
ar
X

iv
:2

00
3.

01
59

1v
1

 [
cs

.C
C

]
 3

 M
ar

 2
02

0

Direct Product Primality Testing of Graphs is GI-hard

Luca Calderonia,∗, Luciano Margaraa, Moreno Marzollaa

aDepartment of Computer Science and Engineering, University of Bologna, Italy

Abstract

We investigate the computational complexity of the graph primality testing problem with respect

to the direct product (also known as Kronecker, cardinal or tensor product). In [1] Imrich proves

that both primality testing and a unique prime factorization can be determined in polynomial time

for (finite) connected and nonbipartite graphs. The author states as an open problem how results

on the direct product of nonbipartite, connected graphs extend to bipartite connected graphs

and to disconnected ones. In this paper we partially answer this question by proving that the

graph isomorphism problem is polynomial-time many-one reducible to the graph compositeness

testing problem (the complement of the graph primality testing problem). As a consequence of

this result, we prove that the graph isomorphism problem is polynomial-time Turing reducible

to the primality testing problem. Our results show that connectedness plays a crucial role in

determining the computational complexity of the graph primality testing problem.

Keywords: Kronecker product, graphs factorization, graphs isomorphism, GI complexity

1. Introduction

Factorization is a fundamental task in mathematics and in many other disciplines including

computer science, physics and engineering. The notion of product among mathematical objects

not only enables the creation of new objects from smaller ones, but also naturally addresses the

more complex task of decomposing an object as the product of simpler components. Factoring

a mathematical object is therefore one of the the main methods for deeply understanding its

structure.

Integer factorization is by far the most widely known and studied factorization problem;

however, many other types of mathematical objects have been extensively studied in order to

understand if and how they can be factored. Specifically, graph factorization with respect to

several notions of product has been thoroughly investigated both from the theoretical and from

the practical point of view.

In this paper we investigate the computational complexity of graph factorization with respect

to the direct product (see Definition 2.2) which is one of the most widely studied graph product.

Some authors refer to the direct product as the Kronecker, tensor or cardinal product. We will

∗Corresponding author

Email addresses: luca.calderoni@unibo.it (Luca Calderoni), luciano.margara@unibo.it

(Luciano Margara), moreno.marzolla@unibo.it (Moreno Marzolla)

Preprint submitted to arXiv March 4, 2020

http://arxiv.org/abs/2003.01591v1

name it direct product and we will denote it by the operator × according to the notation used in

the recent book by Hammack, Imrich and Klavžar [2].

Direct product is one of the three products (the other two being the Cartesian and Strong

products) that satisfies the following fundamental algebraic properties (≃ stands for ”isomorphic

to”):

1. Commutativity: G1 ×G2 ≃G2 ×G1

2. Associativity: G1 × (G2 ×G3)≃(G1 ×G2)×G3

3. Projections from a product to its factors are weak homomorphisms

A fourth product have been considered in the literature, namely the lexicographic product.

Lexicographic product does not satisfy properties 1 and 3.

We both consider the primality testing problem and the factorization problem. Informally,

primality testing is a decision problem that, given a graph G, answers the question: “is G the

product of smaller, nontrivial graphs?”. Graph factorization aims at decomposing G into the

product of smaller nontrivial graphs (more formal definitions will be given in the next section).

Although factorization of general with respect to the direct product is not unique, Imrich [1]

proved that if a graph is connected and nonbipartite, then its factorization with respect to the

direct product is unique and can be computed in polynomial time. In this paper we address the

following question posed by Imrich at the end of his paper.

How do results on the cardinal product of nonbipartite, connected graphs extend to

bipartite connected graphs and to disconnected ones ?

We prove (Theorem 4.11) that the graph isomorphism problem reduces to the problem of

testing the compositeness of possibly unconnected, nonbipartite graphs. Since the reduction we

use is a polynomial time many-one reduction, we show (Corollary 4.12) that testing the primality

of a graph is GI-hard. In other words, we prove that testing the primality of a graph in polynomial

time would provide a polynomial time algorithm for testing graph isomorphism, which is widely

considered to be not feasible, although no formal proof exists. It remains an open question

whether testing primality of bipartite, connected graphs can be done in polynomial time

This paper is organized as follows. In section 2 we introduce the notation and definition of

terms used in the rest of this work. In section 3 we review the relevant literature related to the

graph factorization problem. Section 4 presents the main result of this paper. Finally, conclusions

and future research directions are discussed in section 5.

2. Notation and Basic Definitions

In this section we give basic notation and definitions that will be used throughout the paper.

An undirected graph G = (V, E) is described as a finite set V of nodes V = {v1, . . . , vn} and a finite

set of edges E ⊆ V × V , where an edge e ∈ E is an unordered pair of nodes e = {u, v}, u, v ∈ V .

Given a graph G, V(G) and E(G) denote the set of nodes and edges of G, respectively. We denote

by G1 ∪G2 the disjoint union of graphs G1 and G2, i.e., the graph with node set V(G1) ∪ V(G2)

and edge set E(G1) ∪ E(G2). Disjoint means that V(G1) and V(G2) satisfy V(G1) ∩ V(G2) = ∅.

The set of edges of a graph G can be represented also as an adjacency matrix M. If G has n

nodes, M is a n × n binary matrix, such that Mi j = 1 if and only if {vi, v j} ∈ E. The adjacency

2

matrix for undirected graphs is symmetric, since every edge {vi, v j} can also be written as {v j, vi}.

As a shorthand notation, we denote with Adj(G) the adjacency matrix of graph G.

We use the symbol Γ to denote the set of finite, undirected graphs where no self-loops are

allowed. The symbol Γ0 denotes the set of finite, undirected graphs where self-loops are allowed;

a self-loop is an edge of the form {v, v}, for some v ∈ V(G).

Four types of graph products have been investigated in the literature: Cartesian product,

Direct product, Strong product and Lexicographic product. In all cases, the product of two

graphs G1,G2 is a new graph G whose set of nodes is the Cartesian product of V(G1) and V(G2):

V(G) = V(G1) × V(G2) = {{u, v} | u ∈ V(G1) ∧ v ∈ V(G2)}

The edge set E(G) is defined according to the notion of graph product as follows.

Definition 2.1 (Cartesian product). The Cartesian product of two graphs G1,G2 is denoted as

G = G1 �G2, where V(G) = V(G1) × V(G2) and

E(G) =
{

{{x, y}, {x′, y′}} | (x = x′ ∧ {y, y′} ∈ E(G2)) ∨ ({x, x′} ∈ E(G1) ∧ y = y′)
}

Definition 2.2 (Direct product). The direct product of two graphs G1,G2 is denoted as G =

G1 ×G2, where V(G) = V(G1) × V(G2) and

E(G) =
{

{{x, y}, {x′, y′}} | {x, x′} ∈ E(G1) ∧ {y, y′} ∈ E(G2)
}

The direct product is also known as Kronecker or cardinal product.

Definition 2.3 (Strong product). The strong product of two graphs G1,G2 is denoted as G =

G1 ⊠G2, where V(G) = V(G1) × V(G2) and

E(G) = E(G1 �G2) ∪ E(G1 ×G2)

Definition 2.4 (Lexicographic product). The lexicographic product of two graphs G1,G2 is de-

noted as G = G1 ◦G2, where V(G) = V(G1) × V(G2) and

E(G) =
{

{{x, y}, {x′, y′}} | {x, x′} ∈ E(G1) ∨ (x = x′ ∧ {y, y′} ∈ E(G2))
}

Figure 1 shows the Cartesian, direct, strong and lexicographic product of two graphs G1,G2.

A nontrivial graph G ∈ Γ0 is a graph with more than one node (|V(G)| > 1). We say that a

graph G is prime according to a given graph product ⊙ if G is nontrivial and G = G1⊙G2 implies

that either G1 or G2 are trivial, i.e., one of them has exactly one node.

The direct product of G1,G2 can be specified in terms of the Kronecker product of their

adjacency matrices. Given a n × m matrix A and a p × q matrix B, the Kronecker product

C = A⊗B is a np × mq matrix obtained from the scalar multiplication between each element

of A and the whole matrix B:

C = A⊗B =



































a11B a12B . . . a1mB

a21B a22B . . . a2mB
.
.
.

.

.

.
. . .

.

.

.

an1B an2B . . . anmB



































3

G2

G1

(a) Cartesian (G1 �G2)

G2

G1

(b) Direct (G1 ×G2)

G2

G1

(c) Strong (G1 ⊠G2)

G2

G1

(d) Lexicographic (G1 ◦G2)

Figure 1: Example of the different types of graph products.

It can be easily shown [2] that the adjacency matrix Adj(G) of the graph G = G1 ×G2 is

strongly related (see Observation 4.5) to the adjacency matrices Adj(G1) and Adj(G2).

We finally recall the definition of many-one reducibility and Turing reducibility. Given two

sets S 1, S 2 ⊆ N, we say that S 1 is many-one reducible to S 2, if there exists a total computable

function f : N→ N such that [3]

n ∈ S 1 ⇐⇒ f (n) ∈ S 2

A polynomial time many-one reduction (denoted by ≤M) is a many-one reduction with the addi-

tional constraint that f is computable in polynomial time.

Turing reducibility is a weaker form of many-one reducibility. Informally, S 1 is Turing re-

ducible to S 2 if there exists an oracle for testing membership in S 1 relying on another oracle for

testing membership in S 2 [4]. In other words, S 1 is Turing reducible to S 2 if it is possible to

answer the question “is n ∈ S 1” given the existence of an effective procedure for answering the

question “is m ∈ S 2” for any m ∈ N [3].

A polynomial time Turing reduction (denoted by ≤T) is a Turing reduction satisfying the

following two additional constraints:

1. the oracle for testing membership in S 1 makes at most a polynomial number of calls to the

oracle for testing membership in S 2 and

2. the overall computational cost of the oracle for testing membership in S 1 (excluding the

calls to the oracle for testing membership in S 2) is polynomially bounded.

As a final consideration, throughout the paper we intend graphs to be finite and undirected,

unless otherwise specified. Table 1 summarizes the notation used in this paper.

4

Symbol Description

Γ The set of finite, undirected graphs, without self-loops

Γ0 The set of finite, undirected graphs, self-loops allowed

Adj(G) The adjacency matrix of a graph G

In The n × n identity matrix

0n The n × n zero matrix

× The direct graph product operator

� The Cartesian graph product operator

⊠ The strong graph product operator

◦ The lexicographic graph product operator

⊗ The Kronecker matrix product operator

≃ The graphs isomorphism operator

≤M Polynomial many-one reducibility

≤T Polynomial Turing reducibility

∪ Disjoint union of graphs

Table 1: Basic notation.

3. Related works

In this section we list the main results on graph factorization that are strictly related to the

work presented in this paper. The interested reader may find a comprehensive review of the

theory of graph factorizations in the recent book by Hammack, Imrich and Klavžar [2].

Direct product. Prime factorization of connected, nonbipartite graphs in Γ0 is unique up to iso-

morphism and the order of the factors, and can be computed in polynomial time [1].

Cartesian product. Prime factorization of connected graphs is unique up to isomorphism and the

order of the factors [5, 6]. Prime factorization is not unique in the class of possibly disconnected

simple graphs. Following Sabidussi’s approach, Feigenbaum et al. [7] derived a polynomial-time

algorithm that computes the prime factors of a connected graph. A different polyonimial-time

algorithm for connected graphs has been independently discovered by Winkler [8].

Strong product. Prime factorization of connected graphs is unique up to reorderings and isomor-

phisms of factors and it can be computed in polynomial time [1].

Lexicographic product. Determining whether a connected graph is prime is at least as difficult

as the graph isomorphism problem [9].

An interesting observation relating graph factorization and graph isomorphism problem can

be found at the end of page of [2, p. 229]. The authors claim that, if X is the disjoint union of

graphs G and H, then G ≃H if and only if X = D2 �G = D2 ⊠G = D2 ◦G where D2 denotes the

graph with two nodes and two self-loops. They conclude that “testing whether a disconnected

graph is decomposable with respect to any of these three products is at least as hard as the

graph isomorphism problem”. They do not give a formal proof of their claim and in particular

they do not explain how they get rid of the case in which X is the disjoint union of two non

isomorphic graphs G1 and G2 and, at the same time, X admits as a factor a graph with two nodes

5

Graph type Product type

Direct Cartesian Strong Lexicographic

Connected, nonbipartite P [1] P [7, 8] P [10] •

Connected • P [7, 8] P [10] GI-Hard [9]

Unconnected, nonbipartite GI-Hard (our results) • • •

Nonbipartite GI-Hard (our results) • • •

Table 2: Complexity of the graph factorization problem for different types of graphs considered in the literature (con-

nected, unconnected, nonbipartite) and different notions of graph product (direct, cartesian, strong and lexicographic

product); P stands for polynomially time solvable. Table cells reported in light gray can be easily inferred from an-

other cells in the same column depending on the relation between the corresponding classes of graphs. For instance, a

polynomial-time solvable problem for connected graphs is polynomial-time solvable within a restricted class of graphs

(e.g., connected and nonbipartite). Dots denote the cases that, to our knowledge, have not yet been explored.

that is not isomorphic to D2. In that case the decomposability test would lead to erroneously

declare G1 ≃ G2. Moreover, if X admits more than one factorization, also computing a single

factorization could not be enough for testing isomorphism.

In Section 4 we show (see Figures 2 and 3) that when the direct product is used, both these

cases may occur.

4. Main Results

In this section we prove that testing whether two graphs G1,G2 are isomorphic is not harder

than testing whether an undirected graph G ∈ Γ0 is ×-composite, i.e., G admits nontrivial factors

with respect to the direct product decomposition. More formally, we show that graph isomor-

phism problem is polynomially many-one reducible to the problem of testing ×-compositeness

of graphs.

Before starting, we formally define the following three decision problems in terms of their

admissible inputs and related outputs.

Definition 4.1 (GI[S]). Let S be any set of graphs. GI[S] is defined as follows.

Input: G1,G2 ∈ S

Output: yes if G1 is isomorphic to G2, no otherwise.

Definition 4.2 (Primality[S]). Let S be any set of graphs. Primality[S] is defined as follows.

Input: G ∈ S

Output: yes if G is prime with respect to the direct product, no otherwise.

Definition 4.3 (Compositeness[S]). Let S be any set of graphs. Compositeness[S] is defined

as follows.

Input: G ∈ S

Output: yes if G is composite with respect to the direct product, no otherwise.

Definition 4.4 (GI-hard problem). A decisional problem P is GI-hard if and only if

GI[general graphs]≤T P

6

It is easy to observe that GI[general graphs]≤T GI[connected graphs] so that, by transitiv-

ity, we can conclude that a decisional problem P is GI-hard if and only if

GI[connected graphs]≤T P

The following observation highlights the strong relation between the direct product of graphs

and the Kronecker product of their adjacency matrices.

Observation 4.5. Let G1 and G2 be graphs. Then

Adj(G1 ×G2) = P⊺ (Adj(G1)⊗Adj(G2)) P,

where P is a suitable permutation matrix.

In the following lemma we prove that two graphs G1 and G2 are isomorphic if and only if

there exists a permutation matrix P that transforms the adjacency matrix of the disjoint union

of G1 and G2 into the Kronecker product of the identity matrix I2 and a suitable binary matrix B.

Lemma 4.6. Let G1,G2 be undirected, connected graphs with n nodes. Let M1 = Adj(G1) and

M2 = Adj(G2). Let M denote the adjacency matrix of the disjoint union G = G1 ∪G2. Without

loss of generality, we may write M as

M =

(

M1 0n

0n M2

)

(1)

Then, G1 and G2 are isomorphic (G1 ≃G2) if and only if there exists a 2n × 2n permutation

matrix P and a n × n binary matrix B such that

P⊺MP = I2 ⊗B (2)

where I2 denotes the 2 × 2 identity matrix.

Proof. (=⇒) We first prove that if G1 and G2 are isomorphic, then Eq. (2) holds. If G1 ≃G2

then there exists a n × n permutation matrix Q that transforms the adjacency matrix M2 of G2 in

the adjacency matrix M1 of G1:

M1 = Q⊺M2Q (3)

Let us define

P =

(

In 0n

0n Q

)

(4)

It follows that

P⊺MP =

(

In 0n

0n Q⊺

) (

M1 0n

0n M2

) (

In 0n

0n Q

)

by (4) and (1)

=

(

M1 0n

0n Q⊺M2Q

)

=

(

M1 0n

0n M1

)

by (3)

= I2 ⊗M1

7

(⇐=) We prove that if Eq. (2) holds, then G1,G2 are isomorphic.

Observe that the transformation P⊺MP consists of relabeling the nodes of G according to the

permutation matrix P. Let us define this relabeling as the bijective function π : {1, 2, . . . , 2n} →

{1, 2, . . . , 2n}. Therefore, π(i) = j if and only if the node i of G is relabeled as j. Note also that

P⊺MP is symmetric, since it represents the adjacency matrix of an undirected graph.

Since we are assuming that G1 is connected, then there always exists a path from node i to node j,

1 ≤ i, j ≤ n. Thus, should the permutation contain a mapping such that π(i) ≤ n and π(j) > n,

the relabeled adjacency matrix P⊺MP would contain at least one 1 in the upper-right quadrant

and (by symmetry) in the lower-left one. However, this contradicts the hypothesis (2), since the

upper right and lower left quadrants of I2 ⊗B are the zero matrix 0n. The same considerations

apply to G2.

Thus, from Eq. (2) we observe that π maps the sets {1, 2, . . . , n} and {n + 1, n + 2, . . . , 2n} into

themselves, and therefore P must have a block structure:

P =

(

P1 0n

0n P2

)

(5)

Let G3 be the undirected graph such that Adj(G3) = B. Combining (5) and (2) we can conclude

that G1 ≃G3 and G2 ≃G3, because the adjacency matrices M1,M2 can be transformed into B via

the permutation matrices P1,P2, respectively. By transitivity we conclude G1 ≃G2.

Lemma 4.6 ensures that the adjacency matrix of the disjoint union of two isomorphic graphs

may always be written as I2 ⊗B; note that I2 is the adjacency matrix of D2, the graph with two

nodes and two self-loops. Unfortunately, simply testing primality of the disjoint union X =

G1 ∪G2 of two graphs G1 and G2 is not enough for deciding whether G1 and G2 are isomorphic

or not. In fact, as mentioned at the end of Section 3, the graph X could admit as a factor a graph

with two nodes different from D2. For example, Figure 3 shows a graph X such that

• X is the disjoint union of two non isomorphic graphs (connected and having the same

number of nodes and edges) and

• X admits as a factor a graph with two nodes different from D2.

Moreover, the idea of factorizing X = G1 ∪ G2 to check whether D2 is a factor (or, equiv-

alently, G1 ≃ G2) might fail due to the fact that X could admit two different factorizations F1

and F2 where F1 contains D2 while F2 does not. Figure 2 shows an example of a graph X such

that

• X is the disjoint union of two isomorphic graphs (both connected and with a prime number

of nodes)

• X admits two distinct factorizations F1 and F2 where F1 contains D2 while F2 does not.

In order to prove the main result of this paper, we define a class of graphs Θ as follows.

Definition 4.7 (Class Θ). A graph G = (V, E) with n nodes and m edges belongs to the class

Θ ⊂ Γ0 if and only if:

P1 G is undirected, connected and not bipartite;

P2 The number of nodes n is prime;

8

G1

×

G2

=

G3

=

D2

×

G2

G1 ×G2 = G3 = D2 ×G2

Figure 2: G2 is a connected graph with a prime number of nodes. G3 is the disjoint union of two copies of G2. G3

admits two different factorizations, namely, G1 ×G2 and D2 ×G2.

G3

G1

G2

G3 = G1 ×G2

Figure 3: G3 is the disjoint union of two connected graphs with the same number of nodes and edges. G3 is the is the

direct product of G1 and G2. G3 admits as a factor G1 which is a graph with two nodes different from D2. G3 does not

admit D2 as a factor.

P3 The number s of self-loops is strictly less than the number of edges, i.e., s < m;

P4 (2m − s) is not divisible by 2;

P5 (2m − s) is not divisible by 3;

In the following theorem we give a polynomial time many-one reduction from GI[Θ] to

Compositeness[Θ]. A consequence of this result is that the existence of a polynomial-time

algorithm to determine whether a given graph in Θ is composite with respect to the direct product

would imply the existence of a polynomial-time algorithm for the graph isomorphism problem

between any two graphs in Θ.

Theorem 4.8.

GI[Θ]≤M Compositeness[Θ]

Proof. LetA be an algorithm for testing compositeness for graphs inΘ. The following algorithm

solves the isomorphism problem for graphs inΘ relying on a single call ofA, therefore providing

a polynomial time many-one reduction from GI[Θ] to Compositeness[Θ].

9

Θ-Graph-Isomorphism (G1,G2)

1 if |V(G1)| , |V(G2)| or |E(G1)| , |E(G2)|

2 return no

3 G = G1 ∪G2 // graphs disjoint union

4 returnA(G)

Let us prove that Θ-Graph-Isomorphism is correct. To this end, we consider two cases:

G is prime. Let G1,G2 ∈ Θ and M = Adj(G1 ∪G2). According to Lemma 4.6 and to Ob-

servation 4.5, if G is prime we can conclude that G1 and G2 are not isomorphic, since if they

were, there should exist a permutation matrix P and a suitable adjacency matrix B such that

P⊺MP = I2 ⊗B and then G1 ∪G2 would be composite.

G is composite. Let G1,G2 ∈ Θ and M = Adj(G1 ∪G2). Let n = |V(G1)| = |V(G2)| be the

number of nodes of either G1 or G2. Since G1 ∈ Θ, n is prime (P2). Consequently, the number

of nodes of G = G1 ∪ G2 is 2n and its adjacency matrix M has size 2n × 2n. Therefore, the

only possible factorization of M is M = A⊗B, where A has size 2 × 2 and B has size n × n.

Additionally, since G1,G2 ∈ Θ, their adjacency matrices have exactly 2m − s nonzero elements

each, where m = |E(G1)| = |E(G2)| is the number of edges of either G1 or G2 and s is the number

of self-loops. Let us consider each possible configuration of the matrix A:

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

Since G1 and G2 are undirected, G is undirected as well, so its adjacency matrix M must be sym-

metric. From 4.6 we deduce that A must be symmetric, since B is a nonzero matrix. Therefore,

we exclude all configurations of matrix A that are not symmetrix.

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

Since G1 and G2 are connected, the degrees of all their nodes must be strictly grater than zero.

Therefore, A must contain more than a single nonzero element as, conversely, the resulting ma-

trix M would have at least n unconnected nodes with zero degree. Therefore, we exclude all

configurations of A that have less than two nonzero elements.

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

10

Let us now consider the number b of nonzero elements in B. Should A have three nonzero

elements, the resulting number of nonzero elements in M would be 3b, which is divisible by 3.

Moreover, the number of nonzero elements of M is equal to the number of nonzero elements of

the adjacency matrices of G1 and G2:

3b = 2(2m − s) (6)

Since G1,G2 ∈ Θ, we know that the number of nonzero elements (2m − s) in their adjacency

matrices must not be divisible by 3 (P5). Thus, 2(2m − s) must not be divisible by 3 either,

contradicting (6). We conclude that A can not contain three nonzero elements.

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

Similarly, should the matrix A have four nonzero elements, the number of nonzero elements in M

would be 4b; from the same reasoning above, we get:

4b = 2(2m − s) (7)

However, from P4 we have that (2m − s) is not divisible by 2, and therefore 2(2m − s) is not

divisible by 4. We conclude that A can not have four nonzero elements.

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

Finally, we point out that since G1 and G2 are not bipartite (P1), G is not bipartite as well.

Should A =

(

0 1

1 0

)

, matrix M = A⊗B would represent a bipartite graph, where the first n nodes

are only connected to the other n nodes and viceversa. Therefore, A can not be in that form.

(

0 0

0 0

) (

1 0

0 0

) (

0 1

0 0

) (

0 0

1 0

) (

0 0

0 1

) (

1 1

0 0

) (

1 0

1 0

) (

1 0

0 1

)

(

0 1

1 0

) (

0 1

0 1

) (

0 0

1 1

) (

0 1

1 1

) (

1 0

1 1

) (

1 1

0 1

) (

1 1

1 0

) (

1 1

1 1

)

We conclude that A = I2. Thus, according to Lemma 4.6, G1 and G2 are isomorphic.

Theorem 4.8 shows that, within the class Θ, there exists an intimate relation between graph

primality with respect to the direct product and graph isomorphism. In what follows we will

extend Theorem 4.8 to the class of graph Γ0 by describing a polynomial-time, isomorphism-

preserving transformation that maps any connected graph G into a graph in Θ. Before doing so,

we need to prove a small technical lemma.

11

Lemma 4.9. For each n ∈ Z there exists d ∈ {0, 1, 2, 3} such that (n + d) is not divisible by two

nor by three; formally, (n + d) mod 2 , 0 and (n + d) mod 3 , 0.

Proof. Let us denote with ~n�k the equivalence class of all integers that are congruent to n mod-

ulo k (also called residual class): ~n�k = {. . . , n − 2k, n − k, n, n + k, n + 2k, . . .}. The statement

of the lemma can then be rephrased as: for each n ∈ Z there exists d ∈ {0, 1, 2, 3} such that

(n + d) < (~0�2 ∪ ~0�3).

Using well-known properties of residual classes we can derive the following table, that shows

the value of d for any possible combination of residual classes modulo 2 and modulo 3 that n

may belong to.

n ~0�3 ~1�3 ~2�3

~0�2 d = 1 d = 1 d = 3

~1�2 d = 2 d = 0 d = 0

For example, if n ∈ ~1�2 ∩ ~0�3, then (n + 2) ∈ ~1�2 and (n + 2) ∈ ~2�3.

Theorem 4.10. There exists a mapping f : Γ0 → Θ such that for every two connected graphs

G1,G2 ∈ Γ0 with the same number of nodes and edges, G1 ≃G2 if and only if f (G1)≃ f (G2).

Furthermore, f (G) can be computed in polynomial time with respect to the size of G.

Proof. Given a connected graph G ∈ Γ0, let us define G′ = f (G). We show how G′ is computed.

Let m = |E(G)| and n = |V(G)|. According to the Bertrand-Chebyshev theorem [11], for any

integer q > 1 there exists a prime in the set {q + 1, . . . , 2q − 1}, and such prime can be found in

polynomial time [12]. Therefore, there is a prime p such that 2n < p < 4n.

The vertex set of G′ is defined as

V(G′) = V(G) ∪ {vn+1, vn+2, . . . , vp}

where vn+1, vn+2, . . . vp are new nodes.

G1
vn+1

vn+2

vn+3

...

vp

The edge set E(G′) is constructed incrementally from E(G), as follows. Let

C f = {{x, vn+1} | x ∈ V(G)}

Cc =
{

{vn+1, vn+2}, {vn+2, vn+3}, . . . , {vp, vn+1

}

that is, C f is a set of new edges that connect each node in V(G) to the first newly created

node vn+1, and Cc is a set of new edges that form a cycle within the new nodes. Since we

have chosen p such that 2n < p < 4n, the length of the cycle in C f is greater than n.

12

G1
vn+1

vn+2

vn+3

...

vp

We finally add a number s of self-loops within the new nodes in order to meet conditions P4

and P5. Lemma 4.9 guarantees that s is at most 3. Thus:

s = 0 =⇒ Cs = ∅

s = 1 =⇒ Cs = {{vn+2, vn+2}}

s = 2 =⇒ Cs = {{vn+2, vn+2}, {vn+3, vn+3}}

s = 3 =⇒ Cs = {{vn+2, vn+2}, {vn+3, vn+3}, {vn+4, vn+4}}

The edge set E(G′) is therefore defined as E(G′) = E(G) ∪ C f ∪ Cc ∪Cs.

Observe that, since G is connected, the edge subset C f induces at least one odd cycle (specifically,

at least one cycle of length three), and therefore G′ is not bipartite1. Therefore we conclude that

G′ ∈ Θ.

G1
vn+1

vn+2

vn+3

...

vp

We now prove that G1 ≃G2 ⇐⇒ f (G1)≃ f (G2).

(=⇒) Assume G1 ≃G2. Then, the isomorphism can be trivially extended to f (G1) and f (G2)

since these graphs are obtained from G1,G2 by adding an identical structure.

(⇐=) Assume f (G1)≃ f (G2). The only possible isomorphisms are those that map one of the

cycles Cc to the corresponding one on the other graph. Since in the transformation we have

chosen p > 2n, the cycle length of Cc is larger than n, and therefore is larger than any simple

cycle in G1 (or G2). Consequently, the isomorphism between f (G1) and f (G2) can be restricted

to an isomorphism between G1 and G2.

Theorem 4.10 allows us to assert the main result of this paper, that is the relation between

primality test and graphs isomorphism.

In what follows we denote by C and U be the sets of connected and unconnected graphs,

respectively and by NB be the set of nonbiparite graphs.

1A well known result in graph theory states that a graph is bipartite if and only if it has no odd cycles

13

Theorem 4.11.

GI[C]≤M Compositeness[U ∩ NB]

Proof. Assume that there exists an algorithmA that solves the Compositeness[U∩NB] decision

problem. Then, the following algorithm solves the GI[C] decision problem and, at the same time,

provides a polynomial time many-one reduction from GI[C] to Compositeness[U ∩ NB].

Graph-Isomorphism(G1,G2)

1 if |V(G1)| , |V(G2)| or |E(G1)| , |E(G2)|

2 return no

3 G3 = f (G1) // Theorem 4.10

4 G4 = f (G2) // Theorem 4.10

5 G = G3 ∪G4 // graphs disjoint union

6 returnA(G)

In fact, by Theorem 4.10, G1 is isomorphic to G2 if and only if f (G1) is isomorphic to f (G2).

Since both f (G1) and f (G2) belong to Θ, then by Theorem 4.8, G = G3 ∪G4 is decomposable if

and only if G3 is isomorphic to G4.

It is easy to verify that Graph-Isomorphism is a polynomial time many-one reduction.

Note that Compositeness[U∩NB] remains GI-hard even if we relax the undirected constraint

or the nonbipartite one, as the resulting class of graphs would be larger than the one which was

considered throughout our discussion.

Corollary 4.12. Primality[U ∩ NB] is GI-hard or, equvalently,

GI[C]≤T Primality[U ∩ NB]

Proof. The proof follows directly from the proof of Theorem 4.11 by inverting the result pro-

vided by the oracleA.

5. Conclusions

In this paper we proved that primality testing of unconnected, nonbipartite grahps with re-

spect to direct product is at least as hard as deciding graph isomorphism. The same result also

applies to the computation of a prime factorization of a graph. This result answer a long standing

open question posed in [1] and shows the crucial role played by connectedness in decomposing

a graph.

It would be of some interest to investigate the reversed question, i.e., whether deciding graph

isomorphism is at least as hard as primality testing or not. Another interesting research direction

is the study and the implementation of efficient heuristics for computing a prime factorization or

its approximation of large, possibly unconnected and/or weighted graphs knowing that a polyno-

mial time algorithm for computing such a prime factorization is unlikely to exist.

14

References

[1] W. Imrich, Factoring cardinal product graphs in polynomial time, Discrete Mathematics 192 (1) (1998) 119–144.

doi:10.1016/S0012-365X(98)00069-7 .

[2] R. Hammack, W. Imrich, S. Klavžar, Handbook of Product Graphs, Second Edition, Discrete Mathematics and Its

Applications, Taylor & Francis, 2011.

[3] E. L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc.

50 (1944) 284–316. doi:10.1090/S0002-9904-1944-08111-1 .

[4] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, 1967.

[5] G. Sabidussi, Graph multiplication., Mathematische Zeitschrift 72 (1959/60) 446–457.

URL http://eudml.org/doc/183624

[6] V. G. Vizing, The cartesian product of graphs, Vyčisl. Sistemy No. 9 (1963) 30–43.

[7] J. Feigenbaum, J. Hershberger, A. A. Schäffer, A polynomial time algorithm for finding the

prime factors of cartesian-product graphs, Discrete Applied Mathematics 12 (2) (1985) 123–138.

doi:10.1016/0166-218X(85)90066-6 .

[8] P. Winkler, Factoring a graph in polynomial time, Eur. J. Comb. 8 (2) (1987) 209–212.

doi:10.1016/S0195-6698(87)80012-4 .

URL https://doi.org/10.1016/S0195-6698(87)80012-4

[9] J. Feigenbaum, A. A. Schäffer, Recognizing composite graphs is equivalent to testing graph isomorphism, SIAM

Journal on Computing 15 (2) (1986) 619–627. doi:10.1137/0215045.

[10] J. Feigenbaum, A. A. Schäffer, Finding the prime factors of strong direct product graphs in polynomial time,

Discrete Mathematics 109 (1) (1992) 77–102. doi:10.1016/0012-365X(92)90280-S .

[11] M. Aigner, G. Ziegler, Bertrand’s postulate, Springer-Verlag Berlin Heidelberg, 2010, Ch. Bertrand’s postulate, pp.

7–12. doi:10.1007/978-3-642-00856-6_2 .

[12] T. Tao, E. C. III, H. Helfgott, Deterministic methods to find primes, Mathematics of Computation 81 (2012) 1233–

1246. doi:10.1090/S0025-5718-2011-02542-1 .

15

http://dx.doi.org/10.1016/S0012-365X(98)00069-7
http://dx.doi.org/10.1090/S0002-9904-1944-08111-1
http://eudml.org/doc/183624
http://eudml.org/doc/183624
http://dx.doi.org/10.1016/0166-218X(85)90066-6
https://doi.org/10.1016/S0195-6698(87)80012-4
http://dx.doi.org/10.1016/S0195-6698(87)80012-4
https://doi.org/10.1016/S0195-6698(87)80012-4
http://dx.doi.org/10.1137/0215045
http://dx.doi.org/10.1016/0012-365X(92)90280-S
http://dx.doi.org/10.1007/978-3-642-00856-6_2
http://dx.doi.org/10.1090/S0025-5718-2011-02542-1

	1 Introduction
	2 Notation and Basic Definitions
	3 Related works
	4 Main Results
	5 Conclusions

