de Bruijn words,
and we compare the size of a smallest string attractor with the combinato-
rial measure ¢ that has been studied in [20] to overcome the problem of the
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Figure 2: Circular  representation of the standard Sturmian  words
aba.ba.ababaababaababa.ab and ababaababaababa.ab.aba.ba.  Both couples of boxed
consecutive positions represent a circular string attractor for each word in the
correspondent conjugacy class.

NP-hardness of the computation of v*. It is related to the factor complexity
and defined as follows: given a word w € »*,

5(w) = max{ £, (k)/k, 1 < k < Jul}.

It is known that J can be computed in linear time and that §(w) < v*(w)
(this is a consequence of Proposition 9), but it seems that v* and ¢ are able
to highlight different combinatorial properties of the words.

We remark that there are infinite families of words for which the values
of both § and +* are constant. For instance, if w is a standard Sturmian
word we can easily deduce that §(w) = 2, by using combinatorial properties
of such a word.

However, if we consider the word w (of length n = 2™) over the alphabet
{a,b} having b’s in positions 2 for 0 < i < m and a’s elsewhere, i.e.

w = bbabaaabaaaaaaab - - - ba® ‘b -ba®" b,

it is possible to verify that the value of § is O(1) whereas the value of v*
is m, that is logarithmic on the length of w (cf. [20]).
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6.1. String Attractors in Thue-Morse Words

In this subsection we give some details on the problem of finding a smallest
string attractor for the family of finite binary Thue-Morse words. Thue-
Morse words are a sequence of words obtained by the iterated application of
a morphism as described below.

Definition 37. Let us consider the alphabet ¥ = {a, b} and the morphism
¢ : X* — ¥* such that ¢(a) = ab and p(b) = ba. Let us denote by ¢,, = ¢"(a)
the n-th iterate of the morphism ¢ that is called the n-th Thue-Morse word.

Note that at each iteration of ¢ the length of the word is doubled, there-
fore the n-th Thue-Morse word has length 2". The n-th Thue-Morse words
for n = 3,4, 5 are shown in Figure 3.

By using a result in [7] on the enumeration of factors in Thue-Morse words
one can deduce that 6(t,) = O(1). In particular, in [21] it has been proved
that 0(t,) = % for n > 3. So, the following lower bound for v* can
be deduced. Note that the value for n = 3 is found by using an exhaustive
search.

Proposition 38. Let t, = ¢"(a) be the n-th Thue-Morse word with n > 3.
Then ~*(t,) > 3.

The problem of computing the smallest string attractor for finite Thue-
Morse words has been addressed in [27] where it was conjectured that the
size of the smallest string attractor is logarithmic with respect to the length
of the word, i.e. v*(t,) = n. In [21] such a conjecture has been disproved.
In fact, it has been shown that v*(¢,) = 4 for n > 4 and an explicit nice
construction of a smallest string attractor for ¢, is given.

Theorem 39 (Theorems 2 and 3 in [21]). For any n > 4, the set
Kn — {271—2’ 3. 2n—3’ 271—1’ 3. 2n—2}
is a smallest string attractor of t,, then v*(t,) = 4.

String attractors for t,, with n = 3,4, 5, are shown in Fig. 3.
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123 456 7 8
t;sz‘alblblalblala‘b‘

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16
td:‘a‘b‘blalblalalblb‘a‘albla‘b‘b‘a‘
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tsi‘a‘b‘b‘a‘b‘a‘alblb‘a‘albla‘b‘hlalb‘a‘a‘b‘a‘b‘blala‘b‘b‘a‘b‘a‘a‘b‘

Figure 3: String attractor K, for the word ¢, = ¢™(a), with n = 3,4,5 (the positions in
K, are in bold), i.e. K3 =1{2,3,4,6}, K, = {4,6,8,12}, K5 = {8,12,16,24}. Note that
K3 is not a smallest string attractor for ¢3 since the set {3,5,6} is a string attractor too.

6.2. Attractors in de Bruijn words

A de Bruijn sequence (or word) B of order k on an alphabet X of size
0, is a circular sequence in which every possible length-k string on ¥ occurs
exactly once as a substring.

De Bruijn words are widely studied in Combinatorics on Words, and all of
them can be constructed by considering all the Eulerian walks on de Bruijn
graphs. All the de Bruijn sequences of order k over an alphabet of size o
have length o*. For instance the (circular) word w = aaaababbbbabaabb is a
de Bruijn word of order 4 over the alphabet {a,b}. In fact one can verify
that all strings of length 4 over {a, b} appear as factor of w just once.

Since we are here interested to linear and not to circular words, it is easy
to verify that in order to have linear words containing all the k-length factors
exactly once, it is sufficient to consider any linearization of the circular de
Bruijn word of order k (that is, we cut the circular word in any position to get
a linear word) and concatenate it with a word equal to its own prefix of length
k — 1. Therefore its length is 0% 4+ k — 1. We call such words linear de Bruijn
sequences (or words). For instance the linear de Bruijn word corresponding to
the circular one in the above example is the word w’ = aaaababbbbabaabbaaa
of length of 28 + k — 1. In [22] the following theorem is proved.

Theorem 40. The number of phrases c¢(n) in a LZ-parsing of a sequence of
length n over an alphabet of size o satisfies:

n

e(n) < (1 —e¢,)log, n

_ g ltlog,(log,(on)

where €, o
o
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When a linear de Bruijn word B of order k is considered, by combining
Theorem 40, Theorem 8, Proposition 9 and the fact that the prefix and the
suffix of B of length £ — 1 are equal, we get the following upper and lower
bounds for a smallest string attractor of B.

Proposition 41. Let B be a linear de Bruijn sequence of order k and length
n+k — 1 over an alphabet of size o (n = o). Then the cardinality v* of a
smallest string attractor for B satisfies:

n . n

<7 <
log, n

(1 —e¢,)log, n

— 2 1+10g0' (IOgo' (O'T'L)) .

where €, e
o

This means that v* for a linear de Bruijn word of length n grows asymp-
totically as @, corresponding to the worst case for the size of a smallest
string attractor of any word over the constant alphabet . Notice that the
lower bound is somehow intuitively expected, since all the words of length &
appear only once in B, therefore two consecutive positions in any string at-
tractor cannot be farther than k. Moreover, one can easily verify that 6(B) =
bZn- For instance a smallest string attractor for w’ = aaaababbbbabaabbaaa

is {4,8,12,16}.

7. Conclusion and Open Problems

In this paper we have studied the notion of string attractor from a combi-
natorial point of view. In particular, we have given an explicit construction
of a smallest string attractor for the well known infinite family of standard
Sturmian words. By using their combinatorial properties, the construction
provides a smallest string attractor whose size is 2, that is the minimum
possible string attractor for two-letters alphabets. It is open the question to
characterize all those words whose smallest string attractor has size equal to
the cardinality of the alphabet.

We have introduced the new notion of circular string attractor that allows
to uniquely characterize the conjugates of standard Sturmian words, in the
sense that a word has a circular string attractor having two consecutive
positions if and only if it is a conjugate a standard Sturmian word. It would
be interesting to investigate whether the size and the structure of a (circular)
string attractor could uniquely characterize other infinite families of words.
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Other variants of the notion of string attractor have been studied [18],
such as k-attractor and k-sharp attractor in which it is required that their
positions must cross the occurrences of all the distinct factors of length at
most k£ or exactly equal to k, respectively. It would be interesting to ex-
plore whether such notions can be used to investigate other combinatorial
properties of words.
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