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Abstract

Reaction systems are a model of interactive computation, where the interaction be-
tween a system � itself built up of a number of reactions � and its environment
is modeled through context sequences provided by the environment. The standard
execution semantics of reaction systems is synchronous, i.e., at each computational
step all the enabled reactions are executed. In this paper, we `de-synchronise' such an
execution model by allowing only a subset of enabled reactions to be executed. We
then study the resulting asynchronous model assuming two fundamental execution
policies. The �rst one allows any subset of reactions to be executed, and the sec-
ond one draws each subset from a pre-de�ned pool. We also introduce and discuss
the notion of persistence of reactions and sets of reactions in the resulting mod-
els of asynchronous reaction systems. In particular, we demonstrate that reaction
persistence can be implemented.

Key words: reaction system, interactive computation, context sequence,
interactive process, synchronous execution, asynchronous execution, traceability,
persistence, interrupt

1 Introduction

The history of computer science o�ers us many useful lessons and instructive
examples of posing some basic questions, such as, what modelling paradigms
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best re�ect the nature of computational processes. Such questions are asked
every time we face with new limitations of the existing models as we advance5

in our ability to build computing systems with better performance, higher
complexity, lower power etc. These limitations are typically caused by the ever-
increasing scope of applications of computing in society and by the progress
achieved in technologies used to construct computing systems. Both these
aspects, changes in applications and underlying technologies, and the response10

of engineers to address them in software and hardware development, set a scene
for innovation in modelling computing systems. An important computational
paradigm, which manifests itself in hardware and software products vividly,
is the notion of interaction. The vision that this notion is basic to computer
science has been expressed by pioneers of interactive computation, cf. Milner's15

work [1].

Why is interaction basic? Because it views computations in terms of basic
structural and behavioural relationships between the actors and data objects
involved in computations. It is these relationships that ultimately determine
the whole `fabric' of computational processes in space and in time. It is evi-20

dent that lessons learnt from nature where we can see exemplars of interacting
agents and data objects, are highly fruitful in formulating models of interac-
tive computations. Reaction systems are particularly prominent here. They
describe computational processes in their basic form, namely, reactions are
agents which interact with each other by exchanging reactants and inhibitors,25

expressed as elements of sets [2].

The original motivation behind reaction systems was to model interactions
between biochemical reactions taking place in the living cell (see, e.g., [3�6]).
The model of reaction systems explicitly formalised two basic mechanisms un-
derpinning such interactions, viz. facilitation and inhibition: the product of30

one reaction may contain reactants of another reaction (hence facilitating it),
and this product may also contain inhibitors of yet another reaction (hence in-
hibiting it). The dynamic behaviour of a reaction system is formalised through
interactive processes, where a transition from the current state to its succes-
sor state is determined by: the transformations implied by the reactions of35

the reaction system, and the contribution of the environment in the form of
a context set. Thus reaction systems are open systems with their behaviour
(interactive processes) being in�uenced by the environment. Since their intro-
duction, research on reaction systems was guided by biological motivations
(see, e.g., [6�10]) as well as the curiosity and need to understand the essence40

underlying computations. As a result, reaction systems have now become an
inspiring model of interactive computation (see, e.g., [11�24]).

Today's de�nition and treatment of reaction systems as collections of inter-
acting actors and data objects is based on a rather restricted view of spatio-
temporal aspects of this interaction. Basically, their interaction and evolution45
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in time is mediated by the central clocking mechanism, which determines
the moments when all reactions must update their state. This method of in-
teraction or rather policy of execution, is called here as `(fully or globally)
synchronous'. There are certain reasons behind this method, i.e., mostly to
keep the basic model maximally simple.50

Traditional reaction systems have a number of underlining principles that
govern them in their operation. They are: (i) maximum concurrency, (ii) com-
plete renewal of state (no permanency), (iii) both promotion and inhibition,
(iv) 0/1 (binary) resource availability, (v) no contention for resources. Al-
though these principles have many advantages in keeping the model simple55

and elegant, they can be a limiting factor on the way of advancing the basic
reaction system model to capture computations that are more asynchronous.
Being asynchronous is usually being closer to real-life, from both the needs
of applications as well as from the standpoint of implementation technologies.
This paper tackles the idea of de-synchronising reaction systems, for which60

two main motivations are as follows: (i) spatial distribution of computational
resources and e�ects of locality and availability of resources in real-world envi-
ronments; and (ii) impracticality of creating a global mechanism or controller
for clocking reactions all in-step. Similar sort of motivations lie behind the de-
velopments of models of asynchronous systems in very large scale integrated65

circuits [25]. Asynchrony would typically allow enabled actions in such sys-
tems to execute in either order, retain the state of enabled actions while other
actions are executed, involve �ne-grained causality between elementary events
and permit arbitration for shared resources. There have been examples of de-
veloping de-synchronisation mechanisms for VLSI circuits designed initially as70

globally synchronous [26]. While they contain some useful ideas in principle,
the problem that we are facing here, that of de-synchronizing reaction sys-
tems has its own generic features and therefore deserves a special theoretical
consideration.

First and foremost, we see de-synchronisation as a measure to enhance the75

capability of the reaction system model to be a foundational model for inter-
active computing. Hence, the notion of interaction is crucial here. To perform
de-synchronisation we need to address this problem looking at three main
aspects: behaviour, structure and correctness.

In terms of behaviour, a clear notion of the execution of a reaction is required,80

i.e., in order to interact with other reactions a reaction has to be equipped with
the means of letting other reactions know about its occurrence or progress. In
terms of structure, a clear notion of locality and its levels of application, i.e.,
granularity issue, has to be de�ned. In terms of correctness, it is important to
de�ne a form of traceability of a reaction or a group thereof and its or their85

safe (undisturbed) execution.
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This paper addresses these three issues systematically, in a step-wise manner,
by following an important guiding principle:

... do as much as possible using the entities present in the states rather than
relying on reaction `management' structures ...90

The importance of this principle stems from our intuitive desire to support
the inherently distributed nature of reaction systems, thereby rendering them
maximally self-managed. The truly asynchronous model should therefore un-
derpin interaction not only between the reaction system and its environment
but also transcend into the whole manner of interactions between reactions95

themselves.

What is the key property of a reaction system that should tie together its
distributed nature of interactions in the absence of global synchronisation,
and yet lead it to a coherent self-managed operation? We believe that the key
of such property is persistence of reactions. This belief is based on our prior100

experience in developing models of asynchronous systems [27].

Persistence in system behaviour is of paramount importance in real life. Two
examples: `a non-persistent digital circuit installed on an airplane can lead to a
disaster' and `a given species of animal may not survive a change in changing
environmental conditions'. Here, we aim at capturing in a fundamental (or105

`minimal') way the notion of persistence by considering it in the realm of
reaction systems. Two important issues are necessary for de�ning persistence
in reaction systems.

Firstly, in order to approach the de�nition of persistence we require to advance
our understanding of reaction execution. Indeed, the semantical treatment of110

reaction systems does not support an explicit notion of executing a reaction.
This is something which distinguishes reaction systems from other formal mod-
els such as Petri nets, not to mention process algebras. It is therefore crucial
to re-assess the meaning of persistence as behaviour-related.

Secondly, persistence is not necessarily a global property. For example, the115

environment may be triggering di�erent activities with di�erent periods, and
only then we need to verify that the system (or its part) is persistent. Per-
sistence (and other such properties) is also context-dependent. If arbitrary
contexts are allowed, almost no systems are persistent. Therefore persistence
should be investigated relative to context sequences. For example, in Petri120

nets persistence is action-based (cf. Landweber's work [28]). In logic circuits,
persistence is linked to logic gate switching, thus also involves actions and
their enabledness when the circuit changes its states [27]. What unites those
approaches is a clear notion of traceability of actions in states. In terms of
reaction systems, this basically addresses a question, what reaction was or125

could be assumed to happen when we have observed two consecutive states?
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Finally, it is important when talking about practical aspects of di�erent pe-
riodicity of triggers (of reactions), which may be implemented by context
sequences, to state that it is important even in the synchronous case.

In the synchronous setup (all actions which can execute do so) `all reactions130

are trivially persistent', i.e., `synchrony is like fairness for everyone' (we are not
waiting with execution of any enabled actions/reactions). In the asynchronous
setup this is no longer the case, and sometimes we can only state that it is
possible that a given reaction has been executed.

Closely linked to context-dependency, and gradually restricting the context135

of reaction triggering, we de�ne two levels of de-synchronisation. We follow
here a route of de�ning di�erent strata of globally asynchronous and locally
synchronous (GALS) reaction systems, inspired by our previous work with
Petri net models of GALS in [29]. To this end, we move from the notions of
traceability and persistence of individual reactions to those of sets of reactions.140

This study does by no means address all the challenges and interesting prob-
lems on the way to de�ning asynchronous reaction systems. Since our journey
begins here at the fully synchronous reaction systems, and we prefer a step-
by-step de-synchronisation we will leave the problem of de-synchronisation for
distributed reaction systems [30,31] for further study.145

Furthermore, we realise that the realm of the original de�nition of a reaction
system, motivated by biological reasons [3�6], requires the ful�lment of the
property of non-permanency. Therefore, a challenging modelling issue on the
way of true de-synchronisation, is to �nd a way of interleaving reactions that
can be enabled concurrently within the same reaction system. In this work,150

we methodologically `avoid' resolving this issue purely within the biological
realm of the reaction system itself. The issue is therefore approached in this
paper by the potentially `non-biological' means, i.e., the so-called asynchrony
management techniques, such as incorporation of additional entities into the
original reaction system. Other possible ways are left for the future work.155

The paper is organised in the following way. The next section provides main
de�nitions relating to the basic (synchronous) reaction systems. Section 3
introduces fully de-synchronised reaction systems. In the resulting model, we
introduce and discuss the notion of reaction persistence, and also outline the
mechanisms for action interruption and suspension. Section 4 restricts the full160

asynchrony of reaction systems, by assuming that at each computational step,
the set of actions scheduled for execution comes from a pre-de�ned pool. We
also extend the notion of reaction persistence to sets of reactions. Section 5
concludes the paper.
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2 Reaction Systems165

In this section we recall some basic notions concerning reaction systems [5,24].

Let S be a nonempty �nite background set comprising entities. A subset of S
is sometimes called a state. In the original biochemical interpretation, entities
represent, e.g., atoms, ions, and molecules that may be present in the system
states. A reaction over S is a triple b = (R, I, P ) such that R, I, and P are170

nonempty subsets of S with R ∩ I = ∅. The sets R and P are called the
reactant / inhibitor / product sets of b, and can be denoted by Rb / Ib / Pb,
respectively.

Throughout this paper we assume S is a �xed background set, A is a �xed set
of reactions over S, and A = (S,A) is a �xed reaction system.175

A reaction b ∈ A is enabled at X ⊆ S if Rb ⊆ X and Ib ∩X = ∅, i.e., if all
the reactants are present and all inhibitors are absent. The result of applying
a subset of reactions B ⊆ A to X ⊆ S is resB(X) =

⋃{Pb | b ∈ B ∩ en(X)},
where en(X) is the set of all reactions enabled at X. Note that when b ∈ B is
enabled by X, it contributes its product Pb to the successor state; otherwise180

it does not contribute anything. The dynamic behaviour of reaction systems
is expressed in the following way.

An interactive process in A is a pair π = (γ, δ) of sequences of subsets of
S, γ = C0 . . . Cn and δ = D0 . . . Dn (n ≥ 1), such that, for every 1 ≤ i ≤ n,
Di = resA(Di−1∪Ci−1). Then γ is the context sequence, δ is the result sequence,185

and the sequenceW0 . . .Wn (whereWi = Ci∪Di, for all i) is the state sequence
of π. Note that π is fully determined by γ and D0.

To formalise the notion of simulation between processes of reaction systems,
for a pair of sequences of subsets of the background set, π = (C0 . . . Cn, D0 . . . Dn),
and a subset X of S, we denote by π∩X the pair of sequences (C0∩X . . . Cn∩190

X,D0 ∩X . . .Dn ∩X). Intuitively, π ∩X is the projection of π onto X.

The transition system of A is trA = (2S, {(X,C, resA(X) ∪ C) | X,C ⊆ S}),
where the second component is the set of arcs labelled by contexts thrown in by
the environment. Note that trA has no initial state, and that it is deterministic,
i.e., , for each state X and each context C there is exactly one arc labelled by195

C outgoing from X.
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3 Full de-synchronisation

Basic de-synchronisation removes the assumption that all the enabled reac-
tions are executed at each computation stage of an interactive process. The
change to the original de�nition is syntactically slight but semantically far200

reaching.

De�nition 3.1 An asynchronous interactive process in A is a pair π = (γ, δ)
of sequences of subsets of S, γ = C0 . . . Cn and δ = D0 . . . Dn (n ≥ 1), such
that, for every 1 ≤ i ≤ n, Di = resAi

(Di−1∪Ci−1) for some nonempty Ai ⊆ A.
We denote this by π ∈ asynproc(γ,D0).205

Thus asynproc(γ,D0) comprises all asynchronous interactive processes derived
from D0 and the context sequence γ.

De�nition 3.1 allows any nonempty subset of reactions to be `active' at any
point during the execution. Also, intuitively, in `interesting' cases one might
be using some kind of execution policy, with an appropriate notion of control210

enabledness. The assumption that Ai is nonempty intuitively means that one
cannot suppress a system totally. Also this is consistent with the notion of
policy in Petri nets [32].

Each interactive process in A is also an asynchronous interactive process. The
converse does not hold in general as the following example shows.215

Example 3.2 Let A = ({x,y}, {b, c}) be a reaction system, where:

b = ({x}, {y}, {x}) and c = ({x}, {y}, {y}) .

Then π = (∅∅∅, {x}{x}{x,y}) is an asynchronous interactive process in A
(with A1 = {b} and A2 = {b, c}). However, π is not an interactive process
in any reaction system A′ = (S,A′). The reason is that this would mean that
resA′({x}) = {x} and, at the same time, resA′({x}) = {x,y}. having said
that, we show below that it is possible to see π as part of an interactive process220

in which two additional entities are used.

Although π in Example 3.2 is not an interactive process, it can be simulated by
a projection of an interactive process. To simulate the above π as an interactive
process, we can use the process π′ = ({trgb}{trgb,trgc}∅, {x}{x}{x,y})
of A′ = ({x,y,trgb,trgc}, {b′, c′}), where b′ = ({x,trgb}, {y}, {x}) and225

c′ = ({x,trgc}, {y}, {y}). Using trigger entities in a context sequence we
can select which enabled reactions are allowed to be executed. The simulation
follows from the fact that π = π′ ∩ {x,y}.

In general, all asynchronous interactive processes can be simulated by the
standard interactive processes. Basically, for each reaction b we introduce a230

7



unique `trigger' entity trgb and add it to the entity set Rb. Then, referring
to De�nition 3.1, for each 0 < i ≤ n, we add to Ci−1 the set {trgb | b ∈ Ai}.
The adjusted system is executed according to the standard (synchronous)
semantics `hiding' the trigger entities.

The described simulation is not exact, as it requires the introduction of ad-235

ditional entities. However, after projecting away the added entities, the simu-
lating process becomes identical to the process being simulated, as shown in
the following proposition.

Proposition 3.3 Let π = (C0 . . . Cn, D0 . . . Dn) be an asynchronous inter-
active process in A = (S,A). Moreover, let Ai ⊆ A be such that Di =
resAi

(Di−1 ∪ Ci−1), for every 1 ≤ i ≤ n. Then π′ = (C ′0 . . . C
′
n, D0 . . . Dn)

is an interactive process in the reaction system A′ = (S ′, A′), assuming that:

S ′ = S ] {trgb | b ∈ A}

A′ = {b′ = (Rb ∪ {trgb}, Ib, Pb) | b ∈ A}

C ′i = Ci ∪ {trgb | b ∈ Ai+1} for 0 ≤ i < n

C ′n = Cn .

Moreover, π = π′ ∩ S.

Proof Below, Wi = Ci ∪Di and W
′
i = C ′i ∪Di, for every 0 ≤ i ≤ n. We also240

observe that, for every b′ ∈ A′, we have Rb, Ib, Pb ⊆ S and Pb′ = Pb.

From the assumptions made and the de�nition of the result function we have,
for every 1 ≤ i ≤ n, Di = resAi

(Wi−1) =
⋃{Pb | b ∈ Ai ∩ en(Wi−1)}, where

Ai ⊆ A. We intend to prove that, for every 1 ≤ i ≤ n, Di = resA′(W ′
i−1),

and so we need to show that, for every 1 ≤ i ≤ n, resAi
(Wi−1) = resA′(W ′

i−1).245

Recalling that, for every b ∈ A, we have exactly one reaction b′ = (Rb ∪
{trgb}, Ib, Pb) ∈ A′, we take 1 ≤ i ≤ n and proceed as follows.

To show the (⊆) inclusion, we observe that:

d ∈ resAi
(Wi−1) ⇐⇒ d ∈ ⋃{Pb | b ∈ Ai ∩ en(Wi−1)}

⇐⇒ ∃b ∈ Ai : Rb ⊆ Wi−1 ∧ Ib ∩ (Wi−1) = ∅ ∧ d ∈ Pb .

Since Ib ⊆ S and S ∩ {trgb | b ∈ A} = ∅ and Pb′ = Pb and b ∈ Ai ⊆ A (so
trgb ∈ C ′i−1), we have that

∃b′ ∈ A′ : Rb ∪ {trgb} ⊆ Wi−1 ∪ {trgb} ⊆ W ′
i−1 ∧ Ib ∩ (W ′

i−1) = ∅ ∧ d ∈ Pb′

⇐⇒ d ∈ ⋃{Pb′ | b′ ∈ A′ ∩ en(W ′
i−1)} ⇐⇒ d ∈ resA′(W ′

i−1) .
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To show the (⊇) inclusion, we observe that:

d ∈ resA′(W ′
i−1) ⇐⇒ d ∈ ⋃{Pb′ | b′ ∈ A′ ∩ en(W ′

i−1)}

⇐⇒ ∃b′ ∈ A′ : b′ ∈ en(W ′
i−1) ∧ d ∈ Pb′ = Pb

⇐⇒ ∃b′ ∈ A′ : Rb ∪ {trgb} ⊆ W ′
i−1 ∧ Ib ∩ (W ′

i−1) = ∅ ∧ d ∈ Pb

⇐⇒ ∃b ∈ Ai : Rb ∪ {trgb} ⊆ Wi−1 ∪ {trgb | b ∈ Ai} ∧

Ib ∩ (Wi−1 ∪ {trgb | b ∈ Ai}) = ∅ ∧ d ∈ Pb .

Since Rb ⊆ S, Ib ⊆ S, and {trgb | b ∈ Ai} ∩ S = ∅, we have:

∃b ∈ Ai : Rb ⊆ Wi−1 ∧ Ib ∩ (Wi−1) = ∅ ∧ d ∈ Pb

⇐⇒ d ∈ ⋃{Pb | b ∈ Ai ∩ en(Wi−1)} ⇐⇒ d ∈ resAi
(Wi−1) .

Hence the result holds. ut

We could introduce an alternative simulation using additional entities blocking
reactions through suitably extended inhibitor sets of reactions. In fact, we
could combine these two approaches, so that some reactions would be triggered250

and some blocked by the context.

We have shown that individual asynchronous interactive processes can be sim-
ulated by projected interactive processes. The same simulation cannot be done
at the transition system level since, after erasing the additional entities, the re-
sulting transition system of a reaction system becomes nondeterministic. That255

is, in general, there will be more than one arc labelled by the same (projected)
context outgoing from a given (projected) state.

The capture of asynchronous interactive process from De�nition 3.1 can be
made more concise after introducing the notation X → Y which means that
X, Y ⊆ S are such that Y = resB(X), for a nonempty B ⊆ A (note that there260

can be more than one set B with such a property).

Corollary 3.4 Let π = (γ, δ), where γ = C0 . . . Cn and δ = D0 . . . Dn (n ≥ 1)
are two sequences of subsets of S. Then π ∈ asynproc(γ,D0) if and only if
Di−1 ∪ Ci−1 → Di, for every 1 ≤ i ≤ n.

3.1 Tracing reactions in asynchronous interactive processes265

One of the main aims of this paper is to de�ne the notion of persistence in
the context of reaction systems. To discuss persistence, we �rst look at more
basic issue which is:
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in an asynchronous interactive process, at which point can we assert that a
given reaction has occurred?270

The above is a problem of incomplete information (we do not know which
sets Ai of active reactions were actually used), and our only information is
the state information. This is dramatically di�erent from Petri nets view, for
example, where behaviours are typically modelled by execution sequences that
are based on transitions (i.e., reactions).275

Tracing (or discovering) that a reaction has occurred on the basis of the trans-
formation of system state is a fundamental problem in the analysis of system
behaviour (it is know, e.g., under the name of opacity in security [33]). Here we
propose two natural captures (weak and strong) of this concept in the setting of
reaction systems. In what follows, reactsets(X, Y ) = {B ⊆ A | resB(X) = Y }280

is the set of possibly activated reaction sets, for X, Y ⊆ S satisfying X → Y .

De�nition 3.5 Let X, Y ⊆ S be such that X → Y , and b ∈ en(X). Then
b occurred weakly ( occurred strongly) in X → Y if b ∈ ⋃

reactsets(X, Y )
(resp. b ∈ ⋂

reactsets(X, Y )). We then denote b ∈ weakocc(X, Y ) (resp. b ∈
strongocc(X, Y )).285

Thus, if b ∈ weakocc(X, Y ) then b may have occurred in the transformation
X → Y since all its products are in the successor state (this can be seen
as e�ect-based tracing). If b ∈ strongocc(X, Y ) then b must have occurred
in the transformation X → Y (this can be seen as reaction-based tracing).
One could also introduce other notions of occurrence in-between the weak and290

strong ones. For example, p-occurrence where p is the proportion of those sets
in reactsets(X, Y ) which comprise b. Intuitively, this captures the contribution
of b to reactsets(X, Y ).

Theorem 3.6 Let A = (S,A) be a reaction system and X, Y ⊆ S be such that
X → Y . Then strongocc(X, Y ) ⊆ {b ∈ en(X) | Pb ⊆ Y } = weakocc(X, Y ).295

Proof The inclusion strongocc(X, Y ) ⊆ weakocc(X, Y ) follows directly from
De�nition 3.5. We will prove that weakocc(X, Y ) = {b ∈ en(X) | Pb ⊆ Y }.

Recall that from X → Y we know that there is B ⊆ A such that

Y = resB(X) =
⋃
{Pb | b ∈ B ∩ en(X)} . (1)
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To show the (⊆) inclusion, we observe that:

b ∈ weakocc(X, Y ) ⇐⇒ b ∈ ⋃
reactsets(X, Y ) ∧ b ∈ en(X)

⇐⇒ ∃B ⊆ A : b ∈ B ∧ resB(X) = Y ∧ b ∈ en(X)

⇐⇒ ∃B ⊆ A : b ∈ B ∧ Y =
⋃{Pb | b ∈ B ∩ en(X)} ∧ b ∈ en(X)

=⇒ ∃B ⊆ A : b ∈ B ∧ b ∈ en(X) ∧ Pb ⊆ Y

=⇒ b ∈ {e ∈ en(X) | Pe ⊆ Y } .

To show the (⊇) inclusion, we take b ∈ {b ∈ en(X) | Pb ⊆ Y } and observe
that from X → Y we have that there exists B′ ⊆ A such that Y = resB′(X).
Hence there is B′ ⊆ A such that:

Y = resB′(X) =Eq.(1)

⋃
{Pb′ | b′ ∈ B′ ∩ en(X)} ∧ b ∈ en(X) ∧ Pb ⊆ Y .

Consequently, there is B = B′ ∪ {b} ⊆ A such that:

Y = resB(X) =
⋃
{Pb | b ∈ B ∩ en(X)} ∧ b ∈ en(X) ∧ b ∈ B .

The above is equivalent to b ∈ weakocc(X, Y ). ut

The inclusion in Theorem 3.6 cannot be reversed, as shown in the next exam-
ple.

Example 3.7 Let A = ({w,x,y, z}, {b, c}) be a reaction system, where

b = ({x}, {w}, {z}) and c = ({x}, {y}, {z}) .

Then, for X = {x} and Y = {z}, we have:

reactsets(X, Y ) = reactsets({x}, {z}) = {{b}, {c}, {b, c}}

as res{b}(X) = res{c}(X) = res{b,c}(X) = {z}. Hence weakocc(X, Y ) = {b, c}300

whereas strongocc(X, Y ) = ∅.

One can make the two notions of reaction occurrence collapse by introducing
reaction �ngerprinting. Basically, for each reaction b we can introduce a unique
`�ngerprint' entity fprb and add it to the product set Pb. In the resulting
reaction system, strongocc(X, Y ) = weakocc(X, Y ), whenever X → Y .305

Proposition 3.8 Let A = (S,A) and A′ = (S ′, A′) be reaction systems such
that:

S ′ = S ] {fprb | b ∈ A}

A′ = {b′ = (Rb, Ib, Pb ∪ {fprb}) | b ∈ A} .

11



Moreover, let X, Y ⊆ S ′ be such that X → Y (in A′). Then strongocc(X, Y ) =
weakocc(X, Y ) (in A′).

Proof As, by Theorem 3.6, we have strongocc(X, Y ) ⊆ weakocc(X, Y ), all we
need to show is that weakocc(X, Y ) ⊆ strongocc(X, Y ).

To the contrary, suppose that b′ ∈ weakocc(X, Y ) \ strongocc(X, Y ). From
b′ ∈ weakocc(X, Y ) we have that b′ ∈ ⋃

reactsets(X, Y ) and b′ ∈ en(X). This
is equivalent to

∃B ⊆ A′ : b′ ∈ B ∧ resB(X) = Y ∧ b′ ∈ en(X)

which, in turn, is equivalent to

∃B ⊆ A′ : b′ ∈ B ∧ Y =
⋃
{Pc ∪ {fprc} | c′ ∈ B ∩ en(X)} ∧ b′ ∈ en(X) .

Hence there is B ⊆ A′ such that b′ ∈ B and Pb ∪{fprb} ⊆ Y and b′ ∈ en(X).310

Consequently, b′ ∈ weakocc(X, Y ) implies fprb ∈ Y . Now, if at the same time
b′ /∈ strongocc(X, Y ), then there must be B′ ⊆ A′ such that b′ /∈ B′ and

Y = resB′(X) =
⋃
{Pc ∪ {fprc} | c′ ∈ B′ ∩ en(X)} .

This and Pd∩{fprc | c ∈ A} = ∅, for every d ∈ A, implies fprb /∈ Y , yielding
a contradiction. ut

We also note that, crucially, the behaviours of reaction systems A and A′ in
Proposition 3.8 are strongly linked as the asynchronous interactive processes
of the latter projection simulate the asynchronous interactive processes of the
former.

3.2 Persistent reactions in asynchronous interactive processes315

Persistence in system behaviour is of paramount importance in real life. For
example, a non-persistent digital circuit installed on an airplane can lead to a
disaster, and a given species of animal may not survive a change in changing
environmental conditions. Here we aim at capturing in a fundamental (or
`minimal') way the notion of persistence by considering it in the realm of320

reaction systems. It is therefore crucial to re-assess the meaning of persistence
as a behaviour-related notion.

To start with, the de�nition of persistence we prefer to use in the case of reac-
tion systems is based on a reformulation of the standard Petri net de�nition:

if X → Y and b is enabled at X and has not occurred in the transformation325

from X to Y , then b is still enabled at Y .
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We re-interpret the above as follows: 1

if X → Y and b is enabled at X but not at Y , then b has occurred in the
transformation from X to Y .

The de�nition of reaction persistence within a process is based on more fun-330

damental reaction persistence between two states (a move which can be un-
derstood as one step in a process).

De�nition 3.9 Let X, Y, Z ⊆ S be such that X → Y , and b ∈ A. Then b is
weakly persistent ( strongly persistent) reaction w.r.t. X, Y, Z if b ∈ en(X)
and b /∈ en(Y ∪Z) implies b ∈ weakocc(X, Y ) (resp. b ∈ strongocc(X, Y )). We335

then denote b ∈ weakpers(X, Y, Z) (resp. b ∈ strongpers(X, Y, Z)).

Note that, in the above de�nition, the set Z plays the role of a context set.

We lift this to the level of whole processes with persistence being de�ned w.r.t.
a given context sequence and the initial state of a reaction system.

De�nition 3.10 Let γ = C0 . . . Cn (n ≥ 1) be a sequence of subsets of S340

and D0 ⊆ S. Then b ∈ A is weakly persistent (resp. strongly persistent)
reaction w.r.t. γ and D0 if, for every π = (γ,D0 . . . Dn) ∈ asynproc(γ,D0)
and for every 1 ≤ i ≤ n, b ∈ weakpers(Ci−1 ∪ Di−1, Di, Ci) (resp. b ∈
strongpers(Ci−1 ∪ Di−1, Di, Ci)). We then denote b ∈ weakpers(γ,D0) (resp.
b ∈ strongpers(γ,D0)).345

One might ask whether it is at all possible to implement persistence in the
realm of reaction system. The answer is positive, as shown in the next example.

Example 3.11 Let A = ({go,done}, {bpers, csupp}) be a reaction system,
where:

bpers = ({go}, {done}, {done}) and csupp = ({go}, {done}, {go}) .

It is also assumed that the context never throws in done. 2 Then the persistent
behaviour of bpers is achieved by including go in the context. This enables
reactions bpers and csupp (provided that done is not present), and csupp may be
executed until bpers is executed (note that we need to activate a nonempty set of
reactions Ai at every step). For instance, we have the following asynchronous

1 Clearly, both interpretations are equivalent in the setting of, for example, Petri
nets.
2 Note that such a property of context sequences (and other properties of context
sequences considered in this paper) can easily be described by logic formulas (c.f.
[34]).
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interactive process:

γ = {go} ∅ ∅ ∅ {go} ∅ ∅ {go} ∅ ∅

δ = ∅ {go} {go} {go} {go} {go} {done} ∅ {go} {go,done}

Note that the successive executions of bpers are separated by at least one state
in which it is not enabled. Also, observe that at (C6, D6) = (∅,done) none of
the reactions is enabled, so any nonempty subset of {bpers, csupp} can play the350

role of A7, leading, in all cases, to the empty product set D7 = ∅. Then, only
the context can enable the reactions. In this example, the reactions can only
be disabled from within the reaction system.

Formally, we have:

Proposition 3.12 Let A be the reaction system in Example 3.11, D0 ⊆355

{go,done} and γ = C0 . . . Cn (n ≥ 1) be a sequence of subsets of {go}.
Then bpers ∈ strongpers(γ,D0).

Proof Let π = (γ, δ) = (C0 . . . Cn, D0 . . . Dn) ∈ asynproc(γ,D0) and Wi =
Ci ∪Di, for every 0 ≤ i ≤ n.

The possible states of π, represented as (C,D) pairs are:

κ1 = (∅,∅) κ2 = ({go},∅) κ3 = (∅, {go})

κ4 = ({go}, {go}) κ5 = (∅, {done}) κ6 = ({go}, {done})

κ7 = (∅, {go,done}) κ8 = ({go}, {go,done}) .

Let 1 ≤ i ≤ n. From the assumptions we have the following four cases:360

Case 1: Wi−1 = ∅ and en(Wi−1) = ∅.
Case 2: Wi−1 = {go} and en(Wi−1) = {bpers, csupp}.
Case 3: Wi−1 = {done} and en(Wi−1) = ∅.
Case 4: Wi−1 = {go,done} and en(Wi−1) = ∅.

To show now that bpers ∈ strongpers(γ,D0) we use the following succession of
equivalences obtained from the application of the introduced de�nitions:

bpers ∈ strongpers(γ,D0) ⇐⇒

∀1 ≤ i ≤ n : bpers ∈ strongpers(Wi−1, Di, Ci) ⇐⇒

∀1 ≤ i ≤ n : bpers ∈ en(Wi−1) \ en(Wi) =⇒ bpers ∈ strongocc(Wi−1, Di) ⇐⇒

∀1 ≤ i ≤ n : bpers ∈ en(Wi−1) \ en(Wi) =⇒ bpers ∈
⋂
reactsets(Wi−1, Di) ⇐⇒

∀1 ≤ i ≤ n : bpers ∈ en(Wi−1) \ en(Wi) =⇒ bpers ∈
⋂{B ⊆ A | resB(Wi−1) = Di} .(∗)
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Looking at the implication in the last formula, we observe that in Cases 1,3,4365

the implication holds as the antecedent is false.

Now we consider Case 2, where en(Wi−1) = {bpers, csupp}.

We have bpers ∈ en(Wi−1) for (Ci−1, Di−1) = κ2, κ3, κ4.

We have bpers /∈ en(Wi) for (Ci, Di) = κ1, κ5, κ6, κ7, κ8.

We observe that κ1 = (∅,∅) cannot succeed any of κ2, κ3, κ4 for any of the
three candidates for a set of active reactions B ({bpers}, {csupp}, {bpers, csupp}),
as both bpers and csupp are enabled at κ2, κ3, κ4 and they will contribute either
go or done toDi. In the remaining possible successor states (κ5, κ6, κ7, κ8), we
have done ∈ Di, and therefore we need to exclude {csupp} as a candidate for a
set of active reactions B, leaving as the candidates {bpers} and {bpers, csupp}. So
reactsets(Wi−1, Di) = {{bpers}, {bpers, csupp}}, and bpers ∈

⋂
reactsets(Wi−1, Di) =

{bpers}. Hence the implication in formula (∗) also holds in Case 2. As a conse-
quence, bpers ∈ strongpers(γ,D0) ut

A consequence of Proposition 3.12 is that the strong persistence obtained there370

is a general property, pointing at robustness of the implementation of reaction
persistence introduced in Example 3.11. We will formulate it as Theorem 4.12
in the next section.

Example 3.11 presents an implementation of reaction persistence based on two
closely coupled reactions. We hypothesise that no implementation exists based375

on a single reaction unless the behaviour of csupp is embedded in the context
sequences.

3.3 Interrupting and suspending reactions

By modifying Example 3.11, we can show the cases of non-persistent reactions
(binter in Example 3.13 and bsusp in Example 3.14) and obtain implementations380

of two important control notions. The �rst one is reaction interruption.

Example 3.13 Let A = ({go,done, stop}, {binter, csupp}) be a reaction sys-
tem, where:

binter = ({go}, {done, stop}, {done})

csupp = ({go}, {done, stop}, {go}) .
Moreover, the context is not allowed to throw in done. In this case, when
stop is thrown in by the context, both binter and csupp become disabled. Hence,
binter is no longer persistent as we can have, for example, {go} → {stop,go}
with B = {csupp} as the activated reaction set (the only possible set to accom-385
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plish this transformation). More precisely, binter is enabled at {go} and not at
{stop,go}, but binter clearly has not occurred (even weakly) in the transforma-
tion {go} → {stop,go}. From ({stop}, {go}) only the context can activate
the reactions. In this example, the context or binter can disable reactions.

The second is reaction suspension.390

Example 3.14 Let A = ({go,done, stop}, {bsusp, csupp}) be a reaction sys-
tem, where:

bsusp = ({go}, {done, stop}, {done})

csupp = ({go}, {done}, {go}) .
Moreover, the context is not allowed to throw in done. In this case, when
stop is thrown in by the context, an enabled reaction bsusp is disabled, but not
the supporting reaction csupp. And, as long as the environment keeps throwing
in stop the reaction bsusp is suspended. However, if this is no longer the case,
bsusp is immediately re-enabled, without help of the context.395

4 GALS reaction systems

The unconstrained treatment of asynchrony in Section 3 might seem to be
too `generous'. However, it was motivated by the fact that one may not know
anything how the `management' of asynchrony works. In such a case, we need
to work defensively and assume that any subset of reactions may be sched-400

uled for execution at any time. We will now bring into our considerations a
`minimal' information about practical management of asynchrony, by simply
restricting sets of reactions which can be activated in a single execution.

Throughout this section we assume that A ⊆ 2A \ {∅} is a �xed nonempty
set of nonempty reaction sets covering A (i.e.,

⋃A = A). For X, Y ⊆ S, we405

denote X →A Y if there is B ∈ A such that Y = resB(X). Also, for every
reaction b ∈ A, Ab = {B ∈ A | b ∈ B} is the set of those sets in A to which b
belongs. Note that it may happen that Ab = Ab′ , for distinct b and b

′.

Intuitively, each set in A is a `synchronous island' of reactions. These islands
can overlap, which means that we consider here more general model than the410

standard GALS.
When A = 2A \ {∅}, the resulting model is that of unconstrained de-synchro-
nisation discussed in Section 3 (i.e., X →A Y if and only if X → Y ), and when
A = {A}, the resulting model is the original synchronous model of reaction
systems.415

De�nition 4.1 Let γ = C0 . . . Cn (n ≥ 1) be a sequence of subsets of S. An
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asynchronous interactive process in A w.r.t. γ and A is a pair π = (γ, δ), where
δ = D0 . . . Dn is a sequence of subsets of S such that, for every 1 ≤ i ≤ n,
Di−1 ∪ Ci−1 →A Di. We denote this by π ∈ asynprocA(γ,D0).

It immediately follows that:420

Proposition 4.2 asynprocA′(γ,D0) ⊆ asynprocA(γ,D0), for every nonempty
set of reaction sets A′ ⊆ A.

Projection simulation by the synchronous model at the level of individual
processes is possible by making copies of reactions and introducing triggers
corresponding to the reaction sets in A, similarly as in Proposition 3.3.425

Proposition 4.3 Let π = (C0 . . . Cn, D0 . . . Dn) ∈ asynprocA(γ,D0). More-
over, let Ai ∈ A be such that Di = resAi

(Di−1 ∪ Ci−1), for every 1 ≤ i ≤ n.
Then π′ = (C ′0 . . . C

′
n, D0 . . . Dn) is an interactive process in the reaction sys-

tem A′ = (S ′, A′), assuming that trgB is a fresh entity, for each B ∈ A, as
well as:

S ′ = S ] {trgB | B ∈ A}

A′ = {(Rb ∪ {trgB}, Ib, Pb) | b ∈ A ∧B ∈ Ab}

C ′i = Ci ∪ {trgAi+1
} for 0 ≤ i < n

C ′n = Cn .

Moreover, π = π′ ∩ S.

Proof Similar to that of Proposition 3.3. ut

4.1 Tracing reaction sets

Tracing individual reactions and de�ning persistence of individual reactions
introduced in the previous section works in the case of GALS reaction systems
as well. In this and the following sub-section we also lift these notions to sets430

of reactions. We �rst concentrate on de�ning the notion of occurrence of a set
of reactions.

In what follows, reactsetsA(X, Y ) = {B ∈ A | resB(X) = Y } is the set of
possibly activated reaction sets, for X, Y ⊆ S satisfying X →A Y .

De�nition 4.4 Let X, Y ⊆ S be such that X →A Y , and E ⊆ en(X) be435

a nonempty set of reactions. Then E occurred weakly ( occurred strongly)
in X →A Y if there is B ∈ reactsetsA(X, Y ) such that E ⊆ B (resp. E ⊆⋂
reactsetsA(X, Y )).

We then denote E ∈ weakoccA(X, Y ) (resp. E ∈ strongoccA(X, Y )).
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Proposition 4.5 weakoccA′(X, Y ) ⊆ weakoccA(X, Y ) and strongoccA(X, Y ) ⊆440

strongoccA′(X, Y ), for all ∅ 6= A′ ⊆ A and X →A′ Y .

Proof Follows directly from De�nition 4.4. ut

Theorem 4.6 Let A = (S,A) be a reaction system and X, Y ⊆ S be such
that X →A Y . Then strongoccA(X, Y ) ⊆ weakoccA(X, Y ).

Proof Follows directly from De�nition 4.4. ut

For A = 2A \ {∅} and b ∈ A, we have {b} ∈ weakoccA(X, Y ) ⇐⇒ b ∈
weakocc(X, Y ) and {b} ∈ strongoccA(X, Y ) ⇐⇒ b ∈ strongocc(X, Y ). This,445

and Example 3.7 means that the inclusion in Theorem 4.6 cannot be reversed.

The technique of �ngerprinting introduced in the previous section works in
the case of GALS reaction systems as well. We omit the details.

The next result relates the occurrence of a set of reactions E ⊆ A with the
occurrences of the reactions it contains.450

Theorem 4.7 Let A = (S,A) be a reaction system and X, Y ⊆ S be such
that X →A Y . Then the following hold, for every E ⊆ A:

(1) E ∈ strongoccA(X, Y ) i� {e} ∈ strongoccA(X, Y ), for every e ∈ E.
(2) E ∈ weakoccA(X, Y ) implies {e} ∈ weakoccA(X, Y ), for every e ∈ E.

Proof (1) {e} ∈ strongoccA(X, Y ), for every e ∈ E, means that e ∈ en(X)455

and {e} ⊆ ⋂
reactsetsA(X, Y ), for every e ∈ E. This, in turn, is equivalent

to E ⊆ en(X) and E ⊆ ⋂
reactsetsA(X, Y ). The last formula, according to

De�nition 4.4, means that E ∈ strongoccA(X, Y ).

(2) E ∈ weakoccA(X, Y ) means that E ⊆ en(X) and that there is B ∈
reactsetsA(X, Y ) such that E ⊆ B. Then, for every e ∈ E, e ∈ en(X) and
{e} ⊆ B, and so {e} ∈ weakoccA(X, Y ). ut

The following example shows that one needs to require the strong occurrence
of all the individual reactions in Theorem 4.7(1).460

Example 4.8 Let A = ({x,y, z}, {b, c}) and A = {A1, A2}, where A1 = {b},
A2 = {b, c}, and:

b = ({x}, {z}, {x,y}) c = ({x}, {z}, {x}) .

Then we have reactsetsA({x}, {x,y}) = {{b}, {b, c}}. It therefore follows that
{b} ∈ strongoccA({x}, {x,y}), but {b, c}, {c} /∈ strongoccA({x}, {x,y}). Note
also that {b, c}, {c} ∈ weakoccA({x}, {x,y}).
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The implication in Theorem 4.7(2) cannot in general be reversed, as the next
example shows. However, it can be reversed in special cases; for example, if465 ⋃
Z ∈ A for every nonempty Z ⊆ A.

Example 4.9 Let A = ({x,y}, {b, c, d}) and A = {A1, A2}, where A1 =
{b, d}, A2 = {c, d}, and:

b = ({x}, {y}, {x}) c = ({x}, {y}, {y}) d = ({x}, {y}, {x,y}) .

Then {b}, {c} ∈ weakoccA({x}, {x,y}), but {b, c} /∈ weakoccA({x}, {x,y}).

4.2 Strong persistence of reaction sets

We adapt the previous de�nitions, concentrating only on the strong persistence
of reaction sets.470

De�nition 4.10 Let X, Y, Z ⊆ S be such that X →A Y , and E ⊆ A be a
nonempty set of reactions. Then E is strongly persistent w.r.t. X, Y, Z,A if
E ⊆ en(X) and E 6⊆ en(Y ∪ Z) implies E ∈ strongoccA(X, Y ).
We then denote E ∈ strongpersA(X, Y, Z).

We can lift this to the level of whole processes (or computations) with persis-475

tence being de�ned w.r.t. a given context sequence and an initial state of the
system.

De�nition 4.11 Let γ = C0 . . . Cn (n ≥ 1) be a sequence of subsets of S
and D0 ⊆ S. Then a nonempty set of reactions E ⊆ A is strongly per-
sistent reaction set w.r.t. γ and D0 and A if, for every π = (γ,D0 . . . Dn) ∈480

asynprocA(γ,D0) and for every 1 ≤ i ≤ n, E ∈ strongpersA(Ci−1∪Di−1, Di, Ci).
We then denote E ∈ strongpersA(γ,D0).

We can now formulate a result showing the robustness of implementation of
persistent reactions introduced in Example 3.11.

Theorem 4.12 Let A = (S ] {go,done}, A ] {bpers, csupp}) be a reaction
system such that done /∈ Pd, for every d ∈ A and:

bpers = ({go}, {done}, {done}) and csupp = ({go}, {done}, {go}) .

Moreover, let D0 be a subset of S ∪ {go,done}, γ = C0 . . . Cn (n ≥ 1) be a
sequence of subsets of S ∪ {go}, and:

A = {B ⊆ A ∪ {bpers, csupp} | bpers ∈ B ∨ csupp ∈ B} .

Then {bpers} ∈ strongpersA(γ,D0).485
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Proof Follows directly from Proposition 3.12. ut

A nonempty set of reactions E is bundled if E ⊆ B or E ∩ B = ∅, for every
B ∈ A. As we already mentioned, each set of A behaves like a `synchronous
island'. Therefore, in the de�nition of a bundle we want to ensure that at each
execution step of an asynchronous interactive (GALS) process all the enabled
reactions of a bundle are activated together, or none of them is activated.490

In the rest of this section, we show how to implement strong persistence for
all bundled sets of reactions.

Example 4.13 Let A = ({go,go′,done}, {bpers, b′pers, csupp}) be a reaction
system, where:

bpers = ({go}, {done}, {done})

b′pers = ({go′}, {done}, {done})

csupp = ({go,go′}, {done}, {go,go′}) .

(2)

Moreover, suppose that E = {bpers, b′pers} is bundled, the context never throws
in done, and bpers, b

′
pers ∈ B or csupp ∈ B, for every B ∈ A. The reaction set

E is then strongly persistent even though neither {bpers} nor {b′pers} is.495

Formally, we have the following result.

Proposition 4.14 Let A, E and A be as in Example 4.13. Moreover, suppose
that D0 ⊆ {go,go′,done}, and γ = C0 . . . Cn (n ≥ 1) is a sequence of subsets
of {go,go′}. Then {bpers, b′pers} ∈ strongpersA(γ,D0). Moreover, in general,
neither {bpers} ∈ strongpersA(γ,D0) nor {b′pers} ∈ strongpersA(γ,D0) holds.500

Proof The proof showing that the reaction set E = {bpers, b′pers} is strongly
persistent is similar to that of Proposition 3.12.

To show the second part of the proposition we now show that there is a process
π ∈ asynprocA(γ,D0) such that {bpers} /∈ strongpersA(γ,D0) (for {b′pers} the
proof is symmetric).
Let us take π = (C0C1, D0D1), where C0 = {go} and D0 = C1 = D1 = ∅.
We observe that π ∈ asynprocA(C0C1, D0). Indeed, we have C0 ∪ D0 →A D1

as res{csupp}({go}) = ∅ and {csupp} ∈ A.
In this case, {bpers} ⊆ en(C0 ∪D0) and {bpers} 6⊆ en(C1 ∪D1). On the other
hand, {bpers} /∈ strongoccA(C0∪D0, D1), and so {bpers} /∈ strongpersA(C0C1, D0).

ut

A slight modi�cation of Example 4.13 ensures that not only {bpers, b′pers} is per-
sistent, but also {bpers}. In a way, the next example indicates that persistence
can be introduced in a modular way.505
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Example 4.15 Let A = ({go,go′,done}, {bpers, b′pers, csupp, dsupp}) be a re-
action system, where everything is as in Example 4.13 except an additional
reaction dsupp = ({go}, {done}, {go}) and an additional assumption that
bpers ∈ B or dsupp ∈ B, for every B ∈ A. Then both E and {bpers} are strongly
persistent, but {b′pers} is not.510

The implementation of reaction set persistence introduced in Example 4.13
and discussed later assumed a two-element reaction set. This, however, can be
easily generalised to any number of reactions, in the following way.

Example 4.16 Let n ≥ 1 and A = (S,A) be a reaction system, where:

S = {go1, . . . ,gon,done}

A = {b1pers, . . . , bnpers, csupp}

bipers = ({goi}, {done}, {done}) (1 ≤ i ≤ n)

csupp = ({go1, . . . ,gon}, {done}, {go1, . . . ,gon}) .

Moreover, the set E = {b1pers, . . . , bnpers} is bundled, the context never throws in
done, and E ⊆ B or {csupp} ⊆ B, for every B ∈ A. The reaction set E is515

then strongly persistent.

The robustness of the implementation of strong persistence introduced in Ex-
ample 4.16 is con�rmed by the following result.

Theorem 4.17 Let A = (S]{go1, . . . ,gon,done}, A]{b1pers, . . . , bnpers, csupp})
be a reaction system such that b1pers, . . . , b

n
pers, csupp are as in Example 4.16.520

Moreover, suppose that:

(1) E = {b1pers, . . . , bnpers} is bundled;
(2) done /∈ Pd, for every d ∈ A;
(3) E ⊆ B or csupp ∈ B, for every B ∈ A;
(4) D0 is a subset of S ∪ {go1, . . . ,gon,done}; and525

(5) γ = C0 . . . Cn (n ≥ 1) is a sequence of subsets of S ∪ {go1, . . . ,gon}.

Then E ∈ strongpersA(γ,D0).

Proof Follows from a straightforward generalisation of the proof of Proposi-
tion 3.12. ut
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5 Concluding remarks

In this paper, we propose an approach for the de-synchronisation of the exe-
cution of reaction systems. At every step of the execution, we allow a subset530

of the enabled reactions to be activated instead of the full set of enabled re-
actions, as in the standard synchronous model of reaction systems. This gives
rise to the novel notion of an asynchronous interactive process. In the context
of such processes, we introduce mechanisms to capture the occurrence of sin-
gle reactions and sets of reactions. This, in turn, forms the basis for de�ning535

persistence in the context of reaction systems � the property linked to many
desirable features of real-world dynamic systems.

The present paper introduced new fundamental concepts and solutions into the
realm of reaction systems. They have a potential of driving the development
of further notions and results of far reaching applicability. In what follows,540

we outline exemplars of ideas based on the technical content of this paper,
and so adding to the points made in the general discussion contained in the
introduction.

In Section 3.1, just after De�nition 3.5 which introduced the notions of weak
and strong occurrence, it was mentioned that one might consider the notion
of p-occurrence to capture the likelihood of a reaction being executed when
moving between two system states. This idea can be taken much further in
order to support quantitative analysis of notions relying on traceability of re-
actions. For example, in the setup of De�nition 4.4 one could assume that each
potential set of activated reactions B ∈ A comes with a known or estimated
non-negative (or even dynamically changing) probability weight w(B). Then
one might de�ne the probability of occurrence of E as:

pE =

∑
B∈reactsetsA(X,Y )∧E⊆B w(B)∑

B∈reactsetsA(X,Y )w(B)
.

Note that the strong occurrence would then correspond to pE = 1. We envisage
that the above can give rise to a fully �edged treatment of probability in545

reaction systems (note that a similar notion of probability cannot be de�ned
for the synchronous reactions systems).

The concrete reaction systems implementing concepts of persistence, interrup-
tion and suspension introduced in Examples 3.11, 3.13, 3.14, and 4.16 should
be seen as patterns of achieving the corresponding behavioural properties.
Looking at the �rst example, if a persistent reaction bpers was supposed to be
derived from a reaction b = ({x},∅, {y}), then one would have

bpers = ({x,go}, {done}, {y,done}) and csupp = ({x,go}, {done}, {x,go}) .
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And, clearly, the scheme would have worked if the context would never throw
in done.

This leads to a general point that in the above examples the behaviour of the550

context can be seen as linked to the concept of local variable. More precisely,
what really matters in Example 3.11 is that only an occurrence of bpers can gen-
erate done, and so `reset' the corresponding `local variable'. For this to work,
it su�ces to ensure syntactically that done can only be generated by bpers (in-
tuitively, this corresponds to treating some of the molecules as representations555

of the values of Boolean variables). We envisage that the above discussion will
lead to a fully �edged development and embedding of programming language
concepts in the domain of reaction systems.

Persistence is not necessarily a global property. For example, the environment
may be triggering di�erent activities with di�erent periods, and only then we560

need to verify that the system (or its part) is persistent. It would therefore
be interesting to pursue the analysis of periodicity of persistence in reaction
systems. Note that the results of such a study would also be relevant in the
synchronous case.

In this paper, context sequences were considered individually. In future, we565

plan to change this by introducing a way of specifying context sequences
through suitably modi�ed context controllers [35]. In particular, the aim would
be to indicate which reactions can go ahead and which not, and in this way
controlling asynchrony (and so introducing asynchrony management). More-
over, such a control could be exercised by taking into account the current state570

of the reaction system. The intuition behind the �rst option is that context
sequences and activation of reactions are generated purely externally, without
considering the current state of a reaction system.

For example, an asynchronous controller might be introduced as a labelled
directed graph E = (Q, V ) such that Q is a �nite nonempty set of states575

and V ⊆ Q × (2S × (2A \ {∅})) × Q is a set of labelled arcs specifying the
context sets to be thrown in as well as the sets of reactions to be activated.
Following [35], one would also require a non-blocking nature of the controller,
by assuming that for every state q, there is at least one labelled arc of the form
(q, (C,B), q′). Such an asynchronous controller could then be put to work in580

tandem with reaction system A = (S,A).

In particular, an interactive process in A controlled by E and initiated at
(q,X) ∈ Q × 2S could be de�ned as a pair π = (C0, . . . , Cn, D0, . . . , Dn) of
�nite sequences of sets of molecules for which one could �nd a path in E of
the form:

(q, (C0, B0), q0), (q0, (C1, B1), q1), . . . , (qn−1, (Cn, Bn), qn)
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so that D0 = resB0(X) and Di = resBi
(Ci−1 ∪Di−1), for i = 1, . . . , n.

Crucially, an introduction of asynchronous controllers would advance the for-
malism presented in this paper (where context sequences can come from
an arbitrary set) to more a formalism amenable to the mechanisms of au-585

tomated property veri�cation; for example, by suitably adapting techniques
from [16,30].

A further step would be to allow asynchronous controllers to `inspect' the
current state of the reaction systems generalising the notion of state-aware
context controllers of [35].590
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