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Abstract

For any integer k > 2, the infinite k-bonacci word W on the infinite alphabet is defined
as the fixed point of the morphism ¢y : N = N? UN, where

(ki)(ki+j54+1) ifj=0,---,k—2,

ki+j) =
ok (ki +9) {(m+j+1) itj=k— 1

The finite k-bonacci word W,* is then defined as the prefix of W® whose length is the
(n+ k)-th k-bonacci number. We obtain the structure of all square factors occurring in W *),
Moreover, we prove that the critical exponent of W) s 3 — Finally, we provide all

critical factors of W),

3
2k —1°
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1 Introduction

The infinite Fibonacci word and finite Fibonacci words are well-studied in the literature and
satisfy several extremal properties, see [6, 8, I8, @, [19]. The infinite Fibonacci word F( is the
unique fixed point of the binary morphism 0 — 01 and 1 — 0. The n-th finite Fibonacci word
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F,(LQ) is the prefix of of length f4o of F(?), where f, is the n-th Fibonacci number. A natural
generalization of Fibonacci words are k-bonacci words which are defined on the k-letter alphabet
{0,1,...,k — 1}. The infinite k-bonacci word F*) is the unique fixed point of the morphism
¢r(0) =01,9,(1) =02,...,¢0r(k—2) = 0(k—1), pr(k—1) = 0 (see [20]). The n-th finite k-bonacci
word F,gk) is defined to be ¢}(0) or equivalently, the prefix of length fffk)k of F) where fr(lli)k
denotes the (n 4 k)-th k-bonacci number. While the Fibonacci words are good examples of binary
words, k-bonacci words are good examples of words over k-letter alphabet and they have many

interesting properties (see [20, [1, 4, [12]).

In [22], authors defined the infinite Fibonacci word on infinite alphabet N as the fixed point
of the morphism ¢ : (2i) — (20)(2i + 1) and @2 : (20 +1) — (2i + 2). We denote the infinite
Fibonacci word on infinite alphabet by W(?). The n-th finite Fibonacci word Wff) is then defined
similar as F,SQ). It is trivial that if digits (letters) of W) are computed mod 2, then the resulting
word is the ordinary infinite Fibonacci word F(?). Zhang et al. studied some properties of word
W®). They studied the growth order and digit sum of W(?) and gave several decompositions of
W®) using singular words. Glen et al. considered more properties of W2 [14]. Among other
results, they investigated the structure of palindrome factors and square factors of W) .In [I1],
authors introduced the finite (infinite) k-bonacci word over infinite alphabet, for k& > 2. The n-th
finite (res. infinite) k-bonacci word over infinite alphabet is denoted by W*) (resp. Wr(lk)) They

studied some properties of these words and classified all palindrome factors of W), for k > 3.

For a finite word W and a positive integer n, W™ is simply obtained by concatenating the word
W, n times with itself and W« is defined as the concatenation of W with itself, infinitely many
times; That is W« = W.W.W .... For a rational number r with r.|W| € N, the fractional power
W is defined to be the prefix of length r.|W| of the infinite word W*. For example if W = 0102
then W2 = 0102010201. The index of a factor U of word W is defined as

INDEX(U, W) = max{r € Q: U" < W}.
Then the critical exponent E(W) of an infinite word W is given by
E(W) = sup{INDEX(U,W) : U € F(W) \ {e}}.

A word U is a critical factor of W if E(W) = INDEX(U, W). The study of the existence of a factor
of the form U” in a long word and specially computing the critical exponent of a long word is the
subject of many papers for example see [17, 211 2] [5l [7, [16, B]. Specially, in the case of infinite

k-bonacci word F*) it is proved that F(F®*)) = 2+ ak_171 (see [13]), where ay, the k-th generalized
k—1_

golden ratio, is the (unique) positive real root of the k-th degree polynomial 2% —z coo—x—1.

It is proved that 2 — 1 < ay, < 1 [10,[15]. Hence, 3 < E(F®) < 34 25, and E(F®) = 24 ¥3+L,

In this work we first investigate some properties of W,Sk). Then, using them, we explore the
structure of all square factors of W,Sk). More precisely, we prove that all square factors of W)
are of the form ki & CJ( ék)), for some integers i > 0 and j > 0, where C7(U) denoted the j-th



conjugate of word U. Finally, using the structure of square factors of W®*) we prove that the

critical exponent of W®*) is 3 — %

2 Preliminaries

In this section we give more definitions and notations that are used in the paper. We denote the
alphabet, which is a finite or countable infinite set, by A. When A is a countable infinite set, we
simply take A = N; Then each element of A is called a digit (instead of a letter). We denote by
A* the set of finite words over A and we let AT = A*\ {€}, where € the empty word. We denote
by A“ the set of all infinite words over A and we let A = A*UA“. If a € A and W € A%, then
the symbols || and |W], denote the length of W, and the number of occurrences of letter a in
W, respectively.

For a finite word W = wyws ... wy, with w; € A and for 1 < j < j' < n, we denote W|j, '] =
wj ... wj, and for simplicity we denote Wy, j] by W[j]. Let U; € A*, for 1 < ¢ < n, then Hll:n U;
is defined to be U,U,_1...U;. For a finite word W and an integer n, n & W denotes the word
obtained by adding n to each digit of W. For example, let W = 01020103 and n = 5, then
n @& W = 56575658. Similarly, if every digit of W is grater than n — 1, then W © n denotes the
word obtained by subtracting n from each digit of W.

A word V € AT is a factor of a word W € A, if there exist U € A* and U’ € A, such
that W = UVU’. Similarly, a word V € A* is a factor of W € A if there exists U € A* such
that W = UV. When V is a factor of W then we denote it as V < W. A word V € A" (resp.
V € A*) is said to be a prefix (resp. suffix) of a word W € A>, denoted as VW (resp. V >W),
if there exists U € A (resp. U € A*) such that W = VU (resp. W =UV). If W € A* and
W = VU (resp. W =UV,) we write V.= WU™! (resp. V = U~'W). The set of all factors of
a word w is denoted by F(w). If W = wy ... w, be a finite word and 0 < j < n — 1, then the
j-th conjugatae of W is defined as CV(W) = w41 ... wywy ... w;. For example the word 0130102
is the 4-th conjugate of 0102013. A word V is a conjugate of W if there exists 0 < j < mn — 1 such
that V = C9(W). A factor of the form UU in W is called a square factor or simply a square.
For a square factor UU = W[t,t + 2|u|] of W, the center of the square UU in W is defined to be
s (U2, W) =t+|U|+ 1.

The n-th k-bonacci number defined as

0 if n=0,---,k—2,
=301 if n=FkF—1, (1)
Z?:_:q fz'(k) ifn > k.

The finite (resp. infinite) k-bonacci words Wik (resp. W) on infinite alphabet N is defined



in [I1], using the morphism ¢ given below

(ki)(ki+j+1) ifj=0,--- k-2

ki+j)=
o (ki + ) {(kzi—i—j—i—l) otherwise .

More precisely, W,{¥) = @7 (0) and W) = % (0) (Note that Wo(k) = Fo(k) = 0). For a fixed value of
k, the k-bonacci words over infinite alphabet are reduced to k-bonacci words over finite alphabet

when the digits are calculated mod k. It is easy to show that for n > 0,
k
[ER] = W] = 10, (2)

3 Some properties of Wék)

In this section we provide some basic properties W,(lk), some of which are proved in [I1]. All of

these properties are useful for the rest of the work.
Lemma 1. [Lemma 4 of [I1]] Let n > 0 and k > 2. The finite word W contains no factor 00.
Following two lemmas give recursive formulas for computing W,gk).

Lemma 2. [Lemma 5 of [II]] For 1 <n <k-—1,

0
w® = T Wi n. (3)

1=n—1

Lemma 3. [Lemma 7 of [TI]] For n > k,

n—k+1
wd = T W ke w®)). (4)

1=n—1

The following corollary is a direct consequence of Lemmas 2] and ] and can be proved using
induction on .

Corollary 4. Let i and n be two non-negative integers, then W,gk) @ ki < Wéﬁ_)kl

Considering the recurrence relations [B) and @) we have the following definitions which are

very useful in the next sections.

Definition 1. Let j be a nonnegative integer, then a factor A of W,Sk) is called a bordering factor of
type 7, for somen—k+1<j <n—1ifj0 < A < Wj(k)Wj(k)1 . W,Sf), where m = max{0,n—k+1}.

Moreover, a bordering square factor of Wr(lk) is a bordering factor of Wr(lk) which is also a square.



Definition 2. Let n > k, then a factor A of W,Sk) is called a straddling factor of W,Sk) if A= A; A,
for some nonempty words A; and As, with A > W,(Lk_)1 .. W'r(z]i)kJrl and A> <k @ W:i)k Moreover,
if a straddling factor of W,gk) is also a square, it is called an straddling square factor.

Lemma 5. [Lemma 10 of [T1]] For any n > 1, the digit n is the largest digit of W and appears

once at the end of this word.
Lemma 6. For every integer i < n we have 10 < Wr(lk).

Proof. Since i +1 < n, we have Wz(f:)l < W". By Lemmas [ and B Wi(k)Wi(f)1 < Wz(f)l Hence,

i0 < W) < Wi and the result follows. o

Lemma 7. Let 0 < i < n and i0 = W [t,t + 1], for some t € N. Then we have

Wt — 1w 41,6+ 1) = wPo.

In other words, if i0 appears in Wék), then this i appeared as the last digit of a factor Wi(k) of

ol

Proof. We prove this by induction on n. If n = 2, then Wék) = 0102 and in this case the only
possibility for ¢ is t = 2 and Wék)[l, 3 = Wl(k)O = 010, as desired. We suppose that the claim is
true for all m < n we want to prove this for the case n+1. If n+1 > k, then by Lemma 3] we have
n—k+2
k k k
wi =TI W kew, ). (5)

t=n

Let i0 occurs in W,(Ll_i)l, then either i0 < Wt(k), for some n — k+2 <t < n, or i0 is a bordering

factor of ngljr)l If 0 < Wt(k), then by induction hypothesis this ¢ should be the last digit of some
factor Wi(k) of ngr)l If 40 is a bordering factor of ngr)l, then it is clear that ¢ is the end digit of

a factor Wi(k) of ngljr)l

In the case n+ 1 < k, using similar argument as the previous case and Lemma 21 we obtain the
result. o

Lemma 8. Let 2 < k < n and B> W with |B] = [W®, |+ W _|. Then

(i) If n=k+1, then |Bl2 = 1.

(ii) If n > k + 1, then |Blo > 0.

Proof. (i) If n =k + 1, then by @), B = 2.k.(k + 1), so the result follows.



(i) If n > k + 1, then by @),
Wék)kﬂ(k/’ D W:i)k) > Wv(zk)- (6)

Let D > Wé )k+1 and |D| = |W(k)k 1|- Then by (@), to prove the lemma it is suffices to

show that |D|p > 0. If K = 3, when n = 5,6 it is clear that |D|p > 0. So, If n > 7, then by
Equation (), we have
W = Wil =W wi, (ko Wity
k k k k k
=W D W Wi (ke W) (ke W) (7)

W, 2,l=ID]
By (@), it is clear that |D|o > 0.

If £ > 3 and n < 2k — 1, then by Lemma[2] we have O(n —k+1) > Wék)kﬂ Since n > k+1,
we |W( )k 1| > 2 and hence, |D|y > 0.

I >3 and n > 2k -1, then by Lemma 3, W Dok w ™, yew®, L Since k> 3,
|W7(L—)k+1| > |W( )2k+2| + W, 2k+1| and |W 2k+2|0 > 0, we conclude that |D]y > 0.

Lemma 9. Let n,k and 5 be nonnegative integers with 3 < k <n andn—k+3 <3 <n. Then
B = Wék)k_mk is not a factor of W(k)

Proof. If j < k, then |V[/j(k)|;c =0 and so B is not a factor of Wj(k).

Hence, we shall prove the result for £ < j < n. We prove this part by bounded induction on j.
Let p = max{k,n — k + 3}. Since, j > k and n — k + 3 < j, the first step of induction is j = p. If
p = k, then the only occurrence of k in Wj(k), is in its last digit, we conclude that if B < Wj(k), then
Br Wj(k) = W,Sk). Using Lemma [3 we have Wj(k) = Wj(ﬁ)l o Wl(k)k. Since (n—k+2)kr> B> W,Ek),
we providen —k+2=1,s0n =k — 1 < k, which is a contradiction.

If p=n—k+ 3, then by {@), we have

k k k
Wé )k+3 W(—)k+2W7§ )k-',-l Wé )2k+4(k & W( )2k+3) (8)

If B < Wj(k) Wék)k%, then there exist integers s and ¢ such that B = Wéli)k%[s,t + 1],

Wék)k%[t] n —k+ 2 and W(k)k—i- [t +1] = k. Using Lemma [ and Equation (), either
k k k

t =W ol ort > W - |W< Poters] + LIt = W ol then W, oft + 1] = o,

which is a contradiction. If ¢t > |W ) 43l =W, 2k 43l + 1, then using (§) and the fact that

|W(k) 5l < 2|W( )k+2| and B = |W(k)k+2| + 1, we conclude that s < |W(k)k+2| Which implies
that |W7(Lk)k+3[s, t+1]|pn—k+2 > 2. But by definition of B and using Lemmal[d] we have | B|,,—g+2 = 1,
which is a contradict. Therefore, the first step of induction is true.



We are going to prove that B is not a factor of W( ) . For contrary let B < w! +)1 By @), we

have
1% k k k k 9
J(+)1 - W( ) : Wj(—)k-i-Q (k ® VVj(_)k-i-l)' ( )

By induction hypothesis B is not a factor of Wi(k) for j —k+1 <14 <j. Since B contains the
digit 0 and (k & Wj(f)k +1) does not contain it, there are two following possible cases for B:

e Case 1. B isabordering factor of W](Jr)l, Let £ be largest integer such that B < W(k) . We(k).

Since for every integer i, W(k) start with 0, we have (n — k + 2)k < We( ) which means that
¢ > n—k+2. Therefore, W( B s W Hence, W, ,0aW M. Since (n—k+2)k < Wk,

n

there exists integer « such that We(k) [, a4+ 1) = (n— k+2)k. By Lemmal a > |V, )k+2|
Therefore, B < We(k), which contradicts to the definition of bordering factor. Hemce7 B is

not a bordering factor of W(k)

e Case 2. B is a straddling factor of Wj(f)l, By definition of straddling factor, there exists
nonempty word S which is the suffix of B and a prefix of k & W](k)k 41+ Since j < n, we have
j—k+2<n—k+2 and hence using (@), we provide that the last two digits of B occur in
k:EBW( )k+1 Let |S| = t+1, for some ¢ > 0, this means that (k@W(k)kH)[t,t—i—l] = (n—k+2)k.
By deﬁn1t1on of S we obtain

BSTlew M (ke W, )7 (10)

On the other hand, since (n — k +2) < kEBW( )k+1’ we haven —k+2>k,orn > 2k—2. If
n = 2k—2, then W(k)kJr1 [t,t+1] = 00, which contradicts to Lemmal[ll Therefore, n > 2k —3,

now, using Equations (B) and (@), and the fact that n — k + 3 < j, we have

(k) (k) (k) (k)
W oo Wi Zopr IWZopys < W01 (11)
By Lemmal and Equation (III), we conclude that either ¢t = |W 2,ch2| ort > |W(k)2k+2| +
W, 2,ch1| First suppose that t = |V, 2,ch2| Then by (), we have S=ko (Wr(lli)%HO).

Usmg (I0d), we provide

_ k k _

Btk ® Wy o)KW (ko W, )]
k k k
W) )k+1 W'r(zf)2k+31>Wj( : W( )k+2

Hence, n—2k+3 = j—k+2, or j = n—k+1, which contradicts to our assumption n— k+3 <j.

Now, suppose that t > |W(k)2k+2|+|W(k)2k+1| Let Di>B, and |D| = |W. 2k+2|—|—| 2,ch1|
then D < (k@ W](k)kﬂ) On the other hand using Lemma [ either |D|0 > 0 or |D|2 > 0,

which is a contradiction.



4 Squares in Wr(bk)

(k)

In this section we give the structure of all square factors of W, We first prove that when

n<2k-—1, W,Sk) has no square factor. Then we characterize all square factors of W),

Lemma 10. For two positive integers n and k, there is no bordering square in W,Sk).

Proof. For contrary suppose that there exists n — k + 2 < j < n — 1, for which W,gk) con
tains a bordering square of type j; we denote this word by A. By Definition [ j0 < A <

Wj(k)Wj(f)1 . ng)kﬂ. Since A is a square word, so |A|; > 2. but by Lemma [5]

k k k
WEOWE W, =1

This is a contradiction. ]
Lemma 11. If n < k+ 1, then Wék) contains no square factor.

Proof. We prove this by bounded induction on n. By definition Wo(k) = 0 does not contain any
square. Suppose that for any integer i, 0 < ¢ < n < k, Wék) does not contain any square. For
contrary suppose that B is a square factor of ngr)l By @) and () we have

W

W =wPw® w1 i n+ 1<k,
n+1l — (12)

W =wFPw®P L w P 1) i 1=k

Using induction hypothesis and Lemma [I0] we provide that B is a straddling square. By Definition
and Equation ([I2), |B|n+1 > 2, which contradicts with Lemma [Bl a

Lemma 12. let n > k and A2 be a straddling square of W\*). Then cS(AQ,Wr(Ik)) > |W7§k)| -
W2l

Proof. By (), we have

k k k k
o =it v, S ke wit, )

For contrary suppose that cs(A2, Wék)) < |Wnk | — |W(k)k| Let A2 W )[51,52]. Since A? is a
straddling square of W,{*), s, > |W,§k)| |W(k)k| +1and 1 < |W | |W(k) |

If e (A2, W) < (WiB | =)W, |- 1w ™), | ||, then using ([3), we conclude that B = W,k <

Wék_)l...WT(lli)kH. By Lemma [@ for any n — k+2 < j <n —1, B is not a factor Wj( ). Let s<n

be largest integer such that B < W,sk_)l W) Since 0« Ws(k), we have (n—k+ 1)k < W Let



W a,a+1] = (n— k+1)k. By Lemmal, s > n—k + 1. Therefore, W, 0<aw ™, , aw®

and by Lemma Bl o > |W(k) Therefore, B < Ws(k), which contradicts to Lemma [Ql Hence,

k+1|
(WP — WD, =W+ 1 < e (A2, W) < (WP — WY, ). (14)

This means that the center of A2 happens in W:i)k 41 which is distinguished by a box in @3). We
denote the first occurrences of A in A% by A; and the last occurrence of A in A% by Ay. By ([d),
we conclude that there exist non-empty words U; and Us, such that W(k_)k 1= U1Uy and Uy <1 As.
By Lemma B |Ui],—r+1 = 0 and the only occurrence of n — k + 1 in Us. which is its last digit.
We conclude that |As|,—k+1 > 0 and all digits of Ay which appear after n — k + 1 are greater than
k—1. Hence |A1|n—r+1 > 0 and all digits of Ay which appear after n — k+ 1 should be also greater
than k — 1. Since |Ui|n—k+1 = 0, we conclude that Uy > A; and all occurrence of n — k + 1 are
before the first digit of U;. But this is a contradiction, because |U;|p > 0 and hence there is a digit

0 which appears after all digit n — k+ 1 in A;. a
Corollary 13. let A% be a straddling square of W,(lk). Then for each i <k —1, |A|; =0.

Proof. By LemmallZ] c4(A?, (k)) > |W | 114 k| Therefore, using Equationd] we conclude
that A < (k@ Wék_)k) This means that all digits of A are greater than k — 1, as desired. O

Lemma 14. Leti <n andn > k+ 1, then W,gk) contains no factor of the form Wi(k)Wi(k).

Proof. We prove this by induction on n. If n = 1, then Wl(k) = 01 contains no factor Wo(k)WO(k) =
00. By (), we have W) = [T fﬂl Wz(k) (ke W:i)k) For the contrary suppose that Wi(k)Wi(k) =<

,S’“ for some 7 < n. By induction hypothesis for any j < n, Wi(k)Wi(k) is not a factor of Wj(k).
Now, by Definitions [ and 2] Wi(k)Wi(k) should be either a bordering square or a straddling square.
By Lemma 10, W,Sk) contains no bordering square. Therefore, Wi(k)Wi(k) is a straddling square of

W which can not be occurred by Corollary [[3]1 Hence, there is no factor of the form Wi(k)Wi(k)
: (k)
in Wy,". O

Lemma 15. If n < 2k — 1, then W,gk) contains no square factor.

Proof. For contrary suppose that there exists a straddling square A? in W,Sk).
of straddling factor A contains the digit n — k + 1. Hence by Corollary I3l n — k + 1 > k and
n > 2k — 1, which is a contradiction. O

By definition

Lemma 16. kk is the only square of WQ(];)_I

Proof. Let A? = Wz(lfll[t,t + |A?]] be a square factor of WQ(ZZ1 By Lemmas [[H and [I1] we
conclude that for every j < 2k — 1, Wj(k) contains no square factor. By Lemma [I0] WQ(ZZ1 has no



bordering square. Hence, A2 is a straddling square.
k k k k
Warly = Wyl WP (ke W) (15)

By Corollary[3and definition of straddling factor of WQ(,Q L t= |W2(le |— |W,§]i)1 |. Hence, kk<1A2.
Hence, either A2 = kk or the number of occurrences of kk in A? is at least two. If the number
of occurrences of kk in A? is at least two, then kk < (k @ ngli)l) which means that 00 < W,gli)l,
which contradicts with Lemma [Tl Hence, the only possibility for A2 is kk. o

Lemma 17. Let A? be a square of Wr(nk). Then there exists integers i and n < m such that A2O ki
is a straddling square of W( )

Proof. We prove this using induction on m. If m < 2k — 1, then by Lemma [I5] Wéf ) contains
no square factor and the result follows. If m = 2k — 1, then by Lemma[I6] kk is the only square of
W,Sf ) which is a straddling square. If m > 2k — 1, then by (@) and using the induction hypothesis
and Lemma [I0 the result follows. ]

The following corollary is a direct consequence of Lemma [I71

Corollary 18. Let A% be a square of W*). Then there exists integers i and n, such that A% © ki
is a straddling square of Wék).

Lemma 19. let A? be a straddling square of W,S’“). Then

1
k k
e (A2, W) < (W] = W+ Wi+ 5

Proof. By (@), we have

n—k+1

wE = T w* kew?®,) (16)
i=n—1
n—k+2
k k k k k
= [T wPwP,. o wE, ) kew®, ) ke W) (17)
i=n—1

We remined that IC@I/V(k)%Jr1 =< k@W( ). Hence, if cs (A2, (k)) > |W(k)|f |W75]i) |+ |W(k)2k+1|,
then k& ((n — 2k + 1)W7§k)2k+1) <k® W( )k it means that (n — 2k + 1)W(k)2kJr1 < W( )k Using

n

Lemma [6] we conclude that W( )%HW(IC)%Jr1 =< W( )k which contradicts to Lemma [T4] O

Lemma 20. let A2 = W") [t,t + j] be a straddling square of W¥ . Then t > |W(k)| |W7§Ii)k| -
k

WAl

10



Proof. For contrary suppose that A> = W[t ¢ + j] < Wi for some ¢ < [Wi"| |W7Yi)k| -
|W(k)2k+1| By Lemma 12 cs(AQ,Wék)) > |W'r(zk)| - |Wr(l]i)k| Hence,

W,§k> [t ta] < A< koW (18)

Where t; = |W,§k)| - |W:i)k| W, 2,ch1| —1 and ty = |W7(Lk | — |W(k)k| By equation (I7)
an definition of ¢; and ts, we have Wn )[tl,tg] = (n—-2k+2)(ka® W(k okg1)- Therefore, by
Equation (I8) (n — 2k + 2)(k & W 2k+1) < k& Wék)k, this means that n — 2k + 2 > k. So,

(n—3k+ 2)W( )2k+1 =< W( )k Now, by Lemma [6] we conclude that W( )3k+2W7§k)2k+1 =< W(k)

Since, W( )3k+2 < W( )2k+1 we conclude that W(k)%HW(k)3chr2 = W( )k, which is impossible by

n—

Lemma [T4 O

By Lemma [ A% < k@ (W,E’i)%HW,E’i)k). Now using Equation(d]), we have

k k k k k — k
A2 <o (W2 W0,) = ke (W, Wy [0, 5) 7 0,))

Definition 3. Let n, k be two nonnegative integers with k£ > 3 and n > 2k — 1. We define the

word V,gk) as follows:

o If 2k —1 < n < 3k—2, then ;¥ = w™, w® _ wP,

o If n.> 3k —2, then ;¥ = w™, w®_  wk
Lemma 21. Let n, k be two positive integers with k > 3 and n > 2k — 1.

(i) If n < 3k — 2, then

2 2
W ,ro = WL VO (0 — 2k + 2), (19)
W =V (- 2k +1). (20)
(ii) If n =3k — 2, then
k k
Wé—)2k+2 = W7(L—)2k+1v7£k)k7 (21)
W:i)2k+1 = vak)()k- (22)
(iii) If n > 3k — 2, then
k
W'r(z )2k+2 W'r(z )2k+1V( (ke W( )3k+2) (23)
k 2 k
Wi ir = VIIW D ko Wi, ). (24)

Lemma 22. Let n, k be two positive integers with k > 3 andn > 2k—1. Then Vn(k) occurs exactly

(k)
once in W, 2kl

11



Proof. If 2k —1 < n < 3k — 2, then using Definition Bl and the fact that |Vn(k)|n_2k+1 =0 we
conclude that V,§ ) occurs exactly once in W )2k+1 If n > 3k — 2, then by (@) we have

k k k k k k
Wé—)2k+1 = Wé—)% e W7(L—)3k+2(k D Wé—)2 )= V(k)Wé )3k+2(k D W’r(z—)Qk)

By definition of V;{*), |V,§k)|n_2k =1and (n—2k)0 < A Using the facts that |W7§]i)3k+2|n_2k =0
and |k ® W(]i) o = 0. Hence, (n —2k)0 occurs one time in W So Vn(k) also occurs once in
n—2k ’ 2k+1 ’
k
Wi o

Corollary 23. Let n, k be two positive integers with k > 3. If 2k — 1 < n < 3k — 2, then V,gk) m
WTS )2k+1 always s followed by digit n — 2k + 1. If n > 3k — 2, then Vn(k) in Wr(l )2k+1 always is
followed by digit 0.

Proof. If 2k — 1 < n < 3k — 2, then the result follows using Lemma and Definition Bl If
n > 3k — 2, then by ), Vo < W(k)QkJr1 On the other hand, by Lemma 22} V*) oceurs exactly

once in Wé_)% 41 Hence, the result follows. O
Lemma 24. Let n,k be two nonnegative integers with k > 3 and n > 2k — 1. Then
Wl = 3, . (25)
Proof. We can check easily that (25), holds in the cases k =3 and 5<n <8 Ifk >3 or k=3
and n > 7, then using ), we get
WA = WA+ Wl + (W, (26)

If £k > 3, then n — k — 3 > n — 2k + 1. Hence, Equation (20]) yields the inequality |W:i)k| >
3|W(k)2k+1| as desired. If k = 3, then
W] =W, 4|+| W+ W
o2 4 |W<’“> |
=3[W 5| + W] — W
>3|W, |

To find all straddling squares of W,Sk) we need to give the following definition.

Definition 4. Let n, k be two nonnegative integers With k> 3 and n > 2k — 1. We define the

word U to be the prefix of W( ) W( )k of size 4|W, )

—2k+1 —2k+1 |

12



We note that Definition []is well-defined using Lemma

Lemma 25. Let n,k be two nonnegative integers with k > 3 and 2k — 1 <n < 3k —2. Then

k k
U7(zk) (k) = W(j2k+1W7g )2k+1v(k)( — 2k + 2)W7S )2k+1

n

Proof. Since Wr(lli)%Jr3 < W(li)k we have

k k k k k — k
Wt Wo = Wiy W W )

If k = 3, then applying Equation ) for W, (k )2k +3 and using (I9) and (20) we get

k k k k
Wéf)szra _W'r(z )2k+2W7522k+1(k D W7532k)
k k k
=W Vi (n =2k +2) WV (ke W)
—_— —

(k)
|W(k) ‘Wn—2k+1| |W(k)

2k41] 2kt1l

Using Definition [l and Equations (217 and (28]) we conclude that
k k
U = W7(L—)2k+1W7(L—)2k+1V( (n—2k+ Q)Wé )2k+1
If k > 3, then applying Equation () for W, 2k 43 we get
k k k
W7532k+2W7§32k+1Wrg )2k < W( )2k+3
Hence, using ([I9) and [20) we provide
k k k k
W'r(z—)Qk-i-l V¥ (n — 2k + 2) Wv(L—)zkH W’r(z—)Qk < W( )2k+3
—_—

K (k) k
|W( )2k+1‘ ‘an2k+l| ‘W( )2k+1|

Therefore, by Definition [l and Equation (7)) we get

k k
Uék) (k) = Wv(z—)2k+1W7(z—)2k+1V( )( -2k + Q)Wé )2k+1

Lemma 26. Let n,k be two nonnegative integers with k > 3 and n > 3k — 2. Then

(i) If k =3, then
UP = W( ) k+1Wr(Lli)2k+1V( (ko W( )3k+2)W'r(z )2k+1(k o2 W(k)3k+1)’
(i) If k > 3, then
Ut = W( )2k+1Wr(Lli)2k+1V( (ko W( )3k+2)Wr(zli)2k+1W7gli)3k+1'

13
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Proof. By Equation [ we have

k k k k k G
W Wo = W,S_’%HWQ_ZHB[(W,EJ%H) W (29)
If k = 3, then applying Equation () for W 2k 43 and using (23) and (24) we get

k k k k
Wé—)2k+3 :Wv(z—)2k+2W7(z—)2k+1(k D Wv(L )Qk)
k k k k k
=W VP ko W W ke WPy DIk W )7 ke W)
——

|W(k) Q‘W(k)

n72k+1‘ 2)€+1|

(30)
Using Definition [ and Equations (29) and (30]) we conclude that
k k k
Uk = Wé—)2k+1W7(L—)2k+1V( )(k ® W )3k+2)W7(L akr1 (k& W, )3k+1)

If k > 3, then applying Equation () for W, 2k 43 we get

Q) W(k) W, qw®

n—2k+2"" n—2k+1 n—2k+3
Where,
k k k k k k 1k
Wé )2k+2W'r(z )2k+1W( )Qk = W( )2 w1 VAP (k@ W( : k+2)W7g )2k+1W7g )3k+1[(W7533k+1) 1W7522k]
|W7(Lli)2k+1‘ 2|W(k)2k+1|
(31)
Using Definition [ and Equations (29) and (3I)) we conclude that
k k
Uit =wit k+1W'r(z )2k+1V(k) (koW k+2)W'r(z )2k+1W7§ )3k+1
O

In the next lemma we give a formula for UéZlQ, the proof is similar to the proof of Lemma

so it is omitted.

Lemma 27. Let n, k be two nonnegative integers with k > 3 and n = 3k — 2. Then

(i) If k =3, then

lr ”7 W k ‘7 W
) = * )2k+1 75 )2k+1 (k)k 7(1 )2k+1k
U ”7 W k ‘7 ”7
’I’(lk) = (* ) 2k+1 75 )2k+ ) k (* )2k+1

Corollary 28. If A? is a straddling square of Wék), then

14



(i) A2 < ke UW,

(i) cs(A? &k, UL) <2W My ]+ L.
Proof. According to Definition ] we have

(i) This is the direct consequence of Lemma 20l and equation (7).

(ii) This can be deducted easily from Lemma [T9

O

Lemma 29. Let n < 3k — 1, then the word (n — 2k + 1) ) (n — 2k + 1) occurs exactly once in
(k)
Proof. Using Lemma 25 and Equation (20) we have
UR (k) = V¥ (n — 2k + 1)VP (n — 2k + 1)V, (n — 2k + 2)V,F) (n — 2k + 1). (32)

By Deifinitiond] it is clear that 0 <t Vi™, [V |, _oxi1 = 0 and [Vi¥ |, _okr2 = 0. Hence, using
B2) we conclude that V" occurs exactly four times in U, By Equation B2), the word (n —
2k + 1)V,§k) (n — 2k 4 1) occurs exactly once in U, O

Lemma 30. Let n < 3k — 1, then the word (n — 2k + 1)V75k)0 occurs exactly once in Uk

Proof. By Deifinition3] it is clear that 0 < Vn(k), |V7§k)|n,2k+1 =0 and |V,§k)|n,2k+2 = 0. Hence,
using Lemmas 27 and 26 and using Lemma 22] we conclude that V%) occurs exactly four times in

U®) . Therefore, by Equations [22) and (24) it is easy to see that (n — 2k + 1)Vn(k)0 occurs exactly
(k)

once in Uy .

O

Lemma 31. Let n > 2k — 1 and A? be a straddling square of Wr(lk) and let A? = A20 k. Then

k 1
e (4%, UP) < W, | + V| + 5. (33)

Proof. For contrary suppose that cs( A2, U,(,k)) > |W7§k_)2k+1| + |Vn(k)| + 1. We divide the proof in
the following cases:

o If n < 3k — 2, then by Lemma 25 and Equation (20)) we conclude that

W, VB (n— 2k + 1) < UP. (34)

15



Using ([B4) and the fact that A”? @ k is a straddling square of W we conclude that (n —
2k +1) ) (n — 2k + 1) should occurs at least twice in A" < U®). This is a contradiction
with Lemma

o If n < 3k — 2, then by Lemma 25 and Equation (20)) we conclude that
k
Wrgjzk+1v7z(k)o au®. (35)

Using (BH) and the fact that A”? @ k is a straddling square of W we conclude that (n —
2k + 1)V7§k)0 should occurs at least twice in A" < U,(lk). This is a contradiction with Lemma

o0l
O
The following corollary is the direct consequence of Lemma [B11
Corollary 32. let A2 be a straddling square of W*). Then cs(A2 Wiy < |W(k)| 114 li)k| +

v, ).

Lemma 33. Letn > 2k — 1, P,gk) = Wfl’“_)%ﬂw,g’?%ﬂ n(k). Then A? is a straddling square of
W,Sk) if and only if A”? = A2 S k is a square of P,gk) satisfying following properties:

k k
@) W 1] < es(A2, P < Wi 1+ Vi)

(i) Let A2 = P\ [t,t +|A2[]. Then, t < [W,, .
Proof. Let A2 is a straddling square of W,.\*). Then by Corollary28 we have A26k < U . Using
Lemmas [[2] and [31] we conclude that |W( )2k+1| < cs(A?, Pék)) < |W(k)2k+1| + |Vn(k)|. Moreover,

(k) A/2

since A? is a straddling factor of W, satisfying (ii).

Now, let A”2 is a square of P{") which satisfies (i) and (ii), then we prove that A2 = A2 & k is
a straddling square of Wik, By Lemma [I5 we conclude that n > 2k — 1. Using Equation () for
W(k) and W( )k+1 we have

k k k
Wék) :Wé}l Ce W’r(z—)k-i-l (k D W’r(z—)k)

k k k k
W =w W W W ke W, ) (ke W)

n

Since W( ) V( ) < W(k)

n—2k41 _» We conclude that

k k k k k k k k k k k
WP =w® W W W, ke W W VY ke (W, v Tt w )

P
(36)
Using the fact that A’? satisfies (i) and (ii) and as shown in Equation (B6), we conclude that
A? = A”? @ k is a straddling square of Wr(lk). a

16



Theorem 34. Let 0 < j < |V,§k)|. Then (CY)(k & W( )2k+1))2 is a straddling square of W\
Moreover, every straddling square A? of Wr(lk) is of the form A% = (C( )(k: EBW(k)QkH))Q, for some
0<j<[Va].

Proof. By Lemma 1] AR Wé’i)%ﬂ. Hence, there exists suffix V' of Wé )2k+1 such that

W, = ViV Let 0 < j < |V and Vi = V¥ [1, ] and Vo = VP [j + 1, |||, Then

k
c@ (W(—)Zk+1)

/—/H
PH=vi WV'n V'V Va (37)
——

(k)
COW,"spi1)

Now, using Lemma B3 and Equation @&17), (CY)(k @ V[/T(Lk_)%Jrl))2 is a straddling square of W,{*).

Moreover, let A? be a straddling square of W ¥, Hence the first A in A2 should contains
n—k+1. By LemmalB3 A”2 = A20k is a square factor of P*) satisfying the conditions of the 1emma
Therefore, |A’|,_2x+1 > 1. By Lemma[33] we can assume that c, (A2, Pflk)) |W(k)2k+1| +ji+3
for some 0 < j < |Vn(k)|.

Again using Lemma 2T] v 4 Wék)QkH Let V' > W( )2k+1 such that W(k)QkH = vy,
Vi = Vn( )[1 jland Vo = V(k) [[+1, |V(k)|] Therefore, for the first A’ in A’? we have A’'>V VaV'V)
and for the last A’ in A2, A’ < \/2\/'\/1\/2 On the other hand ViVeV'Vi < W, Vit® and by
Definition Bl and Lemma [l |V[/(k)2,chl |n ok+1 = 1, hence |A’|,,—ax+1 = 1. Since the first place
that n — 2k + 1 occurs in VaV'V1 V4 is [VaV|, hence VoV' < A’. Since the number of occurrences
of VoV’ in V1 VoV'V; is once. We conclude that A" = VoV'V;. ]

Theorem 35. Let k > 3. Then A? is a square of W*) if and only if A € {ki® CI(W, P 2k+1) :
0<;< |V'r§ )|,z > 0,n > 0}.

Proof. If A =ki® C’j(WT(Lk_)%H), for some 0 < j < |V7§k)|,i > 0,n > 0, then by Theorem 34
k@ C’j(Wék_)%H) (A26k(i—1)) < W) or equivalently A2 < W,iF & k(i —1). By Corollary [}
we conclude that A2 < W(k)k@ 1 = W),

On the other hand, if A? is a square of W), then by Corollary I8 there exist n > 2k—1,i > 0,
such that A2 © k(i — 1) is a straddling square of w¥). By Corollary @ we conclude that A2 <

(k)
Wn-l—k(z 1)° =

We finish this section with the following example.

Example 1. In this example we provide all square factors of Wl(f ), which is given bellow. All of
these squares are listed in Table [I] according to Theorem We note that letters ¢ and b stand

17



for the digits 10 and 11.

Pfo)::010201301023401020133435010201301023434353460102013010234010201334353435346343567
010201301023401020133435010201301023434353463435346343567343534667680102013010234
010201334350102013010234343534601020130102340102013343534353463435673435346343567
3435346676834353463435676768679010201301023401020133435010201301023434353460102013
0102340102013343534353463435670102013010234010201334350102013010234343534634353463
4356734353466768343534634356734353466768343534634356767686793435346343567343534667
6867686796768920102013010234010201334350102013010234343534601020130102340102013343
5343534634356701020130102340102013343501020130102343435346343534634356734353466768
0102013010234010201334350102013010234343534601020130102340102013343534353463435673
4353463435673435346676834353463435676768679343534634356734353466768343534634356767
68679343534634356734353466768676867967689a3435346343567343534667683435346343567676
8679676867967689a67686799a9b
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Table 1: Square factors of Wl(f)

346343567343534667683435
463435673435346676834353
634356734353466768343534
343567343534667683435346
435673435346676834353463

j 1 2
CO(kioWw ¥y | 0 3 6
oo 34 67

dMM@WQ)l 13 76

0 3435 6768
CO(kie W)l 1 4353 7686

2 3534 6867

0 3435346 6768679

1 4353463 7686796
CO (ki W)| 2 3534634 6867967

3 5346343 8679676

4 3463435 6796768

0 3435346343567 -

1 4353463435673 -

2 3534634356734 -

N ! 5346343567343 -

(ki@ W;) 4 3463435673435 -

5 4634356734353 -

6 6343567343534 -

7 3435673435346 -

0 343534634356734353466768 | -

1 435346343567343534667683 | -

2 353463435673435346676834 | -
CO (ki o W) i 534634356734353466768343 | -

5

6

7

8

9

S T
W N = O

356734353466768343534634
567343534667683435346343
673435346676834353463435
734353466768343534634356
343534667683435346343567
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1

CO (ki W)

© 00 N O U = W NP O .

N N NN = = = = = = e e
W N P O © 0 g O UL i W N~ O

34353463435673435346676834353463435676768679
43534634356734353466768343534634356767686793
35346343567343534667683435346343567676867934
53463435673435346676834353463435676768679343
34634356734353466768343534634356767686793435
46343567343534667683435346343567676867934353
63435673435346676834353463435676768679343534
34356734353466768343534634356767686793435346
43567343534667683435346343567676867934353463
35673435346676834353463435676768679343534634
56734353466768343534634356767686793435346343
67343534667683435346343567676867934353463435
73435346676834353463435676768679343534634356
34353466768343534634356767686793435346343567
43534667683435346343567676867934353463435673
35346676834353463435676768679343534634356734
53466768343534634356767686793435346343567343
34667683435346343567676867934353463435673435
46676834353463435676768679343534634356734353
66768343534634356767686793435346343567343534
67683435346343567676867934353463435673435346
76834353463435676768679343534634356734353466
68343534634356767686793435346343567343534667
83435346343567676867934353463435673435346676
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5 Critical Exponent and Critical Factors of W ®*)

Lemma 36. let A% be a straddling square of Wék). Then

3 — s if2k —1<n<3k-3,
INDEX(A, W) = { 3~ 7= if n =3k -2,
o A LA
3— T ifn >3k — 2.
2k+1

Proof. By Lemmal33 A*©k < PP = Wék)2k+1W7(Lk_)2k+1V7§k)- If 2k — 1 <n < 3k — 3, then by
Definition B
k k
P(k) Wé )2k+1W7(z )2k+1v(k)
k k k k
= Wé )2k+1W,E,)2k+1WTEJQk . Wé )
k k k _
- Wé )2k+1W7522k+1W7522k+1(n — 2]{/’ + 1) 1

(Wék)%ﬂ )3_2"7#+1 :

Where the last equality holds since |W. 2,ch1| = 2n=2k+1 If n = 3k — 2, then by Definition Bl
k k k) 1, (k
P3(k)—2 = W/S )1W1£ )1V3(k)2
k k
W
k k _
= ngf)lwlgf)lwlg—)l (0(k —1)) !
k
= (W)

In the case n > 3k — 2, again by using Definition Bl we conclude that
Wit )sk Sl )3k+1‘

3—
Pék) = (Wr(zli)2k+1) WaZak|

In the following example for k =5 and 9 < n < 17, we show that how Lemma works.

5)

Example 2. In this example we listed all P,S , when 9 < n < 17 and for all values of n we present

the corresponding power r. We note that letters a and b stand for the digits 10 and 11.

As we can see in Table Pl in Example B the largest power of Wr(i)g okin P @kis 3 — %
This power happens when n = 14, which is the critical exponent of P,S"’) @ k. Moreover, in the

following Theorem we show that this r is also the critical exponent of W),
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Table 2: Powers of WSL)Q in W,

PO ok=W ok

n T

9 |55 2

10 | 56565 3—-1

11 | 56575657565 3—1

12 | 56575658565756585657565 3-%

13 | 5657565856575659565756585657565956575658565756 3—%

14 | 565756585657565956575658565756a5657565856575659565756585657564 3 — ==
5657565856575659565756585657

15 | 565756585657565956575658565756a5657565856575659565756585657ab | 3 — &
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a565756585657565956575658

16 | 565756585657565956575658565756a5657565856575659565756585657ab | 3 — =
565756585657565956575658565756a565756585657565956575658abac
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a565756585657565956575658abac
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a5657565856575659

17 | 565756585657565956575658565756a5657565856575659565756585657ab | 3 — 2t

565756585657565956575658565756a565756585657565956575658abac
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a5657565856575659abacabad
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a565756585657565956575658abac
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a5657565856575659abacabad
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a565756585657565956575658abac
565756585657565956575658565756a5657565856575659565756585657ab
565756585657565956575658565756a

236
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Theorem 37. Let k > 3, then the critical exponent of W*) equals to 3 — . Moreover, the set
of all critical factors of W) is {Pé,’j) L ®ki}.

Proof. By Theorem[34] for all n > 2k—1, Wék) always contains a square factor. Hence E(W(k)) >
2. Let A € F(W®) and r = INDEX(A) > 2. We will prove that r < 3— 72+. Sincer > 2, A%is a

square factor of W), By Corollaryl]ﬁlthere exisit integers ¢ and n such that A2 ©ki is a straddling
(k)

square of Wy, Let m; = max{3— W :2k—1<n <3k—3}, mg =3— 2k > and m3 = max{3—
(k)
W, 3"“‘;2(LT|W | Donal :m > 3k —1}. Now, using Lemma [B6 we conclude that r < max{m1,ma, m3}.
2k+41
, . Wk o |+\ sl :
It is easy to check that m; = my = 3 — 5z=5. Since g(n) = 3 — TG ‘ is a decreasing
n— 2k+1
function of n, we conclude that ms = g(3k — 1) =3 — 5. Hence r <3 — . On the other
hand, by Lemma [33] Pé:) 1Dk = (W(k)) . This implies that the set of all crltlcal factors of
W) equals to {P3(k 1B kii>1} |

Example 3. In Table B we compute the critical exponent and one of the critical factors of W®*)
for 3 < k < 8, according to Theorem 371 We note that the digits 10,11,...,16 are denoted by the

letters a, b, . .. g, respectively.
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Table 3: the critical exponent and one of the critical factors of W)

k[P ak=wM er)r R

3 343534634353463435 3 — %

4 454645474546458454645474546458454645474546 347f%

5 565756585657565956575658565756a565756585657565956575658565756a 3 — é%
5657565856575659565756585657

6 676867696768676a676867696768676b676867696768676a67686769676867¢ 3475%
676867696768676a676867696768676b676867696768676a67686769676867¢
676867696768676a676867696768676b676867696768676a676867696768

7 T879787a7879787b7879787a7879787c7879787a7879787b7879787a7879787d 347137
T87T9787a7879787TbT8TITR7a7R7ITRTcTRTIT8TaTRTITRTHT87I7R7aT787978e
T87T9787a787978TbT8TITRTa7R7ITRTcTRTITRTaTR7I7RTH7879787aT7879787d
T8T79787a7879787b7879787a7879787c7879787a7879787b7879787a787978¢
T879T87a7879787b7879787a7879787c7879787a7879787b7879787a7879787d
T879787a7879787TbT879787a7R797RT7cTRTIT8TaT787ITRTHT87TITR7a7879

8 898a898b898a8398¢898a898b898a89818982898h898a898cR98a898H898a898e | 3 — o=

898a898b898a898c8982898b89I8a898d89I8a89I8b8IZa8I8c89I8a8I8L8IBa8I8SE
898a898b898a898c898a898h89I8a898d89I8a898b89I8a89I8c89I8a89I8b89I8al98e
898a898b898a898c898a898b89I8a898d89I8a89I8b89I8a8I8c8I8a89I8b89Y8as9g
898a898b898a898c8982898b89I8a89I8A89I8a89I8b8I8a89I8c89I8a8I8H8IBa898e
898a898b898a898c8982898b89I8a89I8A89I8a89I8b8I8a8I8c8I8a8I8L8IBa8I8SE
898a898b898a898c898a898h89I8a898d89I8a898b89I8a89I8c89I8a89I8b89I8a898e
898a898b898a898c898a898b89I8a898d89I8a89I8b89I8a8I8c8I8a89I8b89Y8as9g
898a898b898a898c898a898h89I8a898d89I8a898b89I8a89I8c89I8a89I8b89I8a898e
898a898b898a898c8982898b89I8a898d89I8a898b8I8a8I8c89I8a8I8L8IBaS8I8SE
898a898b898a898c8982898b89I8a89I8A89I8a89I8b8I8a8I8c89I8a8I8H8IBa898e
898a898b898a898c898a898H89I8a898d898a898b89I8a89I8c89I8a8I8b8I8a
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