
ar
X

iv
:2

20
1.

00
77

7v
1

 [
cs

.D
M

]
 3

 J
an

 2
02

2

Orienteering problem with time-windows

and updating delay

Marc Demangea, David Ellisona, Bertrand Jouveb

aRMIT University, School of Science, Melbourne, Australia
b LISST UMR5193, Toulouse University, CNRS, France

Abstract

The Orienteering Problem with Time Window and Delay (OPTiWinD) is a vari-
ant of the online orienteering problem. A series of requests appear in various
locations while a vehicle moves within the territory to serve them. Each request
has a time window during which it can be served and a weight which describes
its importance. There is also a minimum delay T between successive requests.
The objective is to find a path for the vehicles that maximises the sum of the
weights of the requests served. We further assume that the length of each time
window is equal to the diameter of the territory. We study the optimal per-
formance and competitive ratio for the set of instances with n requests. We
obtain complete resolution for T at least half of the diameter, small values of T
or small values of n, as well as partial results in the remaining cases.

Keywords — Online orienteering problem, Online Scheduling, Competitive
analysis, Combinatorial optimisation.

1. Introduction and related work

1.1. Defining the problem

This work is motivated by a wildfire emergency management problem. On
very hot days and during the dry season, in regions exposed to wildfires, it is
not rare to observe, in a single region, up to one hundred fire ignitions per day.
Some of these fires spread very quickly and, if not extinguished quickly, they
escape and become completely out of control. Although the risk factors, such
as temperature, wind, fuel load, dryness, etc. and the main causes of ignition
are well-understood, it is almost impossible to forecast, during a day, where and
when a fire will occur. Wildfires are already an important threat to human lives,
goods and the environment; and in the near future, this is expected to become
worse due to climate change.

Email addresses: marc.demange@rmit.edu.au (Marc Demange),
david.ellison2@rmit.edu.au (David Ellison), jouve@univ-tlse2.fr (Bertrand Jouve)

Preprint submitted to Elsevier January 4, 2022

http://arxiv.org/abs/2201.00777v1

For emergency management commanders, one of the main challenges is to
rely on efficient decision making. And when disaster strikes, especially when
fatalities occur, they need to be able to justify their decisions once the crisis
is over. Hence, in order to satisfy legal constraints, the decision chain needs
to be very clear and well-defined. The most critical decision commanders need
to make during the initial outbreak is the allocation of firefighting resources in
cases where there are not enough resources to keep all the fires under control.
Such a decision relies on the information available about the on-going fires and
the threats they pose. Early warning systems are set-up to detect new fires, but
once a smoke plume has been detected, an on-site reconnaissance is necessary to
assess the importance of the fire, evaluate the possible induced risk and estimate
how long until the fire can no longer be contained. Based on this information,
the management team decides whether or not to send firefighting resources to
each new fire. Given that making this decision requires having evaluated all
the risks associated with the fire, each new fire is only taken into account after
a delay corresponding to the time used by the reconnaissance team. We will
assume that there is a single firefighter team which cannot be divided, thus
two fires igniting simultaneously will be processed one at a time with a delay
between them. Natural generalisations may induce several or splittable teams.
The objective is to schedule the movements of the team by selecting which
fires to extinguish and when, in order to maximise the total weight of the fires
contained. We model this situation using a sequence of fires, each with a weight
representing the expected loss if the fire goes out of control and a time window
in which the fire has been assessed and remains controllable. We include a
minimum delay between the release time of fires.

This model corresponds to the standard Orienteering Problem in a space X ,
with Time Windows and with the addition of time delays. This variant will be
called The Orienteering Problem with Time Window and Delay (OPTiWinD). In
this problem, time is continuous and new requests can appear at any moment
and at any point in X . Each request has a location, a weight and a time window
during which it can be served. There is a minimum delay between successive
new requests. The player controls a unique vehicle which travels to serve the
requests. A request is instantaneously satisfied when it is visited. The player’s
objective is to find a path in the space that maximises the sum of the weights
of the requests served. A strategy of the player is described as an algorithm.

We will consider online algorithms for instances where each request is re-
vealed at the start of its time window. This corresponds to the reality of our
motivating problem, for which the difficulty to establish firefighting strategies
is largely due to not knowing in advance when and where the fires will appear.

1.2. Related work

The underlying combinatorial optimisation problem is a natural generalisa-
tion of the Metric Travelling Salesman Problem (Metric TSP), which is also
called the Orienteering Problem [6]: one is given a time limit and a graph with
n vertices including departure and arrival points. Each vertex is associated with
a score and each edge with a distance. The objective is to select some vertices

2

and an order to visit them while travelling at constant speed 1 from the de-
parture point to the arrival point, so that the time limit is not exceeded and
the total score of visited vertices is maximised. In Laporte and Martello [9],
the orienteering problem is called Selective TSP. The same problem has been
studied under other names, in particular Bank Robber Problem [3] and Maxi-
mum Collection Problem. The dual problem where the aim is to collect a fixed
targeted total score in the minimum time is called Quota TSP [3] or also Prize
Collecting Problem. These problems fall into the class of Travelling Salesman
Problems with Profits [5]. Our application deals with the version of the orien-
teering problem with time windows [10]: instead of an overall time limit, each
vertex is associated with a release time and a deadline and it must be visited
between these two dates in order to collect the associated score.

Some of these problems have been considered in the online case, also referred
as dynamic case. In most cases, the online setup consists in revealing requests
(vertices) over time, so that the online algorithm needs to decide about the
movements of the vehicle without knowing when and where the next request
will be revealed. The Metric Travelling Salesman has been considered under
this setup in [1, 2], for instance, and the Quota TSP in [1]. When the delay
is zero, OPTiWinD is equivalent to the Whack-a-Mole Problem, which is defined
in Gutiérrez et al. [7], or the Dynamic Traveling Repair Problem [8]. For a
space which is a truncated line [−L,L], Gutiérrez et al. [7] note that the only
non trivial cases are those for θ/4 < L ≤ θ, where θ denotes the size of the time
windows. Thus, they study the case θ = L with moles that may only arrive at
integer positions on [−L,L]. In the case of the segment, we study in this paper
the case where L = θ/2, which is not examined in Gutiérrez et al. [7]. To our
knowledge, no previous paper deals with a delay between requests.

2. Preliminaries

2.1. Geodesic metric spaces

A metric space E = (X, d) is said to be geodesic [4] if for any a, b ∈ X ,
there is a continuous path γ : [0, 1] → X from a to b such that the range of γ is
isometric to the segment [0, d(a, b)].

Defining the offline orienteering problem on graphs or on metric spaces is
equivalent. The distance, or travel time, between requests is the only aspect
of the underlying metric space relevant to the game. However, in the online
case, the position of the vehicle must be defined at all time. Hence the online
orienteering problem is defined either on graphs (e.g. [8]) or on geodesic metric
spaces (e.g. [2]), producing two slightly different online games.

Having a geodesic metric space means that the distance between two points
is equal to the length of the shortest path connecting them. The vehicle is
allowed to change directions whenever a new request appears, even when the
vehicle is travelling between requests. Alternatively, on graphs, the vehicle can
only select a new direction after reaching a vertex.

3

2.2. Definitions and notations

For geodesic metric spaces with only one pair of points maximising the dis-
tance, it is natural to consider a worst case scenario when all the requests appear
on these two points. As it happens, the case where E is a segment is critical to
understanding the general case. Thus, except in Section 8, we will consider the
online problem on the segment [−1, 1] with the vehicle starting at 0. We will
show in Section 8 that most of the results for the segment can be extended to
bounded geodesic metric spaces of diameter 2, and we will give counter-examples
to the others.

An instance of OPTiWinDis a set of requests, each characterised by a triple
(A, [r, r′], δ) where A ∈ X is the location of the request, r is the release time, r′

is the time when the request is lost if it is not served and δ ∈ R
∗
+ is the weight

(or score) associated with the request.
A request (A, [r, r′], δ) is said to be served if the vehicle is on A at a time

t ∈ [r, r′]. A feasible solution is an itinerary for the vehicle starting at O at time
t = 0 and serving some requests. The objective is to maximise the total weight
of the requests served. We denote by In,T the set of instances of OPTiWinD on
[−1, 1] with at most n requests and delay at least T between requests.

We will make the following assumptions about the OPTiWinD Problem:

• We consider that X is the segment [−1, 1], except in Section 8 where we
extend the problem to the case of a bounded geodesic metric space X of
diameter 2.

• The vehicle is able to move no faster than unit speed in X and a request
is instantaneously satisfied when it is visited.

• We assume that each time window is of the form [r, r + 2] where r is
the release time. Thus, once a request appears, the vehicle always has a
chance to reach its location in time from anywhere in E.

• The release times of any two successive requests differ by at least a delay
T ≥ 0, which is independent from the requests.

• Online algorithms for OPTiWinD learn about a new request (its location
and weight) at the start of its associated time window. The vehicle can
serve it at any time within that time window or it can choose not to serve it
at all. The geodesic metric space is completely known from the beginning.

In the following, the sets of non-negative integers and real numbers are
denoted by N and R respectively. The golden ratio is ϕ. The i-th request is
denoted fi and its release time is ti. The weight of fi is δi and Si =

∑i
k=1 δk.

The earliest time when the vehicle may reach fi, assuming it starts heading
towards it at ti, is τi.

4

2.3. Performance and competitive ratio

The performance λI
ALG of an algorithm ALG for an instance I ∈ In,T of

OPTiWinD is the ratio of the sum of the weights of the served requests by the
total sum of the weights of all requests. The performance of ALG for at most
n requests and delay T is then defined as:

λ
In,T

ALG = inf
I∈In,T

λI
ALG.

By definition, any λI
ALG is in [0, 1]; hence λ

In,T

ALG ∈ [0, 1]. An online algorithm
ALG is γ-competitive for problem OPTiWinD with at most n requests and delay
T if, given any instance I ∈ In,T , the performance of the online algorithm is at
least γ multiplied by the performance of OPT , the optimal offline algorithm:
∀I ∈ In,T , λI

ALG ≥ γ ·λI
OPT , with γ > 0. Note that this definition of competitive

ratio is standard for maximisation problems. Hence, we have 0 ≤ γ ≤ 1. The
competitive ratio of ALG for at most n requests and delay T is defined by:

γ
In,T

ALG = inf
I∈In,T

λI
ALG

λI
OPT

.

For any algorithm ALG, we have λ
In,T

ALG ≤ γ
In,T

ALG. In order to evaluate the per-
formance and competitive ratio of an algorithm, we need to consider a worst case
scenario. This situation corresponds to having a malicious adversary deciding
when the requests are released and choosing their weights. While our problem
is a one-player online game, as the adversary is not technically a player, it is
standard practice to discuss strategies of the adversary as though in a two-player
game.

The optimal performance and the optimal competitive ratio are respectively:

λIn,T = sup
ALG

λ
In,T

ALG and γIn,T = sup
ALG

γ
In,T

ALG

An online algorithm will be called optimal if its competitive ratio is equal
to the optimal competitive ratio. Note that we have:

λIn,T ≤ γIn,T .

Definition 1. Given a function f : N → R
+, we say that an online algorithm

ALG is f(n)-performant (resp. f(n)-competitive) if it guarantees a performance
(resp. competitive ratio) of f(n) for instances with n requests. Hence:

λ
In,T

ALG ≥ f(n) (resp. γ
In,T

ALG ≥ f(n)).

Note that in Definition 1, the algorithm functions without knowing ahead of
time the total number of requests that will appear.

Proposition 1. The functions λIn,T and γIn,T are non-decreasing with respect
to T and non-increasing with respect to n.

5

Proof. Increasing T restricts the strategy of the adversary without affecting
the player’s algorithm. Similarly, increasing n increases the possibilities for the
adversary. More precisely, if T ≤ T ′, then In,T ′ ⊂ In,T and if n ≤ n′, then
In,T ⊂ In′,T .

Remark 1. In order to find bounds to performances and competitive ratios, we
may restrict our analysis by omitting inefficient algorithms. It is inefficient for
the vehicle to slow down or to change directions when no request appears. Thus
we will assume that the vehicle always moves at speed 1 and with a constant
direction between the release times ti and ti+1 of two successive requests.

Remark 2. Multiplying all the weights δi by a positive constant does not affect
the game. Thus we will always suppose that the weight of the first request is
δ1 = 1, except in the proof of Theorem 2.

2.4. Summary of results

The optimal performance and competitive ratio are both decreasing with
the number of requests n. For a fixed n, they are non-decreasing step functions
with regards to the delay T . We distinguish three cases corresponding to small,
large or medium delays. The following results were obtained for the case where
X is the segment [−1, 1].

• When there is no delay, there is a natural greedy algorithm for the vehicle
which consists in always heading towards the request of greatest weight.
This greedy algorithm is optimal, guaranteeing a performance and a com-
petitive ratio of 1

n
. Small delays refer to values of T small enough that

this greedy algorithm remains optimal. This means T < T0 = 1
2n−3+1 in

terms of performance and T < T1 = 1
2n−1−2 in terms of competitive ratio.

• With a delay T greater or equal to 1, a more refined greedy algorithm,
defined in Section 4, becomes optimal. The values of the optimal per-
formances and optimal competitive ratios are then defined by a sequence
(αn) which is analysed in the appendix.

• The intermediate case is the most complex and remains mostly open.
When the delay T reaches the critical value T0 (resp. T1), the performance
(resp. competitive ratio) increases by at least ǫ = 1

n(n−1)(n+3) . For 1
2 ≤

T < 1, the performance is characterised by a sequence (βn), which is
difficult to compute beyond the first few terms.

These general results are summarised in Table 1. In sections 3 to 6, we study
successively the performances and competitive ratios for no delay, large delays,
small delays and medium delays on the segment [−1, 1]. Section 7 deals with
values of n ≤ 4, whence we are able to calculate explicitly the performance and
competitive ratios for all the possible values of the delay. Results for n = 3 and
n = 4 are summarised in Tables 2 and 3. In Section 8, we generalise previous
results to the case of centred geodesic metric spaces of diameter 2 (indicated

6

Delay Performance Competitive Ratio

T < T1
1
n

(**) 1
n

(**)

T1 ≤ T < T0
1
n

(**) > 1
n

T0 ≤ T < 1
2 ≥ 1

n
+ ǫ ≥ 1

n
+ ǫ

1
2 ≤ T < 1 βn (*) ≥ βn (*)

1 ≤ T < 2− 1
n−1 αn−⌊ 1

2−T
⌋ (*) αn−⌊ 1

2−T
⌋ (*)

2− 1
n−1 ≤ T 1 (*) 1 (*)

Table 1: Performances and Competitive Ratios with T0 =
1

2n−3+1
, T1 =

1
2n−1

−2
, ǫ =

1
n(n−1)(n+3)

. The results marked with an asterisk (resp. a double asterisk) can be generalised

to centred geodesic metric spaces (resp. geodesic metric spaces) of diameter 2.

with an asterisk in Table 1) or more generally to geodesic metric spaces of
diameter 2 (indicated with a double asterisk). Centred geodesic metric spaces
of diameter 2 are spaces included in B(O, 1), where B(O, 1) is the closed ball of
radius 1 centred in O.

Delay Performance Competitive Ratio

T < 1/2 1/3 1/3

1/2 ≤ T < 1 1/ϕ2 ≈ 0.3820 1/ϕ2 ≈ 0.3820

1 ≤ T < 1.5 1/2 1/2

1.5 ≤ T 1 1

Table 2: Performances and Competitive Ratios for 3 requests (n = 3)

3. OPTiWinD with no Delay

In this section, we will show that a greedy algorithm is optimal when there is
no delay, and that no online algorithm guarantees a constant competitive ratio.

We consider a greedy algorithm for the vehicle, denoted by GR0, in which
the vehicle always moves towards the request of greatest weight. Thus, whenever
a new request appears with a greater weight, the vehicle ignores his previous
destination to go towards the new one.

Lemma 1. The algorithm GR0 is 1
n
-performant; i.e. λ

In,0

GR0
= 1

n
.

Proof. By applying GR0, the vehicle is guaranteed to serve the request of great-
est weight. This is sufficient to ensure a performance at least equal to 1/n.

Note that it follows from Lemma 1 that GR0 is 1
n
-competitive.

7

Delay Performance Competitive Ratio

T < 1/6

1/4

1/4

1/6 ≤ T < 1/5 0.2578

1/5 ≤ T < 1/4 2−
√
3 ≈ 0.2679

1/4 ≤ T < 1/3 0.2803

1/3 ≤ T < 1/2 2−
√
3 ≈ 0.2679 1−

√
2/2 ≈ 0.2929

1/2 ≤ T < 1 1−
√
2/2 ≈ 0.2929 0.3177

1 ≤ T < 1.5 1/ϕ2 ≈ 0.3820 1/ϕ2 ≈ 0.3820

1.5 ≤ T < 5/3 1/2 1/2

5/3 ≤ T 1 1

Table 3: Performances and Competitive Ratios for 4 requests (n = 4)

Theorem 1. For instances of In,0, the algorithm GR0 is optimal; i.e. γIn,0 = 1
n

Proof. Let us consider an online algorithm ALG for the vehicle. We will describe
a strategy of the adversary which limits the competitive ratio of ALG to 1

n
.

The adversary first releases a request f1 = (−1, [1, 3], 1). If the vehicle does
not go towards −1, the adversary will not release any more requests, and the
performance will be 0. Thus, we may assume that the vehicle will start moving
towards −1 at time 1. The strategy of the adversary is as follows: let τ1 be
the estimated time arrival (ETA) of the vehicle, i.e. τ1 = 2. While the vehicle
maintains his course and fewer than n requests have been released, the adversary
releases requests

f1,k = (1, [τ1 −
1

4.3k.n
, τ1 −

1

4.3k.n
+ 2], 1) , k ≥ 0.

If at time τ1− 1
4.3k.n

, the vehicle changes directions to go towards 1, the adversary
sets τ2 as the new ETA in 1. He then repeats the process, with

fi,k = ((−1)i+1, [τi −
1

4.3k.n
, τi −

1

4.3k.n
+ 2], 1)

where τi is the ETA in (−1)i after the vehicle’s i-th change of directions, until n
requests have been released (see Figure 1 for an illustration). In this manner, a
total of exactly n requests will be released. Also, when request fi,k is released, if
k > 0, it is already too late for the vehicle to reach fi,k−1. Thus the vehicle will
serve only one request. Note that 2i − i

2n ≤ τi ≤ 2i. Hence, 2i − 1
2 ≤ τi ≤ 2i.

So 2i+1 ∈ [τi − 1
4.3k.n , τi − 1

2.3k.n +2]. Hence, an optimal offline algorithm will
serve all the requests by starting at t = 0 towards −1 and reaching (−1)i+1 at
time 2i+1. Thus, no algorithm can guarantee a competitive ratio greater than
1
n
.

8

t = 1-1

f1, f2,0

1

f1,0, f1,1

2− ǫ

2− ǫ/3

4− 5ǫ/3

Figure 1: Initial movements of the vehicle in the case where it changes direction toward f1,1
at time 2− ǫ/3. Using ǫ = 1/4n, the figure displays the vehicle’s position at each release time

.

Remark 3. When a new request fi is released at time ti, if τi denotes the ETA
for reaching fi, then, given that the vehicle moves at speed 1, the distance to fi
at ti is τi − ti.

Also, if the vehicle moves away from fi towards fk at time ti, when the
vehicle has passed half the distance to fk, it is too late to serve fi. Thus, if a
request fi+1 is released at the same end as fi, it is impossible to serve both fi
and fi+1 if and only if τk − ti+1 < 1

2 (τk − ti).

Remark 4. Note that Theorem 1 implies that there is no algorithm with a
constant competitive ratio for OPTiWinD with zero delay.

4. OPTiWinD with Large Delays

In this section, we will show that introducing a large delay significantly im-
proves the performance and competitive ratio. The result shown in Theorem 1
indicates that the previous case is extremely unfavorable to the vehicle. How-
ever, this changes when we impose a delay between the release times of successive
requests. With a delay sufficiently large, the strategy of the adversary used in
the proof of Theorem 1 is no longer possible. Indeed, this strategy required that
requests be released in rapid succession in −1 and 1.

Let us note that if T ≥ 2 then GR0 will serve all the requests. So, the only
interesting case is when T < 2. For n ≥ 1, we define:

αn = inf
δ∈(R∗

+
)n
max{ δ1

S2
, · · · , δi

Si+1
, · · · , δn−1

Sn

,
δn
Sn

}

where Si =
∑i

k=1 δk. (See Appendix for the study of (αn).)

Theorem 2. For 1 ≤ T ≤ 2 − 1
n−1 , we have λIn,T = γIn,T = αn−⌊ 1

2−T
⌋ and

for T ≥ 2− 1
n−1 , λ

In,T = γIn,T = 1.

Proof. First, we will give a strategy of the adversary with a parameter ǫ > 0
which limits the competitive ratio to αn−⌊ 1

2−T
⌋ + O(ǫ), when ǫ → 0. Then, we

will give a greedy algorithm for the vehicle which guarantees a performance of
αn−⌊ 1

2−T
⌋.

9

1. Let ǫ > 0. The strategy of the adversary is defined as follows:

(a) First, release a request f1 = (−1, [1, 3], ǫ).

(b) If the vehicle does not serve f1, do not release any more requests.

(c) Similarly, while the vehicle serves all the requests up to fi−1 and
i ≤ i0 = ⌊ 1

2−T

⌋

, release a request

fi = ((−1)i, [1 + (i− 1)T, 3 + (i − 1)T], 4i−1ǫ).

(d) If the vehicle serves fi0 , release a request

fi0+1 = ((−1)i0+1, [1 + i0T, 3 + i0T], 1).

(e) Then, while the vehicle does not serve any more requests and i ≤ n,
release a request

fi = ((−1)i, [2i− 2− ηi, 2i− ηi], δi−i0)

where (δi) realises αn−⌊ 1
2−T

⌋ (see appendix) and ηi =
i−i0
n

− 3
2n .

(f) When the vehicle serves a request fi, i > i0, do not release any more
requests.

Note that ∀i ≤ i0+1, 2i− 1 ∈ [1+ (i− 1)T, 3+ (i− 1)T]. Since i0 ≥ 1, we
have ηi ≤ ηn ≤ 1− 5

2n < 1. So, ∀i ≥ i0 + 2, 2i− 1 ∈ [2i− 2− ηi, 2i− ηi].
Therefore, the optimal offline algorithm will serve all the requests by being
in (−1)i at time 2i− 1. Also, the values of ηi have been chosen so that for
i ≥ i0 + 2, ti = τi−1 − 1

2n .

Let us now consider an online algorithm, ALG. When the adversary
uses the above strategy, if ALG does not allow the vehicle to serve fi for

i ≤ i0, then the performance is

i−1∑

k=1

4k−1ǫ

i∑

k=1

4k−1ǫ

= 4i−1−1
4i−1 < 1

4 . It is shown in

Proposition 8 in the appendix that 1
4 < αn−⌊ 1

2−T
⌋.

If ALG allows the vehicle to serve the first i0 requests, the vehicle will
then reach at most one fi with i > i0. Its performance will then be

δi−i0 +
i0
∑

k=1

4k−1ǫ

i−i0+1
∑

k=1

δk +
i0
∑

k=1

4k−1ǫ

=
δi−i0

Si−i0+1
+ O(ǫ)

= αn−⌊ 1
2−T

⌋ +O(ǫ).

Therefore, γIn,T ≤ αn−⌊ 1
2−T

⌋.

10

2. The greedy algorithm GR1 is defined as follows:

(a) When there is no request to be served, or none that can be reached
in time, head towards 0.

(b) While a single request that can be served is ongoing, head towards
it.

(c) When a request f2 = (x2, [t2, t2 + 2], δ2) is released while another
request f1 = (x1, [t1, t1+2], δ1) is still reachable, if δ1

δ1+δ2
≥ αn−⌊ 1

2−T
⌋,

head towards f1; else head towards f2. From this point on, until
a request is served, number the requests f1 to fd and denote by
δi the weight of fi and Si =

∑i
k=1 δk. When fi+1 is released, if

δi
Si+1

≥ αn−⌊ 1
2−T

⌋, head towards fi; else, head towards fi+1.

We will divide the game into phases according to when the vehicle is either
in cases a) and b) or in case c).

In the phases corresponding to a) and b), the vehicle will serve all the
requests, and the performance over those phases of the game will be 1.

If at some point during the game, a sequence of requests f1, . . . , fd places
the vehicle in case c), we will show that the performance will be greater
or equal to αn−⌊ 1

2−T
⌋ over this phase. With a delay of T and the vehicle

applying algorithm GR1, the first time case c) may occur is for the (i0+1)-
th and (i0 + 2)-th requests, where i0 = ⌊ 1

2−T

⌋

. Hence, d ≤ n − i0. Note
that when a request fi = (xi, [ti, ti + 2], δi) is served at time t, since
T ≥ 1 and the time windows have length 2, at most one request may have
been released between ti and t. It follows that when fi is reached, the
performance over that phase of the game is δi

Si
or δi

Si+1
. By definition of

(αn), this performance is at least αn−i0 .

Hence, in all phases of the game, the performance is at least αn−⌊ 1
2−T

⌋.

Therefore, λ
In,T

ALG ≥ αn−⌊ 1
2−T

⌋.

It follows from 1. and 2. that we have λIn,T = γIn,T = αn−⌊ 1
2−T

⌋ for

1 ≤ T ≤ 2− 1
n−1 .

Hence, λ
I
n,2− 1

n−1 = γ
I
n,2− 1

n−1 = α1 = 1. Therefore, for T ≥ 2− 1
n−1 , we

have λIn,T = γIn,T = 1.

5. OPTiWinD with Small Delays

In this section, we will consider cases where T is small enough that the
results from Section 3 still apply.

Theorem 3. For T < T0 = 1
2n−3+1 , we have λIn,T = 1

n
.

11

Proof. When the vehicle has to choose between two symmetrically placed re-
quests of equal weights and cannot serve both, it is optimal to go towards the
closest one. We will restrict our description of the strategy of the adversary by
assuming that the vehicle follows this rule.

The strategy of the adversary is to release requests

fi = (−1, [ti, ti + 2], 1)

where t1 = 1, ti = 2− 1−T
2i−2 +

1−T
2n−2 − T

2 for 2 ≤ i ≤ n−1, and tn = tn−1+T . Note

that T < 1
2n−3+1 implies T < 1−T

2n−3 . Hence, ti+1 − ti ≥ T for all 1 ≤ i ≤ n− 1.
Let us show by induction that if the player follows the rule given at the

beginning of this proof, starting from t = 1, the vehicle will always move towards
−1. This is true when the request f1 appears. Let us assume that it moved
towards −1 until fi+1 appears. Thus, when fi+1 is released, the vehicle is
located at 1 − ti+1. Hence, the distance between its current position and 1 is
ti+1. Note that for 2 ≤ i ≤ n−1, we have 1

2 (2−ti) =
1−T
2i−1 − 1−T

2n−1 − T
4 > 2−ti+1.

Hence, 2ti+1 > ti + 2. Therefore, when fi+1 is released, it is too late to serve
fi. Thus, the vehicle will continue towards −1.

So, this strategy is well defined for optimal play. Also, the vehicle will only
be able to serve a single request, and n requests will be released. Hence, the
performance is at most 1

n
. Since the algorithm GR0 guarantees at least 1

n
, we

have an equality.

Theorem 4. For n ≥ 3 and T < T1 = 1
2n−1−2 , the algorithm GR0 is optimal

and γIn,T = 1
n
.

Proof. Let us consider an online algorithm ALG for the vehicle. We will describe
a strategy of the adversary which limits the competitive ratio of ALG to 1

n
.

The adversary first releases a request f1 = (−1, [1, 3], 1). If the vehicle does
not go towards −1, the adversary will not release any more requests, and the
performance will be 0. Thus, we may assume that the vehicle will start moving
towards −1 at time 1. The strategy of the adversary is as follows:

1. let τ1 be the estimated time arrival (ETA) of the vehicle in −1, i.e. τ1 = 2.

2. While the vehicle maintains its course and fewer than n− 1 requests have
been released, the adversary releases requests

f1,k = (1, [τ1 − 2n−3−k(T + 2ǫ) + ǫ, τ1 − 2n−3−k(T + 2ǫ) + ǫ+ 2], 1)

for 0 ≤ k ≤ n− 3 and some 0 < ǫ < T .

3. If at time τ1−2n−3−k(T +2ǫ)+ ǫ, the vehicle chooses to change directions
to go towards 1, the adversary sets τ2 as the new ETA in 1.

4. He then repeats the process, with

fi,k = ((−1)i+1, [τi−2n−2−i−k(T +2ǫ)+ǫ, τi−2n−2−i−k(T +2ǫ)+ǫ+2], 1)

where τi is the ETA in (−1)i after the vehicle’s i-th change of directions,
until n− 1 requests have been released.

12

In this manner, a total of exactly n− 1 requests will be released. If the vehicle
changed directions j − 1 times in total, the n-th request will be

fn = ((−1)j+1, [τj − ǫ, τj − ǫ + 2], 1).

We will show that a) this strategy satisfies the condition regarding the delay
T , b) the vehicle can only serve a single request and c) for ǫ small enough the
optimal offline algorithm can serve all the requests.

a) Note that the delay between fi,k and fi,k+1 is greater than T (even T+2ǫ),
and the delay between fn and fj,k, for the last value of k, is at least T .

b) When request fi,k is released, if k > 0, it is already too late for the vehicle
to reach fi,k−1. Similarly, when fn is released, it is too late to serve fj,k.
Thus the vehicle will serve only one request.

c) If the vehicle changes direction when fi,0 is released, the new ETA in
(−1)i+1 is τi + 2− 2n−1−i(T + 2ǫ) + 2ǫ. Hence,

τi+1 ≥ τi + 2− 2n−1−i(T + 2ǫ) + 2ǫ = τi + 2− 2n−1−iT +O(ǫ).

Therefore, we have τi ≥ 2i−(2n−1−2n−i)T+O(ǫ). Thus, the time window
of fi,k closes at

τi − 2n−2−i−kT + 2+O(ǫ) ≥ 2i+ 2− (2n−1 − 2n−i − 2n−2−i−k)T +O(ǫ).

Since 2n−i + 2n−2−i−k > 2, we have (2n−1 − 2n−i − 2n−2−i−k)T < 1.
Hence, for ǫ small enough, 2i+ 1 is in the time window of fi,k. Similarly,
the time window of fn closes at

τj−ǫ+2+O(ǫ) ≥ 2j+2−(2n−1−2n−j)T+O(ǫ) ≥ 2j+2−(2n−1−2)T+O(ǫ).

Hence, for ǫ small enough, 2j + 1 is in the time window of fn. Therefore,
the optimal offline algorithm will serve all the requests by starting at t = 0
towards −1 and reaching (−1)i+1 at time 2i+ 1.

Thus no algorithm can obtain a competitive ratio greater than 1
n
.

6. OPTiWinD with Medium Delays

6.1. Tightness of the bounds T0 and T1

In this section, we will show that when the delay T is at least T0 (resp. T1),
the optimal performance (resp. competitive ratio) is greater than 1

n
, meaning

that the boundaries T0 and T1 are tight.
In order to show that the boundary T0 is tight, we will use the following

lemma, inspired by the proof of Theorem 3.

13

Lemma 2. Let T ≥ 1
2n−3+1 . Starting at time 1, if the vehicle, initially at 0,

always moves towards the request f1 = (−1, [1, 3], δ1), and if n−1 other requests
are released before time 2, there will be a moment when the vehicle has the
possibility of serving two requests.

Proof. Since the vehicle is moving towards −1, we may assume that the other
n − 1 requests are all located in 1; thus we will use the same notations as in
the proof of Theorem 3. The earliest possible release time for f2 is 1 + T . For
2 ≤ i ≤ n− 1,

• if 2− ti+1 ≥ 1
2 (2− ti), it follows from Remark 3 that it is possible for the

vehicle to serve both fi and fi+1.

• if 2− ti+1 < 1
2 (2− ti), then tn−1 > 2− T . Thus, tn > 2; and it is possible

to serve both f1 and fn.

Theorem 5. For T0 =
1

2n−3+1 , we have λIn,T0 ≥ 1
n
+ ǫ, where ǫ = 1

n(n−1)(n+3) .

Proof. We define the algorithm Al1 as follows:

(a) When the first request f1 is released, head towards it. We may assume
that f1 = (−1, [1, 3], 1).

(b) While no weight is greater than κ = 1+nǫ
1−n(n−1)ǫ and the vehicle does not

have the possibility of serving two requests, keep going towards f1.

(c) If a request fi appears with weight δi > κ, head towards it and behave
like GR0 from this point onwards.

(d) If at some point the vehicle has the possibility of serving two requests,
combine their weights and behave like GR0.

We will show that λ
In,T0

Al1 ≥ 1
n
+ ǫ.

- Case (b): If no weight is greater than κ and the vehicle never has the possibility
of serving two requests, it will reach f1 at time 2. It follows from Lemma 2 that
at most n− 1 requests have been released at this point. Therefore, the vehicle’s
performance is at least 1

κ(n−1) . Note that with ǫ = 1
n(n−1)(n+3) , we have

1

κ(n− 1)
=

1− n(n− 1)ǫ

1 + nǫ

1

n− 1
=

1

n

n2 + 2n

n2 + 2n− 2
>

1

n

n2 + 2n− 2

n2 + 2n− 3
=

1

n
+ ǫ.

- Case (c): If δ1 = 1 and δi > 1+nǫ
1−n(n−1)ǫ , we cannot have both max(δi) ≤

(1
n
+ ǫ)Sn and min(δi) ≥ (1

n
− (n − 1)ǫ)Sn. And since max(δi) ≤ (1

n
+ ǫ)Sn

implies min(δi) ≥ (1
n
− (n− 1)ǫ)Sn, we have: max(δi)

Sn
> 1

n
+ ǫ.

- Case (d): Let us assume that, at time tj , the vehicle becomes able to serve
two requests of weights δi and δj . Let ∆ = {1, . . . , n + 1} − {i, j} and let

14

δn+1 = δi + δj . Let J = {1 ≤ k ≤ j|fk is no longer reachable at time tj} and
let δ = maxk∈∆−J δk. We define S∆ =

∑

k∈∆ δk and SJ similarly. Note that
when the possibility of serving two requests appears at time tj , the request f1 is
still reachable. Hence, 1 /∈ J and δ ≥ 1. Also, since we are in case (d), ∀k ∈ J ,
δk ≤ κ. By behaving like GR0, the vehicle is sure to serve a request of weight
at least δ. As κ > 1, we have:

S∆ ≤ (n− 1− |J |)δ ≤ κδ(n− 1− |J |) and SJ ≤ κ|J | ≤ κδ|J |.

Hence, the vehicle’s optimal performance is at least equal to:

δ

Sn

=
δ

S∆ + SJ

≥ 1

κ(n− 1)
>

1

n
+ ǫ.

Corollary 1. We have λIn,T = 1
n

if and only if T < 1
2n−3+1 .

Proof. This follows directly from Theorem 3, Theorem 5 and the fact that λIn,T

increases with T .

In order to prove that the bound given in Theorem 4 is tight, we define the
algorithm Al2 as follows:

(a) When f1 is released at t1 = 1 in −1, go towards −1.

(b) When f2 is released at t2 in 1, if t2 > 2− 2n−3T1, keep going towards −1
either until two requests can be served by changing direction, or until f1
is reached; else go towards 1 and set τ2 as the ETA in 1.

(c) Similarly, while the vehicle has changed direction with each new request,
when fi is released at ti in (−1)i, if ti > τi−1 − 2n−1−iT1, keep going
towards (−1)i−1 either until two requests can be reached by changing
direction, or until fi−1 is reached; else change direction towards (−1)i and
set τi as the ETA in (−1)i.

Lemma 3. For n ≥ 3 and given a delay T ≥ T1 = 1
2n−1−2 , the algorithm Al2

guarantees that if n requests are released, either the vehicle can serve at least
two requests or no optimal offline algorithm can serve all requests.

Proof. We may assume that the first request released by the adversary is f1 =
(−1, [1, 3], 1) and the vehicle applies Al2. Assuming it exists, let i denote the
smallest index for which ti > τi−1 − 2n−1−iT . The vehicle will keep going
towards (−1)i−1. For i ≤ k ≤ n − 1, if τi−1 − tk+1 ≥ 1

2 (τi−1 − tk), then it
follows from Remark 3 that the vehicle can serve both fk and fk+1. However,
if τi−1 − tk+1 < 1

2 (τi−1 − tk), for all i ≤ k ≤ n− 1, then τi−1 − tn−1 < T so the
n-th request cannot be released before fi−1 is reached.

Since ∀i ≥ 2, τi = 2ti− τi−1+2, if ∀2 ≤ i ≤ n− 1, ti ≤ τi−1− 2n−1−iT , then

τn−1 ≤ τ1 + 2(n− 2)−
n−2
∑

i=1

2iT ≤ τ1 + 2(n− 2)−
n−2
∑

i=1

2iT1 = 2n− 3.

15

So if tn < τn−1, then 2n− 1 /∈ [tn, tn + 2]. Hence, either the vehicle can serve
two requests, or the optimal offline algorithm cannot serve all the requests.

Theorem 6. For T1 = 1
2n−1−2 , we have γIn,T1 > 1

n
.

Proof. Let 0 < ǫ < 1
n2 , κ = 1+nǫ

1−n(n−1)ǫ and let the sequence (ωi) be defined by

ω1 = 1 and ωi+1 = ωi(1 − n2ǫ)− (i − 2)(κ− ωi). We define the algorithm Al3
as follows:

(a) When f1 = (−1, [1, 3], 1) is released and while each request fi has a weight
satisfying ωi ≤ δi ≤ κ and no two requests can be served, apply Al2.

(b) If the request fi has a weight δi > κ or δi < ωi, apply GR0.

(c) If two requests can be served, combine them and apply GR0.

We will show that for ǫ small enough, Al3 guarantees a competitive-ratio of
1
n
+ ǫ.
We can show by induction that ωi ≤ 1 and ωi = 1+O(ǫ). Since κ > 1 ≥ ωi,

we have (ωi) is decreasing. Note also that κ = 1 +O(ǫ), so ωi

κ
= 1 +O(ǫ).

- Case (a): Assume that for all i, ωi ≤ δi ≤ κ and no two requests can ever
be served. Then, the vehicle applies Al2 until the end. It follows from Lemma
3 that the optimal offline algorithm will not be able to serve n requests. Thus
the competitive ratio in this case is at least ωn

(n−1)κ = 1
n−1 + O(ǫ). Hence, for ǫ

small enough, this competitive ratio is greater than 1
n
+ ǫ.

- Case (b.1): Assume now that the vehicle switches from Al2 to GR0 when
a request fi is released with δi > κ. This case is identical to Case (c) in the
proof of Theorem 5. Thus, the performance is at least 1

n
+ ǫ.

- Case (b.2): Assume now that the vehicle switches from Al2 to GR0 when
a request fi has a weight δi < ωi. Let j denote the index of the request towards
which the vehicle was heading when fi was released. Let δ = max{δk, k >
i} ∪ {δj}. The vehicle will at least serve a request of weight δ, with δ ≥ ωi−1

and δi < ωi. The sum of the weights is at most (n− i+ 1)δ + δi + (i− 2)κ. So
the competitive ratio is at least

δ

(n− i+ 1)δ + δi + (i − 2)κ
≥ ωi−1

(n− i+ 1)ωi−1 + ωi + (i− 2)κ

≥ ωi−1

(n− i+ 1)ωi−1 + ωi−1(1− n2ǫ) + (i− 2)ωi−1

≥ 1

n− n2ǫ

≥ 1

n
+ ǫ.

- Case (c): Assume now that the vehicle switches from Al2 to GR0 when
two requests can be served. This case is similar to Case (d) of the proof of
Theorem 5. The only difference is that we no longer have δ ≥ 1. Using the

16

same notations, we have instead δ ≥ ωj−1. Thus the performance is at least
ωj−1

κ(n−1) . For ǫ small enough, this is greater than 1
n
+ ǫ.

Hence, for ǫ small enough, Al3 guarantees a competitive ratio of 1
n
+ ǫ.

We close this section by showing that the optimal performance for 1
2 ≤ T < 1

can be expressed using an induction formula. In order to solve the general case
for 1

2 ≤ T < 1, we introduce a variant problem in which the initial state is
modified. Thus we define the optimal weighted performance λIn,T ,δ0 as the
optimal performance obtained by an algorithm in the case where the vehicle’s
starting position at t = 0 is somewhere in]T − 1, 1− T [, requests with a total
weight of δ0 ≥ 0 have already been missed and the next request to appear is
of weight 1. We will show that this is well defined as the optimal weighted
performance does not depend on where in]T − 1, 1− T [the vehicle starts.

Theorem 7. For 1
2 ≤ T < 1, the optimal weighted performance λIn,T ,δ0 satisfies

the following:

• λI1,T ,δ0 = 1
1+δ0

and λI2,T ,δ0 = 1
2+δ0

,

• ∀n ≥ 3,

λIn,T ,δ0 = inf
δ2≥0

max{ 1

δ0 + 1 + δ2
,min{λIn−2,T ,

δ0+1+δ2
δ2 ,

λIn−1,T ,
δ0+1

δ2 }}.

Proof. If n = 1, the vehicle will reach the request of weight 1, so its performance
will be 1

1+δ0
. If n = 2, the vehicle will always be able to reach one of the two

requests, and the worst case is when both requests are released with delay T at
opposite ends and with equal weights. In that case, the vehicle’s performance
is 1

2+δ0
. Let us now consider n ≥ 3. We may assume that the first request

is f1 = (−1, [0, 2], 1) and that the vehicle will move towards it. After a delay
of at least T and before f1 is served, the adversary will release a request f2 =
(1, [t2, t2+2], δ2). The vehicle will thus have two options. If it continues towards
the first request, it will serve f1 before a third request can be released and its
performance will be 1

δ0+1+δ2
. If it changes direction towards f2, it will have

returned to the interval]T − 1, 1−T [at time t2 +T . While the vehicle remains
in this interval, the adversary may release a request f3 = (−1, [t3, t3 + 2], δ3),
and the vehicle will have to choose between f2 and f3. In this case, it follows
from the symmetry of that situation that it is optimal for the adversary to select
δ3 = δ2. If we divide all the weights by δ2, the situation is identical to that of
the problem defined above, with n replaced by n−2 and δ0 replaced by δ0+1+δ2

δ2
.

While the vehicle is in the interval]T − 1, 1−T [, the adversary may choose not
to release a request, and similarly, in this case, n is replaced by n− 1 and δ0 is
replaced by δ0+1

δ2
. Hence,

λIn,T ,δ0 = inf
δ2≥0

max{ 1

δ0 + 1 + δ2
,min{λIn−2,T ,

δ0+1+δ2
δ2 ,

λIn−1,T ,
δ0+1

δ2 }}.

17

Corollary 2. For 1
2 ≤ T < 1, we have λIn,T = βn, where β1 = 1, β2 = 1

2 and
∀n ≥ 3,

βn = inf
δ2≥0

max{ 1

1 + δ2
,min{λIn−2,T ,

1+δ2
δ2 , λ

In−1,T , 1
δ2 }}.

Proof. It follows from the definitions that the optimal performance λIn,T is equal
to the optimal weighted performance λIn,T ,0 with zero requests missed.

Conjecture 1. The formulas in Theorem 7 and Corollary 2 can be simplified
as follows: for all 1

2 ≤ T < 1 and n ≥ 3,

λIn,T ,δ0 = inf
δ2≥0

max{ 1

δ0 + 1 + δ2
, λ

In−2,T ,
δ0+1+δ2

δ2 }

and λIn,T = inf
δ2≥0

max{ 1

1 + δ2
, λ

In−2,T ,
1+δ2
δ2 }.

In the proof of Proposition 2 below, we verify that for n = 3 or 4, we have

λ
In−2,T ,

δ0+1+δ2
δ2 ≤ λ

In−1,T ,
δ0+1

δ2 . Using Proposition 2, we can easily verify that
it is also true for n = 5. So the conjecture is true for small values of n. The
conjecture states that it is inefficient for the adversary to pass on the possibility
of releasing a request when the vehicle comes back near 0.

Table 4 summarises the results obtained so far:

Delay Performance Competitive Ratio

T < T1
1
n

1
n

T1 ≤ T < T0
1
n

> 1
n

T0 ≤ T < 1
2 ≥ 1

n
+ ǫ ≥ 1

n
+ ǫ

1
2 ≤ T < 1 βn ≥ βn

1 ≤ T < 2− 1
n−1 αn−⌊ 1

2−T
⌋ αn−⌊ 1

2−T
⌋

2− 1
n−1 ≤ T 1 1

Table 4: Performances and Competitive Ratios with T0 =
1

2n−3+1
, T1 =

1
2n−1

−2
,

ǫ =
1

n(n−1)(n+3)
.

The performance remains unknown for T0 ≤ T < 1
2 , and the competitive

ratio for T1 ≤ T < 1.

18

7. OPTiWinD with a total number of requests at most 4

In this section, we will give a complete description of what happens when
the number of requests is at most 4.

When there is only one request, the vehicle can always reach it, so the
performance and competitive ratio are equal to 1.

When the number of requests is at most two, the performance and compet-
itive ratio are equal to 1

2 if T < 1 and 1 otherwise.
For n = 3, the cases T < 1

2 and T ≥ 1 are covered by Theorem 4 and
Theorem 2, respectively. The case 1

2 ≤ T < 1 is given as an induction formula
in Theorem 7. In the following proposition, we calculate the induction formula
for n = 3 and n = 4.

Proposition 2. For 1
2 ≤ T < 1, we have λI3,T ,δ0 = 2

3+δ0+
√

δ2
0
+2δ0+5

and

λI4,T ,δ0 = 2

4+δ0+
√

δ2
0
+8

.

Proof. Using the formulas given in Theorem 7, we obtain:

λI3,T ,δ0 = inf
δ2≥0

max
{ 1

δ0 + 1 + δ2
,

1

1 + δ0+1+δ2
δ2

}

.

In the inf max above, the first term is decreasing while the second is increas-
ing in δ2. Hence, the inf max is reached when there is equality.

δ0 + 1 + δ2 = 1 +
δ0 + 1 + δ2

δ2

⇔ δ22 + (δ0 − 1)δ2 − (δ0 + 1) = 0

⇔ δ2 =
1− δ0 +

√

δ20 + 4δ0 + 5

2

Hence, λI3,T ,δ0 = 2

3+δ0+
√

δ2
0
+4δ0+5

.

It follows that for δ′0 = δ0+1
δ2

, we have

λI3,T ,δ′0 =
2

3 + δ′0 +
√

δ′0
2 + 4δ′0 + 5

<
2

3 + δ′0 +
√

(δ′0 + 3)2
=

1

3 + δ′0
= λI2,T ,1+δ′0 .

Hence, λI4,T ,δ0 = inf
δ2≥0

max
{

1
δ0+1+δ2

, 1

2+
δ0+1+δ2

δ2

}

.

Thus,

δ0 + 1 + δ2 = 2 +
δ0 + 1 + δ2

δ2

⇔ δ22 + (δ0 − 2)δ2 − (δ0 + 1) = 0

⇔ δ2 =
2− δ0 +

√

δ20 + 8

2
.

19

t = 1-1

f1, f3

1

f2

2− ǫ 4− 3ǫ

Figure 2: vehicle’s itinerary for n = 3 and 1
2
≤ T < 1 in Proposition 3.

Hence, λI4,T ,δ0 = 2

4+δ0+
√

δ2
0
+8

.

Corollary 3. For 1
2 ≤ T < 1, we have λI3,T = 1

ϕ2 , where ϕ is the golden ratio,

and λI4,T = 1−
√
2
2 .

Proposition 3. For 1
2 ≤ T < 1, we have γI3,T = 1

ϕ2 , where ϕ is the golden
ratio.

Proof. For 1
2 ≤ T < 1 and n = 3, the adversary can limit the competitive ratio

by using the following strategy:

(a) First, release a request f1 = (−1, [1, 3], 1).

(b) Assuming the vehicle moves towards f1, release f2 = (1, [2 − ǫ, 4− ǫ], ϕ),
with ǫ < min{ 1

3 , 1− T }.

(c) If the vehicle keeps going towards f1, do not release any more requests.

(d) Else, if the vehicle goes towards f2, release f3 = (−1, [4 − 3ǫ, 6 − 3ǫ], ϕ).
(see Figure 2)

Since 2i − 1 ∈ [ti, ti + 2], the offline algorithm can serve all the requests. If
the vehicle chooses to keep going towards f1 when f2 is released, the competitive
ratio will be 1

1+ϕ
. Else, if it changes directions, the competitive ratio will be

ϕ
1+2ϕ = 1

1+ϕ
= 1

ϕ2 .

In Table 5, we summarise the results obtained for n = 3.

Delay Performance Competitive Ratio

T < 1/2 1/3 1/3

1/2 ≤ T < 1 1/ϕ2 ≈ 0.3820 1/ϕ2 ≈ 0.3820

1 ≤ T < 1.5 1/2 1/2

1.5 ≤ T 1 1

Table 5: Performances and Competitive Ratios for n = 3

For n = 4, the cases T < 1
6 and T ≥ 1 are covered by Theorem 4 and

Theorem 2, respectively. In the case where 1
2 ≤ T < 1, the performance is given

in Corollary 3.

20

f1 f2

f3
f4 1

δ1
S4
, δ1 = δ4toward -1

f ′
4 -1

δ3
S′

4

, δ3 = δ′4toward 1

1

toward -1

f ′
3

f ′′
4 1

δ′3
S′′

4

, δ′3 = δ′′4toward -1

f ′′′
4 -1

δ2
S′′′

4

, δ2 = δ′′′4toward 1

-1tow
ard

1

1

toward -1

-1

Figure 3: Decision tree for the vehicle’s movements, T < 1/6 and at most 4 requests. The
locations of the requests are given in the grey rectangles. The value of the competitive ratio
and the condition on the weight of the fourth request relative to each branch are indicated on
the right.

Note that for n = 4 and T < 1
6 , the game can be represented as a decision

tree shown in Figure 3. Assuming δ1 = 1, δ4 = δ1, δ
′
4 = δ3, δ

′′
4 = δ′3 and δ′′′4 = δ2,

the optimal performance is

λI4,T=min
δ2

max{min
δ3

max{ δ1
S4

,
δ3
S′
4

},min
δ′
3

max{ δ′3
S′′
4

,
δ2
S′′′
4

}}.

Proposition 4. For 1
3 ≤ T < 1

2 , we have λI4,T = 2−
√
3.

Proof. For 1
3 ≤ T < 1

2 , when the vehicle keeps moving towards −1, the adversary
cannot release the fourth request before f1 is served. This corresponds to replac-

ing δ4 = δ1 in the case shown in Figure 3 with δ4 = 0. By setting
δ′3
S′′

4

= δ2
S′′′

4

, we

obtain δ′3 = δ2. Setting δ1
S4

= δ3
S′

4

with δ4 = 0 gives δ3 = 1−δ2
2 + 1

2

√

δ22 + 2δ2 + 5.

Then, setting δ1
S4

= δ2
S′′′

4

, we deduce that δ2 is a root of 2X3 − 3X − 1. Hence,

δ2 = 1+
√
3

2 , and λI4,T = 2−
√
3.

The adversary can limit the performance to 2 −
√
3 by using the following

strategy with the optimal weights found above and ǫ = 1
2 − T :

(a) First, release a request f1 = (−1, [1, 3], 1).

(b) Assuming the vehicle moves towards f1, release f2 = (1, [2−T − ǫ, 4−T −
ǫ], δ2).

(c) If the vehicle keeps going towards −1, release f3 = (1, [2− ǫ, 4− ǫ], δ3). If
the vehicle keeps going towards −1, do not release a fourth request; else,
if it changes directions, release a request f ′

4 = (−1, [4− 3ǫ, 6− 3ǫ], δ′4).

(d) Else, if the vehicle changes directions, release a request f ′
3 = (−1, [4 −

3T − 3ǫ, 6− 3T − 3ǫ], δ′3). If it changes directions again, release a request
f ′′
4 = (1, [6− 4T − 5ǫ, 8− 4T − 5ǫ], δ′′4); else, release f ′′′

4 = (−1, [4− 2T −
3ǫ, 6− 2T − 3ǫ], δ′′′4).

This strategy satisfies the condition relative to the delays and prevents the
vehicle from serving two requests. Hence, λI4,T = 2−

√
3.

21

In order to avoid a lengthy case study, the remaining competitive ratios for
n = 4 will be listed without detailed proof; but we will give a general idea of
how they can be obtained.

Claim 1. For n = 4 and 1
6 ≤ T < 1, the competitive ratios are as follows:

1. for 1
6 ≤ T < 1

5 , γ
I4,T ≈ 0.2578,

2. for 1
5 ≤ T < 1

4 , γ
I4,T = 2−

√
3 ≈ 0.2679,

3. for 1
4 ≤ T < 1

3 , γ
I4,T ≈ 0.2803,

4. for 1
3 ≤ T < 1

2 , γ
I4,T = 1−

√
2
2 ≈ 0.2929,

5. for 1
2 ≤ T < 1, γI4,T ≈ 0.3177.

General Idea of the proof: If all the requests in figure 3 are maintained, from
the delay condition and from the fact that the adversary prevents the vehicle
from serving two requests, we obtain the following conditions on the release
times:

• t4 < τ1 = 2,

• t3 ≤ t4 − T < 2− T ,

• t2 ≤ t3 − T < 2− 2T ,

• t′′′4 < τ2 = 2t2 < 4− 4T ,

• t′3 < t′′′4 − T < 4− 5T ,

• t′′4 < τ3 ≤ t′3 + 2− T < 6− 6T .

In order for the optimal offline algorithm to serve all the requests, we require
that t′′4 ≥ 5. Hence, this is possible only when T < 1

6 .
If the adversary chooses not to release f ′′

4 , the conditions become:

• t4 < 2,

• t3 ≤ t4 − T < 2− T ,

• t2 ≤ t3 − T < 2− 2T ,

• t′′′4 < τ2 = 2t2 < 4− 4T ,

• t′3 < t′′′4 − T < 4− 5T ,

The optimal offline condition now gives T < 1
5 .

If the adversary chooses not to release f4, the conditions become:

• t3 < τ1 = 2,

• t2 ≤ t3 − T < 2− T ,

22

• t′′′4 < τ2 = 2t2 < 4− 2T ,

• t′3 < t′′′4 − T < 4− 3T ,

• t′′4 < τ3 ≤ t′3 + 2− T < 6− 4T .

The optimal offline condition now gives T < 1
4 .

If the adversary chooses not to release f4 and f ′′
4 , the conditions become:

• t3 < τ1 = 2,

• t2 ≤ t3 − T < 2− T ,

• t′′′4 < τ2 = 2t2 < 4− 2T ,

• t′3 < t′′′4 − T < 4− 3T ,

The optimal offline condition now gives T < 1
3 .

If the adversary chooses not to release f4 and f ′′′
4 , the conditions become:

• t3 < τ1 = 2,

• t2 ≤ t3 − T < 2− T ,

• t′3 < τ2 = 2t2 < 4− 2T ,

• t′′4 < τ3 ≤ t′3 + 2 < 6− 2T ,

The optimal offline condition now gives T < 1
2 .

Solving the corresponding minmax problem in each of these cases yields the
above competitive ratios. Note that choosing not to release f ′

4 does nothing
to loosen the conditions on the times. Also, choosing not to release f ′′′

4 gives
the condition T < 1

4 and yields the same competitive ratio as not releasing f4.
Finally, not releasing f ′′

4 and f ′′′
4 gives T < 1

4 , same as not releasing f ′′′
4 , so it is

not relevant.
In Table 6, we summarise the results obtained for n = 4.

We conjecture that the behaviour of the performance and competitive ratio is
the same for n > 4 as that exhibited for n = 4:

Conjecture 2. For a fixed n ≥ 4, the functions λIn,T and γIn,T are step
functions in T , constant on the interval [1

k
, 1
k−1 [, for 2 ≤ k ≤ 2n−1 − 2.

8. Generalisation to Geodesic Metric Spaces

In this section, we investigate which of the previous results remain valid
when the game is played on a geodesic space instead of a segment.

Recall that the diameter of E = (X, d) is defined as sup(x,y)∈X2 d(x, y).

Proposition 5. Given a geodesic metric space E of diameter 2 with two points
at distance 2 and given a delay T , the performance and competitive ratio on
E are at most equal to that on [−1, 1]. In other words, any negative result
concerning OPTiWinD on a segment can be extended to geodesic metric spaces
for which the diameter is reached.

23

Delay Performance Competitive Ratio

T < 1/6

1/4

1/4

1/6 ≤ T < 1/5 0.2578

1/5 ≤ T < 1/4 2−
√
3 ≈ 0.2679

1/4 ≤ T < 1/3 0.2803

1/3 ≤ T < 1/2 2−
√
3 ≈ 0.2679 1−

√
2/2 ≈ 0.2929

1/2 ≤ T < 1 1−
√
2/2 ≈ 0.2929 0.3177

1 ≤ T < 1.5 1/ϕ2 ≈ 0.3820 1/ϕ2 ≈ 0.3820

1.5 ≤ T < 5/3 1/2 1/2

5/3 ≤ T 1 1

Table 6: Performances and Competitive Ratios for n = 4

Proof. Let E = (X, d) be a geodesic metric space with diameter 2 and A,B ∈ X
such that d(A,B) = 2. Any strategy of the adversary applicable to [−1, 1] can be
used on a minimum distance path γ from A to B. If all requests are located on γ,
since γ is a minimum distance path, the vehicle cannot improve its performance
by moving outside of γ. Thus, for all delay T , the performance and competitive
ratio on E are at most equal to those on [−1, 1].

Theorem 8. Theorem 1, Theorem 3 and Theorem 4 can be extended to all
geodesic metric spaces of diameter 2.

Proof. Let E = (X, d) be a geodesic metric space with diameter 2. The positive
part of these results is given in Lemma 1, which states that the algorithm GR0

guarantees a performance of 1
n
. This is still true when the game is played on

E. If the diameter of E is reached, then the result follows from Proposition 5.
Otherwise, for ǫ > 0, we can find A,B ∈ X such that d(A,B) = 2 − ǫ and a
path γ from A to B of length 2− ǫ. Using the same notations as in the proof of
Theorem 3, we obtain the following conditions:

• tn < 2− ǫ,

• tn−1 < 2− ǫ− T ,

• ti < 2− ǫ− 2n−1−iT ,

• 1 + T ≤ t2 < 2− ǫ− 2n−3T .

Hence, we obtain T < (1 − ǫ)T0. Thus, choosing ǫ < 1 − T
T0

is sufficient for
the strategy described in the proof of Theorem 3 to work on γ. Theorem 1 also
works on γ as it is a special case of Theorem 3.

In the proof of Theorem 4, all that changes when playing on γ is the values
of the ETAs, which only affect the proof of point c). However, the relation

24

τi+1 = τi + 2 − 2n−1−iT + O(ǫ) is still true. Thus, for ǫ small enough, the
optimal offline algorithm will serve all requests, and Theorem 4 is still valid in
this case.

Definition 2. We say that a geodesic metric space E = (X, d) with origin O
and diameter 2 is centred if X ⊂ B(O, 1), where B(O, 1) is the closed ball of
radius 1 centred in O.

Theorem 9. Theorem 2 and Theorem 7 can be extended to centred geodesic
metric spaces of diameter 2.

Proof. Let E = (X, d) be a geodesic metric space with diameter 2 and origin
O. In the proof of Theorem 2, the positive part of the result is shown by
considering algorithm GR1. When playing on E, we adapt GR1 by heading
towards O instead of 0 in case (a). The proof that GR1 work on E is identical
to that of Theorem 2. The key point is that we still have i0 = ⌊ 1

2−T

⌋

.
In order to prove the negative result, we choose A,B ∈ X such that d(A,B) =

2 − ǫ′ and a minimum distance path γ from A to B. The adversary can apply
on γ the strategy described in the proof of Theorem 2 with one modification:
for i ≥ i0 + 2, choose ηi = i−i0

n
− 3

2n − (i − 3
2)ǫ

′. This allows the relation
ti = τi−1 − 1

2n for i ≥ i0 + 2 to be valid on a path of length 2 − ǫ′. It follows
that for ǫ′ < 5

n2 , we still have ηi < 1, ∀i ≥ i0 + 2. Therefore, this strategy of
the adversary limits the competitive ratio of the vehicle to αn−⌊ 1

2−T
⌋.

For Theorem 7, we choose A and B with d(A,B) > 2T . In the proof of
Theorem 7, −1 and 1 are replaced with A and B, respectively, and the interval
]T − 1, 1− T [becomes X − (B(A, T)∪B(B, T)). The rest of the proof remains
identical.

Remark 5. If E is a circle, E is not centred, and both Theorem 2 and Theorem
7 do not apply whenever n ≥ 3.

Proposition 6. Depending on the geodesic metric space, the smallest delays for
which the optimal performance and optimal competitive ratio are greater than 1

n

may be greater than T0 = 1
2n−3+1 and T1 = 1

2n−1−2 respectively.

Proof. Let E be a star with central point O and 3 branches of length 1. Lemma
2 and Lemma 3 do not apply to E as the adversary can now release requests
at the end of the third branch. It follows that Theorem 5 and Theorem 6 do
no apply when the game is played on E. Let A,B and C denote the endpoints
of the branches of the star. For n = 5 and T < 1

4 , let ǫ < 1 − 4T . The
adversary will release a request f1 = (A, [1, 3], 1). Recall that when the vehicle
may choose between two symmetric requests of equal weights, it is optimal to
head towards the closest one. So, while the vehicle keeps going towards A, the
adversary will release the following requests: f2 = (B, [2−3T − ǫ, 4−3T − ǫ], 1),
f3 = (C, [2 − 2T − ǫ, 4 − 2T − ǫ], 1), f4 = (C, [2 − T − ǫ, 4 − T − ǫ], 1) and
f5 = (C, [2 − ǫ, 4 − ǫ], 1). With this strategy, the adversary limits the optimal
performance to 1

5 , even if T0 < T < 1
4 . Note that this strategy was not possible

on the segment because it requires that f2 and f3 be located in different branches

25

of the star, otherwise the vehicle could reach both. A similar strategy can be
used by the adversary to limit the optimal competitive ratio to 1

5 when T is
slightly greater than T1.

9. Conclusion

In this paper, we introduced the delay between requests as a new parameter
in the standard online orienteering problem. While this new parameter seems
very natural, to our knowledge, it had not been studied previously. We analysed
the performances and competitive ratios in the case where the length of the
time windows is equal to the diameter of the space. We obtained a complete
resolution when the number of requests is at most 4. In the case of n requests, we
solved the problem when T ≥ 1 or T < 1

2n−1−2 . Our results for small numbers
of requests give us an accurate idea of what to expect in the intermediate case.
Other choices regarding the length of the time windows, which may be relevant
for different applications, remain to be investigated.

Acknowledgements

We acknowledge the support of GEO-SAFE, H2020-MSCA-RISE-2015 project
691161.

References

References

[1] Ausiello, G., Demange, M., Laura, L., and Paschos, V. (2004). Algorithms
for the on-line quota traveling salesman problem. Information Processing
Letters, 92(2):89 – 94.

[2] Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., and Talamo, M.
(2001). Algorithms for the on-line travelling salesman1. Algorithmica,
29(4):560–581.

[3] Awerbuch, B., Azar, Y., Blum, A., and Vempala, S. (1997). New approxi-
mation guarantees for minimum-weight k-trees and prize-collecting salesmen.
SIAM Journal on Computing, 28.

[4] Deza, M. M. and Deza, E. (2009). Encyclopedia of distances. Springer,
Berlin.

[5] Feillet, D., Dejax, P., and Gendreau, M. (2005). Traveling salesman problems
with profits. Transportation Science, 39(2):188–205.

[6] Golden, B. L., Levy, L., and Vohra, R. (1987). The orienteering problem.
Naval Research Logistics (NRL), 34(3):307–318.

26

[7] Gutiérrez, S., Krumke, S. O., Megow, N., and Vredeveld, T. (2006). How to
whack moles. Theoretical Computer Science, 361(2):329–341.

[8] Irani, S., Lu, X., and Regan, A. (2004). On-line algorithms for the dynamic
traveling repair problem. Journal of Scheduling, 7(3):243–258.

[9] Laporte, G. and Martello, S. (1990). The selective travelling salesman prob-
lem. Discrete Applied Mathematics, 26(2-3):193–207.

[10] Vansteenwegen, P., Souffriau, W., and Oudheusden, D. V. (2011). The
orienteering problem: A survey. European Journal of Operational Research,
209(1):1 – 10.

27

Appendix

In this section, we study the sequence (αn) defined in Section 4. We give an
explicit formula for δi and calculate the limit of (αn).

We have the following definition of αn for n ≥ 1:

αn = inf
δ∈(R∗

+
)n
max{ δ1

S2
, · · · , δi

Si+1
, · · · , δn−1

Sn

,
δn
Sn

},

where Si =
∑i

k=1 δk. Since multiplying all the δi by a positive constant makes
no difference to the ratios, we may choose δ1 = 1. To lighten the notation, we
will omit the index n and will denote αn by α.

Proposition 7. The value of α is realised for a unique vector δ ∈ (R∗
+)

n with
δ1 = 1 such that for 1 ≤ i ≤ n:

δi =
(1

2
+

1− 2α

2
√
1− 4α

)(1 +
√
1− 4α

2α

)i−1

+
(1

2
− 1− 2α

2
√
1− 4α

)(1−
√
1− 4α

2α

)i−1

.

Proof. Note that:

inf
δn−1,δn

max{ δn−2

Sn−1
,
δn−1

Sn

,
δn
Sn

}

= inf
δn−1

inf
δn

max{ δn−2

Sn−1
,max{δn−1

Sn

,
δn
Sn

}}

= inf
δn−1

max{ δn−2

Sn−1
, inf
δn

max{δn−1

Sn

,
δn
Sn

}}.

By repeating this inversion, we obtain that:

α = inf
δ2

max{ 1

S2
, inf
δ3

max{ δ2
S3

, inf
δ4

max{

· · · , inf
δn

max{δn−1

Sn

,
δn
Sn

} · · · }}}

In the above equation, the operator infδi is applied to the max of two terms,
the first being decreasing in δi and the second increasing in δi. It follows that
the optimal value is reached when:

∀1 ≤ i ≤ n− 1,
δi

Si+1
=

δn
Sn

= α

Thus, we obtain the following equations (Ei), for all 2 ≤ i ≤ n:

(Ei) α =
δi

Si+1
=

δi−1

Si

and (En) δn−1 = δn = αSn.

28

Thus, δi = αSi+1 and δi−1 = αSi. Hence, δi − δi−1 = αδi+1. The sequence (δi)
satisfies a second order linear recurrence relation. Its characteristic equation is
X2 − 1

α
X + 1

α
= 0 and the discriminant is ∆ = 1

α2 (1− 4α).
If ∆ = 0, we have α = 1

4 . Hence, δi = (i + 1)2i−2, for 1 ≤ i ≤ n. This
contradicts (En). So ∆ 6= 0.

Thus the characteristic equation has two roots r± = 1
2α (1±

√
1− 4α), where√

1− 4α may be an imaginary number. So there exists a λ and a µ such that
∀1 ≤ i ≤ n, δi = λri−1

+ + µri−1
− .

Since δ1 = 1, we have λ + µ = 1. Similarly, using δ2, we obtain that
λ− µ = 2√

∆
(δ2 − 1

2α). The result follows.

Lemma 4. The roots of the characteristic equation X2 − 1
α
X + 1

α
= 0 are

complex conjugates.

Proof. Using the same notations as above, let us assume that ∆ > 0 (i.e. α < 1
4).

Then, r+, r−, λ and µ are real numbers. It follows from (E1) that δ2 = 1
α
− 1.

Hence, λ− µ > 0. Since λ+ µ = 1, we have λ > 0. Since
√
1− 4α < 1, we have

r+ ≥ r− > 0.
Since δn−1 = δn, we have:

λrn−2
+ (r+ − 1) = −µrn−2

− (r− − 1) (1)

Since α < 1
4 , we have r+ ≥ 2. It follows that in Equation 1, the left hand side

is positive and µ 6= 0. Let us now consider two cases:

1. If µ < 0, it follows from Equation 1 that r− − 1 > 0, since all the other
terms are positive. Yet, λ > −µ and r+ ≥ r−. Hence, Equation 1 is
impossible.

2. If µ > 0, the right hand side of Equation 1 being positive requires r− < 1.
Since r+ ≥ 2 and r− > 0, we have r+ − 1 > 1 − r−. Yet, since λ ≥ µ,
Equation 1 is impossible.

Therefore, since ∆ 6= 0, we have ∆ < 0 and α > 1
4 . Hence, r+ and r− are

complex conjugates, as are λ and µ.

Lemma 5. The sequence (αn) is decreasing.

Proof. Choosing (δ1, . . . , δn) as the vector which realises αn−1 and δn = 0 yields:

max{ δ1
S2
, · · · , δi

Si+1
, · · · , δn−1

Sn
, δn
Sn

} = αn−1. Hence, αn ≤ αn−1. Since this is not

the vector described in Proposition 7, we have αn < αn−1.

Proposition 8. The sequence (αn) decreases towards 1
4 when n → +∞.

Proof. Using the same notations as above, it follows from Proposition 7 and
Lemma 4 that δi = 2Re(λri+) > 0. Hence, −π

2 < arg(λri+) <
π
2 . Thus,

i. arg r+ + argλ mod (2π) <
π

2
.

29

Since λ + µ = 1, we have Re(λ) = 1
2 , and −π

2 < argλ < π
2 . Hence,

0 < i. arg r+ mod (2π) < π. Thus, there exists an integer ki, 0 ≤ ki < i, such

that 2kiπ
i

< arg r+ < (2ki+1)π
i

. Since this is true for all 1 ≤ i ≤ n, we have
ki = 0 for all i, and 0 < arg r+ < π

n
. Therefore limn→+∞ arg r+ = 0. Since

Im(r+) =
√
4α−1
2α , we have limn→+∞ α = 1

4 .

Proposition 9. The first values of (αn) are α1 = 1, α2 = 1
2 , α3 = 1

ϕ2 , where

ϕ is the golden ratio, and α4 = 1
3 .

Proof. While α1 is trivially equal to 1, the following terms of the sequence are
calculated using the equations (Ei).

• For n = 2, (E2) yields δ1 = δ2 = 1 and α = 1
2 .

• For n = 3, equations (E2) and (E3) yield 1
S2

= δ2
S3

= δ3
S3

= α. Thus,

δ2 = δ3 = ϕ and α = 1
ϕ2 .

• For n = 4, equations (E2), (E3) and (E4) yield 1
S2

= δ2
S3

= δ3
S4

= δ4
S4

= α.

Thus δ2 = 2 and δ3 = δ4 = 3 and α = 1
3 .

30

This figure "Logo.png" is available in "png"
 format from:

http://arxiv.org/ps/2201.00777v1

http://arxiv.org/ps/2201.00777v1

This figure "whack-a-mole.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2201.00777v1

http://arxiv.org/ps/2201.00777v1

	1 Introduction and related work
	1.1 Defining the problem
	1.2 Related work

	2 Preliminaries
	2.1 Geodesic metric spaces
	2.2 Definitions and notations
	2.3 Performance and competitive ratio
	2.4 Summary of results

	3 OPTiWinDwith no Delay
	4 OPTiWinDwith Large Delays
	5 OPTiWinDwith Small Delays
	6 OPTiWinDwith Medium Delays
	6.1 Tightness of the bounds T0 and T1

	7 OPTiWinDwith a total number of requests at most 4
	8 Generalisation to Geodesic Metric Spaces
	9 Conclusion

