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Abstract

For any integer k > 2, the infinite k-bonacci word W (k), on the infinite alphabet is defined

as the fixed point of the morphism ϕk : N → N2
∪ N, where

ϕk(ki+ j) =

{

(ki)(ki+ j + 1) if j = 0, · · · , k − 2,

(ki+ j + 1) if j = k − 1.

The finite k-bonacci word W
(k)
n is then defined as the prefix of W (k) whose length is the

(n+ k)-th k-bonacci number. We obtain the structure of all square factors occurring in W (k).

Moreover, we prove that the critical exponent of W (k) is 3 −
3

2k−1
. Finally, we provide all

critical factors of W (k).

Keywords: k-bonacci words, words on infinite alphabet, square, critical exponent, critical factor.

1 Introduction

The infinite Fibonacci word and finite Fibonacci words are well-studied in the literature and

satisfy several extremal properties, see [6, 8, 18, 9, 19]. The infinite Fibonacci word F (2) is the

unique fixed point of the binary morphism 0 → 01 and 1 → 0. The n-th finite Fibonacci word
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F
(2)
n is the prefix of of length fn+2 of F (2), where fn is the n-th Fibonacci number. A natural

generalization of Fibonacci words are k-bonacci words which are defined on the k-letter alphabet

{0, 1, . . . , k − 1}. The infinite k-bonacci word F (k) is the unique fixed point of the morphism

φk(0) = 01, φk(1) = 02, . . . , φk(k−2) = 0(k−1), φk(k−1) = 0 (see [20]). The n-th finite k-bonacci

word F
(k)
n is defined to be φn

k (0) or equivalently, the prefix of length f
(k)
n+k of F (k), where f

(k)
n+k

denotes the (n+ k)-th k-bonacci number. While the Fibonacci words are good examples of binary

words, k-bonacci words are good examples of words over k-letter alphabet and they have many

interesting properties (see [20, 1, 4, 12]).

In [22], authors defined the infinite Fibonacci word on infinite alphabet N as the fixed point

of the morphism ϕ2 : (2i) → (2i)(2i + 1) and ϕ2 : (2i + 1) → (2i + 2). We denote the infinite

Fibonacci word on infinite alphabet by W (2). The n-th finite Fibonacci word W
(2)
n is then defined

similar as F
(2)
n . It is trivial that if digits (letters) of W (2) are computed mod 2, then the resulting

word is the ordinary infinite Fibonacci word F (2). Zhang et al. studied some properties of word

W (2). They studied the growth order and digit sum of W (2) and gave several decompositions of

W (2) using singular words. Glen et al. considered more properties of W (2) [14]. Among other

results, they investigated the structure of palindrome factors and square factors of W (2).In [11],

authors introduced the finite (infinite) k-bonacci word over infinite alphabet, for k > 2. The n-th

finite (res. infinite) k-bonacci word over infinite alphabet is denoted by W (k) (resp. W
(k)
n ). They

studied some properties of these words and classified all palindrome factors of W (k), for k ≥ 3.

For a finite word W and a positive integer n, Wn is simply obtained by concatenating the word

W , n times with itself and Wω is defined as the concatenation of W with itself, infinitely many

times; That is Wω = W.W.W . . .. For a rational number r with r.|W | ∈ N, the fractional power

W r is defined to be the prefix of length r.|W | of the infinite word Wω. For example if W = 0102

then W
5
2 = 0102010201. The index of a factor U of word W is defined as

INDEX(U,W) = max{r ∈ Q : Ur ≺ W}.

Then the critical exponent E(W ) of an infinite word W is given by

E(W ) = sup{INDEX(U,W) : U ∈ F(W) \ {ǫ}}.

A word U is a critical factor of W if E(W ) = INDEX(U,W). The study of the existence of a factor

of the form U r in a long word and specially computing the critical exponent of a long word is the

subject of many papers for example see [17, 21, 2, 5, 7, 16, 3]. Specially, in the case of infinite

k-bonacci word F (k), it is proved that E(F (k)) = 2+ 1
αk−1 (see [13]), where αk, the k-th generalized

golden ratio, is the (unique) positive real root of the k-th degree polynomial xk−xk−1− . . .−x−1.

It is proved that 2− 1
k
< αk < 1 [10, 15]. Hence, 3 < E(F (k)) < 3+ 1

k−1 , and E(F (2)) = 2+
√
5+1
2 .

In this work we first investigate some properties of W
(k)
n . Then, using them, we explore the

structure of all square factors of W
(k)
n . More precisely, we prove that all square factors of W (k)

are of the form ki ⊕ Cj(W
(k)
n ), for some integers i > 0 and j ≥ 0, where Cj(U) denoted the j-th
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conjugate of word U . Finally, using the structure of square factors of W (k), we prove that the

critical exponent of W (k) is 3− 3
2k−1

.

2 Preliminaries

In this section we give more definitions and notations that are used in the paper. We denote the

alphabet, which is a finite or countable infinite set, by A. When A is a countable infinite set, we

simply take A = N; Then each element of A is called a digit (instead of a letter). We denote by

A∗ the set of finite words over A and we let A+ = A∗ \ {ǫ}, where ǫ the empty word. We denote

by Aω the set of all infinite words over A and we let A∞ = A∗ ∪Aω. If a ∈ A and W ∈ A∞, then

the symbols |W | and |W |a denote the length of W , and the number of occurrences of letter a in

W , respectively.

For a finite word W = w1w2 . . . wn, with wi ∈ A and for 1 ≤ j ≤ j′ ≤ n, we denote W [j, j′] =

wj . . . wj′ , and for simplicity we denote W [j, j] by W [j]. Let Ui ∈ A∗, for 1 ≤ i ≤ n, then
∏1

i=n Ui

is defined to be UnUn−1 . . . U1. For a finite word W and an integer n, n ⊕ W denotes the word

obtained by adding n to each digit of W . For example, let W = 01020103 and n = 5, then

n ⊕W = 56575658. Similarly, if every digit of W is grater than n − 1, then W ⊖ n denotes the

word obtained by subtracting n from each digit of W .

A word V ∈ A+ is a factor of a word W ∈ A∞, if there exist U ∈ A∗ and U ′ ∈ A∞, such

that W = UV U ′. Similarly, a word V ∈ A∞ is a factor of W ∈ A∞ if there exists U ∈ A∗ such

that W = UV . When V is a factor of W then we denote it as V ≺ W . A word V ∈ A+ (resp.

V ∈ A∞) is said to be a prefix (resp. suffix) of a word W ∈ A∞, denoted as V ✁W (resp. V ✄W ),

if there exists U ∈ A∞ (resp. U ∈ A∗) such that W = V U (resp. W = UV ). If W ∈ A∗ and

W = V U (resp. W = UV ,) we write V = WU−1 (resp. V = U−1W ). The set of all factors of

a word w is denoted by F (w). If W = w1 . . . wn be a finite word and 0 ≤ j ≤ n − 1, then the

j-th conjugatae of W is defined as Cj(W ) = wj+1 . . . wnw1 . . . wj . For example the word 0130102

is the 4-th conjugate of 0102013. A word V is a conjugate of W if there exists 0 ≤ j ≤ n− 1 such

that V = Cj(W ). A factor of the form UU in W is called a square factor or simply a square.

For a square factor UU = W [t, t+ 2|u|] of W , the center of the square UU in W is defined to be

cs(U
2,W ) = t+ |U |+ 1

2 .

The n-th k-bonacci number defined as

f (k)
n =







0 if n = 0, · · · , k − 2,

1 if n = k − 1,
∑n−k

i=n−1 f
(k)
i if n ≥ k.

(1)

The finite (resp. infinite) k-bonacci words W
(k)
n (resp. W (k)) on infinite alphabet N is defined
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in [11], using the morphism ϕk given below

ϕk(ki+ j) =

{

(ki)(ki+ j + 1) if j = 0, · · · , k − 2

(ki+ j + 1) otherwise .

More precisely, W
(k)
n = ϕn

k (0) and W (k) = ϕω
k (0) (Note that W

(k)
0 = F

(k)
0 = 0). For a fixed value of

k, the k-bonacci words over infinite alphabet are reduced to k-bonacci words over finite alphabet

when the digits are calculated mod k. It is easy to show that for n ≥ 0,

|F (k)
n | = |W (k)

n | = f
(k)
n+k. (2)

3 Some properties of W
(k)
n

In this section we provide some basic properties W
(k)
n , some of which are proved in [11]. All of

these properties are useful for the rest of the work.

Lemma 1. [Lemma 4 of [11]] Let n ≥ 0 and k > 2. The finite word W
(k)
n contains no factor 00.

Following two lemmas give recursive formulas for computing W
(k)
n .

Lemma 2. [Lemma 5 of [11]] For 1 ≤ n ≤ k − 1,

W (k)
n =

0∏

i=n−1

W
(k)
i n. (3)

Lemma 3. [Lemma 7 of [11]] For n ≥ k,

W (k)
n =

n−k+1∏

i=n−1

W
(k)
i (k ⊕W

(k)
n−k). (4)

The following corollary is a direct consequence of Lemmas 2 and 3 and can be proved using

induction on i.

Corollary 4. Let i and n be two non-negative integers, then W
(k)
n ⊕ ki ≺ W

(k)
n+ki.

Considering the recurrence relations (3) and (4) we have the following definitions which are

very useful in the next sections.

Definition 1. Let j be a nonnegative integer, then a factor A ofW
(k)
n is called a bordering factor of

type j, for some n−k+1 ≤ j ≤ n−1 if j0 ≺ A ≺ W
(k)
j W

(k)
j−1 . . .W

(k)
m , where m = max{0, n−k+1}.

Moreover, a bordering square factor of W
(k)
n is a bordering factor of W

(k)
n which is also a square.
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Definition 2. Let n ≥ k, then a factor A of W
(k)
n is called a straddling factor ofW

(k)
n if A = A1A2,

for some nonempty words A1 and A2, with A1 ✄W
(k)
n−1 . . .W

(k)
n−k+1 and A2 ✁ k⊕W

(k)
n−k. Moreover,

if a straddling factor of W
(k)
n is also a square, it is called an straddling square factor.

Lemma 5. [Lemma 10 of [11]] For any n ≥ 1, the digit n is the largest digit of W
(k)
n and appears

once at the end of this word.

Lemma 6. For every integer i < n we have i0 ≺ W
(k)
n .

Proof. Since i+ 1 ≤ n, we have W
(k)
i+1 ≺ W

(k)
n . By Lemmas 2 and 3, W

(k)
i W

(k)
i−1 ✁W

(k)
i+1. Hence,

i0 ≺ W
(k)
i+1 ≺ W

(k)
n and the result follows. ✷

Lemma 7. Let 0 < i < n and i0 = W
(k)
n [t, t+ 1], for some t ∈ N. Then we have

W (k)
n [t− |W

(k)
i |+ 1, t+ 1] = W

(k)
i 0.

In other words, if i0 appears in W
(k)
n , then this i appeared as the last digit of a factor W

(k)
i of

W
(k)
n .

Proof. We prove this by induction on n. If n = 2, then W
(k)
2 = 0102 and in this case the only

possibility for t is t = 2 and W
(k)
2 [1, 3] = W

(k)
1 0 = 010, as desired. We suppose that the claim is

true for all m ≤ n we want to prove this for the case n+1. If n+1 ≥ k, then by Lemma 3 we have

W
(k)
n+1 =

n−k+2∏

t=n

W
(k)
t (k ⊕W

(k)
n+1−k). (5)

Let i0 occurs in W
(k)
n+1, then either i0 ≺ W

(k)
t , for some n − k + 2 ≤ t ≤ n, or i0 is a bordering

factor of W
(k)
n+1. If i0 ≺ W

(k)
t , then by induction hypothesis this i should be the last digit of some

factor W
(k)
i of W

(k)
n+1. If i0 is a bordering factor of W

(k)
n+1, then it is clear that i is the end digit of

a factor W
(k)
i of W

(k)
n+1.

In the case n+1 < k, using similar argument as the previous case and Lemma 2 we obtain the

result. ✷

Lemma 8. Let 2 < k < n and B ✄W
(k)
n with |B| = |W

(k)
n−k|+ |W

(k)
n−k−1|. Then

(i) If n = k + 1, then |B|2 = 1.

(ii) If n > k + 1, then |B|0 > 0.

Proof. (i) If n = k + 1, then by (3), B = 2.k.(k + 1), so the result follows.
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(ii) If n > k + 1, then by (4),

W
(k)
n−k+1(k ⊕W

(k)
n−k)✄W (k)

n . (6)

Let D ✄ W
(k)
n−k+1 and |D| = |W

(k)
n−k−1|. Then by (6), to prove the lemma it is suffices to

show that |D|0 > 0. If k = 3, when n = 5, 6 it is clear that |D|0 > 0. So, If n ≥ 7, then by

Equation (4), we have

W
(n−k+1)
n−2 = W

(k)
n−2 =W

(k)
n−3W

(k)
n−4(k ⊕W

(k)
n−5)

=W
(k)
n−3W

(k)
n−5 W

(k)
n−6(k ⊕W

(k)
n−7)(k ⊕W

(k)
n−5)

︸ ︷︷ ︸

|W (k)
n−4|=|D|

(7)

By (7), it is clear that |D|0 > 0.

If k > 3 and n < 2k− 1, then by Lemma 2, we have 0(n− k+1)✄W
(k)
n−k+1. Since n > k+1,

we |W
(k)
n−k−1| ≥ 2 and hence, |D|0 > 0.

If k > 3 and n ≥ 2k− 1, then by Lemma 3, W
(k)
n−2k+2(k⊕W

(k)
n−2k+1)✄W

(k)
n−k+1. Since k > 3,

|W
(k)
n−k+1| > |W

(k)
n−2k+2|+ |W

(k)
n−2k+1| and |W

(k)
n−2k+2|0 > 0, we conclude that |D|0 > 0.

✷

Lemma 9. Let n, k and j be nonnegative integers with 3 ≤ k ≤ n and n− k + 3 ≤ j ≤ n. Then

B = W
(k)
n−k+2k is not a factor of W

(k)
j .

Proof. If j < k, then |W
(k)
j |k = 0 and so B is not a factor of W

(k)
j .

Hence, we shall prove the result for k ≤ j ≤ n. We prove this part by bounded induction on j.

Let p = max{k, n− k + 3}. Since, j ≥ k and n− k + 3 ≤ j, the first step of induction is j = p. If

p = k, then the only occurrence of k in W
(k)
j , is in its last digit, we conclude that if B ≺ W

(k)
j , then

B✄W
(k)
j = W

(k)
k . Using Lemma 3, we have W

(k)
j = W

(k)
j−1 . . .W

(k)
1 k. Since (n−k+2)k✄B✄W

(k)
k ,

we provide n− k + 2 = 1, so n = k − 1 < k, which is a contradiction.

If p = n− k + 3, then by (4), we have

W
(k)
n−k+3 = W

(k)
n−k+2W

(k)
n−k+1 . . .W

(k)
n−2k+4(k ⊕W

(k)
n−2k+3) (8)

If B ≺ W
(k)
j = W

(k)
n−k+3, then there exist integers s and t such that B = W

(k)
n−k+3[s, t + 1],

W
(k)
n−k+3[t] = n − k + 2 and W

(k)
n−k+3[t + 1] = k. Using Lemma 5 and Equation (8), either

t = |W
(k)
n−k+2| or t ≥ |W

(k)
n−k+3| − |W

(k)
n−2k+3| + 1. If t = |W

(k)
n−k+2|, then W

(k)
n−k+3[t + 1] = 0,

which is a contradiction. If t ≥ |W
(k)
n−k+3| − |W

(k)
n−2k+3| + 1, then using (8) and the fact that

|W
(k)
n−k+3| ≤ 2|W

(k)
n−k+2| and B = |W

(k)
n−k+2| + 1, we conclude that s < |W

(k)
n−k+2|. Which implies

that |W
(k)
n−k+3[s, t+1]|n−k+2 ≥ 2. But by definition of B and using Lemma 5, we have |B|n−k+2 = 1,

which is a contradict. Therefore, the first step of induction is true.
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We are going to prove that B is not a factor of W
(k)
j+1. For contrary let B ≺ W

(k)
j+1. By (4), we

have

W
(k)
j+1 = W

(k)
j . . .W

(k)
j−k+2(k ⊕W

(k)
j−k+1). (9)

By induction hypothesis B is not a factor of W
(k)
i for j − k + 1 ≤ i ≤ j. Since B contains the

digit 0 and (k ⊕W
(k)
j−k+1) does not contain it, there are two following possible cases for B:

• Case 1. B is a bordering factor ofW
(k)
j+1; Let ℓ be largest integer such that B ≺ W

(k)
j . . .W

(k)
ℓ .

Since for every integer i, W
(k)
i start with 0, we have (n− k + 2)k ≺ W

(k)
ℓ which means that

ℓ > n−k+2. Therefore, W
(k)
n−k+3✁W

(k)
ℓ . Hence, W

(k)
n−k+20✁W

(k)
ℓ . Since (n−k+2)k ≺ W

(k)
ℓ ,

there exists integer α such that W
(k)
ℓ [α, α+ 1] = (n− k + 2)k. By Lemma 5, α > |W

(k)
n−k+2|.

Therefore, B ≺ W
(k)
ℓ , which contradicts to the definition of bordering factor. Hence, B is

not a bordering factor of W
(k)
j+1.

• Case 2. B is a straddling factor of W
(k)
j+1; By definition of straddling factor, there exists

nonempty word S which is the suffix of B and a prefix of k ⊕W
(k)
j−k+1. Since j < n, we have

j − k + 2 < n− k + 2 and hence using (9), we provide that the last two digits of B occur in

k⊕W
(k)
j−k+1. Let |S| = t+1, for some t > 0, this means that (k⊕W

(k)
j−k+1)[t, t+1] = (n−k+2)k.

By definition of S we obtain

BS−1
✄W

(k)
j+1[(k ⊕W

(k)
j−k+1)]

−1 (10)

On the other hand, since (n− k+2) ≺ k⊕W
(k)
j−k+1, we have n− k+2 ≥ k, or n ≥ 2k− 2. If

n = 2k−2, then W
(k)
j−k+1[t, t+1] = 00, which contradicts to Lemma 1. Therefore, n ≥ 2k−3,

now, using Equations (3) and (4), and the fact that n− k + 3 ≤ j, we have

W
(k)
n−2k+2W

(k)
n−2k+1 ✁W

(k)
n−2k+3 ✁W

(k)
j−k+1 (11)

By Lemma 5 and Equation (11), we conclude that either t = |W
(k)
n−2k+2| or t > |W

(k)
n−2k+2|+

|W
(k)
n−2k+1|. First suppose that t = |W

(k)
n−2k+2|. Then by (11), we have S = k ⊕ (W

(k)
n−2k+20).

Using (10), we provide

B[(k ⊕W
(k)
n−2k+2)k]

−1
✄W

(k)
j+1[(k ⊕W

(k)
j−k+1)]

−1

W
(k)
n−k+1 . . .W

(k)
n−2k+3✄W

(k)
j . . .W

(k)
j−k+2

Hence, n−2k+3 = j−k+2, or j = n−k+1, which contradicts to our assumption n−k+3 ≤ j.

Now, suppose that t > |W
(k)
n−2k+2|+|W

(k)
n−2k+1|. Let D✄B, and |D| = |W

(k)
n−2k+2|+|W

(k)
n−2k+1|,

then D ≺ (k ⊕ W
(k)
j−k+1). On the other hand using Lemma 8 either |D|0 > 0 or |D|2 > 0,

which is a contradiction.

✷
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4 Squares in W
(k)
n

In this section we give the structure of all square factors of W
(k)
n . We first prove that when

n < 2k − 1, W
(k)
n has no square factor. Then we characterize all square factors of W (k).

Lemma 10. For two positive integers n and k, there is no bordering square in W
(k)
n .

Proof. For contrary suppose that there exists n − k + 2 ≤ j ≤ n − 1, for which W
(k)
n con-

tains a bordering square of type j; we denote this word by A. By Definition 1, j0 ≺ A ≺

W
(k)
j W

(k)
j−1 . . .W

(k)
n−k+1. Since A is a square word, so |A|j ≥ 2. but by Lemma 5,

|W
(k)
j W

(k)
j−1 . . .W

(k)
n−k+1|j = 1.

This is a contradiction. ✷

Lemma 11. If n < k + 1, then W
(k)
n contains no square factor.

Proof. We prove this by bounded induction on n. By definition W
(k)
0 = 0 does not contain any

square. Suppose that for any integer i, 0 ≤ i ≤ n < k, W
(k)
n does not contain any square. For

contrary suppose that B is a square factor of W
(k)
n+1. By (3) and (4) we have

W
(k)
n+1 =

{

W
(k)
n+1 = W

(k)
n W

(k)
n−1 . . .W

(k)
0 (n+ 1) if n+ 1 < k,

W
(k)
n+1 = W

(k)
n W

(k)
n−1 . . .W

(k)
1 (n+ 1) if n+ 1 = k.

(12)

Using induction hypothesis and Lemma 10, we provide that B is a straddling square. By Definition

2 and Equation (12), |B|n+1 ≥ 2, which contradicts with Lemma 5. ✷

Lemma 12. let n > k and A2 be a straddling square of W
(k)
n . Then cs(A

2,W
(k)
n ) > |W

(k)
n | −

|W
(k)
n−k|.

Proof. By (4), we have

W (k)
n = W

(k)
n−1 . . .W

(k)
n−k+2 W

(k)
n−k+1 (k ⊕W

(k)
n−k) (13)

For contrary suppose that cs(A
2,W

(k)
n ) < |W

(k)
n | − |W

(k)
n−k|. Let A2 = W

(k)
n [s1, s2]. Since A2 is a

straddling square of W
(k)
n , s2 ≥ |W

(k)
n | − |W

(k)
n−k|+ 1 and s1 < |W

(k)
n | − |W

(k)
n−k|.

If cs(A
2,W

(k)
n ) < |W

(k)
n |−|W

(k)
n−k|−|W

(k)
n−k+1|, then using (13), we conclude thatB = W

(k)
n−k+1k ≺

W
(k)
n−1 . . .W

(k)
n−k+2. By Lemma 9 for any n− k + 2 ≤ j ≤ n− 1, B is not a factor W

(k)
j . Let s < n

be largest integer such that B ≺ W
(k)
n−1 . . .W

(k)
s . Since 0✁W

(k)
s , we have (n−k+1)k ≺ W

(k)
s . Let

8



W
(k)
s [α, α+1] = (n− k+1)k. By Lemma 5, s > n− k+1. Therefore, W

(k)
n−k+10✁W

(k)
n−k+2 ✁W

(k)
s

and by Lemma 5, α > |W
(k)
n−k+1|. Therefore, B ≺ W

(k)
s , which contradicts to Lemma 9. Hence,

|W (k)
n | − |W

(k)
n−k| − |W

(k)
n−k+1|+ 1 < cs(A

2,W (k)
n ) < |W (k)

n | − |W
(k)
n−k|. (14)

This means that the center of A2 happens in W
(k)
n−k+1 which is distinguished by a box in (13). We

denote the first occurrences of A in A2 by A1 and the last occurrence of A in A2 by A2. By (14),

we conclude that there exist non-empty words U1 and U2, such that W
(k)
n−k+1 = U1U2 and U2✁A2.

By Lemma 5, |U1|n−k+1 = 0 and the only occurrence of n − k + 1 in U2. which is its last digit.

We conclude that |A2|n−k+1 > 0 and all digits of A2 which appear after n− k+1 are greater than

k−1. Hence |A1|n−k+1 > 0 and all digits of A1 which appear after n−k+1 should be also greater

than k − 1. Since |U1|n−k+1 = 0, we conclude that U1 ✄ A1 and all occurrence of n − k + 1 are

before the first digit of U1. But this is a contradiction, because |U1|0 > 0 and hence there is a digit

0 which appears after all digit n− k + 1 in A1. ✷

Corollary 13. let A2 be a straddling square of W
(k)
n . Then for each i ≤ k − 1, |A|i = 0.

Proof. By Lemma 12, cs(A
2,W

(k)
n ) > |W

(k)
n |−|W

(k)
n−k|. Therefore, using Equation 4, we conclude

that A ≺ (k ⊕W
(k)
n−k). This means that all digits of A are greater than k − 1, as desired. ✷

Lemma 14. Let i < n and n ≥ k + 1, then W
(k)
n contains no factor of the form W

(k)
i W

(k)
i .

Proof. We prove this by induction on n. If n = 1, then W
(k)
1 = 01 contains no factorW

(k)
0 W

(k)
0 =

00. By (4), we have W
(k)
n =

∏n−k+1
i=n−1 W

(k)
i (k⊕W

(k)
n−k). For the contrary suppose that W

(k)
i W

(k)
i ≺

W
(k)
n for some i < n. By induction hypothesis for any j < n, W

(k)
i W

(k)
i is not a factor of W

(k)
j .

Now, by Definitions 1 and 2, W
(k)
i W

(k)
i should be either a bordering square or a straddling square.

By Lemma 10, W
(k)
n contains no bordering square. Therefore, W

(k)
i W

(k)
i is a straddling square of

W
(k)
n which can not be occurred by Corollary 13. Hence, there is no factor of the form W

(k)
i W

(k)
i

in W
(k)
n . ✷

Lemma 15. If n < 2k − 1, then W
(k)
n contains no square factor.

Proof. For contrary suppose that there exists a straddling square A2 in W
(k)
n . By definition

of straddling factor A contains the digit n − k + 1. Hence by Corollary 13, n − k + 1 ≥ k and

n ≥ 2k − 1, which is a contradiction. ✷

Lemma 16. kk is the only square of W
(k)
2k−1.

Proof. Let A2 = W
(k)
2k−1[t, t + |A2|] be a square factor of W

(k)
2k−1. By Lemmas 15 and 11, we

conclude that for every j < 2k − 1, W
(k)
j contains no square factor. By Lemma 10, W

(k)
2k−1 has no

9



bordering square. Hence, A2 is a straddling square.

W
(k)
2k−1 = W

(k)
2k−2 . . .W

(k)
k (k ⊕W

(k)
k−1) (15)

By Corollary 13 and definition of straddling factor ofW
(k)
2k−1, t = |W

(k)
2k−1|−|W

(k)
k−1|. Hence, kk✁A2.

Hence, either A2 = kk or the number of occurrences of kk in A2 is at least two. If the number

of occurrences of kk in A2 is at least two, then kk ≺ (k ⊕W
(k)
k−1) which means that 00 ≺ W

(k)
k−1,

which contradicts with Lemma 11. Hence, the only possibility for A2 is kk. ✷

Lemma 17. Let A2 be a square of W
(k)
m . Then there exists integers i and n ≤ m such that A2⊖ki

is a straddling square of W
(k)
n .

Proof. We prove this using induction on m. If m < 2k − 1, then by Lemma 15, W
(k)
m contains

no square factor and the result follows. If m = 2k− 1, then by Lemma 16, kk is the only square of

W
(k)
m which is a straddling square. If m > 2k − 1, then by (4) and using the induction hypothesis

and Lemma 10 the result follows. ✷

The following corollary is a direct consequence of Lemma 17.

Corollary 18. Let A2 be a square of W (k). Then there exists integers i and n, such that A2 ⊖ ki

is a straddling square of W
(k)
n .

Lemma 19. let A2 be a straddling square of W
(k)
n . Then

cs(A
2,W (k)

n ) ≤ |W (k)
n | − |W

(k)
n−k|+ |W

(k)
n−2k+1|+

1

2
.

Proof. By (4), we have

W (k)
n =

n−k+1∏

i=n−1

W
(k)
i (k ⊕W

(k)
n−k) (16)

=

n−k+2∏

i=n−1

W
(k)
i (W

(k)
n−k. . . . .W

(k)
n−2k+2) (k ⊕W

(k)
n−2k+1) (k ⊕W

(k)
n−k). (17)

We remined that k⊕W
(k)
n−2k+1 ≺ k⊕W

(k)
n−k. Hence, if cs(A

2,W
(k)
n ) > |W

(k)
n |−|W

(k)
n−k|+ |W

(k)
n−2k+1|,

then k ⊕ ((n− 2k+ 1)W
(k)
n−2k+1) ≺ k ⊕W

(k)
n−k it means that (n− 2k + 1)W

(k)
n−2k+1 ≺ W

(k)
n−k. Using

Lemma 6 we conclude that W
(k)
n−2k+1W

(k)
n−2k+1 ≺ W

(k)
n−k which contradicts to Lemma 14. ✷

Lemma 20. let A2 = W
(k)
n [t, t+ j] be a straddling square of W

(k)
n . Then t > |W

(k)
n | − |W

(k)
n−k| −

|W
(k)
n−2k+1|.

10



Proof. For contrary suppose that A2 = W
(k)
n [t, t + j] ≺ W

(k)
n for some t < |W

(k)
n | − |W

(k)
n−k| −

|W
(k)
n−2k+1|. By Lemma 12, cs(A

2,W
(k)
n ) > |W

(k)
n | − |W

(k)
n−k|. Hence,

W (k)
n [t1, t2] ≺ A ≺ k ⊕W

(k)
n−k. (18)

Where t1 = |W
(k)
n | − |W

(k)
n−k| − |W

(k)
n−2k+1| − 1 and t2 = |W

(k)
n | − |W

(k)
n−k|. By equation (17)

an definition of t1 and t2, we have W
(k)
n [t1, t2] = (n − 2k + 2)(k ⊕ W

(k)
n−2k+1). Therefore, by

Equation (18) (n − 2k + 2)(k ⊕ W
(k)
n−2k+1) ≺ k ⊕ W

(k)
n−k, this means that n − 2k + 2 ≥ k. So,

(n− 3k + 2)W
(k)
n−2k+1 ≺ W

(k)
n−k. Now, by Lemma 6, we conclude that W

(k)
n−3k+2W

(k)
n−2k+1 ≺ W

(k)
n−k.

Since, W
(k)
n−3k+2 ✁W

(k)
n−2k+1 we conclude that W

(k)
n−3k+2W

(k)
n−3k+2 ≺ W

(k)
n−k, which is impossible by

Lemma 14. ✷

By Lemma 19, A2 ≺ k ⊕ (W
(k)
n−2k+1W

(k)
n−k). Now using Equation(4), we have

A2 ≺ k ⊕
(
W

(k)
n−2k+1W

(k)
n−k

)
= k ⊕

(
W

(k)
n−2k+1W

(k)
n−2k+3[(W

(k)
n−2k+3)

−1W
(k)
n−k]

)

Definition 3. Let n, k be two nonnegative integers with k ≥ 3 and n > 2k − 1. We define the

word V
(k)
n as follows:

• If 2k − 1 < n < 3k − 2, then V
(k)
n = W

(k)
n−2kW

(k)
n−2k−1 . . .W

(k)
0 ;

• If n ≥ 3k − 2, then V
(k)
n = W

(k)
n−2kW

(k)
n−2k−1 . . .W

(k)
n−3k+3.

Lemma 21. Let n, k be two positive integers with k ≥ 3 and n > 2k − 1.

(i) If n < 3k − 2, then

W
(k)
n−2k+2 = W

(k)
n−2k+1V

(k)
n (n− 2k + 2), (19)

W
(k)
n−2k+1 = V (k)

n (n− 2k + 1). (20)

(ii) If n = 3k − 2, then

W
(k)
n−2k+2 = W

(k)
n−2k+1V

(k)
n k, (21)

W
(k)
n−2k+1 = V (k)

n 0k. (22)

(iii) If n > 3k − 2, then

W
(k)
n−2k+2 = W

(k)
n−2k+1V

(k)
n (k ⊕W

(k)
n−3k+2), (23)

W
(k)
n−2k+1 = V (k)

n W
(k)
n−3k+2(k ⊕W

(k)
n−3k+1). (24)

Lemma 22. Let n, k be two positive integers with k ≥ 3 and n > 2k− 1. Then V
(k)
n occurs exactly

once in W
(k)
n−2k+1.
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Proof. If 2k − 1 < n < 3k − 2, then using Definition 3 and the fact that |V
(k)
n |n−2k+1 = 0 we

conclude that V
(k)
n occurs exactly once in W

(k)
n−2k+1. If n ≥ 3k − 2, then by (4) we have

W
(k)
n−2k+1 = W

(k)
n−2k . . .W

(k)
n−3k+2(k ⊕W

(k)
n−2k) = V (k)

n W
(k)
n−3k+2(k ⊕W

(k)
n−2k).

By definition of V
(k)
n , |V

(k)
n |n−2k = 1 and (n−2k)0 ≺ V

(k)
n . Using the facts that |W

(k)
n−3k+2|n−2k = 0

and |k⊕W
(k)
n−2k|0 = 0. Hence, (n− 2k)0 occurs one time in W

(k)
n−2k+1. So, V

(k)
n also occurs once in

W
(k)
n−2k+1. ✷

Corollary 23. Let n, k be two positive integers with k ≥ 3. If 2k − 1 < n < 3k − 2, then V
(k)
n in

W
(k)
n−2k+1 always is followed by digit n − 2k + 1. If n ≥ 3k − 2, then V

(k)
n in W

(k)
n−2k+1 always is

followed by digit 0.

Proof. If 2k − 1 < n < 3k − 2, then the result follows using Lemma 22 and Definition 3. If

n ≥ 3k− 2, then by (4), V
(k)
n 0 ≺ W

(k)
n−2k+1. On the other hand, by Lemma 22, V

(k)
n occurs exactly

once in W
(k)
n−2k+1. Hence, the result follows. ✷

Lemma 24. Let n, k be two nonnegative integers with k ≥ 3 and n > 2k − 1. Then

|W
(k)
n−k| ≥ 3|W

(k)
n−2k+1|. (25)

Proof. We can check easily that (25), holds in the cases k = 3 and 5 ≤ n ≤ 8. If k > 3 or k = 3

and n ≥ 7, then using (4), we get

|W
(k)
n−k| ≥ |W

(k)
n−k−1|+ |W

(k)
n−k−2|+ |W

(k)
n−k−3| (26)

If k > 3, then n − k − 3 ≥ n − 2k + 1. Hence, Equation (26) yields the inequality |W
(k)
n−k| ≥

3|W
(k)
n−2k+1|, as desired. If k = 3, then

|W
(k)
n−3| =|W

(k)
n−4|+ |W

(k)
n−5|+ |W

(k)
n−6|

=2|W
(k)
n−5|+ 2|W

(k)
n−6|+ |W

(k)
n−7|

=3|W
(k)
n−5|+ |W

(k)
n−6| − |W

(k)
n−8|

>3|W
(k)
n−5|.

✷

To find all straddling squares of W
(k)
n we need to give the following definition.

Definition 4. Let n, k be two nonnegative integers with k ≥ 3 and n ≥ 2k − 1. We define the

word U
(k)
n to be the prefix of W

(k)
n−2k+1W

(k)
n−k of size 4|W

(k)
n−2k+1|.

12



We note that Definition 4 is well-defined using Lemma 24.

Lemma 25. Let n, k be two nonnegative integers with k ≥ 3 and 2k − 1 < n < 3k − 2. Then

U (k)
n (k) = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (n− 2k + 2)W

(k)
n−2k+1.

Proof. Since W
(k)
n−2k+3 ✁W

(k)
n−k we have

W
(k)
n−2k+1W

(k)
n−k = W

(k)
n−2k+1W

(k)
n−2k+3[(W

(k)
n−2k+3)

−1W
(k)
n−k] (27)

If k = 3, then applying Equation (4) for W
(k)
n−2k+3 and using (19) and (20) we get

W
(k)
n−2k+3 =W

(k)
n−2k+2W

(k)
n−2k+1(k ⊕W

(k)
n−2k)

=W
(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1

|

V (k)
n (n− 2k + 2)

︸ ︷︷ ︸

|W (k)
n−2k+1|

W
(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1

|

(k ⊕W
(k)
n−2k) (28)

Using Definition 4 and Equations (27) and (28) we conclude that

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (n− 2k + 2)W

(k)
n−2k+1.

If k > 3, then applying Equation (4) for W
(k)
n−2k+3 we get

W
(k)
n−2k+2W

(k)
n−2k+1W

(k)
n−2k ✁W

(k)
n−2k+3

Hence, using (19) and (20) we provide

W
(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1|

V (k)
n (n− 2k + 2)

︸ ︷︷ ︸

|W (k)
n−2k+1|

W
(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1|

W
(k)
n−2k ✁W

(k)
n−2k+3

Therefore, by Definition 4 and Equation (27) we get

U (k)
n (k) = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (n− 2k + 2)W

(k)
n−2k+1.

✷

Lemma 26. Let n, k be two nonnegative integers with k ≥ 3 and n > 3k − 2. Then

(i) If k = 3, then

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1(k ⊕W

(k)
n−3k+1),

(ii) If k > 3, then

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1W

(k)
n−3k+1.

13



Proof. By Equation (4) we have

W
(k)
n−2k+1W

(k)
n−k = W

(k)
n−2k+1W

(k)
n−2k+3[(W

(k)
n−2k+3)

−1W
(k)
n−k] (29)

If k = 3, then applying Equation (4) for W
(k)
n−2k+3 and using (23) and (24) we get

W
(k)
n−2k+3 =W

(k)
n−2k+2W

(k)
n−2k+1(k ⊕W

(k)
n−2k)

=W
(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1|

V (k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1(k ⊕W

(k)
n−3k+1)

︸ ︷︷ ︸

2|W (k)
n−2k+1|

[(k ⊕W
(k)
n−3k+1)

−1(k ⊕W
(k)
n−2k)]

(30)

Using Definition 4 and Equations (29) and (30) we conclude that

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1(k ⊕W

(k)
n−3k+1).

If k > 3, then applying Equation (4) for W
(k)
n−2k+3 we get

W
(k)
n−2k+2W

(k)
n−2k+1W

(k)
n−2k ✁W

(k)
n−2k+3

Where,

W
(k)
n−2k+2W

(k)
n−2k+1W

(k)
n−2k = W

(k)
n−2k+1

︸ ︷︷ ︸

|W (k)
n−2k+1|

V (k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1W

(k)
n−3k+1

︸ ︷︷ ︸

2|W (k)
n−2k+1|

[(W
(k)
n−3k+1)

−1W
(k)
n−2k]

(31)

Using Definition 4 and Equations (29) and (31) we conclude that

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n (k ⊕W

(k)
n−3k+2)W

(k)
n−2k+1W

(k)
n−3k+1.

✷

In the next lemma we give a formula for U
(k)
3k−2, the proof is similar to the proof of Lemma 26

so it is omitted.

Lemma 27. Let n, k be two nonnegative integers with k ≥ 3 and n = 3k − 2. Then

(i) If k = 3, then

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n kW

(k)
n−2k+1k,

(ii) If k > 3, then

U (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n kW

(k)
n−2k+10.

Corollary 28. If A2 is a straddling square of W
(k)
n , then

14



(i) A2 ≺ k ⊕ U
(k)
n ,

(ii) cs(A
2 ⊖ k, U

(k)
n ) ≤ 2|W

(k)
n−2k+1|+

1
2 .

Proof. According to Definition 4 we have

(i) This is the direct consequence of Lemma 20 and equation (17).

(ii) This can be deducted easily from Lemma 19.

✷

Lemma 29. Let n < 3k − 1, then the word (n − 2k + 1)V
(k)
n (n − 2k + 1) occurs exactly once in

U
(k)
n .

Proof. Using Lemma 25 and Equation (20) we have

U (k)
n (k) = V (k)

n (n− 2k + 1)V (k)
n (n− 2k + 1)V (k)

n (n− 2k + 2)V (k)
n (n− 2k + 1). (32)

By Deifinition3, it is clear that 0 ✁ V
(k)
n , |V

(k)
n |n−2k+1 = 0 and |V

(k)
n |n−2k+2 = 0. Hence, using

(32) we conclude that V
(k)
n occurs exactly four times in U

(k)
n . By Equation (32), the word (n −

2k + 1)V
(k)
n (n− 2k + 1) occurs exactly once in U

(k)
n . ✷

Lemma 30. Let n ≤ 3k − 1, then the word (n− 2k + 1)V
(k)
n 0 occurs exactly once in U

(k)
n .

Proof. By Deifinition3, it is clear that 0✁ V
(k)
n , |V

(k)
n |n−2k+1 = 0 and |V

(k)
n |n−2k+2 = 0. Hence,

using Lemmas 27 and 26 and using Lemma 22, we conclude that V
(k)
n occurs exactly four times in

U
(k)
n . Therefore, by Equations (22) and (24) it is easy to see that (n− 2k+1)V

(k)
n 0 occurs exactly

once in U
(k)
n .

✷

Lemma 31. Let n ≥ 2k − 1 and A2 be a straddling square of W
(k)
n and let A′2 = A2 ⊖ k. Then

cs(A
′2, U (k)

n ) ≤ |W
(k)
n−2k+1|+ |V (k)

n |+
1

2
. (33)

Proof. For contrary suppose that cs(A
′2, U

(k)
n ) > |W

(k)
n−2k+1|+ |V

(k)
n |+ 1

2 . We divide the proof in

the following cases:

• If n < 3k − 2, then by Lemma 25 and Equation (20) we conclude that

W
(k)
n−2k+1V

(k)
n (n− 2k + 1)✁ U (k)

n . (34)
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Using (34) and the fact that A′2 ⊕ k is a straddling square of W
(k)
n , we conclude that (n −

2k + 1)V
(k)
n (n − 2k + 1) should occurs at least twice in A′2 ≺ U

(k)
n . This is a contradiction

with Lemma 29.

• If n < 3k − 2, then by Lemma 25 and Equation (20) we conclude that

W
(k)
n−2k+1V

(k)
n 0✁ U (k)

n . (35)

Using (35) and the fact that A′2 ⊕ k is a straddling square of W
(k)
n , we conclude that (n −

2k+1)V
(k)
n 0 should occurs at least twice in A′2 ≺ U

(k)
n . This is a contradiction with Lemma

30.

✷

The following corollary is the direct consequence of Lemma 31.

Corollary 32. let A2 be a straddling square of W
(k)
n . Then cs(A

2,W
(k)
n ) < |W

(k)
n | − |W

(k)
n−k| +

|V
(k)
n |.

Lemma 33. Let n ≥ 2k − 1, P
(k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n . Then A2 is a straddling square of

W
(k)
n if and only if A′2 = A2 ⊖ k is a square of P

(k)
n satisfying following properties:

(i) |W
(k)
n−2k+1| ≤ cs(A

′2, P (k)
n ) ≤ |W

(k)
n−2k+1|+ |V

(k)
n |,

(ii) Let A′2 = P
(k)
n [t, t+ |A′2|]. Then, t < |W

(k)
n−2k+1|.

Proof. Let A2 is a straddling square ofW
(k)
n . Then by Corollary 28 we have A2⊖k ≺ U

(k)
n . Using

Lemmas 12 and 31 we conclude that |W
(k)
n−2k+1| ≤ cs(A

′2, P (k)
n ) ≤ |W

(k)
n−2k+1| + |V

(k)
n |. Moreover,

since A2 is a straddling factor of W
(k)
n A′2 satisfying (ii).

Now, let A′2 is a square of P
(k)
n which satisfies (i) and (ii), then we prove that A2 = A′2 ⊕ k is

a straddling square of W
(k)
n . By Lemma 15, we conclude that n ≥ 2k − 1. Using Equation (4) for

W
(k)
n and W

(k)
n−k+1 we have

W (k)
n =W

(k)
n−1 . . .W

(k)
n−k+1(k ⊕W

(k)
n−k)

W (k)
n =W

(k)
n−1 . . .W

(k)
n−k+2(W

(k)
n−k . . .W

(k)
n−2k+2(k ⊕W

(k)
n−2k+1))(k ⊕W

(k)
n−k)

Since W
(k)
n−2k+1V

(k)
n ✁W

(k)
n−k, we conclude that

W
(k)
n = W

(k)
n−1 . . .W

(k)
n−k+2W

(k)
n−k

. . .W
(k)
n−2k+2 (k ⊕W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n )

︸ ︷︷ ︸

P
(k)
n

(k ⊕ (W
(k)
n−2k+1V

(k)
n )−1

W
(k)
n−k

)

(36)

Using the fact that A′2 satisfies (i) and (ii) and as shown in Equation (36), we conclude that

A2 = A′2 ⊕ k is a straddling square of W
(k)
n . ✷
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Theorem 34. Let 0 ≤ j ≤ |V
(k)
n |. Then (C(j)(k ⊕ W

(k)
n−2k+1))

2 is a straddling square of W
(k)
n .

Moreover, every straddling square A2 of W
(k)
n is of the form A2 = (C(j)(k⊕W

(k)
n−2k+1))

2, for some

0 ≤ j ≤ |V
(k)
n |.

Proof. By Lemma 21, V
(k)
n ✁ W

(k)
n−2k+1. Hence, there exists suffix V ′ of W

(k)
n−2k+1 such that

W
(k)
n−2k+1 = V

(k)
n V ′. Let 0 ≤ j ≤ |V

(k)
n | and V1 = V

(k)
n [1, j] and V2 = V

(k)
n [j + 1, |V

(k)
n |]. Then

P (k)
n = V1

C(j)(W
(k)
n−2k+1

)
︷ ︸︸ ︷

V2V
′V1 V2V

′V1
︸ ︷︷ ︸

C(j)(W
(k)
n−2k+1)

V2 (37)

Now, using Lemma 33 and Equation (37), (C(j)(k ⊕W
(k)
n−2k+1))

2 is a straddling square of W
(k)
n .

Moreover, let A2 be a straddling square of W
(k)
n . Hence the first A in A2 should contains

n−k+1. By Lemma 33A′2 = A2⊖k is a square factor of P
(k)
n satisfying the conditions of the lemma.

Therefore, |A′|n−2k+1 ≥ 1. By Lemma 33, we can assume that cs(A
′2, P (k)

n ) = |W
(k)
n−2k+1|+ j + 1

2

for some 0 ≤ j ≤ |V
(k)
n |.

Again using Lemma 21, V
(k)
n ✁ W

(k)
n−2k+1. Let V ′

✄ W
(k)
n−2k+1 such that W

(k)
n−2k+1 = V

(k)
n V ′,

V1 = V
(k)
n [1, j] and V2 = V

(k)
n [j+1, |V

(k)
n |]. Therefore, for the first A′ in A′2 we have A′

✄V1V2V
′V1

and for the last A′ in A′2, A′
✁ V2V

′V1V2. On the other hand V1V2V
′V1 ≺ W

(k)
n−2k+1V

(k)
n and by

Definition 3 and Lemma 5, |W
(k)
n−2k+1V

(k)
n |n−2k+1 = 1, hence |A′|n−2k+1 = 1. Since the first place

that n − 2k + 1 occurs in V2V
′V1V2 is |V2V

′|, hence V2V
′
✁ A′. Since the number of occurrences

of V2V
′ in V1V2V

′V1 is once. We conclude that A′ = V2V
′V1. ✷

Theorem 35. Let k ≥ 3. Then A2 is a square of W (k) if and only if A ∈ {ki ⊕ Cj(W
(k)
n−2k+1) :

0 ≤ j ≤ |V
(k)
n |, i > 0, n ≥ 0}.

Proof. If A = ki ⊕ Cj(W
(k)
n−2k+1), for some 0 ≤ j ≤ |V

(k)
n |, i > 0, n ≥ 0, then by Theorem 34

k⊕Cj(W
(k)
n−2k+1) = (A2 ⊖ k(i− 1)) ≺ W

(k)
n or equivalently A2 ≺ W

(k)
n ⊕ k(i− 1). By Corollary 4,

we conclude that A2 ≺ W
(k)
n+k(i−1) ≺ W (k).

On the other hand, if A2 is a square of W (k), then by Corollary 18, there exist n > 2k−1, i > 0,

such that A2 ⊖ k(i − 1) is a straddling square of W
(k)
n . By Corollary 4, we conclude that A2 ≺

W
(k)
n+k(i−1). ✷

We finish this section with the following example.

Example 1. In this example we provide all square factors of W
(3)
11 , which is given bellow. All of

these squares are listed in Table 1 according to Theorem 35. We note that letters a and b stand

17



for the digits 10 and 11.

W
(3)
11 =010201301023401020133435010201301023434353460102013010234010201334353435346343567

010201301023401020133435010201301023434353463435346343567343534667680102013010234

010201334350102013010234343534601020130102340102013343534353463435673435346343567

3435346676834353463435676768679010201301023401020133435010201301023434353460102013

0102340102013343534353463435670102013010234010201334350102013010234343534634353463

4356734353466768343534634356734353466768343534634356767686793435346343567343534667

68676867967689a0102013010234010201334350102013010234343534601020130102340102013343

5343534634356701020130102340102013343501020130102343435346343534634356734353466768

0102013010234010201334350102013010234343534601020130102340102013343534353463435673

4353463435673435346676834353463435676768679343534634356734353466768343534634356767

68679343534634356734353466768676867967689a3435346343567343534667683435346343567676

8679676867967689a67686799a9b
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Table 1: Square factors of W
(3)
11

❛
❛
❛
❛
❛❛

j i 1 2 3

C(j)(ki⊕W
(3)
0 ) 0 3 6 9

C(j)(ki⊕W
(3)
1 )

0 34 67 -

1 43 76 -

C(j)(ki⊕W
(3)
2 )

0 3435 6768 -

1 4353 7686 -

2 3534 6867 -

C(j)(ki⊕W
(3)
3 )

0 3435346 6768679 -

1 4353463 7686796 -

2 3534634 6867967 -

3 5346343 8679676 -

4 3463435 6796768 -

C(j)(ki⊕W
(3)
4 )

0 3435346343567 - -

1 4353463435673 - -

2 3534634356734 - -

3 5346343567343 - -

4 3463435673435 - -

5 4634356734353 - -

6 6343567343534 - -

7 3435673435346 - -

C(j)(ki⊕W
(3)
4 )

0 343534634356734353466768 - -

1 435346343567343534667683 - -

2 353463435673435346676834 - -

3 534634356734353466768343 - -

4 346343567343534667683435 - -

5 463435673435346676834353 - -

6 634356734353466768343534 - -

7 343567343534667683435346 - -

8 435673435346676834353463 - -

9 356734353466768343534634 - -

10 567343534667683435346343 - -

11 673435346676834353463435 - -

12 734353466768343534634356 - -

13 343534667683435346343567 - -
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❛
❛
❛
❛
❛❛

j i 1 2 3

C(j)(ki⊕W
(3)
4 )

0 34353463435673435346676834353463435676768679 - -

1 43534634356734353466768343534634356767686793 - -

2 35346343567343534667683435346343567676867934 - -

3 53463435673435346676834353463435676768679343 - -

4 34634356734353466768343534634356767686793435 - -

5 46343567343534667683435346343567676867934353 - -

6 63435673435346676834353463435676768679343534 - -

7 34356734353466768343534634356767686793435346 - -

8 43567343534667683435346343567676867934353463 - -

9 35673435346676834353463435676768679343534634 - -

10 56734353466768343534634356767686793435346343 - -

11 67343534667683435346343567676867934353463435 - -

12 73435346676834353463435676768679343534634356 - -

13 34353466768343534634356767686793435346343567 - -

14 43534667683435346343567676867934353463435673 - -

15 35346676834353463435676768679343534634356734 - -

16 53466768343534634356767686793435346343567343 - -

17 34667683435346343567676867934353463435673435 - -

18 46676834353463435676768679343534634356734353 - -

19 66768343534634356767686793435346343567343534 - -

20 67683435346343567676867934353463435673435346 - -

21 76834353463435676768679343534634356734353466 - -

22 68343534634356767686793435346343567343534667 - -

23 83435346343567676867934353463435673435346676 - -
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5 Critical Exponent and Critical Factors of W (k)

Lemma 36. let A2 be a straddling square of W
(k)
n . Then

INDEX(A,W(k)
n ) =







3− 1
2n−2k+1 if 2k − 1 ≤ n ≤ 3k − 3,

3− 1
2k−2 if n = 3k − 2,

3−
|W (k)

n−3k+2|+|W (k)
n−3k+1|

|W (k)
n−2k+1|

if n > 3k − 2.

Proof. By Lemma 33, A2 ⊖ k ≺ P
(k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n . If 2k − 1 ≤ n ≤ 3k − 3, then by

Definition 3.

P (k)
n = W

(k)
n−2k+1W

(k)
n−2k+1V

(k)
n

= W
(k)
n−2k+1W

(k)
n−2k+1W

(k)
n−2k . . .W

(k)
0

= W
(k)
n−2k+1W

(k)
n−2k+1W

(k)
n−2k+1(n− 2k + 1)−1

= (W
(k)
n−2k+1)

3− 1

2n−2k+1 .

Where the last equality holds since |W
(k)
n−2k+1| = 2n−2k+1. If n = 3k − 2, then by Definition 3.

P
(k)
3k−2 = W

(k)
k−1W

(k)
k−1V

(k)
3k−2

= W
(k)
k−1W

(k)
k−1W

(k)
k−2 . . .W

(k)
1

= W
(k)
k−1W

(k)
k−1W

(k)
k−1(0(k − 1))−1

= (W
(k)
k−1)

3− 1

2k−2 .

In the case n > 3k − 2, again by using Definition 3, we conclude that

P (k)
n = (W

(k)
n−2k+1)

3−
|W

(k)
n−3k+2

|+|W
(k)
n−3k+1

|

|W
(k)
n−2k+1

| .

✷

In the following example for k = 5 and 9 ≤ n ≤ 17, we show that how Lemma 36 works.

Example 2. In this example we listed all P
(5)
n , when 9 ≤ n ≤ 17 and for all values of n we present

the corresponding power r. We note that letters a and b stand for the digits 10 and 11.

As we can see in Table 2 in Example 2, the largest power of W
(5)
n−9 ⊕ k in P

(5)
n ⊕ k is 3 − 3

31 .

This power happens when n = 14, which is the critical exponent of P
(5)
n ⊕ k. Moreover, in the

following Theorem we show that this r is also the critical exponent of W (5).
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Table 2: Powers of W
(5)
n−9 in W

(5)
n

n P
(5)
n ⊕ k = (W

(5)
n−9 ⊕ k)r r

9 55 2

10 56565 3− 1
2

11 56575657565 3− 1
4

12 56575658565756585657565 3− 1
8

13 5657565856575659565756585657565956575658565756 3− 1
8

14 565756585657565956575658565756a565756585657565956575658565756a

5657565856575659565756585657

3− 3
31

15 565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658

3− 6
61

16 565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658abac

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658abac

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a5657565856575659

3− 12
120

17 565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658abac

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a5657565856575659abacabad

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658abac

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a5657565856575659abacabad

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a565756585657565956575658abac

565756585657565956575658565756a5657565856575659565756585657ab

565756585657565956575658565756a

3− 24
236
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Theorem 37. Let k ≥ 3, then the critical exponent of W (k) equals to 3− 3
2k−1

. Moreover, the set

of all critical factors of W (k) is {P
(k)
3k−1 ⊕ ki}.

Proof. By Theorem 34, for all n ≥ 2k−1,W
(k)
n always contains a square factor. Hence E(W (k)) ≥

2. Let A ∈ F (W (k)) and r = INDEX(A) ≥ 2. We will prove that r ≤ 3− 3
2k−1 . Since r ≥ 2, A2 is a

square factor of W (k). By Corollary 18 there exisit integers i and n such that A2⊖ki is a straddling

square ofW
(k)
n . Letm1 = max{3− 1

2n−2k+1 : 2k−1 ≤ n ≤ 3k−3},m2 = 3− 1
2k−2 andm3 = max{3−

|W (k)
n−3k+2|+|W (k)

n−3k+1|
|W (k)

n−2k+1|
: n ≥ 3k− 1}. Now, using Lemma 36 we conclude that r ≤ max{m1,m2,m3}.

It is easy to check that m1 = m2 = 3− 1
2k−2 . Since g(n) = 3−

|W (k)
n−3k+2|+|W (k)

n−3k+1|
|W (k)

n−2k+1|
is a decreasing

function of n, we conclude that m3 = g(3k − 1) = 3 − 3
2k−1

. Hence r ≤ 3 − 3
2k−1

. On the other

hand, by Lemma 33, P
(k)
3k−1 ⊕ k = (W

(k)
k )

3− 3

2k−1 . This implies that the set of all critical factors of

W (k) equals to {P
(k)
3k−1 ⊕ ki : i ≥ 1}. ✷

Example 3. In Table 3, we compute the critical exponent and one of the critical factors of W (k),

for 3 ≤ k ≤ 8, according to Theorem 37. We note that the digits 10, 11, . . . , 16 are denoted by the

letters a, b, . . . g, respectively.
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Table 3: the critical exponent and one of the critical factors of W (k)

k P
(k)
3k−1 ⊕ k = (W

(k)
k ⊕ k)r r = 3− 3

2k−1

3 343534634353463435 3− 3
7

4 454645474546458454645474546458454645474546 3− 3
15

5 565756585657565956575658565756a565756585657565956575658565756a

5657565856575659565756585657

3− 3
31

6 676867696768676a676867696768676b676867696768676a67686769676867c

676867696768676a676867696768676b676867696768676a67686769676867c

676867696768676a676867696768676b676867696768676a676867696768

3− 3
63

7 7879787a7879787b7879787a7879787c7879787a7879787b7879787a7879787d

7879787a7879787b7879787a7879787c7879787a7879787b7879787a787978e

7879787a7879787b7879787a7879787c7879787a7879787b7879787a7879787d

7879787a7879787b7879787a7879787c7879787a7879787b7879787a787978e

7879787a7879787b7879787a7879787c7879787a7879787b7879787a7879787d

7879787a7879787b7879787a7879787c7879787a7879787b7879787a7879

3− 3
127

8 898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898f

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a89g

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898f

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a89g

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898f

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a898e

898a898b898a898c898a898b898a898d898a898b898a898c898a898b898a

3− 3
255

24



References

[1] Adamczewski, B. Balances for fixed points of primitive substitutions. Theoretical Computer

Science 307, 1 (2003), 47–75.

[2] Berstel, J. On the index of sturmian words. In Jewels are forever. Springer, 1999, pp. 287–

294.
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