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Abstract

Consider a discrete-time process on a graph G where a set B of initial vertices are
chosen to be colored blue (the remainder being white) and then a time step consists
of every currently blue vertex forcing all of its neighbors to become blue; this process
stops when every vertex of the graph is blue, and the process is called full forcing. The
full throttling number of G is then defined to be the minimum sum of the cardinality of
B and the number of time steps needed to complete the forcing process. On trees, the
full throttling number is equivalent to the throttling numbers of several other graph
processes, such as positive-semidefinite zero forcing, the game of cops and robbers,
and the distance domination number (alternately, the k-radius) of a graph. For all of
these, it is known that maximum possible throttling number for a tree on n vertices

is somewhere between 1.4502
√
n and

√
14
2

√
n, with the former exhibited by a family of

spiders. After introducing some new ideas and methods for working with throttling
on trees, this paper determines the exact full throttling number of all balanced spiders
(trees with equal-length paths extending from a center vertex), and proves that their
full throttling numbers are bounded above by that of paths of the same order n, which
are known to have full throttling number

⌈√
2n− 1

2

⌉
.

Keywords Throttling, full forcing, zero forcing, cops and robbers, d-domination
AMS subject classification 05C57, 05C15, 05C50

1 Introduction

The study of throttling graph processes and quantities has its origins as a question about
zero forcing [8]. Zero forcing is a process used to bound minimum rank/maximum nullity
problems from linear algebra and spectral graph theory [1], and arose independently in the
control of quantum systems [7, 18]. The zero forcing number has also been shown [20] to be
equivalent to fast mixed graph searching. Further, zero forcing appears as a subprocess in
the study of power domination [6, 17, 21], which itself is used as a model for the placement
of phase measurement units of electrical networks [13, 14]. Purely in terms of graph theory,
the zero forcing process involves selecting some initial vertices to color blue, and then that
blueness can spread through the graph under specific conditions, in discrete time steps. Thus
the most natural problems that arise are to determine the smallest number of initial vertices
that will eventually color the entire graph blue (this is the zero forcing number of the graph),
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and to determine how much time the process will take with the smallest number of initial
vertices necessary (this is the zero forcing propagation time of the graph [15]). Zero forcing
throttling seeks to strike a balance between these by first noting that a larger initial set of
vertices causes the process to terminate sooner, and then finding an optimal solution that
minimizes the sum of the number of initial vertices and the propagation time of the zero
forcing process.

This concept of balancing initial resources against a related parameter has since been
applied to other graph processes, and was first extended to positive semidefinite zero forcing
[9] which is a process used bound positive semidefinite minimum rank/maximum nullity
problems. Subsequently, throttling was applied to the game of cops and robbers [5], which has
applications to the coordination of mobile autonomous agents [16], routing reconfiguration
in networks [10], and graph decompositions [4].

We now present a simplified forcing process called full forcing, and the related throttling
process, which will be called full throttling. Let G be a simple graph, B ⊆ V (G) be the
current set of blue vertices, and W the current set of white vertices. Then, in a given time
step, the full forcing color change rule colors w ∈ W blue whenever w is the neighbor of
some v ∈ B, in which case we say that v forces w and write v → w. If multiple vertices
are capable of forcing w, a choice of forcing vertex is made. Ultimately, this does not
affect the contents of the sets B(k) defined below. The full forcing process begins with an
initial set of blue vertices, B(0) = B ⊆ V (G), with all other vertices being white. The full
forcing color change rule is applied iteratively, and the set B(k) is defined to be the set of
all the vertices that

⋃k−1
i=0 B

(i) can force independently; the collection of forces that color the
vertices in B(k) blue are said to occur during the kth time-step. If this process eventually
colors all of V (G) blue, the set B(0) is said to be a full forcing set of G, and the least k such
that

⋃k
i=0B

(i) = V (G) is the full forcing propagation time of B, denoted by ptf (G;B). If
B ⊂ V (G) is not a full forcing forcing set, then ptf (G;S) = ∞. The full throttling number
of B is thf (G;B) = |B|+ ptf (G;B), and the full throttling number G is

thf (G) = min
B⊆V (G)

thf (G;B).

In the event that thf (G;B) = thf (G), B is said to be optimal, or more specifically an optimal
full throttling set of G. Note that in a connected graph, every nonempty set of vertices is a
full forcing set; and thus the interesting questions about full forcing relate to the propagation
time and full throttling numbers.

The distance between vertices u, v, noted dist(u, v) is the length of the shortest path
between u and v. Given a set S ⊆ V (G) and a vertex v, the distance from v to S is
dist(v, S) = minu∈S dist(u, v). The eccentricity of a set of vertices S ⊆ V (G) is ecc(S) =
maxv∈V (G) dist(v, S).

The distance domination number of G, given a distance d, is the size of the smallest
set B of vertices with ecc(B) = d; this is denoted by γd(G). With a shift in perspective,
the k-radius of a graph is radk(G) = minS⊆V,|S|=k ecc(S). In their respective notations, the
throttling numbers of distance domination and k-radius are given by mind≥0 γd(G) + d and
mink≥1 k + radk(G). The throttling of full forcing, distance domination, and k-radius all
minimize the sum of a number of vertices and the eccentricity of that set of vertices, and so
throttling for each of these parameters is equivalent.
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The throttling numbers and analogous definitions have been stated for many other pro-
cesses, a handful of which are given below. Note that for variants of zero forcing, the sets
B(i) are defined as for full forcing above; using the associated forcing rules to determine
which vertices are forced.

• For (standard) zero forcing, with v ∈ B (where B is the current set of blue ver-
tices), and w ∈ W = V (G) \ B, v → w whenever w is the only white neighbor
of v. Then, the propagation time and throttling number of B on G are pt(G;B)
and th(G;B) = |B| + pt(G;B) respectively, and the throttling number of G [8] is
th(G) = minB⊆V (G) th(G;B).

• For positive semidefinite zero forcing, we consider the components W1, . . . ,Wk of the
induced subgraph G[V \ B]; then v ∈ B forces w ∈ Wi whenever w is the only white
neighbor of v in G[B ∪Wi]. The PSD propagation time and PSD-throttling number
of B are pt+(G;B) and th+(G;B) = |B| + pt+(G;B). The PSD-throttling number of
G [9] is then th+(G) = minB⊆V (G) th+(G;B).

• For the game of cops and robbers, you are given k cops to place on the graph, and
then a robber is placed somewhere in the graph. In a round, you move any number of
cops to adjacent vertices –winning the game if a cop occupies the same vertex as the
robber– and then the robber can move to an adjacent vertex, trying to evade capture
for long as possible. Assuming the robber is always placed optimally and both players
move optimally, the k-capture time of G is captk(G), the minimum capture time across
all choices of k cops. Then, the cop throttling number of G [5] is thc(G) = k+captk(G).

A throttling process is said to have full throttling whenever it is known to be equivalent
to full throttling. As noted above, distance domination and k-radius throttling always have
full throttling. Positive semidefinite zero forcing has full throttling on trees, as every white
neighbor of a blue vertex must exist in its own unique component, so every blue vertex forces
all of its neighbors each round, and thus is identical to full forcing. In [5] it was shown that
the cop throttling is equivalent to full throttling on chordal graphs.

Thus, on trees,
thf (G) = thc(G) = th+(G).

Note that these equalities are not true in general, as it is shown in [5, 9] that across all
graphs,

thf (G) ≤ thc(G) ≤ th+(G) ≤ th(G),

with specific examples of graphs where the adjacent throttlings differ.
Except where specifically noted, the rest of this paper will discuss full throttling and

those processes which have full throttling on trees, so the notation thf (G) will be used. It
was shown in [9] that full throttling is subtree monotonic on trees, and that for paths of
order n, thf (Pn) =

⌈√
2n− 1

2

⌉
. It was also shown in [5] that if T is a tree with the highest

full throttling number among all trees of order n, then thf (Pn) ≤ thf (T ) ≤ 2
√
n, with only

a couple specific trees known to have thf (T ) = thf (Pn) + 1, and no known examples of trees
with a higher full throttling number. It has since been shown in [12] that there is a family of
trees T of order n with 1.45

√
n ≤ thf (T ). These trees are all examples of spiders, which are

3



trees that have exactly one vertex with degree higher than 2. Spiders are usually described
in terms of lengths of their legs; e.g. S(7, 6, 2) is a tree on 16 vertices, with one center vertex
adjacent to three disjoint paths of orders 7, 6, and 2. A balanced spider is one in which every
leg has the same length, and is generally noted by Tα,β = S(β, β, . . . , β), where the spider
has α legs, each of length β. Consequently, this paper defines a super-spider as any spider
which has a full throttling number higher than that of the same-order path. The upper
bound was also improved in [12], where it was noted that thf (T ) ≤

√
14n/2 for any tree T

of order n, and that for all spiders S of order n, thf (S) ≤
√

3n.
In Section 2, we show that full throttling is monotonic for connected minors on trees,

define a framework to extend any throttling process to apply to weighted graphs, and present
a method for computing the full throttling number of highly symmetric graphs, called con-

centration. In Section 3 we show that thf (Tα,β) = 1 + α

⌊√
2β+α+1

4α

⌋
+
⌈
β−ŝ
2ŝ+1

⌉
, and prove

that there are no balanced super-spiders.

2 New Tools for Full Throttling on Trees

In this section we present a useful fact about the full throttling numbers of paths, strengthen
the monotonicity results of [9], and introduce a generalization of throttling processes on
(vertex) weighted graphs; which is then used in a new technique for computing the full
throttling number of highly symmetric trees, by first reducing them to smaller weighted
trees.

Lemma 2.1. Let t ∈ Z+. Then, the longest path with throttling number t is Pnt, where nt

is the t-th triangle number. Consequently, thf (Pn) =
⌈√

2n+ 1
4
− 1

2

⌉
.

Proof. Let nt be the largest integer for which thf (Pnt) =
⌈√

2nt − 1
2

⌉
= t. Then, nt is the

largest integer such that
√

2nt ≤ t + 1
2
. By squaring both sides and solving the resulting

quadratic, one can see that nt = t(t+1)
2

. Thus, nt is the t-th triangle number, and consequently
the throttling number of Pn is the ceiling of the inverse triangle number of n .

On its own, Lemma 2.1 may appear to be no more than a curiosity. However, this variant
of thf (Pn) can lead to some elegant simplification when used alongside other throttling
formulae, as in the proof of Lemma 3.7. Further, the triangle numbers will appear once
again when we use them to construct a family of super-spiders in Proposition 3.5.

It was established in [9] that full throttling (there called PSD-throttling) is subtree mono-
tonic. We extend full throttling monotonicity to all connected minors.

Observation 2.2. Any connected minor of a tree T can be created using only edge contrac-
tions.

Theorem 2.3. Let T be a tree, and T ′ be a connected minor of T . Then,

thf (T
′) ≤ thf (T ).

That is, full throttling is connected minor monotonic for trees.
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Proof. We need consider only edge contraction by Observation 2.2. Let uv ∈ E(T ), B ⊆
V (T ), and B′ be the image of B under the edge contraction T/uv. That is, B′ contains
B \ {u, v}, and contains the new vertex if and only if at least one of u or v are in B.
Thus, |B′| ≤ |B|. Next, consider the propagation of B through T . If that process forces
through edge uv, then all subsequent forces in that component will occur one time-step
sooner in the propagation of B′ through T/uv. If the process does not force through edge
uv, ptf (T/uv;B′) ≤ ptf (T ;B). Thus, for all uv ∈ E(T ), thf (T/uv) ≤ thf (T ).

We now provide a natural extension of the throttling of any forcing process to allow
for (vertex) weighted graphs. In fact, this provides a blueprint for any process that involves
selecting an initial set of vertices from the weighted graph. We’ll refer to the generic processes
as X-forcing and X-throttling, and will use ptX and thX appropriately.

Definition 2.4. Let (G,w) be a weighted graph, where w : V (G)→ R+ is a weight function
on the vertices of G, and let B ⊆ V (G) be an X-forcing set of G. Define w(B) =

∑
v∈B w(v).

Then,
thX (G,w;B) = w(B) + ptX (G;B)

and the X-throttling number of (G,w) is

thX (G,w) = min
B⊆V (G)

thX (G,w;B).

In the event that thX (G,w;B) = thX (G,w), B is said to be an optimal (X-throttling) set
for (G,w).

Note that this method of throttling on weighted graphs is also a generalization of weighted
X-throttling on unweighted graphs, defined for zero forcing and positive semidefinite zero
forcing in [8, 9] as

thf
ω(G) = min

B⊆V (G)
(ω|B|+ ptf (G;B)) ,

wherein the “weighting” takes the form of a scalar ω multiplied by the size of B, rather than
weights on individual vertices.

Observation 2.5. When the weight function w is constant, i.e., w(v) = ω for all v ∈ V (G),
X-throttling of the weighted graph (G,w) is equal to ω-weighted X-throttling of the unweighted
graph G: thX (G,w) = thX

ω(G). When the weight function is identically one, the result is
ordinary X-throttling.

Next, we define a method by which we can use full throttling on weighted trees to simplify
throttling on unweighted graphs, whenever the process being throttled is equivalent on trees
to full throttling.

Definition 2.6. Let (T,w) be a weighted tree and let v ∈ V (T ). Then, the components of
T − v are called branches of T at v. Branches T1, T2 of T at v are called weight isomorphic
when

1. there is an automorphism σ of T such that for all x ∈ V (T )\(V (T1)∪V (T2)), σ(x) = x,
σ(V (T1)) = V (T2), and σ(V (T2)) = V (T1), and
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2. for all x ∈ V (T1), w(x) = w(σ(x)).

In this case σ is called a weight isomorphism. Given a set Tv = {T1, . . . , T`} of pairwise
weight isomorphic branches of T at v ∈ V (T ) with weight isomorphisms σi between V (Ti)
and V (T1) for i = 2, . . . , `, a set of vertices B is weight isomorphic with respect to Tv whenever
B ∩ V (Ti) = σi(B ∩ V (T1)) for i = 2, . . . , `.

Theorem 2.7. Let (T,w) be an integer weighted tree. Suppose that Tv = {T1, . . . , T`} is a
set of pairwise weight isomorphic branches of T at v ∈ V (T ) with weight isomorphisms σi
between V (Ti) and V (T1) for i = 2, . . . , `, and that w(v) = 1. Then there is an optimal full
forcing set B for (T,w) that is weight isomorphic with respect to Tv.

Proof. Let B be an optimal full forcing set of (T,w), and define Bi = B ∩ V (Ti) for i =
1, . . . , `. There are two cases, depending on the role of v.

First, suppose v ∈ B or v can be forced by a vertex not in ∪`i=1V (Ti) in at most ptf (T ;B)
time-steps. In particular, this means the full forcing process happens independently in each
Ti. Without loss of generality, w(B1) ≤ w(Bi) for i = 2, . . . , `. Since forcing in all branches
concludes in at most ptf (T ;B) time-steps, if w(B1) < w(Bi) we could replace Bi by σi(B1)
and B was not optimal. Thus, w(Bi) = w(B1) for i = 2, . . . , `, and we can replace Bi by
σi(B1) to get an optimal full forcing set that is weight isomorphic with respect to Tv.

Next we consider the case where v is forced by a vertex in some Tk, where 1 ≤ k ≤ `.
Let Hi = T [V (Ti) ∪ {v}] for i = 1, . . . , `. We may assume, without loss of generality, that
{Bi | i 6= k} is weight isomorphic with respect to {Ti | i 6= k}. Thus, for the remainder
of this proof, assume i ∈ {1, . . . , `} with i 6= k. If w(Bk) ≤ w(Bi), we could replace
Bi by σi(σ

−1
k (Bk)) -contradicting the optimality of B- so we assume w(Bk) > w(Bi). We

may also assume ptf (Hk;Bk) < ptf (Hi;Bi), or else replacing Bk with σk(σ
−1
i (Bi)) also

contradicts the optimality of B. Now, consider B′ = (B \Bk) ∪ σk(σ−1i (Bi)) ∪ {v}. Clearly,
ptf (Hi;Bi ∪ {v}) ≤ ptf (T ;B), as any forcing caused by v under propagation from B now
occurs sooner. Further, since w(Bk) > w(Bi) and w(v) = 1, w(B′) ≤ w(B). Thus, B′ is an
optimal full forcing set for (T,w) which is weight isomorphic with respect to Tv.

It should be noted that there are cases without the condition “w(v) = 1”, which do not
have a weight isomorphic optimal set, as demonstrated with the following example.

Example 2.8. Consider the balanced spider T = T3,7 := S(7, 7, 7) with center vertex c. Let
A = {x ∈ V (T ) | dist(c, x) = 1}, B = {x ∈ V (T ) | dist(c, x) = 5}, and suppose T is given
weight function

w(x) =

{
1 if dist(c, x) ∈ {1, 5}
10 otherwise.

First, note that thf (T ;A) = w(A)+ptf (T ;A) = 3+6 = 9, and thus no starting set containing
a weight 10 vertex can be optimal. Thus, the only weight isomorphic starting sets that could
be optimal are A, B, and A ∪ B, with thf (T ;B) = 8, and thf (T ;A ∪ B) = 8. However, if
our starting set is B ∪ {a} where a ∈ A, we get

thf (T ;B ∪ {a}) = 4 + 3 = 7.

Thus, no weight isomorphic set is optimal.
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This construction uses a low cost vertex v near the center c to force through to vertices
in other branches, thereby reducing the overall propagation time. However, if w(c) = 1, then
replacing v with c cannot increase the cost, as w(v) is a positive integer. Further, the time
need for v → c is the same as c → v, and the vertices in other branches that v was forcing
get forced from c sooner, meaning propagation in all other branches finishes in at most the
same amount of time.

Definition 2.9. Let (T,w) be an integer weighted tree. Suppose {T1, . . . , T`} is a maximal
set of pairwise weight isomorphic branches of T at vertex v ∈ V (T ), such that w(v) = 1. A
single concentration of T at v is the weighted tree T ′ = T−{T2, . . . , T`} with weight function

w′(x) =

{
`w(x) if x ∈ V (T1)

w(x) otherwise.

Each graph formed by one or more iterations of this process is called a concentration of T .

Theorem 2.10. Let (T,w) be an integer weighted tree, and let (T ′, w′) be a concentration
of T . Then,

thf (T ) = thf (T
′).

Proof. Let Tv = {T1, . . . , T`} be the pairwise weight isomorphic branches of T that are
concentrated in T ′. Notice that each set vertices in T that is weight isomorphic with respect
to Tv corresponds to exactly one set of vertices in T ′. By Theorem 2.7, there is an optimal
set B for T that is weight isomorphic with respect to Tv. Let B′ be the subset of V (T ′)
corresponding to B. Clearly, w(B) = w′(B′) and ptf (T ;B) = ptf (T

′;B′), so thf (T ) ≥
thf (T

′).
Similarly, let B′ be an optimal full throttling set of T ′, and B be the corresponding set

of vertices in T , which is weight isomorphic with respect to Tv. Again, w(B) = w′(B′) and
ptf (T ;B) = ptf (T

′;B′), so thf (T ) ≤ thf (T
′)

The concentration approach can simplify proofs and computations of the full throttling
number, especially those with a high degree of symmetry.

Example 2.11. Consider T , a full binary tree of height h. Suppose w(v) = 1 for all
v ∈ V (T ), and let c denote the root vertex of T . Then, consider each vertex at distance
h− 1 from c. Each has a weight of 1, and has two weight isomorphic branches (just leaves).
Performing a concentration then merges each leaf pair, doubling the cost of the vertices in
each branch. Then one can move to the vertices at distance h − 2 from c, each of which
has weight 1, and two weight isomorphic branches which are paths. Again, concentrating
these paths doubles the weights of the merged vertices. Iterating this concentration process
towards c thus results in a path of length h, with a weight sequence 20, 21, 22, . . . , 2h. Thus
by Theorem 2.10 it’s easy to see that thf (T

′) = h+ 1 by choosing the vertex that costs only
1, and thus thf (T ) = h+ 1 by choosing the center vertex.
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3 Spiders

In [5], Breen et al. give an algorithm that constructs, for any tree T , an initial coloring set
B ⊆ V (T ) such that thf (T ;B) ≤ 2

√
n. Since [9] noted that all paths have a full throttling

number approximately
√

2
√
n, the authors of [5] posed an interesting question: What is the

smallest coefficient µ such that for all trees T , asymptotically thf (T ) . µ
√
n? Or, which

trees have the highest full throttling number across all trees on n vertices, and what is that
number? It was originally thought by some that balanced spiders might provide a family of
examples for which thf (T ) ≈ µ

√
n with µ >

√
2. However, we show in this section that this

is not possible, after determining the exact value of the full throttling number of a balanced
spider.

Recall that the (unweighted) balanced spider with α legs of order β is Tα,β; which has
αβ + 1 vertices. Note that Tα,β has α weight isomorphic branches at the center vertex c,
all of which are paths of order β. Thus, Tα,β can be concentrated to a weighted path of
order β+1, wherein one end vertex (which inherits the label c) has weight one, and all other
vertices have weight α.

Observation 3.1. If s vertices in each leg of Tα,β (i.e. s non-c vertices from the complete
concentration) are optimally chosen and c is not chosen, the full forcing propagation time is⌈
β+1−s

2s

⌉
. If c is chosen, the full forcing propagation time is

⌈
β−s
2s+1

⌉
.

Lemma 3.2. Every (unweighted) balanced spider with at least three legs has an optimal full
throttling set containing the center vertex.

Proof. For α ≥ 3, β, s ≥ 1, define

g(α, β, s) = αs+
β + 1− s

2s
,

which corresponds to the full throttling number when s vertices from each leg of Tα,β are
chosen and c is not. Similarly, for α ≥ 3, β ≥ 1, s ≥ 0, define

h(α, β, s) = 1 + αs+
β − s
2s+ 1

,

corresponding to the full throttling number when c is chosen in addition to the s vertices
chosen from each leg. It suffices to show that for every triple (α, β, s) with α ≥ 3, β, s ≥ 1,

h(α, β, s) ≤ g(α, β, s) or h(α, β, s− 1) ≤ g(α, β, s).

Observe that for fixed α and s, both h and g are linear functions in β. The slopes are

dg(α, β, s)

dβ

∣∣∣
s

=
1

2s

dh(α, β, s)

dβ

∣∣∣
s

=
1

2s+ 1
<

1

2s

dh(α, β, s)

dβ

∣∣∣
s−1

=
1

2s− 1
>

1

2s
,
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and the intercepts are

g(α, 0, s) = αs+
1− s

2s
= αs− 1

2
+

1

2s

h(α, 0, s) = 1 + αs− s

2s+ 1
= 1 + αs− 1

2
+

1

4s+ 2
> αs− 1

2
+

1

2s

h(α, 0, s− 1) = 1− α + αs− s− 1

2s− 1
= 1− α + αs− 1

2
− 1

4s− 2
< αs− 1

2
+

1

2s
.

Fix α and s. Define b0 to be the value of β for which h(α, β, s) = g(α, β, s), so b0 =
−1 + s + 4s2. Then, h(α, β, s) ≤ g(α, β, s) for β ≥ b0. Once we show that h(α, b0, s− 1) ≤
g(α, b0, s), it follows that h(α, β, s− 1) ≤ g(α, β, s) for β ≤ b0, completing the proof.

g(α, b0, s)− h(α, b0, s− 1) =
α(2s− 1)− 4s+ 1

2s− 1

Since 2s− 1 ≥ 1 it suffices to show that 1 + α(2s− 1)− 4s ≥ 0. Since α ≥ 3 and s ≥ 1,

1 + α(2s− 1)− 4s ≥ 1 + 3(2s− 1)− 4s = 1 + 6s− 3− 4s = 2s− 2 ≥ 0.

Theorem 3.3. For the balanced spider T = Tα,β with α ≥ 3, thf (T ) = 1 + αŝ+ t where

ŝ =

⌊√
2β + α + 1

4α

⌋
and t =

⌈
β − ŝ
2ŝ+ 1

⌉
=

⌈
β + 1

2

2ŝ+ 1
− 1

2

⌉
.

Proof. By Lemma 3.2, there is an optimal full throttling set B0 containing the center vertex.
Let PT be the concentration of T at the center. Then the value of t follows from Observation
3.1, and thus thf (PT ;B0) = 1 + αs + t where s is the number of vertices of weight α (that
originally came from the legs).

Now, consider the family of real-valued functions

h(α, β, s) = 1 + αs+
β − s
2s+ 1

,

and note that for fixed α ≥ 3 and s these are linear functions of β.
Observe that the sequence of intercepts {h(α, 0, s)}s∈N is strictly increasing in s, and

that the sequence of slopes {h′(α, β, s)}s∈N is strictly decreasing, but is always positive. We
consider the sequence {βs}∞s=0, where βs is the value for which h(α, βs, s − 1) = h(α, βs, s),
i.e. the point at which increasing from s−1 to s vertices will not raise and may lower the full
throttling number, which is also the values of b ∈ R at which the linear functions h intersect.
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h(α, βs, s− 1) = h(α, βs, s)

1 + α(s− 1) +
βs − (s− 1)

2(s− 1) + 1
= 1 + αs+

βs − s
2s+ 1

βs − s+ 1

2s− 1
= α +

βs − s
2s+ 1

βs − s+ 1

2s− 1
=

2αs+ α + βs − s
2s+ 1

2βss− 2s2 + 2s+ βs − s+ 1 = 4αs2 + 2αs+ 2βss− 2s2 − 2αs− α− βs + s

2βs = 4αs2 − α− 1

βs = 2αs2 − α + 1

2
. (1)

Solving (1) for s and taking the floor then gives the optimal choice for ŝ, given any β.

ŝ =

⌊√
2β + α + 1

4α

⌋
.

Here, we define a continuous variant of the full throttling number for balanced spiders,
which will be used in the next section. Let

tS(α, β) = 1 + αŝ+ t̂

where ŝ is as defined in Theorem 3.3, and t̂ =
β+ 1

2

2ŝ+1
− 1

2
. Note that t̂ is obtained by removing

the ceiling from t in Theorem 3.3.

Corollary 3.4. The functions tS(α, β) are continuous in β, and thf (Tα,β) = dtS(α, β)e.

Proof. Note that the second statement follows immediately from the fact that α and ŝ
are integers. For the first, note that for all β, tS(α, β) = h(α, β, ŝ), and so tS(α, β) =
mins∈N h(α, β, s). Finally, recall that when the optimal value of s, changes to s + 1, it is at
the β for which h(α, β, s) = h(α, β, s+ 1), and thus tS(α, β) must be continuous.

In [5], it is shown that the spider S(4, 3, 2) has a higher full throttling number than the
path of the same order. Specifically, thf (S(4, 3, 2)) = 5 = 1+thf (P10). A computer search of
small spiders shows that this is the smallest spider whose full throttling number exceeds that
of the path of the same order. This search, which is described in Appendix 1, also produced
several thousand spiders that have full throttling numbers one more than that of the path of
the same order. For example, the full throttling numbers of next few smallest such spiders
thf (S(5, 4, 3, 2)) = thf (S(5, 4, 4, 1)) = thf (S(6, 4, 4)) = thf (S(7, 4, 3)) = 6 > 5 = thf (P15)
and thf (S(6, 5, 4, 4)) = thf (S(7, 5, 4, 3)) = 7 > 6 = thf (P20).

In light of this, we define a super-spider as a spider S for which thf (S) > thf (P|V (S)|).
We give a simple infinite family of super-spiders (the triangle spiders) with exactly “path
plus one” full throttling number below.
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Proposition 3.5. Let t ∈ Z+ with t ≥ 4. Then, the spider S = S(t, t− 1, . . . , 2) with t− 1

legs on n = t(t+1)
2

vertices has full throttling number thf (S) = t+ 1 = 1 + thf (Pn).

Proof. Let `k be the length k leg of S, and let p = t− i be the proposed propagation time of
an optimally chosen set B of vertices. First, observe that all legs `k with k > p must contain
a blue vertex if propagation is going to conclude on time. Next, note that leg `p cannot be
fully forced by any vertex in `p+1, as the distance from `p+1’s most central vertex and `p’s
least central vertex is p+ 1. Thus, we must either choose a vertex in `p, or choose the center
vertex. As the center vertex will guarantee the forcing of all `k with k ≤ p, this is clearly
an optimal choice. Thus we have thf (S;B) ≥ (i + 1) + p = t + 1. So thf (S) ≥ t + 1. Note
that choosing p = t by just coloring the center vertex gives thf (S) ≤ t + 1. Then Lemma
2.1 gives thf (S) = thf (Pn) + 1.

Remark 3.6. As an immediate consequence of Proposition 3.5, there is no constant bound
on the number of legs a super-spider can have.

Finally, we show that there are no balanced super-spiders. To do so, we will examine
the continuous analogues of the full throttling number functions for balanced spiders and
paths. tS(α, β) is already defined before Corollary 3.4. For paths, recall from Lemma 2.1

that thf (Pαβ+1) =
⌈√

2(αβ + 1) + 1
4
− 1

2

⌉
. Thus, we define

tP (α, β) :=

√
2(αβ + 1) +

1

4
− 1

2
.

Since thf (Pαβ+1) and thf (Tα,β) are the respective ceilings of tP (α, β) and tS(α, β), we need
only demonstrate that tS(α, β) ≤ tP (α, β).

Lemma 3.7. Let α ≥ 3, and suppose tS(α, β) ≤ tP (α, β) for some β ≥ β1, where β1 is
defined in (1). Then tS(α, β′) ≤ tP (α, β′) for all β′ ≥ β.

Proof. Observe that tS is locally linear in β (except at each βs), whereas tP is concave down
in β. Thus, we need only show that the inequality holds for the values βs, where each change
in slope occurs. We prove this by examining the average rates of change of the respective
functions over the intervals [βs, βs+1]. As tS(α, β) is linear on each [βs, βs+1], we know it has
slope 1

2s+1
. Computing the average slope of tP on each interval is a bit trickier.

tP (α, βs+1)− tP (α, βs)

βs+1 − βs
=

(√
2(αβs+1 + 1) + 1

4
− 1

2

)
−
(√

2(αβs + 1) + 1
4
− 1

2

)
βs+1 − βs

=

√
2αβs+1 + 9

4
−
√

2αβs + 9
4

βs+1 − βs

=

√
4α2s2 + 8α2s+ 3α2 +−α + 9

4
−
√

4α2s2 − α2 − α + 9
4

4αs+ 2α

=

√
16α2s2 + 32α2s+ 12α2 − 4α + 9−

√
16α2s2 − 4α2 − 4α + 9

4α(2s+ 1)
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With a little algebraic manipulation, we see that the average rate of change for tS(α, β)
is less than the average rate of change of tP (α, β) when the inequality

4α ≤
√

16α2s2 + 32α2s+ 12α2 − 4α + 9−
√

16α2s2 − 4α2 − 4α + 9

holds. To establish this condition, rs+1 and rs will be used as shorthand for the two square
roots, respectively. Thus we need to show that

(4α + rs)
2 ≤ r2s+1

16α2 + 8αrs ≤ r2s+1 − r2s
16α2 + 8αrs ≤ 32α2s+ 16α2

8αrs ≤ 32α2s

r2s ≤ 16α2s2

16α2 − 4α2 − 4α + 9 ≤ 16α2s2

9 ≤ 4α2 + 4α

Since α ≥ 3 by hypothesis, the last inequality holds for all balanced spiders.

One should note that this inequality is true for all β. However, β0 is actually negative,
and thus has no context within the problem. Hence the initial restriction β ≥ β1.

Lemma 3.8. For all α ≥ 3, tS(α, β2) ≤ tP (α, β2).

Proof. Note that β2 = 8α− α+1
2

. Then we need only show that the difference

tP (α, β2)− tS(α, β2) =

√
2αβ2 +

9

4
−
(

1 + 2α +
β2 + 1

2

5

)
=

√
2α

(
8α− α + 1

2

)
+

9

4
−
(

1 +
10α + (8α− α+1

2
) + 1

2

5

)
=

√
15α2 − α +

9

4
− 7

2
α− 1

is non-negative, which it is for all α ≥ 1.

Lemma 3.9. For all α ≥ 5, tS(α, β1) ≤ tP (α, β1).

Proof. Note that β1 = 3α−1
2

. Then, we need only show that the difference

tP (α, β1)− tS(α, β1) =

√
2αβ1 +

9

4
−
(

1 + α +
β1 + 1

2

3

)
=

√
2α

(
3α− 1

2

)
+

9

4
−

(
1 + α +

(
3α−1

2

)
+ 1

2

3

)

=

√
3α2 − α +

9

4
− 3

2
α− 1

is non-negative. which it is for all α ≥ 5.
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(a) α = 3 (b) α = 4

Figure 1: tS and tP as functions of β

Theorem 3.10. There are no balanced super-spiders.

Proof. Assume first that α ≥ 5. By Lemma 3.9, tS(α, β) ≤ tP (α, β) for all β ≥ β1. Further,
since tP (α, 0) = tS(α, 0) = 1 for all α ≥ 3, tP is concave down in β, and tS is linear in b
over the interval [0, β1], we have that tS(α, β) ≤ tP (α, β) for all β ≥ 0. Thus, there are no
balanced super-spiders on five or more legs, and we need only demonstrate that there are no
balanced super-spiders on three or four legs.

Now, suppose α ∈ {3, 4}. Then tS(α, β1) ≥ tP (α, β1), and tS(α, β2) ≤ tP (α, β2). Thus,
for α ∈ {3, 4}, there is a point b1 in the interval [0, β1] where tS becomes larger than tP , and
there is another point b2 in the interval [β1, β2] where tP becomes larger than tS (See Figure
1). Since Lemma 3.8 proves there are no balanced super spiders with β ≥ β2, any balanced
super-spider must have α ∈ {3, 4}, and β ∈ (b1, b2).

Suppose α = 3. Then β1 = 4 and tS(3, 3) = tP (3, 3) = 4, so b1 = 3. On the other end,
β2 = 22 and 17

3
= tS(3, 6) < tP (3, 6) = 5.685, so b2 < 6. Thus, the only integer candidates

for β are 4 and 5. Suppose α = 4. Then β1 = 5.5 and tS(4, 5) = tP (4, 5) = 6, so b1 = 5.
On the other end, b2 = 29.5 and 7 = tS(4, 7) < tP (4, 7) ≈ 7.132, so b2 < 7. Thus, the only
integer candidate for β is 6.

To summarize, the balanced spiders T3,4, T3,5, and T4,6 are the only candidate balanced
super-spiders. However, it is easy to verify that each these has a full throttling number equal
to that of its correlated path, and thus is not a super-spider.

A Algorithms, Computations, and Data

The overall process is as follows. Given n, we first compute the full throttling number t of Pn.
To iterate through all spiders, we observe that the spiders have a one-to-one correspondence
with the partitions of the integer n − 1 that have at least three parts. Next, we iterate
through all possible values for |B| = s ≤ thf (Pn). Once the spider and proposed starting
size are chosen, the recursive Sage function below determines if the spider can be fully forced
within p = t− s time steps.
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def spidthrot(partlist, cbool, s, p):

#partlist = Partition representing the spider

#cbool = Boolean, true if center is already colored

#s = remaining number of choices for starting set

#p = proposed propagation time

plist=list(partlist) #Convert Partition to list

plist.sort() #Sort legs

if (not plist) and (cbool or s>0):

#Legs empty and can finish

return true

elif(not plist): #Legs empty but can’t finish

return false

elif plist and s == 0: #Legs not empty, can’t choose more; s>=0 for rest

return false

elif plist[-1] > 2*p +1: #Longest needs more than 1, can choose more

l = plist.pop()

l = l - (2*p+1)

plist.append(l)

return spidthrot(plist, cbool, s-1, p)

#Recursive, cover longest, costs 1

elif plist[-1] == 2*p +1: #Longest needs full time, w/o center

plist.pop()

return spidthrot(plist, cbool, s-1, p)

elif plist[-1] == 2*p: #Covering longest includes center

plist.pop()

return spidthrot(plist, true, s-1, p)

elif plist[-1] > p: #Covering longest cleans up short legs

l = plist.pop()

while plist and plist[0]<= 2*p - l:

plist.pop(0)

return spidthrot(plist, true, s-1, p)

else: #Have one to spare, and choosing center covers all.

return true

If the spider has full throttling number at most t, we move on to the next spider. If
not, we run the recursion for t ≤ t′ ≤ t + k (usually k = 1), to determine the spider’s full
throttling number, with a special message given if the choice of k is too small.

Below is a table containing most of what is known about super-spiders. For all 1 ≤
n ≤ 74, n is omitted from the table if there are no super-spiders of order n. The smallest
super-spiders for each value of t are given as tuples.

Note that as the full throttling number increases, super-spiders appear sooner (relative
to nt). This suggests a potential way to construct a tree with a full throttling number higher
than path plus one. For example, n12 = 78, but we have a super-spider (with thf (S) = 13)
on 69 vertices, S(15, 12, 10, 9, 8, 7, 7). Thus there are 9 vertices one might cleverly place to
get a full throttling number of 14.
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n thf (Pn) # of S-Spiders Examples
10 4 1 (4, 3, 2)
15 5 4 (5, 4, 3, 2), (5, 4, 4, 1), (6, 4, 4), (7, 4, 3)
20 6 2 (6, 5, 4, 4), (7, 5, 4, 3)
21 6 17 -Many-
26 7 3 (7, 6, 5, 4, 3), (9, 6, 5, 5), (10, 6, 5, 4)
27 7 17 -Many-
28 7 62 -Many-
33 8 2 (9, 7, 6, 5, 5), (10, 7, 6, 5, 4)
34 8 19 -Many-
35 8 77 -Many-
36 8 221 -Many

41 9 5
(9, 8, 7, 6, 5, 5), (10, 8, 7, 6, 5, 4), (12, 9, 7, 6, 6)

(13, 8, 7, 6, 6), (13, 9, 7, 6, 5)
42 9 31 -Many-
43 9 118 -Many-
44 9 330 -Many-
45 9 783 -Many-
49 10 2 (12, 9, 8, 7, 6, 6), (13, 9, 8, 7, 6, 5)
50 10 14 -Many-
51 10 61 -Many-
52 10 210 -Many-
53 10 595 -Many-
54 10 1399 -Many-
55 10 2920 -Many-

59 11 4
(12, 10, 9, 8, 7, 6, 6), (13, 10, 9, 8, 7, 6, 5),

(15, 12, 9, 8, 7, 7), (16, 12, 9, 8, 7, 6)
60 11 32 -Many-
61 11 131 -Many-
62 11 441 -Many-
63 11 1201 -Many-
64 11 2803 -Many-
65 11 5792 -Many-
66 11 10986 -Many-

69 12 3
(15, 12, 10, 9, 8, 7, 7), (16, 11, 10, 9, 8, 7, 7),

(16, 12, 10, 9, 8, 7, 6)
70 12 22 -Many-
71 12 104 -Many-
72 12 380 -Many-
73 12 1123 -Many-
74 12 2823 -Many-
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