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Abstract

Context-free grammars are not able to capture cross-serial dependencies occur-

ring in some natural languages. To overcome this issue, Seki et al. introduced a

generalization called m-multiple context-free grammars (m-MCFGs), which deal

with m-tuples of strings. We show that m-MCFGs are capable of comparing the

number of consecutive occurrences of at most 2m different letters. In particular,

the language {an1

1 an2

2 · · · a
n2m+1

2m+1 | n1 ≥ n2 ≥ · · · ≥ n2m+1 ≥ 0} is (m + 1)-multiple

context-free, but not m-multiple context-free.

1 Introduction

Formal language theory makes use of mathematical tools to study the syntactical aspects
of natural and artificial languages. Two of the best known and most studied classes of
formal languages are context free languages and context sensitive languages, generated
by context free grammars and context sensitive grammars, respectively. Context-free
grammars have convenient generative properties, but they are not able to model cross-
serial dependencies, which occur in Swiss German and a few other natural languages.
The expressive power of context-sensitive grammars on the other hand often exceeds our
requirements, and the decision problem whether a given string belongs to the language
generated by such a grammar is PSPACE-complete.

To overcome these issues, intermediate classes of ‘mildly context sensitive languages’
were independently introduced byVijay-Shanker et al. [6] and Seki et al. [5] in the
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W1230.
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form of context-free rewriting systems and multiple context-free grammars (MCFGs).
These concepts turn out to be equivalent in the sense that they both lead to the same
class of languages, called multiple context-free languages (MCFLs). While MCFGs are
able to model cross-serial dependencies by dealing with tuples of strings, the languages
generated by them share several important properties with context free languages, such
as polynomial time parsability and semi-linearity.

MCFLs can be distinguished depending on the largest dimension m of tuples involved.
The m-MCFLs obtained in this way form an infinite strictly increasing hierarchy

CFL = 1-MCFL ( 2-MCFL ( . . . ( m-MCFL ( (m+ 1)-MCFL ( . . . ( CSL,

where CFL and CSL denote the classes of context free languages and context sensitive
languages, respectively.

A highlight in the theory of MCFGs is a result by Salvati [4], stating that the
language O2 = {w ∈ {a, ā, b, b̄}∗ | |w|a = |w|ā ∧ |w|b = |w|b̄} occurring as the word
problem of the group Z

2 is a 2-MCFL. Moreover the language MIX = {w ∈ {a, b, c}∗ |
|w|a = |w|b = |w|c} is rationally equivalent to O2 and thus also a 2-MCFL. Ho [1]
generalized this result by showing that for any positive integer d the word problem of
Z
d is multiple context-free.
In this paper we study languages defined by comparing lengths of runs of consecutive

identical letters and show that they are able to separate the layers of the hierarchy
mentioned above. In particular we consider languages of the form

Lk = {an1

1 an2

2 · · · a
nk

k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0}

and generalisations thereof. The languages L1 and L2 are easily seen to be context-free,
and it is a standard exercise to show that L3 is not context-free by using the pumping
lemma for context free languages. Our main result generalises these observations.

Theorem 1.1. The language Lk = {an1

1 an2

2 · · · a
nk

k | n1 ≥ n2 ≥ · · · ≥ nk ≥ 0} is a

⌈k/2⌉-MCFL but not a (⌈k/2⌉ − 1)-MCFL.

The first part of Theorem 1.1 is verified by constructing an appropriate grammar. For
the second part, one might hope that it is implied by a suitable generalisation of the
pumping lemma to m-MCFLs, but unfortunately such a generalisation does not exist.

A weak pumping lemma for m-MCFLs due to Seki et al. [5] which generalises
pumpability of words to m-pumpability only confirms the existence of m-pumpable
strings in infinite m-MCFLs and not that all but finitely many words in the language
are m-pumpable. In particular, it is not strong enough to imply the second part of
Theorem 1.1. While Kanazawa [2] managed to prove a strong version of the pumping
lemma for the sub-class of well-nested m-MCFLs, Kanazawa et al. [3] showed that
in fact such a pumping lemma cannot exist for general m-MCFLs by giving a 3-MCFL
containing infinitely many words which are not k-pumpable for any given k. Neverthe-
less, our proof relies heavily on the idea of pumping, thus showing that this technique
can be useful even in cases where no pumping lemma is available.
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2 Definitions and notation

For an alphabet (finite set of letters) Σ we denote by

Σ
∗ = {w = a1a2 · · · an | n ≥ 0, ai ∈ Σ}

the set of all finite words over Σ. A formal language over Σ is a subset of Σ∗.
The length |w| of a word w = a1a2 · · · an is the number n of letters contained in it.

We write ǫ for the word of length zero and an for the word obtained by n-fold repetition
of the letter a.

In this paper we focus on languages based on comparing consecutive occurrences of
different letters. In order to formally define these languages, we need some preliminary
definitions. A preorder � on a setM is a reflexive and transitive binary relation onM . In
contrast to partial orders, preorders need not be antisymmetric, that is, a � b and b � a
may be true at the at the same time for different elements a, b. A preorder � is called
total if for all a, b ∈M at least one of a � b and b � a holds. The comparability graph of
a preorder is the simple undirected graph with vertex set M , where two different vertices
u and v are connected by an edge if they are comparable. We call a preorder connected,
if its comparability graph is connected. Note that any total preorder is connected, but
a connected preorder does not have to be total.

For a positive integer m and a preorder � on [m] := {1, 2, . . . ,m} define the language
L� over the alphabet Σ = {a1, . . . , am} by

L� = {an1

1 an2

2 · · · a
nm

m | i � j ⇒ ni ≤ nj}.

A preorder �′ on M is said to be a totalisation of a preorder � on M , if it is total and
extends �, that is, whenever a � b also a �′ b. Let T� be the set of totalisations of �.

Remark 2.1. Let w = an1

1 an2

2 · · · a
nm

m ∈ L�. The binary relation �′ on [m] defined by

i �′ j if ni ≤ nj is a totalisation of �. Consequently,

L� =
⋃

�′∈T�

L�′ .

A natural way of specifying a language is by giving a grammar which generates it. In
this paper we focus on multiple context-free languages and their generating grammars,
which we shall now define.

Let Σ be an alphabet and N be a finite ranked set of non-terminals, that is, N is the
disjoint union N =

⋃

r∈N
N

(r) of finite sets N
(r). Note that since N is finite, all but

finitely many N (r) must be empty. The elements of N (r) are called non-terminals of
rank r. A production rule ρ over (N,Σ) is an expression

A(α1, . . . , αr)← A1(x1,1, . . . , x1,r1), . . . , An(xn,1, . . . , xn,rn),

where

(i) n ≥ 0,
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(ii) A ∈ N
(r) and Ai ∈ N (ri) for all i ∈ [n],

(iii) xi,j are variables,

(iv) α1, . . . , αr are strings over Σ ∪ {xi,j | i ∈ [n], j ∈ [ri]}, such that each xi,j occurs
at most once in α1 · · ·αr.

Production rules satisfying n = 0 are called terminating rules.
For A ∈ N(r) and words w1, . . . , wr ∈ Σ∗ we call A(w1, . . . , wr) a term. Let ρ be a pro-

duction rule as above. The application of ρ to a sequence of n terms (Ai(wi,1, . . . , wi,ri))i∈[n]
yields the term A(w1, . . . , wr), where wl is obtained from αl by substituting every vari-
able xi,j by the word wi,j for l ∈ [r].

A multiple context-free grammar is a quadruple G = (N,Σ,P, S), where N is a finite
ranked set of non-terminals, Σ is an alphabet, P is a finite set of production rules over
(N,Σ) and S ∈ N

(1) is the start symbol. The grammar G is m-multiple context-free or
a m-MCFG, if the rank of all non-terminals in N is at most m.

We call a term T derivable in G and write ⊢ T if there is a rule ρ and a sequence
of derivable terms A such that the application of ρ to A yields T . Note that if ρ =
A(w1, . . . , wr) ← is a terminating rule, then A is the empty sequence. Thus the term
A(w1, . . . , wr) is derivable.

The language generated by G is the set L(G) = {w ∈ Σ
∗ | ⊢ S(w)}. We call a language

m-multiple context-free or an m-MCFL, if it is generated by an m-MCFG.
By the following lemma it is enough to consider MCFGs in a certain normal form.

Lemma 2.2 (Seki et al. [5, Lem. 2.2]). Every m-MCFL is generated by an m-MCFG

satisfying the following conditions.

(i) If A(α1, . . . , αr)← A1(x1,1, . . . , x1,r1), . . . , An(xn,1, . . . , xn,rn) is a non-terminating

rule, then the string α1 · · ·αr contains each xi,j exactly once and does not contain

elements of Σ.

(ii) If A(w1, . . . , wr)← is a terminating rule, then the string w1 · · ·wr contains exactly

one letter of Σ.

A rooted tree T is a tree with a designated root vertex. The descendants of a vertex v
of T are all vertices u such that if v lies on the unique shortest path from u to the root
of T . Descendants of v adjacent to v are called children of v. A rooted tree is called
ordered, if an ordering is specified for the children of each vertex. The subtree rooted at
a vertex v of T is the subgraph of T consisting of v and its descendants and all edges
incident to these descendants.

Derivation trees for multiple context-free languages were first defined by Seki et
al. [5]; we will use a slight variation of their definition. Let G = (N,Σ,P, S) be an
MCFG. An ordered rooted tree D whose vertices are labelled with elements of P is a
derivation tree of a term T , if the tree and its labelling satisfy the following conditions.

(i) The root of D has n ≥ 0 children and is labelled with a rule ρ ∈ P.

4



(ii) For i ∈ [n] the subtree Di rooted at the i-th child of the root of D is a derivation
tree of a term Ti.

(iii) The rule ρ applied to the sequence (Ti)i∈[n] yields T .

It is not hard to see that ⊢ A(w1, . . . , wr) if and only if there is a derivation tree D
of A(w1, . . . , wr). However, in general such a derivation tree need not be unique. We
denote by ℓ(D) the label of the root of D.

Remark 2.3. Let D be a derivation tree and let v be a vertex of D. Then by definition

replacing the subtreeD′ ofD rooted at v by a derivation treeD′′ satisfying ℓ(D′′) = ℓ(D′)

yields a derivation tree.

3 Main result

We split the proof of our main result into two parts, covered by Theorem 3.1 and
Theorem 3.2, respectively. Together, these two results clearly imply Theorem 1.1; it is
also worth pointing out that in fact they cover the (much larger) class of languages L�

as introduced in the previous section.

Theorem 3.1. For every preorder � the language L� = {an1

1 an2

2 · · · a
nm

m | i � j ⇒ ni ≤

nj} over the alphabet Σ = {a1, . . . , am} is a ⌈m/2⌉-MCFL.

Proof. It is known (see for instance [5]) that the class of k-MCFLs is a full AFL; in

particular it is closed under substitution and taking finite unions. Thus it is enough to

consider the case where m = 2k is even, the case m = 2k − 1 follows by substituting ǫ

for a2k. Additionally, by Remark 2.1 we may assume that � is a total preorder.

We show that L� is generated by the k-MCFG G = (N = {S,A},Σ,P, S), where A

has rank k and P consists of the rules

S(x1x2 · · · xk)← A(x1, x2, . . . , xk)

A(ǫ, ǫ, . . . , ǫ)←

and for every j ∈ [2k] the additional rule ρj given by

A(y1x1y2, y3x2y4, . . . , y2n−1xny2n)← A(x1, x2, . . . , xn),

where

yi =

{

ai if j � i,

ǫ otherwise.

First note that if ⊢ A(w1, . . . , wk), then each wl has the form wl = a
n2l−1

2l−1 an2l

2l , and

it holds that ni ≤ nj whenever i � j. This is clearly true for A(ǫ, ǫ, . . . , ǫ) and it is

preserved when applying the rule ρj, which adds one instance of the letter aj and every
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letter ai with j � i. Every word w generated by G is in L� since it is the concatenation

w1 · · ·wk of strings wl such that ⊢ A(w1, . . . , wk).

Next we show that any given word in L� is generated by G. Assume for a contra-

diction that there is a word in L� which is not generated by G. Pick such a word

w = an1

1 an2

2 · · · a
n2k

2k for which nmax = max{nl | l ∈ [2k]} is minimal. As G generates

the empty word, w 6= ǫ and nmax ≥ 1. For l ∈ [2k] let n′
l = nl if nl < nmax, and

let n′
l = nmax − 1 otherwise. Since w ∈ L� we have n′

i ≤ n′
j whenever i � j, and

thus w′ = a
n′
1

1 a
n′
2

2 · · · a
n′
2k

2k ∈ L�. By minimality of w the word w′ is generated by G,

and in particular ⊢ A(a
n′
1

1 a
n′
2

2 , . . . , a
n′
2k−1

2k−1 a
n′
2k

2k ). Pick some minimal j with respect to �

from the set {l ∈ [2k] | nl = nmax}. Applying the rule ρj to A(a
n′
1

1 a
n′
2

2 , . . . , a
n′
2k−1

2k−1 a
n′
2k

2k )

yields ⊢ A(an1

1 an2

2 , . . . , a
n2k−1

2k−1 a
n2k

2k ); consequently G generates w, contradicting our as-

sumption.

Theorem 3.2. For every connected preorder � the language L� = {an1

1 an2

2 · · · a
nm

m | i �

j ⇒ ni ≤ nj} over the alphabet Σ = {a1, . . . , am} is not a (⌈m/2⌉ − 1)-MCFL.

Proof. Assume that there is a MCFG G = (N,Σ,P, S) generating L�, and assume that

G is given in normal form as in Lemma 2.2.

For a derivation tree D and i ∈ [m] denote by |D|i the total number of letters ai
occurring in all substrings contained in the term ℓ(D) and by |D| =

∑m
i=1 |D|i the

combined length of all substrings. Since G is in normal form, if ℓ(D) is not a terminating

rule and D1, . . . ,Dk are the derivation trees rooted at the k children of the root of D we

have

(1) |D|i =

k
∑

j=1

|Dj |i .

Moreover, if ℓ(D) is a terminating rule, then

(2) |D| = 1.

Call a rule a combiner, if its right hand side contains at least 2 non-terminals and

therefore a vertex of any derivation tree labelled by ρ has at least 2 children. Note that

there is an upper bound K such that the right hand side of any combiner contains at

most K non-terminals.

Fix n > K2C , where C is the number of combiners in P, and let D be a derivation

tree of S(an1a
n
2 · · · a

n
m). Then D contains a path starting at the root containing at least

2C + 1 vertices labelled with combiners. If not, then (1) and (2) imply |D| ≤ K2C ,

contradicting our choice of n. In particular the path contains at least 3 vertices labelled

with the same combiner ρ. Denote the subtrees rooted at these three vertices by D1,

D2, and D3 such that D3 ⊆ D2 ⊆ D1.
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Figure 1: Replacing D1 with D2 yields D′ and replacing D2 with D1 yields D′′.

We claim that for any i � j we have |D1|j − |D2|j = |D1|i − |D2|i, and that an

analogous statement holds for D2 and D3.

Assume that |D1|j − |D2|j > |D1|i − |D2|i. By (1) the derivation tree D′ obtained by

replacing D1 by D2 (compare Remark 2.3) satisfies
∣

∣D′
∣

∣

j
−

∣

∣D′
∣

∣

i
= |D|j − (|D1|j − |D2|j)− |D|i + (|D1|i − |D2|i) < 0,

because |D|j = |D|i = n. This is a contradiction, as the word w(D′) is not in L�. If

|D1|j − |D2|j < |D1|i − |D2|i, then the derivation tree D′′ obtained by replacing D2 by

D1 satisfies
∣

∣D′′
∣

∣

j
−

∣

∣D′′
∣

∣

i
= |D|j + (|D1|j − |D2|j)− |D|i − (|D1|i − |D2|i) < 0,

which is a contradiction for the same reason as before. This completes the proof of our

claim.

If i, j ∈ [m] are comparable in �, then |D1|j−|D1|i = |D2|j−|D2|i. By connectedness

of the comparability graph this is true for any pair i, j.

Since ρ is a combiner, |w(D1)| > |w(D2)|. In particular |D1|i > |D2|i for some and

thus for every i ∈ [m]. Analogously we obtain |D2|i > |D3|i; in particular |D2|i > 0

holds for every i ∈ [m].

Assume now for a contradiction the Grammar G is (⌈m/2⌉ − 1)-MCF. Then w(D2)

consists of at most ⌈m/2⌉ − 1 strings and each of them is a substring of an1a
n
2 · · · a

n
m

because G is in normal form. Every letter of Σ appears in w(D2), hence one of the

strings must contain at least 3 different letters and thus be of the form an1

i−1a
n
i a

n2

i+1 for

some i ∈ {2, . . . ,m − 1}. As this contradicts the fact that n ≥ |D1|i > |D2|i = n, the

grammar G must be at least ⌈m/2⌉-MCF.
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