
Finding the Size and the Diameter of a Radio Network Using Short

Labels ∗

Barun Gorain† Andrzej Pelc‡

Abstract

The number of nodes of a network, called its size, and the largest distance between nodes
of a network, called its diameter, are among the most important network parameters. Knowing
the size and/or diameter (or a good upper bound on those parameters) is a prerequisite of
many distributed network algorithms, ranging from broadcasting and gossiping, through leader
election, to rendezvous and exploration. A radio network is a collection of stations, called
nodes, with wireless transmission and receiving capabilities. It is modeled as a simple connected
undirected graph whose nodes communicate in synchronous rounds. In each round, a node can
either transmit a message to all its neighbors, or stay silent and listen. At the receiving end, a
node v hears a message from a neighbor w in a given round, if v listens in this round, and if w is
its only neighbor that transmits in this round. If v listens in a round, and two or more neighbors
of v transmit in this round, a collision occurs at v. If v transmits in a round, it does not hear
anything in this round. Two scenarios are considered in the literature: if listening nodes can
distinguish collision from silence (the latter occurs when no neighbor transmits), we say that
the network has the collision detection capability, otherwise there is no collision detection.

We consider the tasks of size discovery and diameter discovery: finding the size (resp. the
diameter) of an unknown radio network with collision detection. All nodes have to output the
size (resp. the diameter) of the network, using a deterministic algorithm. Nodes have labels
which are (not necessarily distinct) binary strings. The length of a labeling scheme is the largest
length of a label.

We concentrate on the following problems:

What is the shortest labeling scheme that permits size discovery in all radio
networks of maximum degree ∆? What is the shortest labeling scheme that permits
diameter discovery in all radio networks?

Our main result states that the minimum length of a labeling scheme that permits size
discovery is Θ(log log ∆). The upper bound is proven by designing a size discovery algorithm
using a labeling scheme of length O(log log ∆), for all networks of maximum degree ∆. The
matching lower bound is proven by constructing a class of graphs (in fact even of trees) of
maximum degree ∆, for which any size discovery algorithm must use a labeling scheme of
length at least Ω(log log ∆) on some graph of this class. By contrast, we show that diameter
discovery can be done in all radio networks using a labeling scheme of constant length.

Keywords: radio network, collision detection, network size, network diameter, labeling
scheme

∗A preliminary version of this paper appeared in Proc. 19th International Conference on Distributed Computing
and Networking (ICDCN 2018).

†Department of Electrical Engineering and Computer Science, Indian Institute of Technology Bhilai, India.
barun@iitbhilai.ac.in

‡Département d’informatique, Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada,
pelc@uqo.ca. Partially supported by NSERC discovery grant 2018-03899 and by the Research Chair in Distributed
Computing at the Université du Québec en Outaouais.

1

ar
X

iv
:1

70
4.

08
71

3v
2

 [
cs

.D
C

]
 1

1
N

ov
 2

02
0

1 Introduction

1.1 The model and the problem

The number of nodes of a network, called its size, and the largest distance between nodes of a
network, called its diameter, are among the most important network parameters. Knowing the
size and/or diameter (or a good upper bound on those parameters) by nodes of a network or by
mobile agents operating in it, is a prerequisite of many distributed network algorithms, ranging
from broadcasting and gossiping, through leader election, to rendezvous and exploration.

A radio network is a collection of stations, called nodes, with wireless transmission and receiving
capabilities. It is modeled as a simple connected undirected graph. As it is usually assumed in the
algorithmic theory of radio networks [3, 15, 16], all nodes start simultaneously and communicate
in synchronous rounds. In each round, a node can either transmit a message to all its neighbors,
or stay silent and listen. At the receiving end, a node v hears a message from a neighbor w in a
given round, if v listens in this round, and if w is its only neighbor that transmits in this round. If
v listens in a round, and two or more neighbors of v transmit in this round, a collision occurs at
v. If v transmits in a round, it does not hear anything in this round. Two scenarios are considered
in the literature: if listening nodes can distinguish collision from silence (the latter occurs when no
neighbor transmits), we say that the network has the collision detection capability, otherwise there
is no collision detection.

We consider the tasks of size discovery and diameter discovery: finding the size (resp. the
diameter) of an unknown radio network with collision detection. All nodes have to output the size
(resp. the diameter) of the network, using a deterministic algorithm. Nodes have labels which are
(not necessarily distinct) binary strings. These labels are given to (otherwise anonymous) nodes
by an oracle knowing the network, whose aim is to help the nodes in executing a size or diameter
discovery algorithm using these labels. Such informative labeling schemes, also referred to as advice
given to nodes, have been previously studied, e.g., in the context of ancestor queries [1], MST
computation [12], and topology recognition [14], for wired networks, and in the context of topology
recognition [20] and broadcasting [7] for radio networks. The length of a labeling scheme is the
largest length of a label. A priori, every node knows only its own label.

In this paper we concentrate on the problem of finding a shortest labeling scheme permitting size
and diameter discovery in radio networks with collision detection. Clearly, some labels have to be
given to nodes, because otherwise (in anonymous radio networks) no deterministic communication
is possible. Indeed, for any deterministic algorithm in an anonymous network, all nodes would
transmit in exactly the same rounds, and hence no node would ever hear anything. On the other
hand, labeling schemes of length Θ(log n), for n-node networks, are certainly enough to discover
the size of the network, as it can be then coded in the labels. Similarly, length Θ(logD) is enough
to discover the diameter D. Our aim is to answer the following questions.

What is the shortest labeling scheme that permits size discovery in all radio networks
of maximum degree ∆? What is the shortest labeling scheme that permits diameter
discovery in all radio networks?

1.2 Our results

Our main result states that the minimum length of a labeling scheme that permits size discovery is
Θ(log log ∆). The upper bound is proven by designing a size discovery algorithm using a labeling
scheme of length O(log log ∆), for all networks of maximum degree ∆. The matching lower bound
is proven by constructing a class of graphs (in fact even of trees) of maximum degree ∆, for which

2

any size discovery algorithm must use a labeling scheme of length at least Ω(log log ∆) on some
graph of this class. By contrast, we show that diameter discovery can be done in all radio networks
using a labeling scheme of constant length.

1.3 Related work

Algorithmic problems in radio networks modeled as graphs were studied for such distributed tasks
as broadcasting [3, 16], gossiping [3, 15] and leader election [5, 24]. In some cases [3, 15], the
model without collision detection was used, in others [18, 24], the collision detection capability was
assumed.

Providing nodes of a network, or mobile agents circulating in it, with information of arbitrary
type (in the form of binary strings) that can be used by an algorithm to perform some network task,
has been proposed in [1, 4, 6, 8, 9, 10, 11, 12, 13, 17, 21, 22, 23, 25]. This approach was referred
to as algorithms using informative labeling schemes, or equivalently, algorithms with advice. When
advice is given to nodes, two variations are considered: either the binary string given to nodes is
the same for all of them [19] or different strings may be given to different nodes [12, 14], as in our
present case. If strings may be different, they can be considered as labels assigned to (otherwise
anonymous) nodes. Several authors studied the minimum length of labels required for a given
network problem to be solvable, or to solve a network problem in an efficient way. The framework
of advice or of labeling schemes permits us to quantify the amount of needed information, regardless
of the type of information that is provided and of the way the algorithm subsequently uses it.

In [10], the authors compared the minimum size of advice required to solve two information dis-
semination problems, using a linear number of messages. In [23], given a distributed representation
of a solution for a problem, the authors investigated the number of bits of communication needed
to verify the legality of the represented solution. In [11], the authors established the size of advice
needed to break competitive ratio 2 of an exploration algorithm in trees. In [12], it was shown that
advice of constant size permits to carry out the distributed construction of a minimum spanning
tree in logarithmic time. In [15], short labeling schemes were constructed with the aim to answer
queries about the distance between any pair of nodes. In [8], the advice paradigm was used for
online problems. In the case of [25], the issue was not efficiency but feasibility: it was shown that
Θ(n log n) is the minimum size of advice required to perform monotone connected graph clearing.

There are three papers studying the size of advice in the context of radio networks. In [21],
the authors studied radio networks without collision detection for which it is possible to perform
centralized broadcasting in constant time. They proved that a total of O(n) bits of additional
information (i.e., not counting the labels of nodes) given to all nodes are sufficient for performing
broadcast in constant time in such networks, and a total of o(n) bits are not enough. In [20], the
authors considered the problem of topology recognition in wireless trees without collision detection.
Similarly to the present paper, they investigated short labeling schemes permitting to accomplish
this task. It should be noted that the results in [20] and in the present paper are not comparable: [20]
studies a harder task (topology recognition) in a weaker model (no collision detection), but restricts
attention only to trees, while the present paper studies easier tasks (size and diameter discovery) in
a stronger model (with collision detection) but our results hold for arbitrary networks. In a recent
paper [7], the authors considered the problem of broadcasting in radio networks without collision
detection, and proved that this can be done using a labeling scheme of constant length.

3

2 Preliminaries

According to the definition of labeling schemes, a label of any node should be a finite binary string.
For ease of comprehension, in our positive result concerning size discovery, we present our labels
in a more structured way, namely as sequences (a, b, c, d), where a is a binary string of length 7,
and each of b, c and d is a pair whose first term is a binary string, and the second term is a bit.
Each of the components a, b, c, d, is later used in the size discovery algorithm in a particular way.
It is well known that such a sequence (a, b, c, d) can be unambiguously coded as a single binary
string whose length is a constant multiple of the sum of lengths of all binary strings that compose
it. Hence, presenting labels in this more structured way and skipping the details of the encoding
does not change the order of magnitude of the length of the constructed labeling schemes.

In our algorithms, we use the subroutine Wave(x), for a positive integer x, that can be im-
plemented in radio networks with collision detection (cf. [2] where a similar procedure was called
Algorithm Encoded-Broadcast). We describe the subroutine below, for the sake of completeness.
The aim of Wave(x) is to transmit the integer x to all nodes of the network, bit by bit. During
the execution of Wave(x), each node is colored either blue, or red or white. Blue and white nodes
know x and after each phase red neighbors of blue nodes learn x and become blue, while blue nodes
become white. Wave(x) is initiated by some node v. At the beginning, v is blue and all other
nodes are red.

Let p = (a1a2 . . . ak) be the binary representation of the integer x. Consider the binary sequence
p∗ = (b1, b2, . . . , b2k+2) of length 2k + 2 that is formed from p by replacing every bit 1 by 10, every
bit 0 by 00, and adding 11 at the end. For example, if p = (1101) then p∗ = (1010001011).
Each phase of Wave(x) lasts 2k + 2 rounds, starting in some round r + 1. In consecutive rounds
r + 1, . . . , r + 2k + 2, every blue node transmits some message m in round r + i, if bi = 1, and
remains silent if bi = 0. A red node w listens until a round when it hears either a collision or a
message (this is round r + 1), and then until two consecutive rounds occur when it hears either a
collision or a message. Suppose that the second of these two rounds is round s. Then w decodes p∗

by putting bi = 1 if it heard a message or a collision in round t + i, and putting bi = 0 if it heard
silence in round t + i. From p∗ it computes unambiguously p and then x. Round s = r + 2k + 2
is the round in which all blue nodes finished transmitting in the current phase of Wave(x). In
round s+ 1 which starts the next phase, all blue nodes become white and all red nodes that heard
a collision or a message in round s become blue.

In this way, the subroutine Wave(x) proceeds from level to level, where the i-th level is formed
by the nodes at distance i from v in the graph. Every node at a level i > 0, is involved in the
subroutine in two consecutive phases, first as a red node and then as a blue node. The initiating
node v is involved only in the first phase. Since a sequence of the form p∗ cannot be a prefix
of another sequence of the form q∗, every node can determine when the transmissions from the
previous level are finished, and can correctly decode x. In our applications, no other transmissions
are performed simultaneously with transmissions prescribed by Wave(x), and hence nodes can
compute when a given Wave will terminate.

3 Finding the size of a network

This section is devoted to the task of finding the size of a network.

4

3.1 The Algorithm Size Discovery

In this section, we construct a labeling scheme of length O(log log ∆) and a size discovery algorithm
using this scheme and working for any radio network of maximum degree ∆.

3.1.1 Construction of the labeling scheme

Let G be a graph of maximum degree ∆. Let r be any node of G of degree ∆. For l ≥ 0, a node is
said to be in level l, if its distance from r is l. Let h be the maximum level in G. Let V (l) be the
set of nodes in level l. For any node v ∈ V (l), let N(v) be the set of neighbors of v which are in
level l + 1.

Before giving the detailed description of the labeling scheme and of the algorithm, we give a
high-level idea of our size discovery method. The algorithm is executed level by level in a bottom
up fashion. Each node of a level maintains an integer variable, weight, such that the sum of the
weights of all nodes in level l, for 0 ≤ l ≤ h, is equal to the total number of nodes in levels l′ ≥ l.
Using the assigned labels, these weights are transmitted to a special set of nodes, called upper set,
in level l−1. An upper set in level l−1 is an ordered subset of the nodes in level l−1, which covers
all the nodes in level l, i.e., each node in level l is a neighbor of at least one node in the upper set
of level l. Using this property of upper sets, the capability of collision detection, and a specially
designed labeling of the nodes, multiple accounting of the weights is prevented. The weights of each
level are transmitted up the tree, and finally the node at level 0, i.e., the root calculates its weight,
which is the size of the network. In the final stage, this size is transmitted to all other nodes.

Let U = {v1, v2, · · · , vk} be an ordered set of nodes in level l. For all v ∈ V (l) \ U , we
define N ′(v, U) = N(v) \ (∪w∈UN(w)) and for vj ∈ U , N ′(vj , U) = N(vj) \ (∪j−1

i=1N(vi)). An
ordered subset U of V (l) is said to be an upper set at level l, if for each v ∈ U , N ′(v, U) 6= ∅ and
∪w∈UN(w) = V (l + 1).

Fig. 1 shows an example of an upper set U = {v1, v3, v4} for a two-level graph. The node v2 is
not part of the upper set, as the set of neighbors of v2 is a subset of the neighbors of v1.

v1 v3 v4

N ′(v1, U) N ′(v2, U) N ′(v3, U)

v2

Figure 1: Example of an upper set U = {v1, v3, v4}

Below, we propose an algorithm that computes an upper set at each level l, for 1 ≤ l ≤ h− 1.
The algorithm works in a recursive way. The first node v1 of the set is chosen arbitrarily. At any
step, let US(l) = {v1, · · · , vi} be the set computed by the algorithm in the previous step. Let
uj1, u

j
2, · · · , u

j
|N ′(vj ,US(l))| be nodes in N ′(vj , US(l)) for 1 ≤ j ≤ i. Let kj = 1 + logb|N ′(vj , US(l))|c.

If V (l + 1) \ (∪w∈US(l)N(w)) 6= ∅, then the next node in US(l) is added using the following rules.

1. Find the last node va in US(l) that has a common neighbor in {ua1, ua2, · · ·uaka} with some
node v ∈ V (l) \ US(l) such that N(v) \ (∪w∈US(l)N(w)) 6= ∅. Choose such a node v in US(l)
that has the common neighbor uab with va, where b = min{1, 2, · · · , ka}. Add v to US(l) as
the node vi+1.

5

2. If no such node in va exists in US(l), add any node v ∈ V (l)\US(l) withN(v)\(∪w∈US(l)N(w)) 6=
∅ as the node vi+1.

The construction of US(l) is completed when ∪w∈US(l)N(w) = V (l + 1).

Also, for every node vi ∈ US(l), the nodes ui1, u
i
2, · · · , u

j
ki

are assigned some unique id’s from
the set {1, 2, · · · , blog ∆c + 1}. Moreover, if a node vm is added to US(l) according to the first
rule, where vm has a common neighbor uic with vi, then the node um1 gets the same id as uic. If a
node vm is added according to the 2nd rule, then um1 gets the id 1. These id’s will be later used
to construct the labels of the nodes. In Algorithm 1 we give the pseudocode of the procedure that
constructs an upper set US(l) for each level l, and that assigns id’s to some nodes of V (l + 1), as
explained above. This procedure uses in turn the subroutine Compute(v, j) whose pseudocode is
presented in Algorithm 2..

Algorithm 1 ComputeSet(l)

1: US(l)← {}, count← 0
2: V ′(l)← V (l)
3: for all v ∈ V (l) do
4: N ′(v, US(l))← N(v)
5: end for
6: for all v ∈ V ′(l) do
7: Compute(v, 1)
8: end for
9: Return US(l)

The nodes in the upper set US(l) and the assignment of their ids are shown in Fig. 2. The node
v1 is chosen in US(l) arbitrarily. The number of neighbors of v1 in V (l + 1) is 5 (the node v1 and
its neighbors in V (l+ 1) are shown as the gray circles.). Three neighbors of v1, (as 1 + blog 5c = 3)
are assigned ids 1,2,3 as shown in the figure. Note that the node with id 3 is also a neighbor of
another node in V (l). Hence, this node is selected as the next node in US(l), according to Step 19
of Algorithm 2. N ′(v2, US(l)) is 4 (the node v2 and the nodes in N ′(v2, US(l)) are shown as the
dotted pink circles). According to Step 13 of Algorithm 2, the neighbor u1

2 of v2 gets the same id
3 as the node u3

1. In a similar fashion, the node v3 (shown as dashed green circle) is chosen as the
next node in US(l). After adding v3, no node can be added in US(l) according to the first rule.
The node v4 is chosen according to the second rule and added to US(l) and the construction of
US(l) is complete, as all nodes of V (l + 1) are taken care of.

1 2 3 3 1 2 2

v1 v2 v3

2 12 1 3

v4

Figure 2: Showing the assignment of Ids of the nodes in V (l + 1)

For 0 ≤ l ≤ h, we define the weight W (v) of a node v ∈ V (l) as follows. If v ∈ V (h), we define
W (v) = 1. For a node v ∈ V (l), where 0 ≤ l ≤ h − 1, we define W (v) = 1 +

∑
u∈N ′(v,US(l))W (u).

6

Algorithm 2 Compute(v, j)

1: count← count+ 1
2: vcount ← v
3: ID(v)← {j}
4: US(l)← US(l) ∪ {vcount}
5: for all nodes v′ ∈ V ′(l) \ US(l) do
6: N ′(v′, US(l))← N ′(v′, US(l)) \ (∪w∈US(l)N(w))
7: if N ′(v′) = ∅ then
8: V ′(l)← V ′(l) \ {v′}
9: end if

10: end for
11: if V ′(l) 6= ∅ then
12: Let N ′(v, US(l)) = {u1, u2, · · · , uk}
13: for i = 1 to blog kc+1 do
14: if i = 1 then
15: p← j
16: else
17: p← min ({1, 2, · · · , blog ∆c+ 1} \ ID(v))
18: end if
19: id(ui)← p
20: while there exists some v′′ ∈ V ′(l) such that ui ∈ N(v′′) do
21: Compute(v, p)
22: end while
23: ID(v)← ID(v) ∪ {p}
24: end for
25: end if

7

Thus, for any level l, the sum of the weights of nodes at level l is equal to the total number of nodes
in levels l′ ≥ l. Hence the weight of the node r is the size of the network.

The ids assigned to the nodes in the above fashion have the following purpose. The objective
of the algorithm is to let the nodes in US(l) learn jointly the sum of the weights of the nodes in
levels ≥ l. This can only be done if the weight of a node in level l+ 1 is transmitted to exactly one
node in level l. The ids assigned to the nodes in the level l + 1 are helpful in order to ensure this.
In Fig. 2, the node v2 has two neighbors in level l + 1 with id 3. The algorithm asks every node
with a specific id to transmit in a specific round in different phases. Now, when the nodes with id 3
transmit, the node v1 successfully receives the messages, but a collision happens at v2. The node v2

immediately learns that the ongoing message transmissions are dedicated to some other node and
therefore it ignores the activities for the remaining rounds in the current phase. Once the node v1

learns its weight, it asks its neighbors in N ′(v1, US(l)) not to participate in the subsequent rounds.
In the next phase, v2 does not hear any collision (as one node with id 3 does not transmit) while
its neighbors with positive ids transmits, hence it successfully learns its weight. But the node v3

hears a collision when the node with id 2 transmits. Therefore, v3 ignores all the activities in this
phase. In the next phase, v3 successfully learns its weight. In this way the consecutive nodes which
are added in US(l) by rule 1 learn their weights one by one in different phases, hence no multiple
accounting can occur.

We are now ready to define the labeling scheme Λ that will be used by our size discovery
algorithm. The label Λ(v) of each node v contains two parts. The first part is a vector of markers
that is a binary string of length 7, used to identify nodes with different properties. The second
part is a vector of three tags. Each tag is a pair (id, b), where id is the binary representation of an
integer from the set {1, 2, · · · , blog ∆c+ 1}, and b is either 0 or 1. Every node will use the tags to
identify the time slot when it should transmit and what it should transmit in this particular time
slot.

We first describe how the markers are assigned to different nodes of G.

1. The node r gets the marker 0, and one of the nodes in level h gets the marker 1.

2. Choose any set of blog ∆c+ 1 nodes in N(r) and give them the marker 2.

3. Let P be a simple path from r to the node with marker 1. All the internal nodes in P get
the marker 3.

4. For each l, 0 ≤ l ≤ h − 1, all the nodes in US(l) get the marker 4. The last node of US(l)
gets the marker 5 and a unique node from V (l+ 1) with maximum weight in this set gets the
marker 6.

The first part of every label is a binary string M of length 7, where the markers are stored.
Note that a node can be marked by multiple markers. If the node is marked by the marker i, for
i = 0, . . . , 6, we have M(i) = 1; otherwise, M(i) = 0.

The markers are assigned to the nodes in the network in order to identify different types of nodes
that play different roles in the proposed algorithm. Some specific rounds are allotted to each level
during which all the nodes of that level transmit their weights. Every node learns from its label in
which time slot it has to transmit. The root is distinguished by the marker 0. In the algorithm, the
node with marker 0 first learns the value of its degree which is ∆, using the messages transmitted
by the nodes with marker 2. Then it transmits this value to all other nodes using Subroutine
Wave(∆). The node with marker 1 is recognized as one of the nodes at the last level in the BFS
tree rooted at the node r. This node is the first that learns the value of h and then transmits it to
r using the internal nodes, which are marked by marker 3, in the shortest path from this node to

8

r. Markers 4 and 5 are used to identify nodes which are responsible for transmitting the value of
the weights, and the node assigned marker 6 is the node in a level which transmits its weight last
among the nodes in that level.

The second part of the label of each node v is a vector [L1(v), L2(v), L3(v)] containing three
tags, namely, the ∆-learning tag L1(v), the collision tag L2(v), and the weight-transmission tag
L3(v). The assignment of the above tags is described below.

1. The ∆-learning tags will be used for learning the value of ∆ by the root r. The node r and
all the nodes with marker 2 get the ∆-learning tags as follows. The nodes with marker 2 are
neighbors w1, w2, . . . , wblog ∆c+1 of the node r. For each i, 1 ≤ i ≤ blog ∆c + 1, node wi is
assigned the tag (B(i), bi), where B(i) is the binary representation of the integer i and bi is
the i-th bit of the binary representation of ∆. The node r gets the tag (B, 0), where B is the
binary representation of the integer blog ∆c+ 1. All other nodes of G get the ∆-learning tag
(0, 0).

2. The collision tags will be used to create collisions. For each l, 0 ≤ l ≤ h − 1, each node in
V (l + 1) gets the collision tag as follows. Let US(l) = {v1, v2, · · · , vk}. For 1 ≤ i ≤ k and
1 ≤ j ≤ blog |N ′(vi, US(l))|c + 1, the node uij ∈ V (l + 1) gets the collision tag (id(uij), bm),

where m is the position of the integer id(uij) in the set ID(vi) in increasing order, and bm is
the m-th bit of the binary representation of |N ′(vi, US(l))|. All other nodes v ∈ V (l+ 1) get
the collision tag (0, 0).

3. The weight-transmission tags will be used by nodes to transmit their weight to a unique node
in the previous level. For each l, 0 ≤ l ≤ h−1, each node in V (l+1) gets the transmission tag as
follows. Let US(l) = {v1, v2, · · · , vk}. For 1 ≤ i ≤ k, let Qi(x) = {u ∈ N ′(vi, US(l))|W (u) =
x}. Choose any subset {w1, w2, . . . , wblog |Qi(x)|c+1} of Qi(x). For 1 ≤ i ≤ blog |Qi(x)|c+1, the
node wi gets the weight-transmission tag (B(i), bi), where B(i) is the binary representation
of the integer i, and bi is the i-th bit of the binary representation of |Qi(x)|. All other nodes
v ∈ V (l + 1) get the weight-transmission tag (0, 0).

This completes the description of the labeling scheme Λ.

3.1.2 Description of Algorithm Size Discovery

Algorithm Size Discovery using the scheme Λ consists of three procedures, namely Procedure
Parameter Learning, Procedure Size Learning, and Procedure Final. The high-level idea and
the detailed descriptions of each of these procedures are given below.

Procedure Parameter Learning. The aim of this procedure is for every node in G to learn three
integers: ∆, the number of the level to which the node belongs, and h. The procedure consists of
two stages. In the first stage, that starts in round 1, every node with M(2) = 1 and M(0) = 0
(i.e., a neighbor of r with marker 2) transmits its ∆-learning tag in round i, if the id in the first
component of this tag is i. The node with M(0) = 1, i.e., the node r, collects all the tags until it
received a message from a node which has the same id as the id of r in the ∆-learning tag. After
receiving this message, the node r has learned all pairs (B(1), b1), ..., (B(m), bm), where m is the
id of r and B(i) is the binary representation of the integer i, corresponding to the ∆-learning tag
at the respective nodes. Then node r computes the string s = (b1b2 . . . bm). This is the binary
representation of ∆.

In the second stage, after learning ∆, the node r initiates the subroutine Wave(∆). Every node
other than r waits until it detects two consecutive non-silent rounds. This indicates the end of the

9

wave at this node and happens 2m + 2 rounds after the wave has been started by the nodes of
the previous level. The node computes s, learns ∆, computes m = blog ∆c + 1, and sets its level
number as j, if the end of the wave at this node occurred in round m+ j(2m+ 2).

When the unique node with M(1) = 1 learns its level number (which is h), it transmits the
value of h in the next round. After receiving the first message containing an integer, a node with
M(3) = 1 sets h to this integer and retransmits it. When the node with M(0) = 1, i.e., the node
r, gets the first message after round m that contains an integer, it learns h and initiates Wave(h).
The stage and the entire procedure end in round t1 = m+ h(2m+ 2) + h+ h(2(blog hc+ 1) + 2).
Note that after learning h, every node can compute t1 and thus knows when Procedure Parameter

Learning ends.
Procedure Size Learning. This is the crucial procedure of the algorithm. Its aim is to learn

the size of the graph by the node r, i.e., to learn its weight W (r). This procedure consists of h
phases. In the i-th phase, where 1 ≤ i ≤ h, the participating nodes are from level h − i + 1 and
from level h− i. We will show by induction on i that at the end of the i-th phase, all nodes of level
h− i correctly compute their weights. Thus at the end of the h-th phase, the node r will learn its
weight, i.e., the size of the network. The high-level idea of the i-th phase is the following. In order
to learn its weight, a node v in US(h− i) must learn the weights of all nodes u in N ′(v, US(h− i))
and subsequently add all these weights. Weight-transmission tags are used to achieve this. The
difficulty consists in preventing other neighbors in level h − i of such nodes u from adding these
weights when computing their own weight, as this would result in multiple accounting (see Fig. 1).
This is done using collision tags to create collisions in other such nodes, so that nodes z in US(h−i)
can identify neighbors in level h − i + 1 outside of N ′(z, US(h − i)) and ignore their weights. A
node transmits its weight-transmission tag in a round which is an increasing function of its weight.
Since the nodes in US(h − i) do not have any knowledge about their degree, they must learn the
maximum possible weight of a node in level h− i+ 1, to determine how long they must wait before
receiving the last message from such a node.

We now give a detailed description of the i-th phase. At the beginning of the first phase, all
nodes in level h set their weight to 1. The i-th phase starts in round t2(i) + 1, where t2(1) = t1,
and ends in round t2(i+ 1). We will show that t2(i+ 1) will be known by every node of the graph
by the end of the i-th phase, i.e., by the round t2(i+ 1).

In round t2(i) + 1 (which starts the i-th phase) the unique node u′ of level h − i + 1 with
M(6) = 1 (which is a node of this level with maximum weight), initiates Wave(W (u′)). Every
node in G learns the value xi which is the maximal weight of a node in level h − i + 1, by round
t′2(i) = t2(i)+2h(2(blog xic+1)+2). Since every node knows h and t2(i), and it learns xi during the
wave subroutine, it can compute the value t′2(i) by which Wave(W (u′)) is finished. After learning
this integer, every node in level h− i+ 1 and every node in level h− i maintains a variable status
which can be either complete or incomplete. (The variable status is proper to a particular phase.
In what follows we consider status for phase i.) Initially the status of every node in level h− i with
M(4) = 1 (the nodes in US(h− i)) and of every node in level h− i+ 1 is incomplete. The initial
status of the nodes in level h− i with M(4) = 0 is complete.

At any time, only incomplete nodes will participate in this phase. The nodes with M(4) = 0,
i.e., the nodes outside US(h− i), set their weights to 1 and never participate in this phase.

After learning its weight, a node v in US(h − i) gets status complete and transmits a stop
message in a special round. All the nodes in N ′(v, US(h − i)) learn this stop message either by
receiving it or by detecting a collision in this special round, and become complete. Thus the nodes
in N ′(v, US(h− i)) never transmit in subsequent rounds, and this prevents multiple accounting of
the weights.

Let z be a node in level h− i+ 1 with status incomplete.

10

If the id in the collision tag of z is a positive integer e, then z performs the following steps.

• The node z transmits its collision tag for the first time in the i-th phase in round t′2(i) + e.
After that, the node z transmits its collision tag in every round t′2(i) + e + jτi, where τi =
blog ∆c+ 1 + xi(blog ∆c+ 1) + 1, and j ≥ 1, until it gets a stop message or detects a collision
in round t′2(i) + j′τi, for some integer j′ ≥ 1. In the latter case, node z updates its status to
complete.

If the id in the weight-transmission tag of z is a positive integer e′, then z performs the following
steps.

• The node z transmits the pair (t,W (z)), where t is its weight-transmission tag and W (z) is its
weight, for the first time in the i-th phase in round t′2(i) + (W (z)− 1)(blog ∆c+ 1) + e′. After
that the node z transmits (t,W (z)) in every round t′2(i) + (W (z)− 1)(blog ∆c+ 1) + e′+ jτi,
where τi = blog ∆c+ 1 +xi(blog ∆c+ 1) + 1, and j ≥ 1, until it gets a stop message or detects
a collision in the round t′2(i) + j′τi for some integer j′ ≥ 1. In the latter case, it updates its
status to complete.

Let z′ be a node with M(4) = 1, i.e., a node in US(h− i). The node z′ (with status incomplete)
performs the following steps.

• If z′ does not detect any collision in the time interval [t′2(i)+(j−1)τi, t
′
2(i)+(j−1)τi+blog ∆c+

1], for some integer j ≥ 1, then the node changes its status to complete. In this interval, the
node z′ received the collision tags from the nodes in N ′(z′, US(h− i)). Suppose that the node
z′ learns the pairs (B(g1), b1), (B(g2), b2), · · · , (B(gk), bk), where B(g1), B(g2), · · · , B(gk)
are the binary representations of the integers g1, g2, · · · , gk, respectively, in the increasing
order, corresponding to the collision tags of the respective nodes. The node z′ computes
s′ = (b1b2 · · · bk). Let d be the integer whose binary representation is s′. The integer d is the
size of N ′(z′, US(h − i)). Then z′ waits until round t′2(i) + jτi. By this time, all nodes in
level h− i+ 1 that transmitted according to their collision tags and weight-transmission tags,
have already completed all these transmissions. If z′ detects any collision in the time interval
[t′2(i)+(j−1)τi+blog ∆c+2, t′2(i)+jτi−1], it changes its status back to incomplete. Otherwise,
for 1 ≤ f ≤ xi, let (B(1), b1), (B(2), b2), · · · , (B(g(f)), bg(f)) be the weight-transmission tags
that the node z′ received from a node with weight f , where B(a) is the binary representation
of the integer a. Let sf = (b1b2 · · · bi(f)) and let df be the integer whose binary representation
is sf . The integer df is the total number of nodes of weight f in N ′(z′, US(h− i)).
The node z′ computes the value

∑
f df . If the node z′ had received any message from a node

which is not in N ′(z′, US(h− i)), then the sum
∑

f df cannot be equal to the integer d, and
hence the node learns that there is a danger of multiple accounting of weights. In that case,
the node changes its status back to incomplete.

Otherwise, if
∑

f df = d, node z′ assigns W (z′) = 1 +
∑

f (fdf). After computing W (z′), the
node z′ transmits a stop message in round t′2(i) + jτi. If z′ is the node with M(5) = 1 (i.e.,
the last node of US(h− i)), then after sending the stop message, it initiates Wave(T), where
T is the current round number. After learning T from Wave(T), every node in G computes
t2(i + 1) = T + 2h(2(blog T c + 1) + 2). This is the round by which Wave(T) is finished. In
this round, the i-th phase of the procedure is finished as well.

At the end of the h-th phase, the node r learns its weight, sets n = W (r) and the procedure ends.

11

Procedure Final: After computing n, the node r initiates Wave(n). Every node in G computes
the value of n, and outputs it. The procedure ends after all nodes output n.

Now our algorithm can be succinctly formulated as follows:

Algorithm 3 Size Discovery

1: Parameter Learning

2: Size Learning

3: Final

3.2 Correctness and analysis

The proof of the correctness of Algorithm Size Discovery is split into two lemmas.

Lemma 3.1 Upon completion of the Procedure Parameter Learning, every node in G correctly
computes ∆, h, and its level number. Moreover, every node computes the round number t1 =
m+ h(2m+ 2) + h+ h(2(blog hc+ 1) + 2) by which the procedure is over.

Proof. After round m = blog ∆c + 1, the node r learns all pairs (B(1), b1), ..., (B(m), bm), where
B(i) is the binary representation of the integer i, corresponding to the ∆-learning tags at the
respective nodes with M(2) = 1. According to the assignment of the tags to the nodes, the binary
string s = (b1b2 . . . bm) is the binary representation of the integer ∆. Therefore, the node r correctly
learns ∆.

After learning ∆, the node r initiate Wave(∆). For every level i ≥ 1, the wave ends at the
nodes in level i in round m+ i(2m+2). The nodes learn the value of ∆ from the wave and calculate
their level number. The node in the h-th level for which M(1) = 1, learns h and transmits the value
of h along the path with nodes for which M(3) = 1. The node r learns h, and initiate Wave(h).
Every node computes h from the wave. Knowing m and h every node computes t1. 2

Lemma 3.2 At the end of the i-th phase of the Procedure Size Learning, every node in level h− i
correctly computes its weight.

Proof. We prove this lemma in two steps. First, we prove the following two claims, and then we
prove the lemma by induction using these claims.

Claim 1: In the i-th phase of Procedure Size learning, if the status of a node vp ∈ US(h− i)
is changed from incomplete to complete in the time interval [t′2(i) + (j − 1)τi, t

′
2(i) + jτi − 1], for

some integer j ≥ 1, and remains complete forever, then the node vp correctly computes W (v) in
round t2(i) + jτi, provided that all nodes of level h − i + 1 know their weight at the beginning of
the i-th phase.

In order to prove this claim, suppose that the status of vp ∈ US(h− i) is changed to complete
from incomplete in the interval [t′2(i) + (j − 1)τi, t

′
2(i) + jτi − 1], for some integer j ≥ 1. Since the

status of vp is complete in round t2(i) + jτi, the node vp did not detect any collision in the above
time interval. Suppose that vp received messages only from nodes in N ′(vp, US(h − i)). In round
t′2(i) + (j − 1)τi + blog ∆c+ 1, the node computes the integer d from the collision tags of the nodes
from which it received messages in the time interval [t′2(i) + (j−1)τi, t

′
2(i) + (j−1)τi+ blog ∆c+ 1].

According to the labeling scheme, the bits in the collision tags of the nodes in N ′(vp, US(h−i)) were
assigned in such a way that the string s′ formed by these bits is the binary representation of the
integer |N ′(vp, US(h−i))|. After that, the nodes in N ′(vp, US(h−i)) whose weight-transmission tag
contains a positive integer as the id, transmit their tags to vp one by one. Let Xf ⊆ N ′(vp, US(h−i))

12

be the the set of nodes in N ′(vp, US(h− i)) with weight f , for 1 ≤ f ≤ xi. The weight-transmission
tags are given to (blog |Xf |c + 1) nodes in Xf in such a way that the binary string formed by
the bits of the weight transmission tags of these nodes in the increasing order of their ids is the
binary representation of the integer |Xf |. Hence, for 1 ≤ f ≤ xi,

∑
f |Xf | = d, as the sum of the

numbers of nodes in N ′(vp, US(h− i)) with different weights is equal to the total number of nodes
in N ′(vp, US(h− i)). If the node vp received messages only from the nodes in N ′(vp, US(h− i)), it
learns

∑
f |Xf | = d, and hence correctly computes W (vp) = 1 +

∑
f f |Xf |.

Otherwise, there exists a node u ∈ N(vp)∩N ′(vq, US(h− i)), for some node vq ∈ US(h− i) with
q < p, such that the id in the weight-transmission tag of u is non-zero. Then the integer

∑
f |Xf |

that vp computes cannot be equal to the integer d, as explained above, and the node vp changes its
status back to incomplete. This is a contradiction. Therefore, the node vp correctly computes its
weight at the end of round t′2(i) + jτi − 1, which proves the claim.
Claim 2: Let US(h − i) = {v1, v2, · · · , vk}. In the i-th phase of Procedure Size Learning, each
node vj changes its status from incomplete to complete during the time interval [t′2(i)+(qj−1)τi+
1, t′2(i) + qjτi], for some qj ≤ j, and remains complete forever.

We prove this claim by induction on j. As the base case, we prove that in the time interval
[t′2(i)+1, t′2(i)+τi−1], the status of the node v1 ∈ US(h−i) is changed from incomplete to complete.
According to the labeling scheme and to the construction of the set US(h− i), (blog |N ′(v1, US(h−
i))|c + 1) nodes from N ′(v1, US(h − i)) have distinct positive ids in their collision tags, and all
other nodes from N ′(v1, US(h − i)) have the id 0. Hence, the node v1 detects no collision in the
time interval [t′2(i) + 1, t′2(i) + (blog ∆c + 1)], and it changes its status to complete. In the next
xi(blog ∆c + 1) rounds, the nodes of level h − i + 1, with positive ids in their weight-transmission
tags, transmit. Since the ids in the weight-transmission tags of (blog |N ′(v1, US(h− i))|c+1) nodes
are distinct positive integers, and N(v1) = N ′(v1, US(h − i)), the node v1 does not detect any
collision. Also, since the node v1 received messages only from nodes in N ′(v1, US(h− i)), therefore∑

f |Xf | = d, for 1 ≤ f ≤ xi, and hence v1 remains complete forever.
Suppose by induction that Claim 2 holds for nodes v1, . . . , vj . Let y = max{q1, q2, . . . , qj}.

Consider the following two cases.
Case 1: There exists an integer qj+1 ≤ y, such that the node vj+1 changes its status from

incomplete to complete during the time interval [t′2(i) + (qj+1 − 1)τi + 1, t′2(i) + qj+1τi], for some
qj+1 ≤ y, and remains complete forever.

In this case the claim holds for vj+1 because qj+1 ≤ y ≤ j + 1.
Case 2: Case 1 does not hold.
Therefore, the status of vj+1 is incomplete in round t′2(i) + yτi. The status of all the nodes in

N ′(vj+1, US(h− i)) is incomplete in this round as well, as they did not received any stop message
from vj+1 or detected any collision in round t′2(i) + yτi.

The status of the nodes inN(vj+1)\N ′(vj+1, US(h−i)) is complete, asN(vj+1)\N ′(vj+1, US(h−
i)) ⊆ ∪ji=1N(vi) and the nodes v1, v2, · · · , vj are complete. Consider the time interval [t′2(i) + yτi +
1, t′2(i)+(y+1)τi−1]. In this time interval, the node vj+1 receives messages only from the nodes in
N ′(vj+1, US(h− i)). Since the positive ids in the collision tags and the positive ids in the weight-
transmission tags are unique for the nodes in N ′(vj+1, US(h − i)), the node vj+1 does not detect
any collision in the interval [t′2(i) + yτi + 1, t′2(i) + (y+ 1)τi− 1]. Also, since the node vj+1 received
messages only from nodes in N ′(vj+1, US(h− i)), therefore

∑xi
f=1 df = d, and hence vj+1 remains

complete forever. Since y ≤ j, we have y + 1 ≤ j + 1. Therefore, the proof of the claim follows by
induction.

Now we prove the lemma by induction on the phase number. According to the definition of
the weight of a node, all the nodes in level h have weight 1. Therefore, by Claim 2, at the end of

13

round t2(1) + jτ1, the node vj in US(h− 1) becomes complete, and hence by Claim 1, it correctly
computes its weight, since all the nodes in level h already know their weight which is 1. This implies
that all the nodes in level h − 1 correctly compute their weights at the end of phase 1. Suppose
that for i ≥ 1, all the nodes in level h − i correctly compute their weights at the end of phase i.
Then by Claim 2, all the nodes in US(h− i−1) become complete in the (i+1)-th phase, and hence
by Claim 1 they correctly compute their weights in this phase. Therefore, the lemma follows by
induction. 2

Applying Lemma 3.2 for i = h, we get the following corollary.

Corollary 3.1 Upon completion of Procedure Size Learning, the node r correctly computes the size
of the graph.

Now we are ready to formulate our main positive result.

Theorem 3.1 The length of the labeling scheme used by Algorithm Size Discovery on a graph of
maximum degree ∆ is O(log log ∆). Upon completion of this algorithm, all nodes correctly output
the size of the graph.

Proof. According to the labeling scheme Λ, the label of every node has two parts. The first part
is a vector M of constant length and each term of M is one bit. The second part is a vector L
containing three tags, each of which is of length O(log log ∆). Therefore, the length of the labeling
scheme Λ is O(log log ∆).

By Corollary 3.1, node r correctly computes the size n of the network upon completion of
Procedure Size Learning. In Procedure Final, node r initiates Wave(n), and hence every node
correctly computes n upon completion of the algorithm. 2

3.3 The lower bound

In this section, we show that the length of the labeling scheme used by Algorithm Size Discovery

is optimal, up to multiplicative constants. We prove the matching lower bound by showing that
for some class of graphs of maximum degree ∆ (indeed of trees), any size discovery algorithm must
use a labeling scheme of length at least Ω(log log ∆) on some graph of this class.

Let S be a star with the central node r of degree ∆. Denote one of the leaves of S by a. For
b∆

2 c ≤ i ≤ ∆− 1, we construct a tree Ti by attaching i leaves to a. The maximum degree of each
tree Ti is ∆. Let T be the set of trees Ti, for b∆

2 c ≤ i ≤ ∆ − 1, cf. Fig. 3. Hence the size of T is
at least ∆

2 .

r

a

A

R

Figure 3: Example of a tree in T

14

The class T of trees was used in [20] to prove an analogous lower bound for the problem of
topology recognition (which, for the class T , is equivalent to size discovery). However, it should be
stressed that the proof of the lower bound in our present scenario is much more involved because
we work under the more powerful model assuming the capability of collision detection, while [20]
assumed no collision detection. The negative result under our more powerful model is more difficult
to obtain because of potential possibility of acquiring information by nodes from hearing collisions.
More precisely, our negative argument is based on the fact that in a deterministic algorithm nodes
with the same history (see the formal definition below) must behave identically. In the model with
collision detection, histories are more complicated because they are composed not only of messages
heard by nodes in previous rounds but also of collisions heard by them.

Let R be the set of leaves attached to r and let A be the set of leaves attached to a. For a tree
T ∈ T , consider a labeling scheme L(T) of length β, and let A be an algorithm that finds the size
of every tree T ∈ T , using L(T). Let L(T) assign the label l(v) to each node v in T .

Let T ∈ T be any tree. We define the notion of history (a similar notion was defined in [26]
for anonymous radio networks without collision detection) for each node v in T in round t. The
history of a node in time t is denoted by H(v, t, L,A). This is the information that node v acquires
by round t, using the algorithm A. The action of a node v in round t+1 is a function of the history
H(v, t, L,A), hence for every round t, if two nodes have the same history in round t, then they
behave identically in round t + 1. As in [26], we assume without loss of generality, that whenever
a node transmits a message in round t + 1, it sends its entire history in round t. We define the
history by induction on the round number as follows. H(v, 0, L,A) = l(v), for each node v in T .
For t ≥ 0, the history in time t + 1 is defined as follows, using the histories of the nodes in T in
time t.

• If v receives a message from a node u in round t+1, i.e., v is silent in this round, and u is its only
neighbor that transmits in this round, then H(v, t+ 1, L,A) = [H(v, t, L,A), H(u, t, L,A)].

• If v detects a collision in round t+ 1, i.e., v is silent in this round, and there are at least two
neighbors of v that transmit in this round, then H(v, t+ 1, L,A) = [H(v, t, L,A), ∗].

• Otherwise, H(v, t+ 1, L,A) = [H(v, t, L,A), λ].

Hence, histories are nested sequences of labels and of symbols λ, and ∗, where, intuitively, λ
stands for silence in a given round, and ∗ stands for a collision.

The following lemma shows that histories of nodes in sets A and R are equal iff the labels of
these nodes are the same.

Lemma 3.3 For any tree T ∈ T consider a labeling scheme L(T). Let A be any algorithm that finds
the size of every tree T ∈ T using the scheme L(T). Then for any t ≥ 0, we have:

1. For v1, v2 ∈ R, H(v1, t, L,A) = H(v2, t, L,A), if and only if l(v1) = l(v2).

2. For v1, v2 ∈ A, H(v1, t, L,A) = H(v2, t, L,A), if and only if l(v1) = l(v2).

Proof. We prove the first part of the lemma. The proof of the second part is similar. By definition,
for two nodes v1 and v2 with different labels, we have H(v1, t, L,A) 6= H(v2, t, L,A) for all t ≥ 0.

To prove the converse, we use induction on t. Let v1, v2 ∈ R such that l(v1) = l(v2). For t = 0,
H(v1, 0, L,A) = l(v1) = l(v2) = H(v2, 0, L,A). Suppose that the statement is true for round t,
i.e., H(v1, t, L,A) = H(v2, t, L,A). Note that the history of any node in R in round t+ 1 does not
depend on any action performed by the node a or the nodes in A in round t + 1. Also, since the

15

nodes v1 and v2 have the same histories in round t, they must behave identically in round t + 1.
Therefore, in round t+ 1, there can only be the following four cases.

Case 1 The node r transmits and the nodes v1, v2 do not transmit.

According to the definition of history, H(v1, t + 1, L,A) = [H(v1, t, L,A), H(r, t, L,A)] and
H(v2, t + 1, L,A) = [H(v2, t, L,A), H(r, t, L,A)]. This implies H(v1, t + 1, L,A) = H(v2, t +
1, L,A).

Case 2 The nodes v1 and v2 transmit and the node r does not transmit.

According to the definition of history, H(v1, t + 1, L,A) = [H(v1, t, L,A), λ] and H(v2, t +
1, L,A) = [H(v2, t, L,A), λ]. This implies H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

Case 3 The nodes v1 and v2, and the node r transmit.

According to the definition of history, H(v1, t + 1, L,A) = [H(v1, t, L,A), λ] and H(v2, t +
1, L,A) = [H(v2, t, L,A), λ]. This implies H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

Case 4 Neither v1 nor v2 nor r transmit. In this case, H(v1, t + 1, L,A) = [H(v1, t, L,A), λ] and
H(v2, t+ 1, L,A) = [H(v2, t, L,A), λ]. This implies H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

Hence the proof of the lemma follows by induction. 2

With the length of the labeling scheme β, there can be at most z = 2β+1 possible different
labels of at most this length. Let L = {l1, l2, · · · , lz} be the set of distinct labels of length at most
β. We define the pattern of a tree T with the labeling scheme L(T) as the pair (P (r), P (a)), where
P (r) and P (a) are defined as follows.

P (r) = (l(r), b1, b2, · · · , bz), where bi ∈ {0, 1, 2} and:
bi = 0, if no node in R has label li;
bi = 1, if there is exactly one node in R with label li;
bi = 2, if there are more than one node in R with label li.

P (a) = (l(a), b′1, b
′
2, · · · , b′z), where b′i ∈ {0, 1, 2} and:

b′i = 0, if no node in A has label li;
b′i = 1, if there is exactly one node in A with label li;
b′i = 2, if there are more than one node in A with label li.

The following lemma states that histories of the node r in trees from T depend only on the
pattern and not on the tree itself.

Lemma 3.4 Let A be any algorithm that solves the size discovery problem for all trees T ∈ T using
the labeling scheme L(T). If trees T1 and T2 have the same pattern, then for any t ≥ 0, the node r
in T1 and the node r in T2 have the same history in round t.

Proof. Let T1 and T2 be two trees with same pattern (P (r), P (a)). For j = 1, 2, denote the node
r in Tj by rj , the node a in Tj by aj , the set R in Tj by Rj , and the set A in Tj by Aj . For any
t ≥ 0, we prove the following statements by simultaneous induction. (To prove the lemma, we need
only the first of them).

1. H(r1, t, L,A) = H(r2, t, L,A).

2. H(a1, t, L,A) = H(a2, t, L,A).

3. For a node v1 in R1 and a node v2 in R2 with same label, H(v1, t, L,A) = H(v2, t, L,A).

16

4. For a node v1 in A1 and a node v2 in A2 with the same label, H(v1, t, L,A) = H(v2, t, L,A).

Since the patterns of the two trees are the same, we have l(r1) = l(r2), and l(a1) = l(a2).
Therefore, according to the definition of the history, the above statements are true for t = 0.

Suppose that all the above statements are true for round t. Consider the execution of the
algorithm in round t+ 1 as follows:
Induction step for (1): The actions of nodes in A1 and A2 in round t+ 1 do not affect the histories
of the nodes r1 and r2 in this round. Hence we have the following cases in round t+ 1.

(a) r1 transmits, a1 does not transmit, and no node in R1 transmits.

According to the definition of history, H(r1, t+1, L,A) = [H(r1, t, L,A), λ]. SinceH(r1, t, L,A) =
H(r2, t, L,A) and r1 transmits in round t+ 1, then r2 also transmits in round t+ 1. Similarly
a2 does not transmit in this round, since a1 does not transmit. We prove that no node in R2

transmits in round t + 1. Suppose otherwise. Let v2 be a node in R2 that transmits in round
t+ 1, and suppose that the label of v2 is li. Therefore, in P (r), either bi = 1, or bi = 2.

If bi = 1, then v2 is the unique node with label li in R2. Since the patterns of the two trees are
the same, therefore, there exists a unique node v1 in R1 with label li. Since H(v1, t, L,A) =
H(v2, t, L,A), by the induction hypothesis for (3), therefore v1 must transmit in round t + 1,
which is a contradiction with the fact that no node in R1 transmits. A similar statement holds
for bi = 2. Hence no node in R2 transmits in round t + 1. Therefore, H(r2, t + 1, L,A) =
[H(r2, t, L,A), λ]. This implies that H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

(b) r1 transmits, a1 transmits, no node in R1 transmits.

Since H(r1, t, L,A) = H(r2, t, L,A) and H(a1, t, L,A) = H(a2, t, L,A), and r1 and a1 trans-
mit in round t + 1, therefore, r2 and a2 also transmit in round t + 1. Hence H(r1, t +
1, L,A) = [H(r1, t, L,A), λ] and H(r2, t + 1, L,A) = [H(r2, t, L,A), λ]. This implies that
H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

(c) r1 transmits, a1 does not transmit, some nodes in R1 transmit.

Similarly as in (b), we have H(r1, t + 1, L,A) = [H(r1, t, L,A), λ] and H(r2, t + 1, L,A) =
[H(r2, t, L,A), λ]. This implies that H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

(d) r1 transmits, a1 transmits, some nodes in R1 transmit.

Similarly as in (b), we have H(r1, t + 1, L,A) = [H(r1, t, L,A), λ] and H(r2, t + 1, L,A) =
[H(r2, t, L,A), λ]. This implies that H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

(e) r1 does not transmit, a1 does not transmit, no node in R1 transmits.

Since a1 does not transmit in round t + 1, therefore a2 does not transmit in round t + 1.
Also, as explained in (a), no node in R2 transmits in round t + 1. Therefore, H(r1, t +
1, L,A) = [H(r1, t, L,A), λ] and H(r2, t + 1, L,A) = [H(r2, t, L,A), λ]. This implies that
H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

(f) r1 does not transmit, a1 transmits, no node in R1 transmits.

Since a1 transmits in round t+1, therefore a2 transmits in round t+1. Also, as explained in (a),
no node in R2 transmits in round t+1. Therefore, according to the definition of history, H(r1, t+
1, L,A) = [H(r1, t, L,A), [H(a1, t, L,A)], andH(r2, t+1, L,A) = [H(r2, t, L,A), [H(a2, t, L,A)].
Since H(r1, t, L,A) = H(r2, t, L,A) and H(a1, t, L,A) = H(a2, t, L,A), therefore, H(r1, t +
1, L,A) = H(r2, t+ 1, L,A).

17

(g) r1 does not transmit, a1 does not transmit, some nodes in R1 transmit.

Let v1 be a node in R1 with label li, such that v1 transmits in round t + 1. Then by Lemma
3.3, all the nodes in R1 with label li must transmit in round t+1. Suppose that the nodes with
labels li1 , li2 , · · · , lik transmit in round t+ 1.

If each of the integers bi1 , bi2 , · · · , bik is 0, then no node in R1 transmits which contradicts the
assumption of case (g).

If at least two of the integers bi1 , bi2 , · · · , bik are 1, or at least one of them is 2, then there
exist at least two nodes in R1 and at least two nodes in R2 that transmit in round t + 1.
Hence, a collision is heard at the node r1 and a collision is heard at the node r2. Therefore,
H(r1, t + 1, L,A) = [H(r1, t, L,A), ∗] and H(r2, t + 1, L,A) = [H(r2, t, L,A), ∗]. This implies
that H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

Otherwise, exactly one of the integers bi1 , bi2 , · · · , bik is 1, and all others are 0. W.l.o.g. let bi1
be the unique integer 1. Then there is exactly one node v1 with label li1 in R1 and there is
exactly one node v2 with label li1 in R2 which transmit in round t + 1. Therefore, H(r1, t +
1, L,A) = [H(r1, t, L,A), H(v1, t, L,A)] and H(r2, t+ 1, L,A) = [H(r2, t, L,A), H(v2, t, L,A)].
Since, H(v1, t, L,A) = H(v2, t, L,A) and H(r1, t, L,A) = H(r2, t, L,A), therefore, H(r1, t +
1, L,A) = H(r2, t+ 1, L,A).

(h) r1 does not transmit, a1 transmits, some nodes in R1 transmit.

Since a1 transmits in round t + 1, therefore, a2 transmits in round t + 1. Also, since some
node in R1 transmits in round t + 1, therefore some node in R2 transmits in round t + 1, as
explained in (a). Therefore, a collision is heard at r1, and a collision is heard at r2. Hence,
H(r1, t + 1, L,A) = [H(r1, t, L,A), ∗] and H(r2, t + 1, L,A) = [H(r2, t, L,A), ∗]. This implies
that H(r1, t+ 1, L,A) = H(r2, t+ 1, L,A).

Induction step for (2): This is similar to the induction step for (1).
Induction step for (3): For j = 1, 2, the histories of the nodes in Rj in round t+ 1 do not depend
on the action of the node aj and the actions of the nodes in Aj , in this round. Hence we have the
following cases in round t+ 1.

(i) The node r1 transmits and no node in R1 transmits.

This implies that the node r2 transmits and no node in R2 transmits. Therefore, H(v1, t +
1, L,A) = [H(v1, t, L,A), H(r1, t, L,A)] and H(v2, t+1, L,A) = [H(v2, t, L,A), H(r2, t, L,A)].
Since, H(r1, t, L,A) = H(r2, t, L,A) and H(v1, t, L,A) = H(v2, t, L,A), therefore, H(v1, t +
1, L,A) = H(v2, t+ 1, L,A).

(ii) The node r1 transmits and some nodes in R1 transmit.

This implies that the node r2 transmits and some nodes in R2 transmit. There are two cases. If
v1 transmits, then v2 also transmits in round t+1. Hence H(v1, t+1, L,A) = [H(v1, t, L,A), λ]
and H(v2, t+1, L,A) = [H(v2, t, L,A), λ] and hence H(v1, t+1, L,A) = H(v2, t+1, L,A). If v1

does not transmit, then v2 does not transmit either, in round t+1. Hence H(v1, t+1, L,A) =
[H(v1, t, L,A), H(r1, t, L,A)] and H(v2, t+1, L,A) = [H(v2, t, L,A), H(r2, t, L,A)] and hence
H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

(iii) The node r1 does not transmit and some nodes in R1 transmit.

Since r1 does not transmit therefore r2 does not transmit. According to the definition of
history, H(v1, t+ 1, L,A) = [H(v1, t, L,A), λ] and H(v2, t+ 1, L,A) = [H(v2, t, L,A), λ], and
hence H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

18

(iv) The node r1 does not transmit and no node in R1 transmits.

In this case, H(v1, t + 1, L,A) = [H(v1, t, L,A), λ] and H(v2, t + 1, L,A) = [H(v2, t, L,A), λ]
and hence H(v1, t+ 1, L,A) = H(v2, t+ 1, L,A).

Induction step for (4): This is similar to the induction step for (3).
Therefore, the lemma follows by induction. 2

Corollary 3.2 Let Ht be the set of all possible histories of the node r in all trees in T , in round t,
and let P be the set of all possible patterns of trees in T . Then |Ht| ≤ |P|.

The following theorem gives the lower bound Ω(log log ∆) on the length of a labeling scheme for
size discovery, that matches the length of the labeling scheme used by Algorithm Size Discovery.

Theorem 3.2 For any tree T ∈ T consider a labeling scheme L(T). Let A be any algorithm that
finds the size of T , for every tree T ∈ T , using the scheme L(T). Then there exists a tree T ′ ∈ T ,
for which the length of the scheme L(T ′) is Ω(log log ∆).

Proof. It is enough to prove the theorem for sufficiently large ∆. We prove the theorem by
contradiction. Suppose that there exists an algorithm A that solves the size discovery problem in

the class T , in time t, with labels of length at most 1
4 log log ∆. There are at most z = 2(log ∆)

1
4

possible different labels of at most this length. There are at most z232z different possible patterns
for these z labels. Therefore, by Corollary 3.2, the total number of histories of the node r, in time t,

over the entire class T , is at most z232z < (2(log ∆)
1
4)234(log ∆)

1
4 < ∆

2 ≤ |T |, for sufficiently large ∆.
Therefore, by the pigeonhole principle, there exist two trees T ′, T ′′ in T such that the history

of r in T ′ in time t is the same as the history of r in T ′′ in round t. This implies that the node r
in T ′ and the node r in T ′′ must behave identically in every round until round t, hence they must
output the same size. This contradicts the fact that the trees T ′ and T ′′ have different sizes. This
completes the proof. 2

4 Finding the diameter of a network

By contrast to the task of finding the size of a network, it turns out that finding the diameter of a
network can be done with a much shorter labeling scheme: in fact, we will show that a scheme of
constant length is sufficient. In our solution the labeling scheme has length 2.

Consider any graph G and let u and v be two nodes at distance equal to the diameter D of the
graph. The labeling scheme is as follows: node u has label (00), node v has label (11), all other
nodes at distance D from u have label (10), and all nodes at positive distances < D from node
u have label (01). Algorithm Diameter Discovery consists of two procedures: Procedure Find

Diameter initiated by the node with label (00), and Wave(D) initiated by the node with label
(11). Upon completion of Find Diameter, the node with label (11) learns the correct value of D
which it subsequently broadcasts to all other nodes using Wave(D).

We now describe Procedure Find Diameter. It is a modification of the subroutine Wave
described in Section 2. Its aim is for all nodes at distance i from the initiating node u with label
(00), to learn i. The set of these nodes is called level i. As soon as the node v with label (11) learns
its distance from u, it knows that this distance is D and then it initiates Wave(D) to spread this
knowledge to all other nodes.

Procedure Find Diameter works in phases i = 0, 1, . . . , D − 1. At the beginning of phase i, all
nodes at levels at most i know their level number and all nodes at levels larger than i do not know

19

it. Phase i of Procedure Find Diameter is identical to any phase of Wave(i + 1) with nodes at
level i playing the role of blue nodes, nodes at levels smaller than i playing the role of white nodes,
and nodes at levels larger than i playing the role of red nodes, with the modification that nodes at
level i initiate it only if their label starts with bit 0. (Hence nodes with labels (11) and (10) which
are exactly nodes at distance D from u do not initiate phase D, which would be useless). Upon
completion of phase i, all nodes at level i+ 1 learn the value of i+ 1.

Hence at the end of phase D − 1 all nodes know their level number. Node with label (11) that
knows its level number D, knows that this is the diameter of the graph. It initiates Wave(D). At
this point, all nodes have finished all transmissions of Procedure Find Diameter and hence there
are no interferences with transmissions of Wave(D), which starts with node v colored blue and all
other nodes colored red.

Procedure Spread that follows Procedure Find Diameter can be described as follows. After
computing D, node v with label (11) initiates Wave(D). Every node in G computes the value of D,
and outputs it. The procedure ends after all nodes output D. Now our algorithm can be succinctly
formulated as follows:

Algorithm 4 Diameter Discovery

1: Find Diameter

2: Spread Diameter

The above explanations prove the following proposition.

Proposition 4.1 The length of the labeling scheme used by Algorithm Diameter Discovery on any
graph is 2. Upon completion of this algorithm, all nodes correctly output the diameter of the graph.

5 Conclusion

We established the minimum length Θ(log log ∆) of a labeling scheme permitting to find the size
of arbitrary radio networks of maximum degree ∆, with collision detection, and we designed a size
discovery algorithm using a labeling scheme of this length. For the task of diameter discovery,
we showed an algorithm using a labeling scheme of constant length. Our algorithms heavily use
the collision detection capability, hence the first open question is whether our results hold in radio
networks without collision detection. Secondly, in this paper we were concerned only with the
feasibility of the size and diameter discovery tasks using short labels. The running time of our size
discovery algorithm is O(Dn2 log ∆), for n-node networks of diameter D and maximum degree ∆.
We did not try to optimize this running time. A natural open question is: what is the fastest size
discovery algorithm using a shortest possible labeling scheme, i.e., a scheme of length Θ(log log ∆)?
On the other hand, the running time of our diameter discovery algorithm is O(D logD). It is also
natural to ask what is the optimal time of a diameter discovery algorithm using a labeling scheme
of constant length. Another direction of future research could be considering our problems in the
context of dynamic networks and/or in the presence of faults.

References

[1] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for ancestor queries, Proc. 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 547–556.

20

[2] B.S. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, W. Rytter, Deterministic broadcasting in ad
hoc radio networks, Distributed Computing 15 (2002), 27-38.

[3] M. Chrobak, L. Gasieniec, W. Rytter, Fast broadcasting and gossiping in radio networks,
Journal of Algorithms 43 (2002):177-189.

[4] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, D. Peleg, Label-guided graph exploration
by a finite automaton, ACM Transactions on Algorithms 4 (2008).

[5] A. Czumaj, P. Davies, Exploiting spontaneous transmissions for broadcasting and leader elec-
tion in radio networks, Proc. 36th ACM Symposium on Principles of Distributed Computing
(PODC 2017), 3-12

[6] D. Dereniowski, A. Pelc, Drawing maps with advice, Journal of Parallel and Distributed Com-
puting 72 (2012), 132–143.

[7] F. Ellen, B. Gorain, A. Miller, A. Pelc, Constant-length labeling schemes for deterministic
radio broadcast, Proc. 31st ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2019), 171-178.

[8] Y. Emek, P. Fraigniaud, A. Korman, A. Rosen, Online computation with advice, Theoretical
Computer Science 412 (2011), 2642–2656.

[9] P. Fraigniaud, C. Gavoille, D. Ilcinkas, A. Pelc, Distributed computing with advice: Informa-
tion sensitivity of graph coloring, Distributed Computing 21 (2009), 395–403.

[10] P. Fraigniaud, D. Ilcinkas, A. Pelc, Communication algorithms with advice, Journal of Com-
puter and System Sciences 76 (2010), 222–232.

[11] P. Fraigniaud, D. Ilcinkas, A. Pelc, Tree exploration with advice, Information and Computation
206 (2008), 1276–1287.

[12] P. Fraigniaud, A. Korman, E. Lebhar, Local MST computation with short advice, Theory of
Computing Systems 47 (2010), 920–933.

[13] E. Fusco, A. Pelc, Trade-offs between the size of advice and broadcasting time in trees, Algo-
rithmica 60 (2011), 719–734.

[14] E. Fusco, A. Pelc, R. Petreschi, Topology recognition with advice, Information and Computa-
tion 247 (2016), 254-265.

[15] L. Gasieniec, A. Pagourtzis, I. Potapov, T. Radzik, Deterministic communication in radio
networks with large labels. Algorithmica 47 (2007), 97-117.

[16] L. Gasieniec, D. Peleg, Q. Xin, Faster communication in known topology radio networks,
Distributed Computing 19 (2007), 289-300.

[17] C. Gavoille, D. Peleg, S. Pérennes, R. Raz. Distance labeling in graphs, Journal of Algorithms
53 (2004), 85-112.

[18] M. Ghaffari, B. Haeupler, M. Khabbazian. Randomized broadcast in radio networks with col-
lision detection. Proc. 32nd Annual ACM Symposium on Principles of Distributed Computing
(PODC 2013), 325 - 334.

21

[19] C. Glacet, A. Miller, A. Pelc, Time vs. information tradeoffs for leader election in anonymous
trees, ACM Transactions on Algorithms 13 (2017), 31:1-31:41.

[20] B. Gorain, A. Pelc, Short labeling schemes for topology recognition in wireless tree networks,
Proc. 24th International Colloquium on Structural Information and Communication Complex-
ity (SIROCCO 2017), 37-52.

[21] D. Ilcinkas, D. Kowalski, A. Pelc, Fast radio broadcasting with advice, Theoretical Computer
Science, 411 (2012), 1544–1557.

[22] M. Katz, N. Katz, A. Korman, D. Peleg, Labeling schemes for flow and connectivity, SIAM
Journal of Computing 34 (2004), 23–40.

[23] A. Korman, S. Kutten, D. Peleg, Proof labeling schemes, Distributed Computing 22 (2010),
215–233.

[24] D. Kowalski, A. Pelc, Leader election in ad hoc radio networks: a keen ear helps, Journal of
Computer and System Sciences 79 (2013), 1164-1180.

[25] N. Nisse, D. Soguet, Graph searching with advice, Theoretical Computer Science 410 (2009),
1307–1318.

[26] A. Pelc, Activating anonymous ad hoc radio networks, Distributed Computing 19 (2007),
361-371.

22

	1 Introduction
	1.1 The model and the problem
	1.2 Our results
	1.3 Related work

	2 Preliminaries
	3 Finding the size of a network
	3.1 The Algorithm Size Discovery
	3.1.1 Construction of the labeling scheme
	3.1.2 Description of Algorithm Size Discovery

	3.2 Correctness and analysis
	3.3 The lower bound

	4 Finding the diameter of a network
	5 Conclusion

