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Folwarcznýb,c,  Lukasz Jeża, Jǐŕı Sgallb, Nguyen Kim Thangf, Pavel Veselýb,g
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Abstract

In the Multi-Level Aggregation Problem (MLAP), requests for service arrive at the nodes of an edge-weighted

rooted tree T . Each service is represented by a subtree X of T that contains its root. This subtree X serves

all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X.

Each request also incurs a waiting cost between its arrival and service time. The objective is to minimize

the total waiting cost of all requests plus the total cost of all service subtrees.

The currently best online algorithms for the MLAP achieve competitive ratios polynomial in the tree

depth, while the best lower bound is only 3.618. In this paper, we report some progress towards closing

this gap, by improving this lower bound and providing several tight bounds for restricted variants of MLAP:

(1) We first study a Single-Phase variant of MLAP where all requests are released at the beginning and

expire at some unknown time θ, for which we provide an online algorithm with optimal competitive ratio

of 4. (2) We prove a lower bound of 4 on the competitive ratio for MLAP, even when the tree is a path. We

complement this with a matching upper bound for the deadline variant of MLAP on paths.

Additionally, we provide two results for the offline case: (3) We prove that the Single-Phase variant

can be solved optimally in polynomial time, and (4) we give a simple 2-approximation algorithm for offline

MLAP with deadlines.

Keywords: algorithmic aspects of networks, online algorithms, scheduling and resource allocation
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1. Introduction

In the Multi-Level Aggregation Problem (MLAP) introduced (under a different name) by Brito et al. [1],

a tree T with positive weights assigned to edges is given, and requests from a set R arrive in the nodes
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of T over time. These requests are served by subtrees rooted at the root of T . Such a subtree X serves all

requests pending at the nodes of X at cost equal to the total weight of X. Each request incurs a waiting

cost, defined by a non-negative and non-decreasing function of time, which may be different for each request.

The objective is to minimize the sum of the total service and waiting costs.

The MLAP model is designed to capture the dilemma of decision makers dealing with tasks that arrive over

time. Performing these tasks in batches can reduce overhead associated with setup, retooling, transportation,

etc. On the other hand, delaying each task’s execution also incurs some cost, for example the cost of storage.

In order to be processed in a batch, tasks that form a batch need to be compatible, and the MLAP model

focuses specifically on tasks where this compatibility relation forms a hierarchy that can be represented by

a tree. We mention here three practical scenarios that can be modeled by MLAP:

• Sensor networks periodically perform data gathering, where data collected in the sensors need to

be transmitted to the main station along links forming a spanning tree (see, e.g., [2]). Sensors are

battery operated, so reducing energy expenditure required for transmissions is critical. This can be

accomplished by having each intermediate node in this tree gather the messages from its children and

forward them all together, compressed into a single message, to its parent.

• In supply-chain management, retailers place orders for goods that need to be shipped from the factory

in a timely manner. The underlying transportation network forms a tree, with the retailers in its

leaves, the factory in the root, and with its intermediate nodes representing warehouses where goods

can be temporarily stored while in transit. Goods that realize orders from some retailers can be

shipped together from the factory and then redistributed in the intermediate nodes along the path to

their destination (see [3], for example).

• Another example involves an organization hierarchy with workers at the leaves, managers at interme-

diate nodes, and the executive at the root (see [4] and the references therein). Here, the objective is

to efficiently manage decision making and information flow along this tree.

Some earlier papers studied particular variants of waiting costs. In the MLAP-L variant, each waiting

cost function is linear, that is, it is assumed to be simply the delay between the times when a request arrives

and when it is served. In the MLAP-D variant (called the deadline variant), each request is given a certain

deadline, has to be served before or at its deadline, and there is no penalty associated with waiting. This

can be modeled by the waiting cost function that is 0 up to the deadline and +∞ afterwards.

In this paper, we mostly focus on the online version of MLAP, where an algorithm needs to produce

a schedule in response to requests that arrive over time. When a request appears, its waiting cost function

is also revealed, but the algorithm has no information about the requests that arrive in the future. At each

time t, the online algorithm needs to decide whether to generate a service tree at this time, and if it does,
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which nodes should be included in this tree. We use the competitive ratio as our performance measure for

online algorithms, that is the ratio between the total cost of an online algorithm and the cost of an optimal

offline solution, maximized over all possible instances. (See Section 2 for formal definitions.)

1.1. Previous Work on Online Algorithms

The first competitive solution for arbitrary trees of depth D was given by Bienkowski et al. [5, 6]; the

competitive ratio of their algorithm is O(D4 ·2D). They also gave a slightly improved, O(D2 ·2D)-competitive

algorithm for the MLAP-D variant. The result for the deadline variant was subsequently improved to O(D)

by Buchbinder et al. [7]. Azar et al.studied a more general problem called Online Service with Delays and

gave O(D2)-competitive algorithm for MLAP [8, 9]. The best known lower bound is 3.618 [10], and for

arbitrary trees the existence of an algorithm with competitive ratio independent of tree depth remains open.

Better algorithms are known for specific tree topologies. When the tree comprises a single edge connecting

the leaf to the root, MLAP is equivalent to the TCP Acknowledgement Problem (known also as the Lot

Sizing Problem in the operations research community). In this variant, the decisions involve only choosing

appropriate times at which the requests pending at the leaf are served. The complexity of this case is fully

resolved: the optimal competitive ratio is 2 in the deterministic case [11] and e/(e − 1) ≈ 1.582 in the

randomized case [12, 13].

When the tree has two levels, MLAP becomes equivalent to the extensively studied Joint Replenishment

Problem. The currently best 3-competitive primal-dual algorithm was given by Buchbinder et al. [3] and

the currently best lower bound of 2.754 is due to Bienkowski et al. [14]. The optimal competitive ratio for

the deadline variant is 2 [14].

Another special case is when the tree is a path (has no branches). For this variant, Brito et al. [1]

gave an 8-competitive algorithm. This result was improved by Bienkowski et al. [10] who showed that the

competitive ratio of this problem is between 3.618 and 5.

For a gentle introduction to aggregation problems and techniques used for designing online algorithms,

we refer the reader to the survey by Chrobak [15].

1.2. Previous Work on Offline Algorithms

When the tree is a single edge, the offline variant of MLAP can be solved in time O(n log n), where n

is the number of requests [16]. The case of paths can also be solved in polynomial time [10]. However,

when the tree has branches then already for two-level trees the problem becomes NP-hard [17] and even

APX-hard [18, 19]. The currently best approximation, due to Bienkowski et al. [14], achieves a factor of

1.791, improving on earlier work by Levi et al. [20, 21, 22]. A better approximation ratio of 1.574 can be

obtained in the deadline variant [19].
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MLAP and MLAP-L MLAP-D

upper lower upper lower

depth 1 2 [11] 2 [11] 1 1

rand. alg. for depth 1 e/(e− 1) ≈ 1.582 [12] e/(e− 1) ≈ 1.582 [13] 1 1

depth 2 3 [3] 2.754 [14] 2 [14] 2 [14]

fixed depth D ≥ 2 O(D2) [9] 2.754 O(D) [7] 2

paths of arbitrary depth 5 [10] 3.618 [10], 4 4 4

Table 1: Previous and current bounds on the competitive ratios for MLAP for trees of various depths. Ratios written in bold are

shown in this paper. Unreferenced results are either immediate consequences of other entries in the table or trivial observations.

Some of the results were originally stated for the MLAP-L variant, but can be extended in a straightforward way to the general

MLAP.

For arbitrary depth trees, the problem becomes NP-hard already for the deadline variant [23]. For this

case, Becchetti et al. [23] gave a 2-approximation algorithm. For general waiting cost functions, Pedrosa [24]

showed, adapting an algorithm of Levi et al. for the multi-stage assembly problem [25], that there is a (2+ε)-

approximation for MLAP where ε can be made arbitrarily small.

1.3. Our Contributions

In Section 3, we study a version of MLAP that we refer to as Single-Phase MLAP (or 1P-MLAP), in

which all requests arrive at the beginning, but they also have a common expiration time that we denote

by θ. Any request not served by time θ pays waiting cost at time θ and does not need to be served anymore.

In spite of the expiration-date feature, it can be shown that 1P-MLAP can be represented as a special case of

MLAP. 1P-MLAP is a crucial tool in all lower bound proofs in the literature for competitive ratios of MLAP,

including those in [3, 10, 14], as well as in our lower bounds in Section 4. It also has a natural interpretation

in the context of supply-chain management if we allow all orders to be canceled, say, due to changed market

circumstances.

In the online variant of 1P-MLAP all requests are known at the beginning, but the expiration time θ is

unknown. For this version, we give an online algorithm with competitive ratio 4. Since 1P-MLAP can be

expressed as a special case of MLAP, our result implies that the techniques from [3, 10, 14] cannot be used

to prove a lower bound larger than 4 on the competitive ratio for MLAP, and any study of the dependence

of the competitive ratio on the depth D will require new insights and techniques.

In Section 4 we consider MLAP on paths. For this case, we give a 4-competitive algorithm for MLAP-

D and we provide a matching lower bound. We show that the lower bound of 4 applies to MLAP-L as

well, improving the previous lower bound of 3.618 from [10]. A summary of old and new results on online

algorithms for various tree depths is given in Table 1.
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In addition, we provide two results on offline algorithms (for arbitrary trees). In Section 5, we provide

a 2-approximation algorithm for MLAP-D, significantly simpler than the LP-rounding algorithm by Bec-

chetti et al. [23] with the same ratio. In Section 3.3, we give a polynomial time algorithm that computes

optimal solutions for 1P-MLAP.

2. Preliminaries

Weighted trees. Let T be a tree with root r. For any set of nodes Z ⊆ T and a node x, set Zx contains x

and all its descendants in Z; in particular, Tx is the induced subtree of T rooted at x. The parent of a node x

is denoted parent(x).

For a node x 6= r, by `x or `(x) we denote the positive weight of the edge connecting node x to its parent.

For the sake of convenience, we often refer to `x as the weight of node x. We extend this notation to r by

setting `r = 0. If Z is any set of nodes of T , then the weight of Z is `(Z) =
∑
x∈Z `x.

Definition of MLAP. A request ρ is specified by a triple ρ = (σρ, aρ, ωρ), where σρ is the node of T at which

ρ is issued, aρ is the non-negative arrival time of ρ, and ωρ is the waiting cost function of ρ. We assume

that ωρ(t) = 0 for t ≤ aρ and ωρ(t) is non-decreasing for t ≥ aρ. MLAP-L is the variant of MLAP with

linear waiting costs; that is, for each request ρ we have ωρ(t) = t− aρ, for t ≥ aρ. In MLAP-D, the variant

with deadlines, we have ωρ(t) = 0 for t ≤ dρ and ωρ(t) = ∞ for t > dρ, where dρ is called the deadline of

request ρ.

A service is a pair (X, t), where X is a subtree of T rooted at r (an arbitrary connected subset of vertices

containing r) and t is the time of this service. We occasionally refer to X as the service tree (or just service)

at time t, or even omit t altogether if it is understood from context.

An instance J = 〈T ,R〉 of the Multi-Level Aggregation Problem (MLAP) consists of a weighted tree T

and a set R of requests arriving at the nodes of T . A schedule is a set S of services. For a request ρ, let

(X, t) be the service in S with minimal t such that σρ ∈ X and t ≥ aρ. We then say that (X, t) serves ρ and

the waiting cost of ρ in S is defined as wcost(ρ, S) = ωρ(t). Furthermore, request ρ is called pending at all

times in the interval [aρ, t]. Schedule S is called feasible if all requests in R are served by S.

The cost of a feasible schedule S, denoted cost(S), is defined by

cost(S) = scost(S) + wcost(S),

where scost(S) is the total service cost and wcost(S) is the total waiting cost, that is

scost(S) =
∑

(X,t)∈S

`(X) and wcost(S) =
∑
ρ∈R

wcost(ρ, S).

The objective of MLAP is to compute a feasible schedule S for J with minimum cost(S). An example

instance with a feasible schedule is depicted in Figure 1.
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Figure 1: An example instance of MLAP and a feasible schedule. Blue dots denote arrivals of requests at given tree nodes.

The depicted schedule consists of three services: ({r, b, d, e, g}, 3), ({r, a, b, c, e}, 8) and ({r, b, d, g}, 12); the affected nodes are

marked with blue vertical lines. In particular, the second service serves four requests: one at a, one at c and two at e, and the

associated service cost is `({r, a, b, c, e}). The waiting periods of requests are shown as red dashed lines. For example, the only

request at node c, specified by triple ρ = (c, 2, ωρ), is served by the second service (at time 8). Hence, the associated waiting

cost is equal to ωρ(8), which would be equal to ωρ(8) = 8− 2 = 6 for linear waiting costs.

Online algorithms. We assume the continuous time model. The computation starts at time 0 and from

then on the time gradually progresses. At any time t new requests can arrive. If the current time is t, the

algorithm has complete information about the requests that arrived up until time t, but has no information

about any requests whose arrival times are after time t. For an online algorithm A, we say that A is R-

competitive1 if cost(S) ≤ R · opt(J ) for any instance J of MLAP, where S is the schedule computed by A

on J and opt(J ) is the optimum cost for J .

3. Single-Phase Variant

We now consider a restricted variant of MLAP that we refer to as Single-Phase MLAP, or 1P-MLAP. In

1P-MLAP all requests arrive at the beginning, at time 0. The instance also includes an expiration time θ,

common for all requests. We do not require that all requests are served. Any unserved request pays only

the cost of waiting until θ.

In the online variant of 1P-MLAP, all requests, including their waiting cost functions, are known to the

online algorithm at time 0. The only unknown is the expiration time θ.

Although not explicitly named, variants of 1P-MLAP have been considered in [3, 10, 14], where they

were used to show lower bounds on competitive ratios for MLAP. These proofs consist of two steps, first

1Definitions of competitiveness in the literature often allow an additive error term, independent of the request sequence.

For our algorithms, this additive term is not needed. Our lower bound proofs can be easily modified (essentially, by iterating

the adversary strategy) to remain valid if an additive term is allowed, even if it is a function of T .
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showing a lower bound for online 1P-MLAP and then arguing that, in the online scenario, 1P-MLAP can be

expressed as a special case of MLAP. (The corresponding property holds trivially in the offline case as well.)

We use the same general approach in Section 4 to show our lower bounds.

To see that (in spite of the expiration feature) 1P-MLAP can be thought of as a special case of MLAP,

we map an instance J of 1P-MLAP into the instance J ′ of MLAP with the property that any R-competitive

algorithm for J ′ can be converted into an R-competitive algorithm for J . We will explain the general idea

when the cost function is linear; the construction for arbitrary cost functions is based on the same idea, but

it involves some minor technical obstacles. Let θ be the expiration time from J . Choose some large integers

K and M . The constructed instance J ′ consists of K “nested” and “compressed” copies of J , that we also

refer to as phases. In the i-th phase we multiply the waiting cost function of each node by M i. We let this

phase start at time (1−M−i)θ (that is, at this time the requests from this phase are released) and end at

time θ. Thus the length of phase i is M−iθ. The main trick is that, in J ′, at time θ an optimal algorithm can

serve all pending requests (from all phases) at the cost that is independent of K, so the contribution of this

service cost to the cost of each phase is negligibly small. Following this idea, any R-competitive algorithm

for J ′ can be converted into an R-competitive algorithm for J , except for some vanishing additive constant.

(See [3, 10, 14] for more details.)

3.1. Characterizing Optimal Solutions

Let θ be the expiration value. Then the optimal solution is to serve some subtree X (rooted at r) already

at time 0 and wait until time θ with the remaining requests contained in X = T −X. So now we consider

schedules that consist only of one service subtree X ⊆ T at time 0. The cost of such schedule (that we

identify with X itself) is

cost(X, θ) = `(X) + ω(X, θ),

where, for any set U ⊆ T and time t, we use ω(U, t) =
∑
ρ ωρ(U, t) to denote the waiting cost of all requests

in U at time t.

Our first objective is to characterize those subtrees X that are optimal for expiration time t. This

characterization will play a critical role in our online algorithm for 1P-MLAP, provided later in this section

and it also leads to an offline polynomial-time algorithm for computing optimal solutions, given in Section 3.3.

The lemma below can be derived by expressing 1P-MLAP as a linear program and using strong duality.

We provide instead a simple combinatorial proof. For each subtree Z of T , we denote its root by rZ . (Also,

recall that Zv is the induced subtree of Z rooted at v, that is, Zv contains all descendants of v in Z.)

Lemma 1. A service X is optimal for an expiration time t if and only if it satisfies the following two

conditions:

(a) ω(Xv, t) ≥ `(Xv) for each v ∈ X, and
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Figure 2: Illustration of the sufficiency proof for Lemma 1.

(b) ω(Z, t) ≤ `(Z) for each subtree Z, disjoint with X, such that parent(rZ) ∈ X.

Proof. (⇒) We begin by proving that (a) and (b) are necessary conditions for optimality of X.

(a) Suppose that there is a v ∈ X for which ω(Xv, t) < `(Xv). Let Y = X −Xv. Then Y is a service

tree (empty if v = r), and then

cost(Y, t) = `(Y ) + ω(Y , t)

= `(X)− `(Xv) + ω(X, t) + ω(Xv, t)

< `(X) + ω(X, t) = cost(X, t),

contradicting the optimality of X.

(b) Suppose that there is a subtree Z that violates condition (b), that is Z ∩ X = ∅, parent(rZ) ∈ X,

but ω(Z, t) > `(Z). Let Y = X ∪ Z. Then Y is a service tree and

cost(Y, t) = `(Y ) + ω(Y , t)

= `(X) + `(Z) + ω(X, t)− ω(Z, t)

< `(X) + ω(X, t) = cost(X, t),

contradicting the optimality of X.

(⇐) We now prove sufficiency of conditions (a) and (b). Suppose that X satisfies (a) and (b), and let

Y be any other service subtree of T . From (b), for any node z ∈ Y −X with parent(z) ∈ X ∩ Y we have

ω(Yz, t) ≤ `(Yz). Since both X and Y are rooted at r, any node in Y −X is in some induced subtree Yz, for

some z such that parent(z) ∈ X ∩ Y (see Figure 2). This implies that ω(Y −X, t) ≤ `(Y −X). Similarly,

from (a), for any node v ∈ X − Y with parent(v) ∈ X ∩ Y we have ω(Xv, t) ≥ `(Xv). This implies that
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ω(X − Y, t) ≥ `(X − Y ). These inequalities yield

cost(Y, t) = `(Y ) + ω(Y , t)

= `(X) + ω(X, t) + [ `(Y −X)− ω(Y −X, t) ]− [ `(X − Y )− ω(X − Y, t) ]

≥ cost(X, t),

proving the optimality of X.

For a time t, a subtree Z of T (not necessarily rooted at r) is called t-mature if ω(Z, t) ≥ `(Z). We say

that Z is t-covered if each induced subtree Zx, for x 6= rZ , is t-mature. (Note that in this definition Z itself

is not required to be t-mature.) We now make two observations. First, if Z is t-covered, then each induced

subtree Zv of Z is t-covered as well. Second, if Z = {rZ}, that is if Z consists of only one node, then Z

is vacuously t-covered; thus any subtree Z of T has a t-covered subtree rooted at rZ (which may not be

an induced subtree).

Lemma 2. If X and Y are t-covered service subtrees of T then the service subtree X ∪ Y is also t-covered.

Proof. If X = Y the lemma is trivial, so assume X 6= Y . Choose any z ∈ (X − Y ) ∪ (Y − X) with

parent(z) ∈ X ∩ Y . Without loss of generality, we can assume that z ∈ X − Y . As z 6= r, subtree Xz is

t-mature, and by its definition, Xz is disjoint with Y .

Take Q = Y ∪Xz. Set Q is a service subtree of T . We claim that Q is t-covered. To justify this claim,

we choose any v ∈ Q−{r}. Node v might be either in Xz, or in Y on the path from r to z, or in Y but not

on this path. We consider these three cases below.

• If v ∈ Xz = Qz, then Qv is t-mature because Qv = Xv.

• If v ∈ Y and z /∈ Qv, then Qv is t-mature because Qv = Yv.

• If v ∈ Y and z ∈ Qv, then ω(Qv, t) = ω(Yv, t) + ω(Xz, t) ≥ `(Yv) + `(Xz) = `(Qv), so Qv is t-mature

in this case as well.

Thus indeed Q is t-covered, as claimed.

We can now update Y by setting Y = Q and applying the above argument again. By repeating this

process, we end up with X = Y , completing the proof.

Choose Ot to be the inclusion-maximal t-covered service subtree of T (that is, a subtree rooted at r). By

Lemma 2, Ot is well-defined and unique. Also, from Lemma 1 we obtain that Ot is optimal for expiration

time t. Thus, the optimal cost for expiration time t is equal to

opt(t) = cost(Ot, t) = `(Ot) + ω(O
t
, t).
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Figure 3: An example of an instance of 1P-MLAP, with one request at each node issued at time 0 and linear waiting cost

function. For θ = 7, the optimal service subtree is O7 = {r}, and its cost is `(O7) + ω(O
7
, θ) = 0 + 9 · θ = 63. For θ = 8, the

optimal service subtree is O8 = {r, c, d, e, i}, and its cost is `(O8) + ω(O
8
, θ) = 32 + 5 · θ = 72. For θ = 10, the optimal service

subtree is O10 = {r, c, d, e, i, a, g, f}, i.e., O10 = T \ {b, h}, and its cost is `(O10) + ω(O
10
, θ) = 60 + 2 · θ = 80. For θ = 19, the

optimal service subtree O19 is the whole tree T , and its cost is `(O19) + ω(O
19
, θ) = `(T ) + 0 · θ = 93.

An example of optimal service subtrees is given in Figure 3.

Assume that a subtree Z is t-mature and t ≤ t′. As the waiting costs are non-decreasing, Z is t′-mature

as well. This implies the following corollary.

Corollary 3. For every t ≤ t′, it holds that Ot ⊆ Ot′ .

3.2. An Online Competitive Algorithm

In our algorithm, we assume that all waiting cost functions are continuous with respect to t. This is only

for technical convenience as the reduction from [6] implies that our result can be extended to right-continuous

waiting functions, deadlines and the discrete-time model.

Without loss of generality, we can assume that minv∈T −{r} `v > 1; otherwise the distances together with

the waiting costs can be rescaled to satisfy this property.

Algorithm OnlDoubling: For any integer i ≥ 0, define ti := sup{t ≥ 0 | opt(t) ≤ 2i}. At

each time t ≥ 0, if t = ti, serve Oti+1 , otherwise do nothing.

Notice that in any fixed instance opt(t) is bounded (it never exceeds `(T )) and continuous in t, so there

exists a maximum i0 such that for all i ≤ i0 we have opt(ti) = 2i whereas for all i > i0 it holds that ti =∞

and Oti = O∞ serves all the requests in the instance. Thus, regardless of θ, the algorithm never makes

a service after time ti0 . Additionally, we have opt(∞) ≤ 2 · opt(ti0).

Algorithm OnlDoubling is in essence a doubling algorithm [26]. However, although obtaining some

constant ratio using doubling is not difficult, the formulation that achieves the optimal factor of 4 relies

critically on the structure of optimal solutions that we elucidated earlier in this section. For example, note

that the sequence of service costs of the algorithm does not necessarily grow exponentially.

Theorem 4. OnlDoubling is 4-competitive for the Single-Phase MLAP.
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Proof. By our assumption that minv∈T −{r} `v > 1, we have Ot0 = {r}; that is, if θ ≤ t0, the optimum

solution does not make any services and only pays the waiting cost. The definition of t0 implies that

ω(Ot0 , t0) ≤ 1.

We now estimate the cost of Algorithm OnlDoubling, for a given expiration time θ. Suppose first that

θ = tk < ∞ (thus, k ≤ i0), i.e., the expiration is right after the algorithm’s service at time tk. The total

service cost of the algorithm is then
∑k
i=0 `(O

ti+1). To estimate the waiting cost, consider some node v. If

v ∈ Ot0 , then the waiting cost of v is ω(v, t0). If v ∈ Oti+1 − Oti , for some i = 0, ..., k, then the waiting

cost of v is ω(v, ti). If v /∈ Otk+1 , then the waiting cost of v is ω(v, θ) = ω(v, tk). Thus, the total cost of

OnlDoubling is

OnlDoubling(tk) =

k∑
i=0

`(Oti+1) + ω(Ot0 , t0) +

k−1∑
i=0

ω(Oti+1 −Oti , ti) + ω(Otk+1 −Otk , tk) + ω(O
tk+1

, tk)

≤
k∑
i=0

`(Oti+1) + ω(Ot0 , t0) +

k−1∑
i=0

ω(O
ti
, ti) + ω(O

tk
, tk)

=

k+1∑
i=0

[
`(Oti) + ω(O

ti
, ti)

]
+ ω(Ot0 , t0)

≤
k+1∑
i=0

opt(ti) + 1 ≤
k+1∑
i=0

2i + 1 = 2k+2 = 4 · opt(tk),

where in the last line we use k ≤ i0, which implies opt(ti) = 2i for all i ≤ k and opt(tk+1) ≤ 2k+1.

Next, suppose that θ is between two service times, say tk ≤ θ < tk+1, in which case again k ≤ i0. The

optimality of Otk at time tk implies that opt(tk) = `(Otk) +ω(O
tk
, tk) ≤ `(Oθ) +ω(O

θ
, tk). By Corollary 3,

we have Otk ⊆ Oθ ⊆ Otk+1 . Then, the increase of the optimum cost from time tk to time θ can be estimated

as

opt(θ)− opt(tk) ≥
[
`(Oθ) + ω(O

θ
, θ)
]
−
[
`(Oθ) + ω(O

θ
, tk)

]
= ω(O

θ
, θ)− ω(O

θ
, tk) ≥ ω(O

tk+1
, θ)− ω(O

tk+1
, tk),

where the last expression is the increase in Algorithm OnlDoubling’s cost from time tk to time θ. This

implies that the ratio at expiration time θ cannot be larger than the ratio at expiration time tk.

The final case is when 0 ≤ θ < t0. Then opt(θ) < 1. By our assumption, all weights are greater than 1,

and this implies opt(θ) = ω(T , θ) = OnlDoubling(θ).

3.3. An Offline Linear-Time Algorithm

The offline algorithm for computing the optimal solutions is based on the above-established properties

of optimal sets Ot.

Theorem 5. The optimal offline solution to 1P-MLAP can be computed in linear time.
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Proof. Our algorithm proceeds bottom up, starting at the leaves, and pruning out subtrees that are not

t-covered. The pseudo-code of our algorithm is shown below.

Algorithm 1 CovSubT (v, t)

Av ← {v}

δv ← ω(v, t)

for each child u of v do

(Au, δu)← CovSubT(u, t)

if δu ≥ `u then

Av ← Av ∪Au
δv ← δv + δu − `u

return (Av, δv)

For each node v the algorithm outputs a pair (Av, δv), where Av denotes the maximal (equivalently w.r.t.

inclusion or cardinality) t-covered subtree of T rooted at v, and δv = ω(Av, t) − `(Av − {v}). That is, δv

is the “surplus” waiting cost of Av at time t. (Note that we do not account for `v in this formula.) To

compute Ot, the algorithm computes (Ar, δr) = CovSubT(r, t) and returns Ar.

By a routine argument, the running time of Algorithm CovSubT is O(N), where N is the size of the

instance (that is, the number of nodes in T plus the number of requests). Here, we assume that the values

ω(v, t) can be computed in time proportional to the number of requests in v.

4. MLAP on Paths

We now consider the case when the tree is just a path. For simplicity, we assume a generalization to

the continuous case, that we refer to as the MLAP problem on the line, when the path is represented by the

half-line [0,∞) and the requests can occur at any point x ∈ [0,∞). The point 0 corresponds to the root,

each point x ∈ [0,∞) is a node, and each service is an interval of the form [0, x]. We say that an algorithm

delivers from x if it serves the interval [0, x].

4.1. Optimal Solution for MLAP-D on Paths

We first prove that the competitive ratio of MLAP-D (the variant with deadlines) on the line is at most 4.

By the lower bound we present next, this bound is optimal.

Algorithm OnlLine: Create a service only when a deadline of a pending request is reached. If

a deadline of a request at x is reached, deliver from 2x.

Theorem 6. Algorithm OnlLine is 4-competitive for MLAP-D on the line.

12



Proof. The proof uses a charging strategy. We represent each adversary’s service, say when the adversary

delivers from a point y, by an interval [0, y]. The cost of each service of OnlLine is then charged to

a segment of one of those adversary’s service intervals.

Consider a service triggered by a deadline t of a request ρ at some point x. When serving ρ, OnlLine

delivered from 2x. Fix the last service of the adversary delivered from a point x′ ≥ x at a time t′ ≤ t. (Such

service exists, because the adversary must have served ρ between its arrival time and its deadline t.) We

charge the cost 2x of the algorithm’s service to the segment [x/2, x] of the adversary’s service interval [0, x′]

at time t′.

We now claim that no part of the adversary’s service is charged twice. To justify this claim, suppose that

there are two services of OnlLine, at times t1 < t2, triggered by requests from points x1 and x2, respectively,

that both charge to an adversary’s service from x′ at time t′ ≤ t1. By the definition of charging, the request

at x2 is serviced by the adversary no later than at time t′, so its arrival time is no larger than t′. As x2 was

not served by OnlLine’s service at t1, it means that x2 > 2x1, and thus the charged segments [x1/2, x1]

and [x2/2, x2] of the adversary’s service interval at time t′ are disjoint.

Summarizing, for any adversary’s service interval [0, y], its charged segments are disjoint. Any charged

segment receives the charge equal to 4 times its length. Thus this interval receives the total charge at

most 4y. This implies that the competitive ratio is at most 4.

4.2. Lower Bounds

We now show lower bounds of 4 for MLAP-D and MLAP-L on the line. In both proofs we show the

bound for the corresponding variant of 1P-MLAP. For the latter, we use a reduction from the online bidding

problem [26, 27]. Roughly speaking, in online bidding, for a given universe U of real numbers, the adversary

chooses a secret value u ∈ U and the goal of the algorithm is to find an upper-bound on u. To this end, the

algorithm outputs an increasing sequence of numbers x1, x2, x3, . . .. The game is stopped after the first xk

that is at least u and the bidding ratio is then defined as
∑k
i=1 xi/u.

Chrobak et al. [27] proved that the optimal bidding ratio is exactly 4, even if it is restricted to sets U of

the form {1, 2, . . . , B}, for some integer B. More precisely, they proved the following result.

Lemma 7. [27] For any R < 4, there exists an integer B > 0, such that any sequence of integers 0 = x0 <

x1 < x2 < . . . < xm−1 < xm = B has an index k ≥ 1 with
∑k
i=0 xi > R · (xk−1 + 1).

Theorem 8. There is no online algorithm for MLAP-D on the line with competitive ratio smaller than 4.

Proof. We show that no online algorithm for 1P-MLAP-D (the deadline variant of 1P-MLAP) on the line

can attain competitive ratio smaller than 4. Suppose the contrary, i.e., that there exists an R-competitive

deterministic algorithm Alg with R < 4. Let B be the integer whose existence is guaranteed by Lemma 7.
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We create an instance of 1P-MLAP-D, where, at time 0, for every x ∈ {1, . . . , B} there is a request at x with

deadline x.

Without loss of generality, Alg issues services only at integer times 1, 2, ..., B. The strategy of Alg

can be now defined as a sequence of services at times t1 < t2 < . . . < tm, where at time ti it delivers from

xi ∈ {ti, ti + 1, ..., B}. Without loss of generality, x1 < x2 < . . . < xm. We may assume that xm = B

(otherwise the algorithm is not competitive at all); we also add a dummy service from x0 = 0 at time t0 = 0.

The adversary now chooses some k ≥ 1 and stops the game at the expiration time θ that is right after

the algorithm’s k-th service, say θ = tk + 1/2. Alg’s cost is then
∑k
i=0 xi. The request at xk−1 + 1 is not

served at time tk−1, so, to meet the deadline of this request, the schedule of Alg must satisfy tk ≤ xk−1 +1.

This implies that θ < xk−1 + 2, that is, all requests at points xk−1 + 2, xk−1 + 3, ..., B expire before their

deadlines and do not need to be served. Therefore, to serve this instance, the optimal solution may simply

deliver from xk−1 + 1 at time 0. Hence, the competitive ratio of Alg is at least
∑k
i=0 xi/(xk−1 + 1). By

Lemma 7, it is possible to choose k such that this ratio is strictly greater than R, a contradiction with

R-competitiveness of Alg.

Next, we show that the same lower bound applies to MLAP-L, the version of MLAP where the waiting

cost function is linear. This improves the lower bound of 3.618 from [10].

Theorem 9. There is no online algorithm for MLAP-L on the line with competitive ratio smaller than 4.

Proof. Similarly to the proof of Theorem 8, we create an instance of 1P-MLAP-L (the variant of 1P-MLAP

with linear waiting cost functions) that does not allow a better than 4-competitive online algorithm. Fix

any online algorithm Alg for 1P-MLAP-L and, towards a contradiction, suppose that it is R-competitive,

for some R < 4. Again, let B be the integer whose existence is guaranteed by Lemma 7. In our instance of

1P-MLAP-L, there are 6B−x requests at x for any x ∈ {1, 2, . . . , B}.

Without loss of generality, we make the same assumptions as in the proof of Theorem 8: algorithm Alg

is defined by a sequence of services at times 0 = t0 < t1 < t2 < . . . < tm, where at each time ti it delivers

from point xi, where 0 = x0 < x1 < . . . < xm = B.

Again, the strategy of the adversary is to stop the game at some expiration time θ that is right after

some time tk, say θ = tk + ε, for some small ε > 0. The algorithm pays
∑k
i=0 xi for serving the requests.

The requests at xk−1 + 1 waited for time tk in Alg’s schedule and hence Alg’s waiting cost is at least

6B−xk−1−1 · tk.

The adversary delivers from point xk−1 +1 at time 0. Each of the remaining, unserved requests at points

xk−1 + 2, xk−1 + 3, . . . , B pay θ for waiting. There are
∑B
j=xk−1+2 6B−j ≤ (1/5) · 6B−xk−1−1 such requests

and hence the adversary’s waiting cost is at most (1/5) · 6B−xk−1−1 · (tk + ε).

Therefore, the algorithm-to-adversary ratio on the waiting costs is at least 5tk/(tk + ε). For any k

we can choose a sufficiently small ε so that this ratio is larger than 4. The ratio on the servicing cost is
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∑k
i=0 xi/(xk−1+1), and by Lemma 7, it is possible to choose k for which this ratio is strictly greater than R.

This yields a contradiction to the R-competitiveness of Alg.

We point out that the analysis in the proof above gives some insight into the behavior of any 4-competitive

algorithm for 1P-MLAP-L (we know such an algorithm exists, by the results in Section 3), namely that, for

the type of instances used in the above proof, its waiting cost must be negligible compared to the service

cost.

5. An Offline 2-Approximation Algorithm for MLAP-D

In this section we consider the offline version of MLAP-D, for which Becchetti et al. [23] gave a polynomial-

time 2-approximation algorithm based on LP-rounding. We give a much simpler argument that does not

rely on linear programming.

We use an alternative specification of schedules that is easier to reason about in the context of offline

approximations. If S is a schedule, for each node x ∈ T we can specify the set Sx of times t for which S

contains a service (X, t) with x ∈ X. Then the set {Sx}x∈T uniquely determines S. Note that we have

Sx ⊆ Sy whenever y is an ancestor of x. We can now write the service cost as scost(S) =
∑
x∈T `x · |Sx|

(recall that `r = 0). Without loss of generality, we assume that in an offline schedule, each service time is

equal to some deadline.

Let R be the set of requests from the given instance. For each node v, define Rv to be the set of all

intervals [aρ, dρ] corresponding to requests ρ issued in Tv, the subtree of T rooted at v.

Algorithm OffLByL: We proceed level by level, starting at the root and in order of increasing

depth, computing the service times Sv for all nodes v ∈ T .

• For the root r, Sr is the set of the deadlines of all requests.

• Consider now some node v with parent u for which Su has already been computed. Using

the standard earliest-deadline algorithm, compute Sv as the minimum cardinality subset of

Su that intersects all intervals in Rv.

More precisely, start with Sv empty. Repeat the following steps until Rv is empty:

– find [a, d] ∈ Rv with the minimal d;

– find d̄ ∈ Su maximal such that d̄ ≤ d;

– add d̄ to Sv;

– remove all intervals [aρ, dρ] containing d̄ from Rv.

Theorem 10. Algorithm OffLByL is a polynomial-time 2-approximation for MLAP-D.
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Proof. We first show that the approximation ratio of Algorithm OffLByL is at most 2. Denote an optimal

schedule by S∗. According to our convention, S∗v is then the set of times when v is served in S∗. As

cost(S) =
∑
v `v · |Sv| and cost(S∗) =

∑
v `v · |S

∗
v|, it is sufficient to show that |Sv| ≤ 2 · |S∗v| for each v 6= r.

Note that as `r = 0, setting Sr to be the set of all deadlines incurs no cost.

To this end, let u be the parent of v. The set Su intersects all intervals in Rv (because it intersects all

intervals of Ru, a superset of Rv). We construct S′v ⊆ Su as follows. For each t ∈ S∗v, choose the maximal

t− ∈ Su such that t− ≤ t, and the minimal t+ ∈ Su such that t+ ≥ t. Add t−, t+ to S′v. (More precisely,

each of them is added only if it is defined.) Then S′v ⊆ Su and |S′v| ≤ 2 · |S∗v|. Furthermore, any interval

[aρ, dρ] ∈ Rv contains some t ∈ S∗v and intersects Su, so it also must contain either t− or t+. Therefore S′v

intersects all intervals in Rv. Since we pick Sv optimally from Su, we have |Sv| ≤ |S′v| ≤ 2 · |S∗v|, completing

the proof.

Clearly OffLByL runs in polynomial time. In fact, it can be implemented in quadratic time as follows.

Let N be the number of nodes in T plus the number of requests. We first prepare two sorted lists of requests,

one sorted by non-decreasing arrival times and the other by non-decreasing deadlines, using O(N logN)

operations. Now the earliest-deadline algorithm can compute each Sv in O(N) operations by sweeping the

lists. Altogether we need to process O(N) vertices, a total of O(N2) operations including preprocessing.

The only operations we need are comparisons of numbers that appear on the input.

It is easy to show that the analysis above is tight. Consider a tree of three nodes: the root r, the

intermediate node a, and the leaf b, where `a = ε and `b = 1. The input contains of three requests: ρ0 at a,

with arrival time 0 and deadline 2, ρ1 at b, with arrival time 1 and deadline 4, and ρ2 at b, with arrival

time 3 and deadline 5. An optimal solution could choose sets S∗r = {2, 4, 5}, S∗a = {2, 4} and S∗b = {4}, of

total cost 1 + 2ε. On the other hand, the choices made by OffLByL at node a cause possible choices at

node b to be sub-optimal. That is, it chooses Sr = {2, 4, 5}, S∗a = {2, 5} and S∗b = {2, 5} of total cost 2 + 2ε.

As ε can be arbitrarily small, the approximation ratio can be arbitrarily close to 2.
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