
A Metalanguage for Guarded Iteration‹,‹‹

Sergey Goncharov, Christoph Rauch and Lutz Schröder

Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

Notions of guardedness serve to delineate admissible recursive definitions in var-
ious settings in a compositional manner. In recent work, we have introduced an
axiomatic notion of guardedness in symmetric monoidal categories, which serves
as a unifying framework for various examples from program semantics, process
algebra, and beyond. In the present paper, we propose a generic metalanguage
for guarded iteration based on combining this notion with the fine-grain call-
by-value paradigm, which we intend as a unifying programming language for
guarded and unguarded iteration in the presence of computational effects. We
give a generic (categorical) semantics of this language over a suitable class of
strong monads supporting guarded iteration, and show it to be in touch with
the standard operational behaviour of iteration by giving a concrete big-step
operational semantics for a certain specific instance of the metalanguage and
establishing soundness and (computational) adequacy for this case.

Keywords: Computational monads, metalanguage, guarded iteration,
computational adequacy

1. Introduction

Guardedness is a recurring theme in programming and semantics, fundamen-
tally distinguishing the view of computations as processes unfolding in time
from the view that identifies computations with a final result they may even-
tually produce. Historically, the first perspective is inherent to process algebra
(e.g. [33]), where the main attribute of a process is its behaviour, while the sec-
ond is inherent to classical denotational semantics via domain theory [44], where
the only information properly infinite computations may communicate to the
outer world is the mere fact of their divergence. This gives rise to a distinction
between intensional and extensional paradigms in semantics [1].

‹Work forms part of the DFG-funded project A High Level Language for Programming
and Specifying Multi-Effect Algorithms (HighMoon2, SCHR 1118/8-2, GO 2161/1-2)
‹‹This article is a revised version of [19].

Preprint submitted to Elsevier May 25, 2021

ar
X

iv
:1

80
7.

11
25

6v
3

 [
cs

.L
O

]
 2

4
M

ay
 2

02
1

handle r in

(handleit e = ‹ in // start a loop

print ("think of a number") & // execute the loop guard

(do y Ð rand();

z Ð read();

if (y = 42) then raiser‹ else // 42 is the ultimate answer

if (z = y) then ret ‹ else raisee‹)) // continue, unless

// number guessed correctly

with print ("the answer!")

Figure 1: Example of a guarded loop.

For example, in CCS [33] a process is guarded in a variable x if every occur-
rence of x in this process is preceded by an action. One effect of this constraint
is that guarded recursive specifications can be solved uniquely, e.g. the equation
x “ ā. x, whose right-hand side is guarded in x, has the infinite stream ā.ā. . . . as
its unique solution. If we view ā as an action of producing an output, we can also
view the process specified by x “ ā. x as productive and the respective solution
ā.ā . . . as a trace obtained by collecting its outputs. The view of guardedness
as productivity is pervasive in programming and reasoning with coinductive
types [12, 15, 16, 23] as implemented in dependent type environments such as
Coq and Agda. Semantic models accommodate this idea in various ways, e.g.
from a modal [35, 2, 32], (ultra-)metric [13, 26], and a unifying topos-theoretic
perspective [5, 10].

In recent work, we have proposed a new axiomatic approach to unifying no-
tions of guardedness [22, 20], where the main idea is to provide an abstract no-
tion of guardedness applicable to a wide range of (mutually irreducible) models,
including, e.g., complete partial orders, complete metric spaces, and infinite-
dimensional Hilbert spaces, instead of designing a concrete model carrying a
specific notion of guardedness. A salient feature of axiomatic guardedness is
that it varies in a large spectrum starting from total guardedness (everything
is guarded) and ending at vacuous guardedness (very roughly, guardedness in
a variable means essentially non-occurrence of this variable in the defining ex-
pression) with proper examples as discussed above lying between these two ex-
tremes. The fact that axiomatic guardedness can be varied so broadly indicates
that it can be used for bridging the gap between the intensional and extensional
paradigms, which is indeed the perspective we are pursuing here by introducing
a metalanguage for guarded iteration.

The developments in [20] are couched in terms of a special class of monoidal
categories called guarded traced symmetric monoidal categories, equipped with
a monoidal notion of guardedness and a monoidal notion of feedback allowing
only such cyclic computations that are guarded in the corresponding sense. In

2

the present work we explore a refinement of this notion by instantiating guarded
traces to Kleisli categories of computational monads in the sense of Moggi [34],
with coproduct (inherited from the base category) as the monoidal structure.
The feedback operation is then equivalently given by guarded effectful iteration,
i.e. a (partial) operator

f : X Ñ T pY `Xq

f : : X Ñ TY
(1)

to be thought of as iterating f over X until a result in Y is reached [22]. As
originally argued by Moggi, strong monads can be regarded as representing
computational effects, such as nondeterminism, exceptions, or process algebra
actions, and thus the corresponding internal language of strong monads, the
computational metalanguage [34], can be regarded as a generic programming
language over these effects. We extend this perspective by parametrizing such a
language with a notion of guardedness and equipping it with guarded iteration.
In doing so, we follow the approach of Geron and Levy [14] who already explored
the case of unguarded iteration by suitably extending a fine-grain call-by-value
language [29], a refined variant of Moggi’s original computational λ-calculus.

A key insight we borrow from [14] is that effectful iteration can be efficiently
organized via throwing and handling exceptions (also called labels in this con-
text) in a loop, leading to a more convenient programming style in comparison
to the one directly inspired by the typing of the iteration operator (1). We
show that the exception handling metaphor seamlessly extends to the guarded
case and is compatible with the axioms of guardedness. A quick illustration is
presented in Fig. 1 where the handleit command implements a loop in which
the raise command indexed with the corresponding exception e identifies the
tail call. The print operation acts as a guard and makes the resulting program
well-typed. We also involve two operations rand and read for random num-
ber generation and for reading a user input from the console correspondingly.
Apart from the non-standard use of exceptions via the handleit construct, they
can be processed in a standard way with the handle command, and therefore
in the example, we can break from the loop by throwing exception r when the
random number appears to be 42 (the answer to the ultimate question of life,
the universe, and everything).

To interpret our metalanguage we derive and explore a notion of strong
guarded iteration and give a generic (categorical) denotational semantics, for
which the main subtlety are functional abstractions of guarded morphisms. We
then define a big-step operational semantics for a concrete (simplistic) instance
of our metalanguage and show an adequacy result w.r.t. a concrete choice of the
underlying category and the strong monad.

Related work. We have already mentioned work by Geron and Levy [14]. The
instance of operational semantics we explore here is chosen so as to give the
simplest proper example of guarded iteration, i.e. the one giving rise to infinite
traces, making the resulting semantics close to one explored in a line of work
by Nakata and Uustalu [37, 38, 36, 39]. We regard our operational semantics

3

as a showcase for the denotational semantics, and do not mean to address the
notorious issue of undecidability of program termination, which is the main
theme of Nakata and Uustalu’s work. We do however see our work as a step-
ping stone both for deriving more sophisticated styles of operational semantics
and for developing concrete denotational models for addressing the operational
behaviour as discussed in op.cit. The guarded λ-calculus [10] is a recently intro-
duced language for guarded recursion (as apposed to guarded iteration), on the
one hand much more expressive than ours, but on the other hand capturing a
very concrete model, the topos of trees [5].

This paper extends a previous conference publication [19] by giving full
proofs and additional explanations and example material. Also, we consolidate
the treatment of iteration-in-context by showing the necessity of conditions re-
lating the strength to guardedness and iteration (Theorem 6). The version of
the metalanguage we present here (Fig. 4) improves slightly on the original con-
ference version by modifying the formation rules for gcase and handle; this, in
particular, allows us to type more terms, and handle “unguarded exceptions”.

Plan of the paper. In Section 2 we give the necessary technical preliminaries, and
discuss and complement the semantic foundations for guarded iteration [22, 20].
In Sections 3 and 4 we present our metalanguage for guarded iteration (without
functional types) and its generic denotational semantics. In Section 5 we identify
conditions for interpreting functional types and extend the denotational seman-
tics to this case. In Section 6 we consider an instance of our metalanguage (for
a specific choice of signature), give a big-step operational semantics and prove
a corresponding adequacy result. Conclusions are drawn in Section 7.

2. Monads for Effectful Guarded Iteration

We use the standard language of category theory [30]. Some conventions regard-
ing notation are in order. By |C| we denote the class of objects of a category C,
and by HomCpA,Bq (or HompA,Bq, if no confusion arises) the set of morphisms
f : AÑ B from A P |C| to B P |C|. We tend to omit object indices on natural
transformations.

Coproduct summands and distributive categories. We call a pair σ “

〈σ1 : Y1 Ñ X, σ2 : Y2 Ñ X〉 of morphisms a summand of X, denoted
σ : Y1 X, if it forms a coproduct cospan, i.e. X is a coproduct of Y1 and Y2

with σ1 and σ2 as coproduct injections. Each summand σ “ 〈σ1, σ2〉 thus de-
termines a complement summand σ̄ “ 〈σ2, σ1〉 : Y2 X. We often identify a
summand 〈σ1, σ2〉 with its first component when σ2 is predetermined canoni-
cally, clear from the context, or irrelevant. Summands of a given object X are
naturally preordered by taking 〈σ1, σ2〉 to be smaller than 〈θ1, θ2〉 iff σ1 fac-
tors through θ1. In the presence of an initial object ∅, with unique morphisms
! : ∅ Ñ X, this preorder has a greatest element 〈idX , !〉 : X X and a least
element 〈!, idX〉 : ∅ X. By writing X1 ` . . .`Xn we designate the latter as
a coproduct of the Xi and assign the canonical names ini : Xi X1` . . .`Xn

4

to the corresponding summands; if σ : Y1 X1, ϑ : Y2 X2 are sum-
mands, then so is σ ` ϑ : Y1 ` Y2 X1 ` X2. Dually to summands, we
write pri : X1 ˆ . . .ˆXn Ñ Xi for canonical projections (without introducing a
special arrow notation); by ∆ we abbreviate the diagonal natural transforma-
tion 〈idA, idA〉 : A Ñ Aˆ A. Note that in an extensive category [8], the second
component of any coproduct summand 〈σ1, σ2〉 is determined by the first up
to isomorphism. However, we do not generally assume extensiveness, working
instead with the weaker assumption of distributivity [11]: a category with finite
products and coproducts (including a final and an initial object) is distributive
if the natural transformation

X ˆ Y `X ˆ Z
ridˆin1,idˆin2s
ÝÝÝÝÝÝÝÝÝÝÑ X ˆ pY ` Zq

is an isomorphism, whose inverse we denote by distX,Y,Z , or usually just dist.
Then dist is natural in X,Y, Z, and moreover compatible with the coproduct
structure in the expected sense; in particular,

dist pidˆ in1q “ in1

dist pidˆ in2q “ in2

rhˆ f, hˆ gs dist “ hˆ rf, gs

for h : X Ñ U , f : Y Ñ W , g : Z Ñ W . In proofs, we summarily refer to such
properties by the keyword distributivity.

Strong monads. Following Moggi [34], we identify a monad T on a category C
with the corresponding Kleisli triple pT, η, p--q‹q on C consisting of an en-
domap T on |C|, a |C|-indexed class of morphisms ηX : X Ñ TX, called the
unit of T, and the Kleisli lifting maps p--q‹ : HompX,TY q Ñ HompTX, TY q such
that

η‹ “ id f‹η “ f pf‹gq‹ “ f‹g‹.

These definitions imply that T is an endofunctor (with Tf “ pηfq‹) and η is
a natural transformation. Provided that C has finite products, a monad T
on C is strong if it is equipped with strength, i.e. a natural transformation
τX,Y : X ˆ TY Ñ T pX ˆ Y q satisfying the following standard coherence condi-
tions (e.g. [34]):

pX ˆ Y q ˆ TZ T ppX ˆ Y q ˆ Zq

X ˆ pY ˆ TY q X ˆ T pY ˆ Zq T pX ˆ pY ˆ Zqq

assoc

τ

T assoc

idˆτ τ

X ˆ TY TY

T pX ˆ Y q

τ

pr2

T pr2

X ˆ Y T pX ˆ Y q

X ˆ TY

idˆη

η

τ

X ˆ TY X ˆ TZ

T pX ˆ Y q T pX ˆ Zq

τ

idˆf‹

τ

pτpidˆfqq‹

5

(trv)
f : X Ñ TY

pT in1qf : X Ñin2
T pY ` Zq

(sum)
f : X Ñσ TZ g : Y Ñσ TZ

rf, gs : X ` Y Ñσ TZ

(cmp)
f : X Ñin2 T pY ` Zq g : Y Ñσ TV h : Z Ñ TV

rg, hs‹ f : X Ñσ TV

(str)
f : X Ñσ TY

τ pidZ ˆ fq : Z ˆX Ñidˆσ T pZ ˆ Y q

Figure 2: Axioms of abstract guardedness.

where f : Y Ñ TZ.
Morphisms of the form f : X Ñ TY constitute the Kleisli category of T,

which has the same objects as C, units ηX : X Ñ TX as identities, and compo-
sition pf, gq ÞÑ f‹g, also called Kleisli composition.

In programming language semantics, both the strength τ and the distribu-
tivity transformation dist essentially serve to propagate context variables. We
often need to combine them into

δ “ pT distq τ : X ˆ T pY ` Zq Ñ T pX ˆ Y `X ˆ Zq.

In what follows we will make extensive use of the following simple property of δ:

δ〈pr1, δ〈pr1, f〉〉 “ T p〈pr1, idXˆZ〉` 〈pr1, idXˆW 〉q δ 〈pr1, f〉. (2)

for f : X ˆ Y Ñ T pZ `W q (where the morphisms in the equation have type
X ˆ Y Ñ T pX ˆX ˆ Z `X ˆX ˆW q).

Guarded Iteration. Let us fix a distributive category C and a strong monad T
on C. The monad T is (abstractly) guarded if it is equipped with a notion of
guardedness, i.e. with a relation between Kleisli morphisms f : X Ñ TY and
summands σ : Y 1 Y closed under the rules in Fig. 2, where f : X Ñσ TY
denotes the fact that f and σ are in the relation in question, in which
case f is also called σ-guarded. We denote by HomσpX,TY q (or, more pre-
cisely, HomC,σpX,TY q) the subset of HompX,TY q consisting of the morphisms
X Ñσ TY . We also write f : X Ñi TY for f : X Ñini TY . More gener-
ally, we use the notation f : X Ñp,q,... TY to indicate guardedness in the
union of injections inp, inq, . . . where p, q, . . . are sequences over {1, 2} iden-
tifying the corresponding coproduct summand in Y . For example, we write
f : X Ñ12,2 T ppY ` Zq ` Zq to mean that f is rin1 in2, in2s-guarded.

The above formulation of the notion of guardedness is necessitated by the
standard categorical view of (binary) coproducts as a property : a binary coprod-
uct is any object that satisfies the corresponding universal property; therefore,
coproducts are defined up to isomorphism, and intrinsically refer to the specified
coproduct injections. The alternative is to treat coproducts as a structure, i.e.

6

work with canonical coproducts. It is then also possible to adapt the formulation
of guardedness and guarded iteration to comply with this view [28].

The axioms (trv), (sum) and (cmp) come from [22]. Intuitively, (trv)
says that if a program does not output anything via a summand of the output
type then it is guarded in that summand. Rule (cmp) asserts that guardedness
is preserved by composition: if the unguarded part of the output of a program
is postcomposed with a σ-guarded program then the result is σ-guarded, no
matter how the guarded part is transformed. Finally, rule (sum) says that
putting two guarded equation systems side by side again produces a guarded
system. Here, we also add the rule (str) stating compatibility of guardedness
and strength. Note that since C is distributive, idZ ˆ σ : Z ˆ Y 1 Ñ Z ˆ Y is
actually a summand whose canonical complement we take to be idZ ˆ σ̄.

Let us record some simple consequences of the axioms in Fig. 2.

Lemma 1. The following rules are derivable:

pisoq
f : X Ñσ TY ϑ : Y » Y 1

pTϑq f : X Ñϑσ TY 1
pwknq

f : X Ñσ TY

f : X Ñσϑ TY

pcmp‹q
f : X Ñσ`id T pY ` Zq g : Y Ñ TV h : Z Ñ TV gσ̄ : Y 1 Ñϑ TV

rg, hs‹f : X Ñϑ TV

pcdmq
g : X Ñ TY f : Y Ñσ TZ

f‹g : X Ñσ TZ

Proof. The rule pcdmq is obtained from pcmp‹q by instantiating Z with ∅ and σ
with !.

Let us show (iso). Let w.l.o.g. Y1 ` Y2 “ Y and f : X Ñin2
T pY1 ` Y2q, i.e.

σ “ in2. Since ϑ is an isomorphism, we have ϑ “ rϑ1, ϑ2s : Y1 ` Y2 Ñ Y 1 and
hence we derive

f : X Ñin2
T pY1 ` Y2q η ϑ2 : Y2 Ñ TY 1

η : Y1 Ñ TY1

pTϑ1q η : Y1 Ñϑ2
TY 1

ptrvq

rη ϑ1, η ϑ2s
‹ f : X Ñϑ2

TY 1
pcmpq

Next, we check pcmp‹q. Let w.l.o.g. σ “ in2 and ϑ “ in2. Note that by pisoq,
pT assoc-1q f : X Ñ2 T pY

1 ` pY 2 ` Zqq where assoc is the associativity isomor-
phism Y 1 ` pY 2 ` Zq – pY 1 ` Y 2q ` Z. Then

rg, hs‹f “ rrg σ̄, g σs, hs‹f “ rg σ̄, rg σ, hss‹ pT assoc-1q f

is ϑ-guarded by pcmpq.
The rule (wkn) is obtained from pcmp‹q by instantiating Z with ∅, g with η

and ϑ with σϑ. The induced non-trivial premise becomes ησ̄ : Y 1 Ñσϑ TV , and
it is verified as follows: ησ̄ “ pT σ̄qη “ pTσϑqpTξqη which is σϑ-guarded by (trv)
and (cdm). Here we used the fact that σ̄ factors as σϑ ξ with some ξ, for, dually,
σϑ factors through σ.

7

Fixpoint:

f
X

X

Y

= f f
X

X
X

Y
Y

Naturality:

f gX

X

Y Z

= f gX

X

Y Z

Codiagonal:

g
X

Y

X
X

= g
X

Y

XX

Uniformity:

h f
Z X

Y

X

“ g h
Z

Z

Y

X

⇓

h f
Z X

Y

X

“ g
Z

Z

Y

Figure 3: Axioms of guarded Elgot iteration.

Definition 2 (Guarded (pre-)iterative/Elgot monads). A strong monad T on
a distributive category is guarded pre-iterative if it is equipped with a guarded
iteration operator

f : X Ñ2 T pY `Xq

f : : X Ñ TY
(3)

satisfying the

• fixpoint law : f : “ rη, f :s‹f .

We call a pre-iterative monad T guarded Elgot [28] if it satisfies

• naturality: g‹f : “ prpT in1q g, η in2s
‹fq: for f : X Ñ2 T pY ` Xq,

g : Y Ñ TZ;

• codiagonal: pT rid, in2s fq
: “ f :: for f : X Ñ12,2 T ppY `Xq `Xq;

• uniformity: f h “ T pid ` hq g implies f : h “ g: for f : X Ñ2 T pY `Xq,
g : Z Ñ2 T pY ` Zq and h : Z Ñ X;

8

• strength: τ pidW ˆ f :q “ pδ pidW ˆ fqq: for f : X Ñ2 T pY `Xq.

and guarded iterative if f : is a unique solution of the fixpoint law (the remaining
axioms then are granted [22]).

The above axioms of iteration are standard (cf. [6]), except strength, which
we need here for the semantics of computations in multivariable contexts. To
understand the axiom, observe that the right-hand side iterates over W ˆ X
leaving the W -component unchanged, and eventually returns the W -component
as part of the result, while the left-hand side iterates over X and subsequently
pairs the result with the originally given element of W . These axioms, again
except strength, can be presented in an intuitive graphical form as equations
of flowchart diagrams – see Fig. 3. Here, the orange boxes identify Kleisli
morphisms and blue boxes identify morphisms of the underlying category C. We
indicate the scopes of feedback loops, representing applications of the iteration
operator, by shaded green frames. Finally, we indicate by black bullets those
outputs in which a corresponding Kleisli morphism is guarded.

The notion of (abstract) guardedness is a common generalization of vari-
ous special cases occurring in practice. Every monad can be equipped with a
least notion of guardedness, called vacuous guardedness and defined as follows:
f : X Ñ2 T pY ` Zq iff f factors through T in1 : Y Ñ T pY ` Zq; that is, in-
tuitively speaking, the definitions of elements of X given by f do not mention
variables in Z, or more precisely speaking can be rewritten to ensure this. On
the other hand, the greatest notion of guardedness is total guardedness, defined
by taking f : X Ñ2 T pY ` Zq for every f : X Ñ T pY ` Zq. This addresses
total iteration operators on T, whose existence depends on special properties
of T, such as being enriched over complete partial orders. Our motivating ex-
amples are mainly those that lie properly between these two extreme situations,
e.g. completely iterative monads for which guardedness is defined via monad
modules and the iteration operator is partial, but uniquely satisfies the fixpoint
law [31]. For illustration, we consider several instances of guarded iteration.

Example 3. We fix the category of sets and functions Set as an ambient
distributive category in the following examples.

1. (Finitely branching processes) Let TX “ νγ.PωpX ` Actˆ γq, the final
PωpX`Actˆ --q-coalgebra with Pω being the finite powerset functor. Thus, TX
is equivalently described as the set of finitely branching nondeterministic trees
with edges labelled by elements of Act and with terminal nodes possibly labelled
by elements of X (otherwise regarded as nullary nondeterminism, i.e. deadlock),
taken modulo bisimilarity. Every f : X Ñ T pY `Xq can be viewed as a family
pfpxq P T pY `XqqxPX of trees whose terminal nodes are labelled in the disjoint
union of X and Y . Each tree fpxq thus can be seen as a recursive process
definition for the process name x relative to the names in X`Y . The notion of
guardedness borrowed from process algebra requires that every x1 P X occurring
in fpxq must be preceded by a transition, and if this condition is satisfied,
we can calculate a unique solution f : : X Ñ TY of the system of definitions

9

pfpxq : T pY ` XqqxPX . In other words, T is guarded iterative with f : X Ñ2

T pY ` Zq iff
out f : X Ñ PωppY ` Zq ` Actˆ T pY ` Zqq

factors through Pωpin1`idq where out : TX – PωpX`ActˆTXq is the canonical
final coalgebra isomorphism. As a result, T is a guarded iterative monad (more
specifically completely iterative [31]).

2. (Countably branching processes) A variation of the previous example is
obtained by replacing finite nondeterminism with countable nondeterminism,
i.e. by replacing Pω with the countable powerset functor Pω1

. Note that in the
previous example we could not extend the iteration operator to a total one,
because unguarded systems of recursive process equations may define infinitely
branching processes [4]. The monad TX “ νγ.Pω1pX ` Actˆ γq does however
support both partial guarded iteration in the sense of the previous example,
and total iteration extending the former. This monad is therefore both guarded
iterative in the former sense, but only guarded Elgot in the latter sense, for under
total iteration, the fixpoints f : are no longer unique. This setup is analysed more
generally in detail in previous work [21, 22].

3. A very simple example of total guarded iteration is obtained from the
(full) powerset monad T “ P. The corresponding Kleisli category is enriched
over complete partial orders and continuous functions and therefore admits total
iteration calculated via least fixpoints. This yields an example of a guarded
Elgot monad which is not guarded iterative.

4. (Complete finite traces) Let TX “ PpAct‹ ˆXq be the monad obtained
from P by an obvious modification ensuring that the first elements of the pairs
from Act‹ ˆX, i.e. finite traces, are concatenated along Kleisli composition [9].
Like P, this monad is order-enriched and thus supports a total iteration operator
via least fixpoints (see e.g. [18]). From this, a guarded iteration operator is
obtained by restricting to the guarded category with f : X Ñ2 PpAct‹ˆpY `Zqq
iff f factors through the map

PpAct‹ˆY `Act`ˆZq
Ppid`ιˆidq
ÝÝÝÝÝÝÝÑ PpAct‹ˆY `Act‹ˆZq – PpAct‹ˆpY `Zqq

induced by the inclusion ι : Act` ↪Ñ Act‹. Like in Clause 3, we obtain a guarded
Elgot monad with a total iteration operator.

5. Finally, an example of partial guarded iteration can be obtained from
Clause 3 above by replacing P with the non-empty powerset monad P`. Total
iteration as defined in Clause 3 does not restrict to total iteration on P`, be-
cause empty sets can arise from solving systems not involving empty sets, e.g.
η in2 : 1 Ñ P`p1 ` 1q would not have a solution in this sense. However, it is
easy to see that total iteration does restrict to guarded iteration for P` with the
notion of guardedness defined as follows: f : X Ñ2 P`pY ` Zq iff for every x,
fpxq contains at least one element from Y . Therefore, P` is a guarded Elgot
monad, which is not guarded iterative and with properly partial iteration.

10

For a pre-iterative monad T, we derive a strong iteration operator :

f : W ˆX Ñ2 T pY `Xq

f ; “
(
T ppr2`idq δ 〈pr1, f〉

):
: W ˆX Ñ TY

(4)

which essentially generalizes the original operator p--q: to morphisms extended
with a context via W ˆ p--q. This will become essential in Section 3 for the
semantics of our metalanguage.

Lemma 4. For every strong guarded Elgot monad T, strong iteration (4) sat-
isfies τ 〈pr1, f ;〉 “ pδ〈pr1, f〉q: for every f : W ˆX Ñ2 T pY `Xq.

Proof. Let us rewrite the left hand side as follows:

τ 〈pr1, f ;〉 “ T ppr1ˆidq τ pidˆ f
;q∆

“ T ppr1ˆidq τ pidˆ pT ppr2`idq δ〈pr1, f〉q:q∆ // defn. of p--q;

“ T ppr1ˆidq τ pidˆ pT pr2qpδ〈pr1, f〉q:q∆ // naturality

“ T ppr1ˆ pr2q τ pidˆ pδ〈pr1, f〉q:q∆

“ T ppr1ˆ pr2q pδ pidˆ δ〈pr1, f〉qq:∆ // strength

“ pT ppr1ˆ pr2`idq δ pidˆ δ〈pr1, f〉qq:∆. // naturality

Note that

T pidˆ pr2`idq δ pidˆ δ〈pr1, f〉q ppr1ˆidq
“ T pidˆ pr2`idq δ ppr1ˆδ〈pr1, f〉q
“ T ppr1ˆ pr2` pr1ˆidq δ pidˆ δ〈pr1, f〉q
“ T pid` pr1ˆidqT ppr1ˆ pr2`idq δ pidˆ δ〈pr1, f〉q,

and therefore, by uniformity (instantiating the equation from Definition 2 with
f “ T pidˆ pr2`idq δ pidˆ δ 〈pr1, f〉q, g “ T ppr1ˆ pr2`idq δ pidˆ δ 〈pr1, f〉q, and
h “ pr1ˆid),

τ 〈pr1, f ;〉 “ pT pidˆ pr2`idq δ pidˆ δ〈pr1, f〉qq:ppr1ˆidq∆

“ pT pidˆ pr2`idq δ pidˆ δ〈pr1, f〉qq:〈pr1, id〉.

Finally, observe that

T pidˆ pr2`idq δ pidˆ δ〈pr1, f〉q 〈pr1, id〉
“ T pidˆ pr2`idq δ 〈pr1, δ〈pr1, f〉〉
“ T pidˆ pr2`idqT p〈pr1, id〉` 〈pr1, id〉q δ〈pr1, f〉 // (2)

“ T p〈pr1, pr2〉` 〈pr1, id〉q δ〈pr1, f〉
“ T pid` 〈pr1, id〉q δ〈pr1, f〉

and therefore, by uniformity,

τ 〈pr1, f ;〉 “ pT pidˆ pr2`idq δ pidˆ δ〈pr1, f〉qq:〈pr1, id〉
“ pδ〈pr1, f〉q:

as desired.

11

Strength and simple slices. To clarify the role of strong iteration (4), we char-
acterize it as iteration in a simple slice category [24] C // W arising for every
fixed W P |C| as the co-Kleisli category of the product comonad [7] W ˆ --;
that is, |C // W | “ |C|, HomC//W pX,Y q “ HomCpW ˆ X,Y q, identities in
C //W are projections pr2 : W ˆX Ñ X, and the composite of g : W ˆX Ñ Y
and f : W ˆ Y Ñ Z is f 〈pr1, g〉 : W ˆ X Ñ Z. We often indicate composi-
tion in C // W by ˝W for clarity. We note that C // 1 is isomorphic to C, and
pC//W q//V is isomorphic to C//W ˆV , where the isomorphism just rebrackets
products. The assignment W ÞÑ C//W in fact extends to a strict indexed cate-
gory: A morphism k : W Ñ V induces a functor C // k : C // V Ñ C //W which
acts as identity on objects and maps f P HomC//V pX,Y q “ HomCpX ˆ V, Y q
to fpkˆ idq P HomC//W pX,Y q “ HomCpW ˆX,Y q. Moreover, we have embed-
dings JW : C Ñ C//W , given by JWX “ X and JW f “ f pr2, which commute
with the functors C // k, i.e. pC // kqJV “ JW . In particular, up to the isomor-
phism J1 : C – C // 1 the functor JW coincides with C // ! where ! is the unique
C-morphism W Ñ 1. Of course, JW is the right adjoint to the forgetful functor
UW : C //W Ñ C, which acts on objects as UWX “W ˆX and on morphisms
f : X Ñ Y as UW f “ 〈pr1, f〉. To avoid confusion with the unit of T, we
write jX P HomC//W pX,W ˆ Xq for the unit of this adjunction, which is the
C-morphism id : W ˆX ÑW ˆX. Like in all co-Kleisli categories, the adjoint
transpose map HomC//W pX,Y q “ HomC//W pX, J

WY q – HomCpU
WX,Y q “

HomCpW ˆX,Y q is just identity; we thus have

f “ pJW fq ˝W jX (5)

(as also easily verified directly) for each f : X Ñ Y in C//W , i.e. f : WˆX Ñ Y
in C.

The monad T being strong means in particular that for every W P |C|, τ
yields a distributive law of the monad T over the comonad W ˆ --, which ex-
tends T from C to C //W [7]. We state this more precisely, and complement it
with similar statements on propagation of guardedness and iteration:

Theorem 5. Let T be a strong monad on a distributive category C. Then the
following hold.

1. For every W P |C|, C //W is distributive, and T coherently extends to a
strong monad over C//W : For every k : W Ñ V , the functor C//k strictly
preserves the monad structure, i.e. if TW and TV denote the extensions
of T to C //W and C // V respectively, then pC // kqTV “ TWC // k, and
the pair consisting of C // k and the identity natural transformation on
pC // kqTV is a monad morphism. The same holds for the functors JW .

2. If T is guarded, then so is its extension TW to C//W , with the same notion
of guardedness (i.e. HomC//W,σpX,T

WY q “ HomC,σpW ˆ X,TY q), and
all functors C // k, as well as the functors JW , preserve guardedness.

3. If T is guarded pre-iterative on C then so is the extension of T to C//W ,
under the same definition of guardedness and with iteration defined as

12

strong iteration (4). If moreover T satisfies uniformity, then all func-
tors C // k, as well as the functors JW , preserve iteration.

4. If T is guarded Elgot on C then so is the extension of T to C //W .

5. If T is guarded iterative then so is the extension of T to C //W .

Moreover, we have partial converses to the above claims, which further justify
the axioms and definitions regarding strength, specifically the (str) rule for
guardedness, the definition of strong iteration, and the strength law for itera-
tion. Only for purposes of the statement and proof of the following theorem,
we introduce notions of guardedness, guarded iterativity etc. for monads that
are not assumed to be strong; these are axiomatized in the expected way, i.e.
by just removing the axioms and rules referring to strength. We designate
these notions as weak, and the standard versions as strong for clarity. E.g.
a weakly guarded monad is a monad T equipped with distinguished subsets
HomσpX,TY q, indexed over summands σ : Y 1 Y , that satisfy axioms (trv),
(sum) and (cmp), and a strongly guarded monad is a weakly guarded strong
monad satisfying axiom (str).

Theorem 6. Let T be a monad on C, and assume that T extends coherently
to monads TW on all C // W , in the sense that pC // kqTV “ TW pC // kq for
every k : W Ñ V . Then the following hold

1. The monad T is strong. In fact, the construction of the strength and the
opposite construction from Theorem 5.1 (which induces the TW from a
given strength) are mutually inverse.

2. If T is weakly guarded, TW is weakly guarded, and JW preserves guard-
edness, then HomC//W,σpX,T

WY q Ě HomC,σpW ˆX,TY q.

3. If T is weakly guarded, and putting HomC//W,σpX,T
WY q “ HomC,σpW ˆ

X, TY q makes each TW into a weakly guarded monad, then T is a strongly
guarded monad, i.e. satisfies (str).

4. If T is strongly guarded and pre-iterative, each TW is pre-iterative and sat-
isfies uniformity, and JW : C Ñ C //W preserves iteration, then iteration
on TW is strong iteration (4).

5. If T is strongly guarded and pre-iterative, each TW , made into a pre-
iterative monad by equipping it with iteration defined as strong iteration
on T, satisfies naturality, and JW preserves iteration, then T satisfies the
strength law (Definition 2).

We prove Theorem 5 first but in fact occasionally make use of the converse
statements recorded in Theorem 6 (whose proof will not depend on Theorem 5).
Specifically, to establish a property regarding strength, we apply the current
implication to conclude a weak (i.e. strength-free) property of C // W ˆ V –

pC//W q//V , and then apply Theorem 6 to obtain a property of C//W referring
to strength.

13

Proof (Theorem 5). 1. Being a co-Kleisli category, C // W inherits finite
products from C. Finite coproducts are inherited thanks to C being distribu-
tive; e.g.

HomC//W pX ` Y, Zq “ HomCpW ˆ pX ` Y q, Zq

– HomCpW ˆX `W ˆ Y, Zq

– HomCpW ˆX,Zq ˆ HomCpW ˆ Y, Zq

“ HomC//W pX,Zq ˆ HomC//W pY, Zq.

Since both products and coproducts in C // W are inherited from C, so is
distributivity. We have already noted that T lifts to C//W because the strength
yields a distributive law of T over the product comonad [7]. The lifted monad is
explicitly described as follows. The unit is just η pr2 : W ˆX Ñ TX where η is
the unit of T in C, and the Kleisli lifting of f P HomC//W pX,TY q is f‹τ where
f‹ : T pW ˆ Xq Ñ TY is the Kleisli lifting of f : W ˆ X Ñ TY in C and τ is
the strength of T in C. We note in particular that this implies TW f “ Tfτ for
f : X Ñ Y in C // W (hence f : W ˆX Ñ Y in C). We defer consideration of
the strength, and tackle coherence first.

We need to show that pC//kqTV “ TW pC//kq. So let f : X Ñ Y in C//W ,
i.e. f : W ˆX Ñ Y in C. Then

pC // kq pTV fq “ pTfq τV,X pk ˆ idTXq // definitions

“ pTfqT pk ˆ idXq τW,X // naturality of τ

“ TW pC // kqf. // definitions

Preservation of the monad structure is then clear by the above description of
this structure. The claim for JW follows as a special case, since the isomorphism
of C and C // 1 clearly extends to the corresponding monads.

We conclude by the initially mentioned strategy that TW is strong: By the
above, T extends to a monad TWˆV on C //W ˆ V , which transfers along the
isomorphism C//WˆV – pC//W q//V to a monad pTW qV on pC//W q//V acting
on morphisms f P HompC//W q//V pX,Y q “ HomCpW ˆV ˆX,Y q by pTW qV f “
pTfqτWˆV,X . Since under the isomorphism C // W ˆ V – pC // W q // V , the
embedding of C // W into pC // W q // V corresponds to C // pr1 : C // W Ñ

C // W ˆ V , the above preservation property for functors C // k implies that
pTW qV extends TW ; again by the preservation properties already established,
these extensions are coherent. By Theorem 6.1, it follows that TW is strong.
The strength V ˆTWX Ñ TW pV ˆXq constructed in the proof of Theorem 6.1
is pTW qV kX (understood as a C // W -morphism), where kX is the C // W -
identity on V ˆX taken as a pC //W q // V -morphism X Ñ V ˆX, which as a
C-morphism W ˆV ˆX Ñ V ˆX projects to the second and third component.
By the above description of pTW qV , we have, eliding associativity isomorphisms,
pTW qV kX “ pTkXq τWˆV,X “ τ pr2 where pr2 : WˆpV ˆTXq Ñ V ˆTX, using
standard coherence properties of τ . It follows that the C // k preserve also the
strength.

14

2. We need to verify that the extension of T to C //W satisfies the axioms
of guardedness from Fig. 2.

• (trv) Given f : W ˆ X Ñ TY , we need to check that
T pin1 pr2q τ〈pr1, f〉 : W ˆ X Ñ2 T pY ` Zq. Indeed, T pin1 pr2q τ〈pr1, f〉 reduces
to pT in1q f and we are done by the original (trv) for C.

• (sum) Given f : W ˆ X Ñσ TZ, g : W ˆ Y Ñσ TZ, by (sum) for C,
rf, gs : W ˆ X `W ˆ Y Ñσ TZ. After precomposing the result with the iso-
morphism dist, we are done by Proposition 1.

• (cmp) Let f : W ˆX Ñin2
T pY `Zq, g : W ˆY Ñσ TV , h : W ˆZ Ñ TV

and we need to show that rg, hs‹ δ〈pr1, f〉 : WˆX Ñσ TV . The latter morphism
equals the composite

W ˆX
τ〈id,f〉
ÝÝÝÝÑ T ppW ˆXq ˆ pY ` Zqq

pη distppr1 ˆidqq‹

ÝÝÝÝÝÝÝÝÝÝÑ T pW ˆ Y `W ˆ Zq
rg,hs‹

ÝÝÝÝÑ TV.

By (cmp), we reduce to the problem of showing

pη dist ppr1ˆidqq
‹τ〈id, f〉 : W ˆX Ñ2 T pW ˆ Y `W ˆ Zq.

Note that by (str), τ〈id, f〉 : W ˆ X Ñidˆin2
T ppW ˆ Xq ˆ pY ` Zqq. Now

pW ˆ Xq ˆ pY ` Zq is a coproduct of pW ˆ Xq ˆ Y and pW ˆ Xq ˆ Z, and
η distppr1ˆidq, regarded as a universal morphism induced by this coproduct
structure, yields η in1ppr1ˆidq “ pT in1q ηppr1ˆidq by composition with the cor-
responding left coproduct injection; the latter morphism is in2-guarded by (trv).
We are therefore done by (cmp).

• (str) As indicated above, we go via Theorem 6: The guardedness structure
of the monad pTW qV on pC//W q//V is clearly the same as the one of the monad
TWˆV on C // W ˆ V , hence satisfies (trv), (sum), and (cmp) by the above.
By Theorem 6.3, it follows that TW satisfies (str).

It remains to show that given k : W Ñ V , C // k : C // V Ñ C // W preserves
guardedness: If f : X Ñσ T

V Y in C // V , then by definition f : V ˆX Ñ TY
in C. By (cdm), it follows that fpk ˆ idq : W ˆ X Ñσ TY , so by definition
pC // kq f : X Ñσ T

WY in C //W . The claim for JW follows as a special case,
since C and C // 1 clearly remain isomorphic as guarded monads.

3. We have to verify the fixpoint law. Suppose that f : WˆX Ñ2 T pY `Xq
and check that f ; “ rη pr2, f

;s‹δ〈pr1, f〉. Indeed,

f ; “ pT ppr2`idq δ〈pr1, f〉q: // definition

“ rη, pT ppr2`idq δ〈pr1, f〉q:s‹ T ppr2`idq δ〈pr1, f〉 // fixpoint

“ rη pr2, f
;s‹δ〈pr1, f〉.

It remains to show that for k : W Ñ V , C // k : C // V Ñ C // W preserves
iteration, so let f : V ˆX Ñ T pY `Xq in C; expanding the definition of C // k
and strong iteration, we have to show that

pT ppr2`idVˆXqδ〈pr1, f〉q:pk ˆ idXq “ pT ppr2`idWˆXqδ〈pr1, fpk ˆ idq〉q:.

15

By uniformity, this equation follows from commutativity of (the outer frame in)
the following diagram

W ˆX V ˆX

W ˆ T pY `Xq V ˆ T pY `Xq

T pW ˆ Y `W ˆXq T pV ˆ Y ` V ˆXq

T pY `W ˆXq T pY ` V ˆXq

〈pr1,fpkˆidq〉

kˆid

〈pr1,f〉

kˆid

δ δ

T pkˆid`kˆidq

T ppr2 `idq T ppr2 `idq

T pid`kˆidq

in which the middle square commutes by naturality of δ and commutativity of
the other two squares is obvious.

The claim for JW follows as a special case as soon as we show that T and T1

are isomorphic as guarded pre-iterative monads. This is by uniformity w.r.t.
the isomorphisms 〈!, idX〉 : X Ñ 1 ˆ X (composition with which defines the
isomorphism C // 1 Ñ C), with the application condition checked in a very
similar calculation as above.

4. We check the laws one by one.

• (naturality) We have to show that

g‹τ〈pr1, f ;〉 “ prpT in1q g, η in2 pr2s
‹δ〈pr1, f〉q;

with f : W ˆX Ñ2 T pY `Xq, g : W ˆ Y Ñ TZ. Let us rewrite the left-hand
side as follows, using the definition of p--q; and naturality of p--q:, with steps
marked by capital letters explained in detail afterwards:

g‹τ〈pr1, f ;〉
“ g‹pδ〈pr1, f〉q: // Lemma 4

“ prpT in1qg, η in2s
‹δ〈pr1, f〉q: // naturality

“ prpT in1q g pr2, η in2pidˆ pr2qs
‹

T p〈pr1, id〉` 〈pr1, id〉q δ〈pr1, f〉q: // (A)

“ prpT in1q g pr2, η in2pidˆ pr2qs
‹ δ〈pr1, δ〈pr1, f〉〉q: // (2)

“
(
T ppr2`idq rpT in1qτpidˆ gq, pT in2qτpidˆ η pr2qs

‹

δ〈pr1, δ〈pr1, f〉〉
):

// (B)

“
(
T ppr2`idq rpT in1qτ, pT in2qτ s

‹

T pidˆ g ` idˆ η pr2q δ〈pr1, δ〈pr1, f〉〉
):

// coproducts

“
(
T ppr2`idq rpT in1qτ, pT in2qτ s

‹

16

δ〈pr1, T pg ` η pr2qδ〈pr1, f〉〉
):

// naturality of δ

“
(
T ppr2`idq δ pidˆ rT in1, T in2s

‹q

〈pr1, T pg ` η pr2qδ〈pr1, f〉〉
):

// (C)

“
(
T ppr2`idq δ 〈pr1, rpT in1q g, pT in2qη pr2s

‹ δ〈pr1, f〉〉
):

// (co-)products

“
(
rpT in1q g, η in2 pr2s

‹ δ〈pr1, f〉
);

// definition

In step (A), we use that generally, k‹ pThq “ pk hq‹ and that

ppr2`idˆ pr2q p〈pr1, id〉` 〈pr1, id〉q “ id` id “ id.

In step (B), we use that generally, pTkq rh, us‹ “ pTk rh, usq‹ “ rpTkqh, pTkqus‹

and that

T ppr2`idq pT in1q τ pidˆ gq

“ pT in1q pT pr2q τ pidˆ gq // coproducts

“ pT in1q pr2 pidˆ gq // coherence of τ

“ pT in1q g pr2 // products

as well as

T ppr2`idq pT in2q τ pidˆ η pr2q

“ pT in2q τ pidˆ η pr2q // coproducts

“ pT in2q η pidˆ pr2q // coherence of τ

“ η in2 pidˆ pr2q // naturality of η

Finally, we justify step (C) as follows. First, we note that

rT in1, T in2s
‹ T pτ ` τq “ δ‹ T ridˆ T in1, idˆ T in2s, (6)

as seen by the following calculation:

δ‹ T ridˆ T in1, idˆ T in2s

“ ppT distq τ ridˆ T in1, idˆ T in2sq
‹ // definition

“ ppT distq rτ pidˆ T in1q, τ pidˆ T in2qsq
‹ // coproducts

“ ppT distq rT pidˆ in1q, T pidˆ in2qs pτ ` τqq
‹ // naturality of τ

“ prT in1, T in2s pτ ` τqq
‹ // distributivity

“ rT in1, T in2s
‹ T pτ ` τq,

Using (6), we now calculate

rpT in1q τ, pT in2q τ s
‹ δ

“ rT in1, T in2s
‹ T pτ ` τqT dist τ // definition

“ δ‹ T ridˆ T in1, idˆ T in2sT dist τ // (6)

17

“ δ‹ T pidˆ rT in1, T in2sq τ // distributivity

“ pT distq τ‹ T pidˆ rT in1, T in2sq τ // definition

“ pT distq τ pidˆ rT in1, T in2s
‹q // coherence of τ

“ δ pidˆ rT in1, T in2s
‹q // definition

as used in (C).

• (codiagonal) We have to show that

pT rid, in2s fq
; “ f ;;

for f : W ˆ X Ñ12,2 T ppY ` Xq ` Xq. We have the following straightforward
identity (which we prove after the main argument) between two morphisms from
W ˆ T ppY `Xq `Xq to T pW ˆ Y `W ˆXq:

δpidˆ T rid, in2sq “ T rdist, in2s δ. (7)

Using this equation, we obtain on the one hand, using codiagonal for p--q::

pT rid, in2s fq
;

“ pT ppr2`idq δ 〈pr1, T rid, in2s f〉q: // definition

“ pT ppr2`idq δ pidˆ T rid, in2sq 〈pr1, f〉q: // products

“ pT ppr2`idqT rdist, in2s δ 〈pr1, f〉q: // (7)

“ pT rppr2`idq dist, in2s δ 〈pr1, f〉q: // coproducts

“ pT rid, in2sT pppr2`idq dist`idq δ 〈pr1, f〉q: // coproducts

“ pT pppr2`idq dist`idq δ 〈pr1, f〉q:: // codiagonal

and on the other hand:

f ;; “ pT ppr2`idq δ 〈pr1, f ;〉q: // definition

“ pT ppr2`idq pT distq τ 〈pr1, f ;〉q: // defn. of δ

“ pT ppr2`idq pT distq pδ 〈pr1, f〉q:q: // Lemma 4

“ pT pppr2`idq dist`idq δ 〈pr1, f〉q::. // naturality

It remains to prove (7): We have

δ pidˆ T rid, in2sq

“ pT distq τ pidˆ T rid, in2sq // definition

“ pT distqT pidˆ rid, in2sq τ // naturality of τ

“ pT distqT pridˆ id, idˆ in2sq pT distq τ // distributivity

“ T rdist, dist pidˆ in2qs δ // coproducts, definition

“ T rdist, in2s δ // distributivity

18

• (uniformity) For f : W ˆX Ñ2 T pY `Xq, g : W ˆ Z Ñ2 T pY ` Zq, and
h : W ˆZ Ñ X, the premise of the uniformity law expands by the definition of
the structure of C //W to the equation

f 〈pr1, h〉 “ T ppr2`hq δ〈pr1, g〉. (8)

Then we derive the conclusion of the uniformity law,

f ; 〈pr1, h〉 “ pT ppr2`idq δ 〈pr1, f〉q: 〈pr1, h〉 “ pT ppr2`idq δ 〈pr1, g〉q: “ g;,

using the definition of p--q; and uniformity of p--q:, whose premise is verified as
follows:

pT ppr2 ` idq δ 〈pr1, f〉q 〈pr1, h〉
“ T ppr2`idq δ 〈pr1, f 〈pr1, h〉〉 // products

“ T ppr2`idq δ 〈pr1, T ppr2`hq δ 〈pr1, g〉〉 // (8)

“ T ppr2`idq δ pidˆ T ppr2`hqq 〈pr1, δ〈pr1, g〉〉 // products

“ T ppr2`idqT pidˆ pr2`idˆ hq δ 〈pr1, δ〈pr1, g〉〉 // naturality of δ

“ T ppr2 pr2`idˆ hqδ〈pr1, δ 〈pr1, g〉〉
“ T ppr2 pr2`idˆ hqT p〈pr1, id〉` 〈pr1, id〉q δ 〈pr1, g〉 // (2)

“ T ppr2`〈pr1, h〉q δ 〈pr1, g〉.

• (strength) Again, we go via Theorem 6. By the above, the guarded monad
TWˆV on C // W ˆ V is pre-iterative and satisfies uniformity. The same thus
transfers to the isomorphic guarded monad pTW qV on pC //W q //V . Moreover,
the embedding C // W Ñ pC // W q // V corresponds to C // pr1 under the
isomorphism pC//W q//V – C//W ˆV , and thus preserves iteration by item 3.
By Theorem 6.4, it follows that iteration on pTW qV is strong iteration on TW .
Moreover, again by the above, pTW qV satisfies naturality. By Theorem 6.5, it
follows that TW satisfies strength.

5. Suppose that T is guarded iterative, hence guarded Elgot. By the previ-
ous clause we know that given f : W ˆX Ñ2 T pY `Xq, f

; satisfies the fixpoint
law; by unfolding the definitions of the coproduct and monad structures on
C //W , we obtain f ; “ rη pr2, f

;s‹δ〈pr1, f〉. We are left to show that this equa-
tion is satisfied by f ; uniquely. Indeed, suppose that for some g : W ˆ X Ñ

T pY ` Xq, g “ rη pr2, gs
‹δ〈pr1, f〉. Hence g “ rη, gs‹ T ppr2`idq δ〈pr1, f〉, and

therefore g “ pT ppr2`idq δ 〈pr1, f〉q:, using the fact that T is guarded iterative;
but the right hand side is just the definition (4) of f ;.

The proof of the converse statements then runs as follows:

Proof (Theorem 6). 1. Most of the claim is immediate from the known fact
that giving a lifting of a monad to the Kleisli category of a comonad is equivalent
to giving a comonad-over-monad distributive law [42]; that is, for each W we
have a distributive law τW,´ of W ˆ p--q over T, defined as

pτW,X : W ˆ TX Ñ T pW ˆXqq “ TW jX , (9)

19

where the C // W -morphism TW jX : TX Ñ T pW ˆ Xq is converted into a
C-morphism W ˆ TX Ñ T pW ˆ Xq, and this construction is inverse to the
construction of a lifting of T from a strength of T given in the proof of Theo-
rem 5.1. Explicitly, this means that throughout the remainder of the proof, we
can assume that strength and lifting relate to each other via Equation (9) above
and the description of TW in the proof of Theorem 5.1. In particular,

TW f “ pTfq τ (10)

for f : X Ñ Y in C//W (i.e. f : WˆX Ñ Y in C). Of course, τW,X will serve as
the strength; it remains only to verify those axioms that do not already feature
among the properties of τW,´ as a distributive law (cf. [7]) – that is, we need
to verify naturality of τW,X in W and compatibility with the associator, which
both involve two different instances W ˆ p--q, V ˆ p--q of the product comonad.

Naturality in W : Let k : V ÑW ; we have to show that

pTW jWX q pk ˆ T idXq “ T pk ˆ idXq pT
V jVXq

in C, where we have decorated the unit j of the co-Kleisli adjunction with
additional superscripts to indicate the relevant simple slice. We calculate as
follows:

pTW jWX q pk ˆ T idXq “ pC // kq pTW jWX q // definition

“ TV ppC // kq jWX q // coherence

“ TV pjWX pk ˆ idXqq // definition of C // k

“ TV pk ˆ idXq // jWX is id in C

“ TV pJV pk ˆ idXq ˝
V jVXq // (5)

“ TV pJV pk ˆ idXqq ˝
V TV jVX // functoriality

“ JV pT pk ˆ idXqq ˝
V TV jVX // extension

“ T pk ˆ idXq pT
V jVXq. // definitions of JV , ˝V

Compatibility with the associator: Eliding the actual associator V ˆ pW ˆ

Xq – pV ˆW q ˆX, we have to show that the diagram

V ˆW ˆ TX V ˆ T pW ˆXq

T pV ˆW ˆXq

idV ˆτW,X

τVˆW,X
τV,WˆX (11)

commutes. Since each τU,´ is a distributive law, it is compatible with the
comultiplication of U ˆp--q, which is ∆U ˆ idX : U ˆX Ñ U ˆU ˆX; explicitly,

20

all diagrams

U ˆ TX U ˆ U ˆ TX

U ˆ T pU ˆXq

T pU ˆXq T pU ˆ U ˆXq

∆UˆidTX

τU,X

idUˆτU,X

τU,UˆX

T p∆UˆidXq

(12)

commute. We apply this to U “ V ˆW in the following calculation proving
commutation of (11), using moreover naturality of τ in both variables:

τVˆW,X

“ T ppr1ˆ pr2ˆidXqT p∆VˆW ˆ idXq τVˆW,X

“ T ppr1ˆ pr2ˆidXqτU,UˆXpidU ˆ τU,Xqp∆U ˆ idTXq // (12)

“ τV,WˆXppr1ˆT ppr2ˆidXqqpidU ˆ τU,Xqp∆U ˆ idTXq // naturality

“ τV,WˆXppr1ˆT ppr2ˆidXqτU,Xq〈pr1, idUˆTX〉
“ τV,WˆXppr1ˆτW,Xppr2ˆidTXqq 〈pr1, idUˆTX〉 // naturality

“ τV,WˆXpidV ˆ τW,Xq.

2. Let f : W ˆX Ñσ TY in C. Then JW f : W ˆX Ñ TWY is σ-guarded
in C // W since JW preserves guardedness. By (5), f “ pJW fq ˝W jX : X Ñ

TWY in C //W , so f : X Ñσ T
WY in C //W by (cdm).

3. We have to show that the guardedness structure on T satisfies the axiom
(str). So let σ : Y 1 Y , with complement σ1 : Y 2 Y , and let f : X Ñσ TY
in C. We have to show that τpidW ˆ fq : W ˆX ÑidWˆσ T pW ˆXq. By (9)
and the definition of composition in C //W , τpidW ˆ fq is the morphism

pTW jq ˝W pJW fq : X Ñ TW pW ˆ Y q

in C//W . By Theorem 5.2, JW preserves guardedness, so we have JW f : X Ñσ

TW pW ˆY q. Since W ˆY is a coproduct of W ˆY 1 and W ˆY 2, and j then has
the form j1` j2 with j1 : Y 1 ÑW ˆY 1, j2 : Y 2 ÑW ˆY 2, it follows by (cmp)
that pTW jq ˝W pJW fq is idW ˆ σ-guarded. By the definition of guardedness
in C //W , the required guardedness of τpidW ˆ fq follows.

4. We denote iteration in C // W by p--q;, and show that the equality (4)
holds. Let f : W ˆX Ñ T pY `Xq in C, i.e. f : X Ñ TW pY `Xq in C // W .
The square

X W ˆX

TW pY `Xq TW pY `W ˆXq

jX

f JW pT ppr2 `idqδ〈pr1,f〉q

TW pid`jXq

21

commutes in C // W : By (5), the upper right composite equals
T ppr2`idqδ〈pr1, f〉 : W ˆ X Ñ T pY ` W ˆ Xq in C, which is precisely the
term obtained by unfolding the definition of the structure of C //W in terms of
that of C in the lower left composite, in particular using (10). By uniformity
in C //W , it follows that

f ; “ pJW pT ppr2`idqδ〈pr1, f〉qq; ˝W j

“ JW ppT ppr2`idqδ〈pr1, f〉q:q ˝W j // JW preserves iteration

“ pT ppr2`idqδ〈pr1, f〉q:. // (5)

5. Let f : X Ñ2 T pY `Xq. Like in the proof of Claim 3, we have that the
left-hand side of the strength law for f is written within C // W as pTW jq ˝W

pJW f :q : X Ñ TW pWˆY q with j as above, which we rewrite using preservation
of iteration by JW and naturality in C //W as

pTW jq ˝W pJW f :q “ pTW jq ˝W pJW fq;

“ pTW pj ` idXq ˝
W pJW fqq;

with p--q; denoting iteration in C // W and all further data, including ` and
identities, read in C //W as well. Expanding definitions, we have

TW pj ` idXq ˝
W pJW fq

“ T pidWˆY ` pr2qδ〈pr1, f pr2〉
“ T pidWˆY ` pr2qδpidW ˆ fq

in C. Since p--q; is assumed to be strong iteration, we further have

pTW pj ` idXq ˝
W pJW fqq;

“ pT pidWˆY ` pr2qδpidW ˆ fqq;

“ pT ppr2`idWˆXqδ〈pr1, T pidWˆY ` pr2qδpidW ˆ fq〉q:

“ pδpidW ˆ fqq:,

which is the right-hand side of the strength law.

3. A Metalanguage for Guarded Iteration

We proceed to define a variant of fine-grain call-by-value [29] following the ideas
from [14] on labelled iteration. For our purposes we extend the standard setup
by allowing a custom signature of operations Σ, but restrict the expressiveness
of the language being defined slightly, mainly by excluding function spaces for
the moment. The latter require some additional treatment, and we return to
this point in Section 5. We fix a supply Base of base types and define (composite)
types A, B by the grammar

A,B, . . . ::“ C | 0 | 1 | A`B | AˆB pC P Baseq (13)

22

The signature Σ consists of two disjoint parts: a value signature Σv containing
signature symbols of the form f : AÑ B, and an effect signature Σc containing
signature symbols of the form f : A Ñ BrCs. While the former symbols repre-
sent pure functions, the latter capture morphisms of type A Ñ2 T pB ` Cq; in
particular they carry side-effects from T . The term language over these data
is given in Fig. 4. We use a syntax inspired by Haskell’s do-notation [40]. The
metalanguage features two kinds of judgements:

Γ $v v : A and ∆ | Γ $c p : A (14)

for values and computations, respectively. These involve two kinds of contexts: Γ
denotes the usual context of typed variables x : A, and ∆ denotes the context of
typed exceptions e : Eα with E being a type from (13) and α being a tag from
the two-element set {g, u} to distinguish the exceptions raised in a guarded
context (g) from those raised in an unguarded context (u) of the program code.
Let us denote by |∆| the list of pairs e : E obtained from an exception context ∆
by removing the g and u tags. Variable and exception names are drawn from
the same infinite stock of symbols; they are required to occur non-repetitively
in Γ and in ∆ separately, but the same symbol may occur in Γ and in ∆ at the
same time.

Notation 7. As usual, we use the dash p--q to denote a fresh variable in binding
expressions, e.g. do -- Ð p; q, and use the standard conventions of shortening
do -- Ð p; q to do p; q and dox Ð p; pdo y Ð q; rq to dox Ð p; y Ð q; r. More-
over, we encode the if-then-else construct if b then p else q as case b of inl -- ÞÑ p;
inr -- ÞÑ q, and also use the notation

fpvq& p for gcase fpvq of inlx ÞÑ initx; inr -- ÞÑ p

whenever f : X Ñ 0r1s P Σc.

The language constructs relating to products, coproducts, and the monad struc-
ture are standard (except maybe init, which forms unique morphisms from the
null type 0 into any type A) and should be largely self-explanatory. The key
features of our metalanguage, discussed next, concern algebraic operations on
the one hand, and exception-based iteration on the other hand.

Algebraic operations via Generic effects. The signature symbols f : A Ñ Br0s
from Σc have Kleisli morphisms A Ñ TB as their intended semantics, specif-
ically, if A “ n and B “ m, with n and m being identified with the corre-
sponding n-fold and m-fold coproducts of 1, the respective morphisms nÑ Tm
dually correspond to algebraic operations, i.e. certain natural transformations
Tm Ñ Tn, as elaborated by Plotkin and Power [41]. In context of this duality
the Kleisli morphisms of type nÑ Tm are also called generic effects. Hence we
regard Σc as a stock of generic effects declared to be available to the language.
The respective algebraic operations thus become automatically available – for a
brief example consider the binary algebraic operation of nondeterministic choice
‘ : T 2 Ñ T 1, which is modelled by a generic effect toss : 1 Ñ T2 as follows:

p‘ q “ do cÐ toss; case c of inl -- ÞÑ p; inr -- ÞÑ q.

23

x : A in Γ

Γ $v x : A

f : AÑ B P Σv Γ $v v : A

Γ $v fpvq : B Γ $v ‹ : 1

Γ $v v : A Γ $v w : B

Γ $v 〈v, w〉 : AˆB

Γ $v v : A

Γ $v inl v : A`B

Γ $v w : B

Γ $v inrw : A`B

. .

Γ $v p : AˆB ∆ | Γ, x : A, y : B $c q : C

∆ | Γ $c case p of 〈x, y〉 ÞÑ q : C

∆ | Γ $c p : A ∆ | Γ, x : A $c q : B

∆ | Γ $c doxÐ p; q : B

Γ $v v : A

∆ | Γ $c ret v : A

f : AÑ BrCs P Σc Γ $v v : A

∆ | Γ, x : B $c p : D

∆1
| Γ, y : C $c q : D |∆| “ |∆1

|

∆ | Γ $c gcase fpvq of inlx ÞÑ p; inr y ÞÑ q : D

Γ $v t : 0

∆ | Γ $c init t : A

Γ $v v : A`B ∆ | Γ, x : A $c p : C ∆ | Γ, y : B $c q : C

∆ | Γ $c case v of inlx ÞÑ p; inr y ÞÑ q : C

∆, e : Eu
| Γ $c p : A ∆ | Γ, e : E $c q : A

∆ | Γ $c handle e in p with q : A

e : Eu in ∆ Γ $v q : E

∆ | Γ $c raisee q : D

Γ $v v : E ∆, e : Eg
| Γ, e : E $c q : A

∆ | Γ $c handleit e “ v in q : A

Figure 4: Term formation rules for values (top) and computations (bottom).

Exception raising. Following [14], we involve an exception raising/handling
mechanism for organizing loops (we make the connection to exceptions more
explicit, in particular, we use the term ‘exceptions’ and not ‘labels’, as the
underlying semantics does indeed accurately match the standard exception se-
mantics). Note that the design of the syntax presented here deviates slightly
from the conference version [19]. We allow raising of a standard unguarded ex-
ception e : Eu with raisee q. More importantly, guarded exceptions e : Eg can be
arbitrarily introduced into the context by the typing rule for ret, in which ∆ is
completely unspecified. The guarded case command

gcase fpvq of inlx ÞÑ p; inr y ÞÑ q.

then works as follows: The fpvq part acts as a guard partitioning the control
flow into the left (unguarded) part in which a computation p is executed, and
the right (guarded) part, in which execution continues with q. Since ∆1 need not
agree with ∆ on guardedness tags, the exceptions occurring in q and therefore

24

recorded in ∆1 may be promoted from unguarded to guarded.
The guarded case operator gcase also allows us to expose the guarded part

of an operation to the result; i.e. for f : AÑ BrCs P Σc we can take fpvq to be
an abbreviation for

gcase fpvq of inlx ÞÑ ret inlx; inr y ÞÑ ret inr y

and then derive a typing rule

f : AÑ BrCs P Σc Γ $v v : A

∆ | Γ $c fpvq : B ` C

This is particularly useful for performing operations without considering their
guardedness properties, e.g. the final print in Fig. 1.

(Iterated) exception handling. The syntax for exception handing via
handle e in p with q is meant to be understood as follows: p is a program possibly
raising the exception e and q is a handling term for it. This can be compared to
the richer exception handling syntax of Benton and Kennedy [3] whose construct
try x ð p in q unless {e ÞÑ r}ePE we can encode as:

do z Ð handle e in pdoxÐ p; ret inlxq with pdo y Ð r; ret inr yq;

case z of inlx ÞÑ q ; inr y ÞÑ ret y

where p, q and r come from the judgements

∆, e : Eu
| Γ $c p : A, ∆ | Γ, x : A $c q : B, ∆ | Γ, e : E $c r : B,

and the idea is to capture the following behaviour: unless p raises exception
e : Eu, the result is bound to x and passed to q (which may itself raise e), and
otherwise the exception is handled by r. An analogous encoding is already
discussed in [3] where the richer syntax is advocated and motivated by tasks in
compiler optimization, but since these considerations are not relevant for our
present developments, we stick to the minimalist syntax as above.

Note that we restrict to handling unguarded exceptions only; since all excep-
tions are introduced as unguarded ones, and promoted to guarded exceptions
only for the purpose of iteration, this clearly suffices.

The idea of the new construct handleit e “ p in q is to handle the exception
in q recursively using q itself as the handling term, so that if q raises e, handling
continues repetitively. The value p is substituted into q to initialize the iteration.
For handleit, it is crucial that the exception comes from a guarded context, as
required by the relevant typing rule.

Example 8. We illustrate a type derivation process in Fig. 5, using the example
in Fig. 1 from the introduction. Due to the page width limitations the complete
derivation tree is cut into five pieces with the curved arrows indicating how con-
clusions are further used as premises of subsequent derivations; additionally, we
indicate by dots ‘. . .’ the repeated program fragments taken from the premises.

25

r : 1u, e : 1u
| y, z : N $c raiser ‹ : 1 r : 1u, e : 1u

| y, z : N $c ret ‹ : 1

r : 1u, e : 1u
| y, z : N $c if z“42 then raiser ‹ else ret ‹ : 1

r : 1u, e : 1u
| y, z : N $c ret ‹ : 1 r : 1u, e : 1u

| y, z : N $c raisee ‹ : 1

r : 1u, e : 1u
| y, z : N $c if y“z then ret ‹ else raisee ‹ : 1

read : 1 Ñ Nr0s

r : 1u, e : 1u
| y, z : N $c readpq : N

rand : 1 Ñ Nr0s

r : 1u, e : 1u
| y, z : N $c randpq : N

r : 1u, e : 1u
| ∅ $c do y Ð randpq; z Ð readpq; . . . ; . . . : 1

print : Str Ñ 0r1s

r : 1u, e : 1g
| ∅ $c print p"think of a number"q& . . .

r : 1u
| ∅ $c handleit e “ ‹ in . . . : 1

∅ | r : 1 $c ret ‹ : 1

r : 1u
| ∅ $c handle r in . . . with ret ‹ : 1

Figure 5: Typing derivation for the example in Fig. 1.

4. Generic Denotational Semantics

We proceed to give a denotational semantics of the guarded metalanguage as-
suming the following:

• a distributive category C (with initial objects);

• a strong guarded pre-iterative monad T on C.

Supposing that every base type A P Base is interpreted as an object A in |C|,
we define A for types A (see (13)) inductively by

0 “ ∅, 1 “ 1, A`B “ A`B, AˆB “ AˆB.

To every f : A Ñ B P Σv we associate an interpretation JfK P HompA,Bq in C
and to every f : A Ñ BrCs P Σc an interpretation JfK P Homin2

pA, T pB `
Cqq. Based on these we define the semantics of the term language from Fig. 4.
The semantics of a value judgment Γ $v p : A is a morphism JΓ $v p : AK P
HompΓ, Aq, and the semantics of a computation judgment ∆ | Γ $c p : A is a
morphism J∆ | Γ $c p : AK P Hom!`σ∆pΓ, T pA`∆qq where

Γ “ A1 ˆ . . .ˆAn for Γ “ px1 : A1, . . . , xn : Anq

∆ “ E1 ` . . .` Em for ∆ “ pe1 : Eα1
1 , . . . , em : Eαmm q

and σ∆ : ∆1 ∆ is the summand induced by removal of unguarded exceptions
e : Eu from ∆ with ∆1 denoting the result.

26

(gcase)

JΓ $v v : AK “ h : Γ Ñ A

Jf : AÑ BrCsK “ g : AÑ2 T pB ` Cq

J∆ | Γ, x : B $c p : DK “ u : ΓˆB Ñ!`σ∆ T pD `∆q

J∆1
| Γ, y : C $c q : DK “ w : Γˆ C Ñ T pD `∆q

J∆ | Γ $c gcase fpvq of inlx ÞÑ p; inr y ÞÑ q : DK “

Γ
δ〈id, gh〉
ÝÝÝÝÝÑ T pΓˆB ` Γˆ Cq

ru,ws‹

ÝÝÝÝÑ T pD `∆q

(prod)

JΓ $v p : AˆBK “ g : Γ Ñ AˆB

J∆ | Γ, x : A, y : B $c q : CK “ h : ΓˆAˆB Ñ!`σ∆ T pC `∆q

J∆ | Γ $c case p of 〈x, y〉 ÞÑ q : CK “ h〈idΓ, g〉 : Γ Ñ T pC `∆q

(ret)
JΓ $v t : AK “ g : Γ Ñ A

J∆ | Γ $c ret t : AK “ η in1 g : Γ Ñ T pA`∆q

(do)

J∆ | Γ $c p : AK “ g : Γ Ñ!`σ∆ T pA`∆q

J∆ | Γ, x : A $c q : BK “ h : ΓˆAÑ!`σ∆ T pB `∆q

J∆ | Γ $c doxÐ p; qK “ rh, η in2 pr2s
‹ δ〈idΓ, g〉 : Γ Ñ T pB `∆q

(init)
JΓ $v t : 0K “ g : Γ Ñ ∅

J∆ | Γ $c init t : AK “ ! g : Γ Ñ T pA`∆q

(case)

JΓ $v p : A`BK “ g : Γ Ñ A`B

J∆ | Γ, x : A $c q : CK “ h : ΓˆAÑ!`σ∆ T pC `∆q

J∆ | Γ, y : B $c r : CK “ u : ΓˆB Ñ!`σ∆ T pC `∆q

J∆ | Γ $c case p of inlx ÞÑ q ; inr y ÞÑ r : CK “
rh, us dist〈idΓ, g〉 : Γ Ñ T pC `∆q

(raise)
JΓ $v q : EK “ g : Γ Ñ E

J∆ | Γ $c raisee q : DK “ η in2 ine g : Γ Ñ T pD `∆q

(handle)

J∆, e : Eu
| Γ $c p : AK “ g : Γ Ñ!`pσ∆`!q T pA` p∆` Eqq

J∆ | Γ, e : E $c q : AK “ h : Γˆ E Ñ!`σ∆ T pA`∆q

J∆|Γ $c handle e in p with q : AK “

Γ
T pidΓˆA`distqδ〈idΓ,g〉
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ T pΓˆA` pΓˆ∆` Γˆ Eqq

rη in1 pr2,rη in2 pr2,hss
‹

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ T pA`∆q

(iter)

JΓ $v v : EK “ g : Γ Ñ E

J∆, e : Eg
| Γ, e : E $c q : AK “ h : Γˆ E Ñ!`pσ∆`idq T pA` p∆` Eqq

J∆ | Γ $c handleit e “ v in q : AK “ ppT assocqhq; 〈idΓ, g〉 : Γ Ñ T pA`∆q

Figure 6: Denotational semantics.

27

The semantic assignments for computation judgments are given in Fig. 6
(we skip the obvious standard rules for values) where ine : E Ñ ∆ is the obvious
coproduct injection of E to ∆ identified by e, assoc is the associativity isomor-
phism X ` pY ` Zq – pX ` Y q ` Z, and p--q; is the strong iteration operator
from (4). The correctness of our semantic assignments is established by the
following claim:

Proposition 9. For every rule in Fig. 4, assuming the premises, the morphism
in the conclusion is p!`σ∆q-guarded.

Proof. First note that each f : X Ñ!`σ∆
T pA ` ∆q is isomorphic to some

f̂ : X Ñ!`id T ppA ` ∆uq ` ∆gq, where ∆ – ∆u ` ∆g separates unguarded
from guarded exceptions. Consider the rule (handle) in detail. By regarding g
and h as morphisms in C // Γ, we reformulate the goal as follows: assuming
g : 1 Ñ!`pσ∆`!q T pA ` pp∆u `∆gq ` Eqq and h : E Ñ!`σ∆

T pA ` p∆u `∆gqq,
show that rη in1, rη in2, hss

‹ g : 1 Ñ!`σ∆
T pA ` p∆u ` ∆gqq. Let w.l.o.g.

σ∆ “ in2 : ∆g Ñ ∆u `∆g. We obtain

T
[
in1 in1 in1, rin1 in2`id, in1 in2s

]
g : 1 Ñin2

T pppA`∆uq ` Eq `∆gq

by (iso), and

rηpid` in1q, hs : pA`∆uq ` E Ñ!`σ∆
T pA` p∆u `∆gqq

by (trv) and (sum). Then by (cmp),[
rηpid` in1q, hs, η in2 in2

]‹
T
[
in1 in1 in1, rin1 in2`id, in1 in2s

]
g : 1 Ñ!`σ∆ T pA` p∆u `∆gqq,

which further reduces down to the goal.
For (prod), (ret), (case) and (init), the verification is straightforward by

the axioms of guardedness in C. For (gcase) and (do), we proceed analo-
gously to (handle) using the axioms of guardedness in C // Γ and Theorem 5.
Strong iteration as figuring in (iter) satisfies the fixpoint law by Theorem 5,
and the problem in question amounts to verifying that f : : X Ñσ TY when-
ever f : X Ñσ`id T pY ` Xq. This is already shown in [22], using only the
fixpoint law.

5. Functional Types

In order to interpret functional types in fine-grain call-by-value, it normally
suffices to assume existence of Kleisli exponentials, i.e. objects TBA such that
HompC, TBAq and HompC ˆA, TBq are naturally isomorphic, or equivalently
that all presheaves Homp--ˆA, TBq : Cop Ñ Set are representable. In order to
add functional types to our metalanguage we additionally need to assume that
all presheaves Homσp--, TAq : Cop Ñ Set are representable, i.e. for every A and
σ : A1 A there is Aσ P |C| such that

ξ : HompX,Aσq – HomσpX,TAq (15)

28

naturally in X. By the Yoneda lemma, this requirement is equivalent to the
following.

Definition 10 (Greatest σ-algebra). Given σ : A1 A, a pair pAσ, ισq con-
sisting of an object Aσ P |C| and a morphism ισ : Aσ Ñσ TA is called a greatest

σ-algebra if for every f : X Ñσ TA there is a unique f̂ : X Ñ Aσ with the
property that f “ ισ f̂ .

X TA

Aσ

f

f̂ ισ

By the usual arguments, pAσ, ισq is defined uniquely up
to isomorphism. The connection between ισ and ξ in (15)
is as follows: ισ “ ξpid : Aσ Ñ Aσq and ξpf : X Ñ Aσq “
ισ f .

It immediately follows by definition that ισ is a monomorphism. The name
‘σ-algebra’ for pA, ισq is justified as follows.

Proposition 11. Suppose that pA, ισq is a greatest σ-algebra. Then there is
a unique ασ : TAσ Ñ Aσ such that ισ ασ “ ι‹σ. The pair pAσ, ασq is a T-
subalgebra of pTA, µq.

Proof. Since ι‹σ : TAσ Ñ TA is the Kleisli composite of ισ : Aσ Ñσ TA and
id : TAσ Ñ TAσ, ι‹σ is σ-guarded by (cmp), so we obtain ασ such that ισασ “ ι‹σ
by the universal property of pAσ, ισq. Since ι‹σ “ µApTισq, it follows that
ισ : pAσ, ασq Ñ pA,µAq is a morphism of functor algebras. Since monad algebras
are closed under taking functor subalgebras and ισ is monic as observed above,
it follows that pAσ, ασq is a T-subalgebra of pA,µAq.

Proposition 12. 1. Suppose that a greatest σ-algebra pAσ, ισq exists. Then

(a) ισ is the greatest element in the class of all σ-guarded subobjects
of TA;

(b) for every regular epic e : X Ñ Y and every morphism f : Y Ñ TA,
f e : X Ñσ TA implies that f : Y Ñσ TA.

2. Assuming that every morphism in C admits a factorization into a regular
epic and a monic, the converse of (1) is true: If (a) and (b) hold for
pAσ, ισq, then pAσ, ισq is a greatest σ-algebra.

Proof. 1.: Part 1a is immediate; we show 1b. Given a regular epic e : X Ñ Y
and a morphism f : Y Ñ TA such that f e : X Ñσ TA, consider the diagram

Z X Y TA

Aσ

g

h e

w

f

ισ

where e is the coequalizer of h and g, and w exists uniquely by the universal
property of ισ. Since ισ w h “ f e h “ f e g “ ισ w g and ισ is monic, w h “ w g.
Hence, there is u : Y Ñ Aσ such that w “ u e. Therefore we have ισ u e “

29

∆ | Γ, x : A $c p : B

Γ $v λx. p : AÑ∆ B

Γ $v w : A Γ $v v : AÑ∆ B

∆ | Γ $c vw : B

. .

J∆ | Γ, x : A $c p : BK “ g : ΓˆAÑ!`σ∆ T pB `∆q

JΓ $v λx. p : AÑ∆ BK “ currypξ -1pgqq : Γ Ñ AÑ pB `∆q!`σ∆

JΓ $v w : AK “ g : Γ Ñ A JΓ $v v : AÑ∆ BK “ h : Γ Ñ AÑ pB `∆q!`σ∆

J∆ | Γ $c vw : BK “ ξpuncurry hq 〈id, g〉 : Γ Ñ!`σ∆ T pB `∆q

Figure 7: Syntax (top) and semantics (bottom) of functional types.

ισ w “ f e. Since e is epi, this implies f “ ισ u. Since ισ is σ-guarded, so is f
by (cmp).

2.: Let f : X Ñσ TA, with factorization f “ me into a mono m and a
regular epi e. By 1b, m is σ-guarded; by 1a, it follows that m, and hence f ,
factor through ισ, necessarily uniquely since ισ is monic.

Example 13. Let T be a strong monad on a distributive category C and let
Σ: C Ñ C be an endofunctor such that all the fixpoints TΣX “ νγ. T pX `Σγq
exist. These extend to a strong monad TΣ, called the generalized coalgebraic
resumption monad transform of T [22]. Moreover, TΣ is guarded iterative with
f : X Ñσ TΣA iff out f : X Ñ T pA ` ΣTΣAq factors as T pσ̄ ` idq g for some
g : X Ñ T pA1 ` ΣTΣAq. Suppose that coproduct injections in C are monic
and T preserves monics. Then for every A P |C| and σ there is at most one g
such that out f “ T pσ̄ ` idq g. This entails an isomorphism

HompX,T pA1 ` ΣTΣAqq – HomσpX,TΣAq

obviously natural in X, from which we obtain by comparison with (15) that
Aσ “ T pA1 ` ΣTΣAq.

Example 14. Let σ : A2 A, whose complement is σ̄ : A1 A and let us
revisit Example 3.

1. T “ νγ.Pωp--`Act ˆ γq is an instance of Example 13, and thus Aσ “
PωpA1 ` Actˆ TAq.

2. For T “ νγ.Pω1
p--`Actˆ γq under total guardedness, Aσ “ TA indepen-

dently of σ. For the other notion of guardedness on T, Aσ is constructed
in analogy to Clause 1.

3. For T “ P being totally guarded, again Aσ “ PA.

4. For T “ PpAct‹ ˆ --q, it follows that Aσ “ PpAct‹ ˆA1 ` Act` ˆA2q.

5. Finally, for T “ P`, it follows by definition that Aσ “ PA1 ˆ P`A2.

30

Assuming that greatest σ-algebras exist, we complement our metalanguage with
functional types AÑ∆ B where the index ∆ serves to store information about
(guarded) exceptions of the curried function. Formally, these types are inter-
preted as AÑ∆ B “ AÑ pB `∆q!`σ∆

. In the term language, this is reflected
by the introduction of λ-abstraction and application, with syntax and semantics
as shown in Fig. 7, where ξ is the isomorphism from (15).

6. Operational Semantics and Adequacy

We proceed to complement our denotational semantics from Sections 4 and 5
with a big-step operational semantics. Following Geron and Levy [14], we choose
the simplest concrete monad T sensibly illustrating all the main features and
model it operationally. In [14] this is the maybe monad TX “ X ` 1 on Set,
which suffices to give a sensible account of total iteration. The `1 part is nec-
essary for modelling divergence. Since total iteration is subsumed by guarded
iteration, we could formulate an adequate operational semantics over this monad
too. To that end we would need to assume that the only operation f : AÑ BrCs
in Σc with C ‰ 0 is a distinguished element tick : 1 Ñ 0r1s whose denotation
is the unit of the monad (regarded as totally guarded). However, total itera-
tion is only a degenerate instance of guarded iteration, and here we therefore
replace X ` 1 with the guarded iterative monad freely generated by an opera-
tion put : N Ñ 0r1s of outputting a natural number (say, to console), explicitly
(on Set): TX “ pX ˆN‹q YNω. More abstractly, TX is the final pX `Nˆ --q-
coalgebra. The denotations in TX are of two types: pairs px, τq P X ˆ N‹ of a
value x and a finite trace τ of outputs (for terminating iteration) and infinite
traces π P Nω of outputs (for non-terminating iteration).

We fix TX “ pX ˆN‹q YNω for the rest of the section. Let us spell out the
details of the structure of T, which is in fact an instance of Example 13 under
T “ Id, Σ “ N ˆ p--q. The unit of T sends x to px, 〈〉q. Given f : X Ñ TY , we
have

f‹px, τq “

{
py, τ `̀ τ 1q if fpxq “ py, τ 1q,

τ `̀ π if fpxq “ π,
f‹pπq “ π.

for x P X, τ P N‹, π P Nω with `̀ denoting concatenation of a finite trace
with a possibly infinite one. Guardedness for T is defined as follows: f : X Ñ2

pY ` Zq ˆ N‹ Y Nω if for every x P X, either fpxq P Nω or fpxq “ pin1 y, τq for
some y P Y , τ P N‹ or fpxq “ pin2 z, τq for some z P Z, τ P N`. Finally, given
f : X Ñ2 T pY `Xq,

f :pxq “


py, τ1 `̀ ¨ ¨ ¨ `̀ τnq if fpxq “ pin2 x1, τ1q, . . . , fpxnq “ pin1 y, τnq,

τ1 `̀ ¨ ¨ ¨ `̀ τn´1 `̀ π if fpxq “ pin2 x1, τ1q, . . . , fpxnq “ π,

τ1 `̀ ¨ ¨ ¨ if fpxq “ pin2 x1, τ1q, . . .

where the first clause addresses the situation when iteration finishes after finitely
many steps, the second one addresses the situation when we hit divergence

31

Values, Computations, Terminals:

v, w ::“ x | ‹ | zero | succ v | inl v | inr v | 〈v, w〉 | λx. p
p, q ::“ ret v | predpvq | putpvq | raisex v | gcase putpvq of inl -- ÞÑ p; inr x ÞÑ q

| case v of 〈x, y〉 ÞÑ p | init v | case v of inlx ÞÑ p; inr y ÞÑ q

| vw | doxÐ p; q | handle x in p with q | handleit y “ v in p

t ::“ ret v, τ | raisex v, τ | π pτ P N‹, π P Nωq

Rules:

qr‹{xs ⇓ u, τ
gcase putpvq of inl -- ÞÑ p; inr x ÞÑ q ⇓ u, 〈v〉 `̀ τ raisex v ⇓ raisex v, 〈〉

qr‹{xs ⇓ π
gcase putpvq of inl -- ÞÑ p; inr x ÞÑ q ⇓ 〈v〉 `̀ π

prv{xs ⇓ t
pλx. pq v ⇓ t

predpzeroq ⇓ ret inl ‹, 〈〉 predpsuccpvqq ⇓ ret in2 v, 〈〉

prv{xs ⇓ t
case inl v of inlx ÞÑ p; inr y ÞÑ q ⇓ t

qrw{ys ⇓ t
case inrw of inlx ÞÑ p; inr y ÞÑ q ⇓ t

p ⇓ ret v, τ qrv{xs ⇓ u, τ 1

doxÐ p; q ⇓ u, τ `̀ τ 1
p ⇓ ret v, τ qrv{xs ⇓ π

doxÐ p; q ⇓ τ `̀ π

p ⇓ raisex v, τ

doxÐ p; q ⇓ raisex v, τ

p ⇓ π
doxÐ p; q ⇓ π

p ⇓ ret v, τ

handle x in p with q ⇓ ret v, τ

p ⇓ raisey v, τ

handle x in p with q ⇓ raisey v, τ
px ‰ yq

p ⇓ raisex v, τ qrv{xs ⇓ u, τ 1

handle x in p with q ⇓ u, τ `̀ τ 1

p ⇓ π
handle x in p with q ⇓ π

p ⇓ raisex v, τ qrv{xs ⇓ π
handle x in p with q ⇓ τ `̀ π

ret v ⇓ ret v, 〈〉
v0 “ v qrv0{xs ⇓ raisex v1, τ1 . . . qrvn´1{xs ⇓ u, τn

handleit x “ v in q ⇓ u, τ1 `̀ ¨ ¨ ¨ `̀ τn

qrv{x,w{ys ⇓ t
case 〈v, w〉 of 〈x, y〉 ÞÑ q ⇓ t

v0 “ v qrv0{xs ⇓ raisex v1, τ1 . . . qrvn´1{xs ⇓ π
handleit x “ v in q ⇓ τ1 `̀ ¨ ¨ ¨ `̀ τn´1 `̀ π

v0 “ v qrv0{xs ⇓ raisex v1, τ1 qrv1{xs ⇓ raisex v2, τ2 . . .

handleit x “ v in q ⇓ τ1 `̀ τ2 `̀ ¨ ¨ ¨
p@i. τi ‰ 〈〉q

Figure 8: Operational semantics.

witnessed by some xn P X reachable after finitely many iterations, and the
third clause addresses the remaining situation of divergence via unfolding the
loop infinitely many times. In the latter case, the guardedness assumption for f

32

is crucial, as it ensures that each τi is nonempty, and therefore the resulting
trace τ1 `̀ τ2 `̀ ¨ ¨ ¨ is indeed infinite.

Operationally, guardedness in the above sense is modelled by cutting the
control flow with the put command, which is the only command contributing
to the traces. Concretely, let Base “ {N}, Σv “ {zero : 1 Ñ N, succ : N Ñ N}
and Σc “ {pred : N Ñ p1 ` Nqr0s, put : N Ñ 0r1s} (note that while pred does
not cause any side effects, it does perform a computation and therefore needs
to be in Σc rather than Σv). The operational semantics over these data is given
in Fig. 8, where predpvq is a shortcut for gcase predpvq of inlx ÞÑ retx; inr y ÞÑ
init y, and similarly for putpvq. The judgement p ⇓ t relates programs p with
terminals t, which can consist of either a finite trace τ together with a result
value ret v or an exceptional value raisex v, or an infinite trace π. The traces
correspond to the natural numbers written explicitly using the operation put .

In Fig. 9 we give a full account of the denotational semantics in an appro-
priate set-based notation for the concrete choice of the monad T as above. We
omit contexts and types and moreover we index the semantic brackets with a
valuation ρ sending each variable x : A from the context Γ to a corresponding
element of the set A. That is, we assume the following equations

JΓ $v p : AKρ “ JΓ $v p : AK ρ, J∆ | Γ $c p : AKρ “ J∆ | Γ $c p : AK ρ.

(that is, composition with ρ is written as indexing by ρ.)
As usual, we have a substitution lemma saying that substitution of terms

can be replaced by calculating values of terms and correspondingly updating the
valuation. We write substitution in postfix notation, and assume the standard
notion of capture-avoiding substitution.

Lemma 15 (Substitution Lemma). Let σ be a substitution sending each variable
xi : Ai from the context Γ to a term Γ1 $v vi : Ai, and let ρ be a valuation for
the variables in Γ1. Then

JΓ1 $v vσ : AKρ “ JΓ $v v : AKσ, J∆ | Γ1 $c pσ : AKρ “ J∆ | Γ $c p : AKσ.

where the valuation σ sends each xi to JΓ1 $v vi : AiKρ.

Proof. Straightforward induction over the term structure.

We now can state the main result of this section as follows.

Theorem 16 (Soundness and Adequacy). Let ∆ | ´ $c p : B. Then

1. p ⇓ ret v, τ iff J∆ | ´ $c p : BK “ pin1JvK, τq P pB `∆q ˆ N‹.

2. p ⇓ raisex v, τ and x : Eg is in ∆ iff J∆ | ´ $c p : BK “ pin2 inx v, τq P
pB `∆q ˆ N`.

3. p ⇓ raisex v, τ and x : Eu is in ∆ iff J∆ | ´ $c p : BK “ pin2 inx v, τq P
pB `∆q ˆ N‹.

4. p ⇓ π iff J∆ | ´ $c p : BK “ π P Nω.

33

JxKρ “ ρpxq JzeroKρ “ 0 Jinl vKρ “ in1JvKρ
J‹Kρ “ ‹ Jsucc uKρ “ JuKρ ` 1 Jinr vKρ “ in2JvKρ

J〈v, w〉Kρ “ 〈JvKρ, JwKρ〉 Jλx. pKρ “ ξ -1
pλa. JpKρra{xsq JvwKρ “ ξpJvKρqpJwKρq

JpredpvqKρ “

{
pin1 in1 ‹, 〈〉q if JvKρ “ 0

pin1 in2 n, 〈〉q if JvKρ “ n` 1

Jret vKρ “ pin1JvKρ, 〈〉q Jraisex vKρ “ pin2 inxJvKρ, 〈〉q

Jcase v of 〈x, y〉 ÞÑ pKρ “ JpKrρ,u{x,w{ys where JvKρ “ 〈u,w〉

Jgcase putpvq of inl -- ÞÑ p; inr x ÞÑ qKρ “

{
pt, 〈JvKρ〉 `̀ τq if JqKρr‹{xs “ pt, τq
p〈JvKρ〉 `̀ πq if JqKρr‹{xs “ π

Jcase v of inlx ÞÑ p; inr y ÞÑ qKρ “

{
JpKρru{xs if JvKρ “ in1 u

JqKρrw{ys if JvKρ “ in2 w

JdoxÐ p; qKρ “


pt, τ `̀ τ 1q if JpKρ “ pin1 a, τq and JqKρra{xs “ pt, τ 1q
τ `̀ π if JpKρ “ pin1 a, τq and JqKρra{xs “ π

pin2 b, τq if JpKρ “ pin2 b, τq

π if JpKρ “ π

Jhandle x in p with qKρ “



pin1 t, τq if JpKρ “ pin1 t, τq

pin2 ine t, τq if JpKρ “ pin2 ine t, τq and x ‰ e

pb, τ `̀ τ 1q if JpKρ “ pin2 inx a, τq and JqKρra{xs “ pb, τ 1q
τ `̀ π if JpKρ “ pin2 inx a, τq and JqKρra{xs “ π

π if JpKρ “ π

Jhandleit x “ v in qKρ “



pin1 w, τ0 `̀ ¨ ¨ ¨ `̀ τkq if v0 “ JvKρ,
JqKrρ,vi{xs “ pin2 inx vi`1, τiq,

and JqKrρ,vk{xs “ pin1 w, τkq

pin2 iny w, τ0 `̀ ¨ ¨ ¨ `̀ τkq if v0 “ JvKρ,
JqKrρ,vi{xs “ pin2 inx vi`1, τiq,

and JqKrρ,vk{xs “ pin2 iny w, τkq

τ0 `̀ ¨ ¨ ¨ `̀ τk´1 `̀ π if v0 “ JvKρ,
JqKrρ,vi{xs “ pin2 inx vi`1, τiq,

and JqKrρ,vk{xs “ π

τ0 `̀ τ1 `̀ ¨ ¨ ¨ if v0 “ JvKρ,
JqKrρ,vi{xs “ pin2 inx vi`1, τiq,

for all i P N

Figure 9: Denotational semantics over TX “ pX ˆ N‹q Y Nω .

34

Each clause of Theorem 16 is an iff-statement in which the left-to-right direction
stands for soundness and the right-to-left direction stands for adequacy. This
view of soundness and adequacy in not entirely standard and we compare it
to the more established one. Suppose that we give a big-step semantics to a
deterministic language in a system where every computation p either provably
evaluates to some value v via p ⇓ v, indicated by writing p ⇓, or p ⇓ v is
not provable for any v, indicated by writing p ⇑. Denotationally, the former
situation corresponds to JpK “ v and the latter to JpK “ K for a designated
divergence constant K. Soundness then means that p ⇓ v implies JpK “ v, while
adequacy means that p ⇑ implies JpK “ K. Equivalently, by contraposition,
adequacy amounts to the implication from JpK ‰ K to p ⇓. Now, JpK ‰ K is
the same as JpK “ v for some value v and p ⇓ means that p ⇓ w for a possibly
different value w. Using soundness of the denotational semantics, we obtain
w “ v; thus, adequacy amounts to the implication from JpK “ v to p ⇓ v, i.e.
the perfect converse of soundness. We argue that the obtained reformulation of
adequacy is advantageous in two respects: it does not hinge on contraposition,
which is equivalent to excluded middle, and it does not depend on the presence
of only one type of divergence K – e.g. in our present semantics there are as
many types of divergence as infinite traces.

We prove Theorem 16 analogously to [14] by showing a stronger type-indexed
property used as an induction invariant in the style of Tait [43]. Specifically,
let us define a predicate P over all terms that are typable with empty variable
context p--q by induction over their return types as follows:

• if ´ $v v : 1 or ´ $v v : N then Ppvq;

• if ´ $v v : A then Ppinl vq if Ppvq;

• if ´ $v v : A then Ppinr vq if Ppvq;

• if ´ $v v : A and ´ $v w : B then Pp〈v, w〉q if Ppvq and Ppwq;

• if ´ $v λx. p : A Ñ∆ B then Ppλx. pq if Ppvq implies Ppprv{xsq for all
´ $v v : A;

• if ∆ | ´ $c p : A then Pppq if one of the following clauses applies

1. J∆ | ´ $c p : AK “ pin1J´ $v v : AK, τq, Ppvq, and p ⇓ ret v, τ with
τ P N‹;

2. J∆ | ´ $c p : AK “ pin2 inxJ´ $v v : AK, τq, Ppvq and p ⇓ raisex v, τ
with τ P N` and x : Eg in ∆;

3. J∆ | ´ $c p : AK “ pin2 inxJ´ $v v : AK, τq, Ppvq and p ⇓ raisex v, τ
with τ P N‹ and x : Eu in ∆;

4. J∆ | ´ $c p : AK “ π and p ⇓ π with π P Nω.

Our main technical task is to prove the following lemma:

Lemma 17. 1. Whenever x1 : B1, . . . , xn : Bn $v v : A and ´ $v wi : Bi
such that Ppwiq for i “ 1, . . . , n, then Ppvrw1{x1, . . . , wn{xnsq.

2. Whenever ∆ | x1 : B1, . . . , xn : Bn $c p : A and ´ $v wi : Bi such that
Ppwiq for i “ 1, . . . , n, then Ppprw1{x1, . . . , wn{xnsq.

35

Using Lemma 17, Theorem 16 is obtained straightforwardly:

Proof of Theorem 16. Lemma 17 implies that P is totally true on all closed
value and computation terms, and thus we are done by definition of P.

Proof of Lemma 17. We proceed by induction over the structure of values and
computations. We write σ “ rw1{x1, . . . , wn{xns. During the proof, we make
extensive use of the substitution lemma (Lemma 15) without notice. Consider
the value terms.

• v “ xi: since xiσ “ wi, Ppvσq holds by assumption;

• for v of type 1 or N, i.e. v “ ‹, v “ zero, v “ succ u, Ppvσq holds by
definition;

• for v “ inlu or v “ inr u, Ppvσq reduces to Ppuσq by induction;

• for v “ 〈u,w〉, Ppvσq reduces to Ppuσq and Ppwσq by induction;

• if v “ λx. p then we need to show that for every ´ $v u : A satisfying P,
Pppσru{xsq is true, and the latter follows by induction.

Next, we analyse computation terms.

• If p “ ret v then we are done straightforwardly by induction.

• If p “ predpvq then vσ can either be zero or succ v1. In both cases,
p ⇓ retu, 〈〉 for some u, and J∆ | ´ $c predpvσq : NK “ pin1 u, 〈〉q, so the first
clause from the definition of P applies.

• With p “ raisex v we are done immediately by induction.

• If p “ gcase putpvq of inl -- ÞÑ q; inr x ÞÑ r then by induction Pprr‹{xsσq.
The latter must follow from one of the four clauses in the definition of P.
E.g. if it follows from the first clause then J∆ | Γ $c rr‹{xsσ : AK “ pin1 w, τq
and rσr‹{xs ⇓ retw, τ , hence pσ ⇓ retw, 〈v〉 `̀ τ , J∆ | Γ $c pr‹{xsσ : AK “
pin1 w, 〈v〉 `̀ τq, and therefore Pppσq, again by the Clause 1 in the definition
of P. The remaining three alternatives are checked analogously.

• Let p “ case v of 〈x, y〉 ÞÑ q and let vσ “ 〈u,w〉. By induction,
Ppqσru{x,w{ysq and further analysis runs analogously to the previous case.

• Let p “ case v of inlx ÞÑ q ; inr y ÞÑ r. Since vσ is either of the form inlw
or of the form inr u, by induction, in the corresponding cases either Ppqrw{xsq
or Pprru{ysq. Each of these cases is analyzed analogously to the previous two
clauses.

• If p “ init v then vσ must have 0 as the return type, but there are no
values of this type. Therefore, Pppσq is vacuously true.

• Let p “ pλx. qqw. Assuming that xσ “ x, note that pσ “ pλx. qσqwσ.
By induction, Ppwσq, and thus, in turn, also by induction, Ppqσrwσ{xsq. Now,
on the one hand

J∆ | ´ $c pσ : AK
“ J∆ | ´ $c pλx. qσqwσ : AK

36

“ ξ
(
ξ -1pλa. J∆ | x : B $c qσ : AKra{xsq

)
J∆ | ´ $v wσ : BK

“ J∆ | x : B $c qσ : AKrJ∆|´$vwσ : BK{xs

“ J∆ | ´ $c qσrwσ{xs : AK,

and on the other hand pσ and qσrwσ{xs reduce to the same terminal. Therefore
Pppσq is equivalent to Ppqσrwσ{xsq, i.e. true.

• p “ dox Ð q; r. By induction hypothesis, Ppqσq. Depending on how q
reduces, we have the following cases to cover.

� qσ ⇓ ret v, τ , J∆ | ´ $c qσ : BK “ pin1JvK, τq and Ppvq. By induction,
Pprσrv{xsq. Observe that either rσrv{xs ⇓ t, τ 1 and pσ ⇓ t, τ `̀ τ 1 or
rσrv{xs ⇓ π and pσ ⇓ τ `̀ π for suitable t, π, τ 1 and analogously, either
J∆ | ´ $c rσrv{xs : AK “ pt, τ 1q and J∆ | ´ $c pσ : AK “ pt, τ `̀ τ 1q or
J∆ |´ $c rσrv{xs : AK “ π and J∆ |´ $c pσ : AK “ τ `̀ π. By further case
distinction over the Clauses 1-4 in the definition of P, we conclude that
Pppσq is equivalent to Pprσrv{xsq and therefore true.

� qσ ⇓ raisee v, τ , J∆ | ´ $c qσ : AK “ pin2 ine v, τq and Ppvq. This case
is analysed completely analogously to the previous one.

� qσ ⇓ π. By the respective operational semantic rule, also pσ ⇓ π : A.
Also, by definition, J∆ | ´ $c pσK “ π, hence Ppvq follows from Clause 4
in the definition of Ppvq.

• p “ handle x in q with r. Again, we have multiple subcases, which are
analogous to the cases for p “ dox Ð q; r, as considered previously, with an
important distinction that we now have to process the exception context ∆.

� qσ ⇓ ret v, τ , J∆, x : Eu | ´ $c qσ : AK “ pin1JvK, τq and Ppvq.
By the derivation rule, we obtain pσ ⇓ ret v, τ and by definition,
J∆ | ´ $c pσ : AK “ pin1JvK, τq, whence Pppσq holds by Clause 1 in the
definition of P.

� qσ ⇓ raisee v, τ , J∆, x : Eu | ´ $c qσ : AK “ pin2 ineJvK, τq and Ppvq.
If e ‰ x, then from the respective operational semantic rule we know
that pσ ⇓ raisee v, τ . Moreover, J∆ | ´ $c pσ : AK “ pin2 ineJvK, τq, and
hence Clause 3 of the definition P can be applied to obtain Pppσq. Let us
proceed under the assumption that e “ x. Then either rσrv{xs ⇓ ret v1, τ 1,
or rσrv{xs ⇓ raisee1 v

1, τ 1 or rσrv{xs ⇓ π, and therefore, respectively, either
pσ ⇓ ret v1, τ `̀ τ 1, or pσ ⇓ raisee1 v

1, τ `̀ τ 1, or pσ ⇓ τ `̀ π. Since by induction
Pprσrv{xsq, in the respective cases we obtain that J∆ | ´ $c pσ : AK is
either pin1Jv1K, τ `̀ τ 1q or pin2 ine1Jv1K, τ `̀ τ 1q or τ `̀ π. Now, Pppσq follows
by further analysis into the Clauses 1-4 in the definition of P.

� qσ ⇓ π. Analogous to the case for do.

• p “ phandleit x “ v in qq. Let v0 “ JvKσ and consider the sequence v0, . . .
formed as follows: J∆, x : Eg | ´ $c qσrvi{xs : AK “ pin2 inxJvi`1K, τiq. This se-
quence can either be infinite or terminate according to three different scenarios.
Depending on this we proceed by case distinction.

37

� Suppose that the sequence v0, . . . is infinite. Then, by induction
Ppqσrvi{xsq for every i and therefore also qσrvi{xs ⇓ raisex vi`1, τi`1

by Clause 2 in the definition of P where each τi is from N`. Now
pσ ⇓ τ1 `̀ τ2 `̀ . . . and we are done by Clause 4 in the definition of P.

� Suppose that the sequence v0, . . . ends with vk such that J∆, x : Eg |

´ $c qσrvk{xs : AK “ pin2 inzJwK, τkq or J∆, x : Eg | ´ $c qσrvk{xs : AK “
pin1JwK, τkq. By induction, Ppqσrvi{xsq for every i ď k and therefore
qσrvk{xs ⇓ raisez w, τk or z ‰ x or qσrvk{xs ⇓ retw, τk. By the same
considerations as in the previous clause, we obtain Pppσq.

� The case of the sequence v0, . . . ending with vk such that J∆, x : Eg |

´ $c qσrvk{xs : AK “ π is handled analogously to the above.

7. Conclusions and Further Work

We have instantiated the notion of abstract guardedness [22, 20] to a multivari-
able setting in the form of a metalanguage for guarded iteration, which incor-
porates both monad-based encapsulation of side-effects [34] and the fine-grain
call-by-value paradigm [29]. As a side product, this has additionally resulted in a
semantically justified unification of (guarded) iteration and exception handling,
extending previous work by Geron and Levy [14]. Our denotational semantics
is generic, and is parametrized by two orthogonal features: a notion of compu-
tation, given as a strong monad, and a notion of axiomatic guardedness, which
serves to support guarded iteration. The notion of guardedness can range from
vacuous guardedness (inducing trivial iteration, which unfolds at most once)
to total guardedness (supported by monads equipped with a total iteration op-
erator, specifically Elgot monads); the latter case covers classical denotational
semantics, since any monad in a category of domains is Elgot [21].

In contrast, our (big-step) operational semantics is specific and addresses a
concrete guarded iterative monad on Set, for which we have proved a sound-
ness and adequacy result. This discrepancy in the status of operational and
denotational semantics is related to the phenomenon that operational seman-
tics generally appears to be harder to generalize than denotational semantics.
For one example, we note that operational semantics needs to be completely
reframed in a constructive setting, where it must arguably be understood coin-
ductively rather than inductively [39].

In future research, we thus aim to use our present work for developing op-
erational accounts of computational phenomena from their denotational mod-
els. One prospective example is suggested by the mentioned work of Nakata
and Uustalu [39], who give a coinductive big-step trace semantics for a while-
language. We conjecture that this work has an implicit guarded iterative
monad TR under the hood, for which guardedness cannot be defined using the
standard argument based on a final coalgebra structure of the monad because
the objects TRX are not final coalgebras. The relevant notion of guardedness
is thus to be identified. More generally, we regard the generic denotational
semantics for our metalanguage as a guiding principle for identifying seman-
tic structures underlying computational phenomena found in the wild, most

38

importantly those that resist standard treatment, e.g. via domain theory. A
recent example of such identification is hybrid computation, where the iterative
behaviour can be organized in the form of Elgot iteration on a suitable hybrid
monad, and the notion of guardedness naturally corresponds to progressiveness
of computations in time [17].

Another direction for further research on generic soundness and adequacy
theorems is motivated by previous work on operational semantics for languages
parametrized by algebraic effects [41, 25], which provide syntactic access to
generic notions of side effect. We will pay particular attention to the tension
between iteration and general recursion, of which iteration is conventionally
viewed as a light-weight counterpart. As the case of hybrid computation in-
dicates, in some models it is not quite clear what general recursion can mean,
and even formalizing total (unguarded) iteration presents considerable difficul-
ties. Nevertheless, we will explore connections between guarded iteration and
guarded recursion (in the sense of previous work [20]) whenever the latter can
be identified. Standardly, iteration is expressible as a combination of recur-
sion and second order types. We plan to explore conditions under which this
connection generalizes to the guarded setting. As a basis for the prospective
“metalanguage for guarded recursion” we plan to use Levy’s call-by-push-value
as the most natural candidate [27], into which fine-grain call-by-value embeds.
In view of this fact, our task can be seen as the task of enriching this embedding
with respective guarded fixpoints on both sides.

Acknowledgements

We would like to thank anonymous referees for careful and thorough reading
of the initial submission.

References

[1] S. Abramsky. Intensionality, definability and computation. In A. Baltag
and S. Smets, editors, Johan van Benthem on Logic and Information Dy-
namics, volume 5 of Outstanding Contributions to Logic, pages 121–142.
Springer, 2014. doi:10.1007/978-3-319-06025-5_5.

[2] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal
model of a modern, major, general type system. In Proceedings of the 34th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2007), pages 109–122. Association for Computing
Machinery, 2007. doi:10.1145/1190216.1190235.

[3] N. Benton and A. Kennedy. Exceptional syntax. J. Funct. Prog., 11(4):395–
410, 2001. doi:10.1017/S0956796801004099.

[4] J. Bergstra, A. Ponse, and S. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001. doi:10.1016/b978-0-444-82830-9.x5017-6.

39

https://doi.org/10.1007/978-3-319-06025-5_5
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1017/S0956796801004099
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6

[5] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring. First
steps in synthetic guarded domain theory: Step-indexing in the topos of
trees. Log. Methods Comput. Sci., 8(4), 2012. doi:10.2168/LMCS-8(4:

1)2012.

[6] S. Bloom and Z. Ésik. Iteration theories: The equational logic of iterative
processes. Springer, 1993. doi:10.1007/978-3-642-78034-9.

[7] S. Brookes and K. Van Stone. Monads and comonads in intensional se-
mantics. Technical Report CMU-CS-93-140, Carnegie-Mellon University
Pittsburgh, Dept. of Comp. Sci., 1993. https://apps.dtic.mil/dtic/

tr/fulltext/u2/a266522.pdf.

[8] A. Carboni, S. Lack, and R. Walters. Introduction to extensive and dis-
tributive categories. Journal of Pure and Applied Algebra, 84(2):145–158,
1993. doi:0022-4049(93)90035-R.

[9] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in denota-
tional semantics. Presented at the 5th Conference on Category Theory and
Computer Science, CTCS 1993. URL: https://person.dibris.unige.
it/moggi-eugenio/ftp/mod-sem.pdf.

[10] R. Clouston, A. Bizjak, H. B. Grathwohl, and L. Birkedal. The guarded
lambda-calculus: Programming and reasoning with guarded recursion for
coinductive types. Logical Methods in Computer Science, 12(3), 2016. doi:
10.2168/LMCS-12(3:7)2016.

[11] J. R. B. Cockett. Introduction to distributive categories. Mathemati-
cal Structures in Computer Science, 3(3):277–307, 1993. doi:10.1017/

S0960129500000232.

[12] T. Coquand. Infinite objects in type theory. In H. Barendregt and
T. Nipkow, editors, Types for Proofs and Programs, International Work-
shop (TYPES 1993), volume 806 of Lecture Notes in Computer Science,
pages 62–78. Springer, 1993. doi:10.1007/3-540-58085-9_72.

[13] M. Escardó. A metric model of PCF. Presented at the Workshop on
Realizability Semantics and Applications, Trento, Italy, June 30–July 1,
1999. URL: https://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf.

[14] B. Geron and P. B. Levy. Iteration and labelled iteration. In Mathematical
Foundations of Programming Semantics (MFPS XXXII), volume 325 of
Electronic Notes in Theoret. Comput. Sci., pages 127–146. Elsevier, 2016.
doi:10.1016/j.entcs.2016.09.035.

[15] E. Giménez. Codifying guarded definitions with recursive schemes. In
P. Dybjer, B. Nordström, and J. Smith, editors, Types for Proofs and Pro-
grams (TYPES 1994), volume 996 of Lecture Notes in Computer Science,
pages 39–59. Springer, 1995. doi:10.1007/3-540-60579-7_3.

40

https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.2168/LMCS-8(4:1)2012
https://doi.org/10.1007/978-3-642-78034-9
https://apps.dtic.mil/dtic/tr/fulltext/u2/a266522.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a266522.pdf
https://doi.org/0022-4049(93)90035-R
https://person.dibris.unige.it/moggi-eugenio/ftp/mod-sem.pdf
https://person.dibris.unige.it/moggi-eugenio/ftp/mod-sem.pdf
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.2168/LMCS-12(3:7)2016
https://doi.org/10.1017/S0960129500000232
https://doi.org/10.1017/S0960129500000232
https://doi.org/10.1007/3-540-58085-9_72
https://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
https://doi.org/10.1016/j.entcs.2016.09.035
https://doi.org/10.1007/3-540-60579-7_3

[16] E. Giménez. Structural recursive definitions in type theory. In K. G.
Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and
Programming, 25th International Colloquium (ICALP 1998), volume 1443
of Lecture Notes in Computer Science, pages 397–408. Springer, 1998.
doi:10.1007/BFb0055070.

[17] S. Goncharov, J. Jakob, and R. Neves. A Semantics for Hybrid Itera-
tion. In S. Schewe and L. Zhang, editors, 29th International Conference
on Concurrency Theory (CONCUR 2018), volume 118 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 22:1–22:17. Dagstuhl
Publishing, 2018. doi:10.4230/LIPIcs.CONCUR.2018.22.

[18] S. Goncharov, S. Milius, and C. Rauch. Complete Elgot monads and coalge-
braic resumptions. In Mathematical Foundations of Programming Seman-
tics (MFPS XXXII), volume 325 of Electronic Notes in Theoret. Comput.
Sci., pages 147–168. Elsevier, 2016. doi:10.1016/j.entcs.2016.09.036.

[19] S. Goncharov, C. Rauch, and L. Schröder. A metalanguage for guarded
iteration. In B. Fischer and T. Uustalu, editors, Theoretical Aspects of
Computing (ICTAC 2018) – 15th International Colloquium, volume 11187
of Lecture Notes in Comput. Sci., pages 191–210. Springer, 2018. doi:

978-3-030-02508-3.

[20] S. Goncharov and L. Schröder. Guarded traced categories. In C. Baier and
U. D. Lago, editors, Foundations of Software Science and Computation
Structures (FoSSaCS 2018) – 21st International Conference, volume 10803
of Lecture Notes in Comput. Sci., pages 313–330. Springer, 2018. doi:

10.1007/978-3-319-89366-2_17.

[21] S. Goncharov, L. Schröder, C. Rauch, and J. Jakob. Unguarded recursion
on coinductive resumptions. Log. Methods Comput. Sci., 14(3), 2018. doi:
10.23638/LMCS-14(3:10)2018.

[22] S. Goncharov, L. Schröder, C. Rauch, and M. Piróg. Unifying guarded and
unguarded iteration. In J. Esparza and A. Murawski, editors, Foundations
of Software Science and Computation Structures (FoSSaCS 2017) – 20th
International Conference, volume 10203 of Lecture Notes in Comput. Sci.,
pages 517–533. Springer, 2017. doi:10.1007/978-3-662-54458-7_30.

[23] P. Hancock and A. Setzer. Guarded induction and weakly final coalgebras
in dependent type theory. In L. Crosilla and P. Schuster, editors, From Sets
and Types to Topology and Analysis. Towards Practicable Foundations for
Constructive Mathematics, volume 48 of Oxford Logic Guides, pages 115–
134. Clarendon Press, 2005. doi:10.1093/acprof:oso/9780198566519.

003.007.

[24] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in
Logic and the Foundations of Mathematics. North Holland, 1999. URL:
https://www.sciencedirect.com/book/9780444501707.

41

https://doi.org/10.1007/BFb0055070
https://doi.org/10.4230/LIPIcs.CONCUR.2018.22
https://doi.org/10.1016/j.entcs.2016.09.036
https://doi.org/978-3-030-02508-3
https://doi.org/978-3-030-02508-3
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.23638/LMCS-14(3:10)2018
https://doi.org/10.23638/LMCS-14(3:10)2018
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1093/acprof:oso/9780198566519.003.007
https://doi.org/10.1093/acprof:oso/9780198566519.003.007
https://www.sciencedirect.com/book/9780444501707

[25] P. Johann, A. Simpson, and J. Voigtländer. A generic operational metathe-
ory for algebraic effects. In Logic in Computer Science (LICS 2010), pages
209–218. IEEE Computer Society, 2010. doi:10.1109/LICS.2010.29.

[26] K. Krishnaswami and N. Benton. Ultrametric semantics of reactive pro-
grams. In Logic in Computer Science (LICS 2011), pages 257–266. IEEE
Computer Society, 2011. doi:10.1109/LICS.2011.38.

[27] P. B. Levy. Call-by-push-value: A subsuming paradigm. In J.-Y. Girard,
editor, Typed Lambda Calculi and Applications (TLCA 1999), volume 1581
of Lecture Notes in Computer Science, pages 228–242. Springer, 1999. doi:
10.1007/3-540-48959-2_17.

[28] P. B. Levy and S. Goncharov. Coinductive resumption monads: Guarded
iterative and guarded elgot. In M. Roggenbach and A. Sokolova, ed-
itors, 8th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2019), volume 139 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 13:1–13:17. Dagstuhl Publishing, 2019. doi:

10.4230/LIPIcs.CALCO.2019.13.

[29] P. B. Levy, J. Power, and H. Thielecke. Modelling environments in call-by-
value programming languages. Information and Computation, 185(2):182–
210, 2003. doi:10.1016/S0890-5401(03)00088-9.

[30] S. Mac Lane. Categories for the Working Mathematician, Second Edition,
volume 5 of Graduate Texts in Mathematics. Springer, 1998. doi:10.1007/
978-1-4757-4721-8.

[31] S. Milius. Completely iterative algebras and completely iterative monads.
Inf. Comput., 196(1):1–41, 2005. doi:10.1016/j.ic.2004.05.003.

[32] S. Milius and T. Litak. Guard your daggers and traces: Properties of
guarded (co-)recursion. Fund. Inform., 150(3-4):407–449, 2017. doi:10.

3233/FI-2017-1475.

[33] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[34] E. Moggi. A modular approach to denotational semantics. In D. H. Pitt,
P.-L. Curien, S. Abramsky, A. M. Pitts, A. Poigné, and D. E. Rydeheard,
editors, Category Theory and Computer Science (CTCS 1991) – 4th Inter-
national Conference, volume 530 of Lecture Notes in Comput. Sci., pages
138–139. Springer, 1991. doi:10.1007/BFb0013462.

[35] H. Nakano. A modality for recursion. In Logic in Computer Science (LICS
2000), pages 255–266. IEEE Computer Society, 2000. doi:10.1109/LICS.
2000.855774.

[36] K. Nakata. Resumption-based big-step and small-step interpreters for while
with interactive I/O. In O. Danvy and C. Shan, editors, Proceedings IFIP
Working Conference on Domain-Specific Languages (DSL 2011), volume 66

42

https://doi.org/10.1109/LICS.2010.29
https://doi.org/10.1109/LICS.2011.38
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.3233/FI-2017-1475
https://doi.org/10.3233/FI-2017-1475
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1109/LICS.2000.855774

of Electronic Proceedings in Theoret. Comput. Sci., pages 226–235. Open
Publishing Association, 2011. doi:10.4204/EPTCS.66.12.

[37] K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based
big-step semantics of while. In A. D. Gordon, editor, Programming Lan-
guages and Systems, 19th European Symposium on Programming, (ESOP
2010), volume 6012 of Lecture Notes in Computer Science, pages 488–506.
Springer, 2010. doi:10.1007/978-3-642-11957-6_26.

[38] K. Nakata and T. Uustalu. Resumptions, weak bisimilarity and big-step
semantics for while with interactive I/O: an exercise in mixed induction-
coinduction. In L. Aceto and P. Sobocinski, editors, Proceedings 7th Work-
shop on Structural Operational Semantics (SOS 2010), volume 32 of Elec-
tronic Proceedings in Theoret. Comput. Sci., pages 57–75. Open Publishing
Association, 2010. doi:10.4204/EPTCS.32.5.

[39] K. Nakata and T. Uustalu. A Hoare logic for the coinductive trace-based
big-step semantics of While. Log. Methods Comput. Sci., 11(1), 2015. doi:
10.2168/LMCS-11(1:1)2015.

[40] S. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Bur-
ton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones,
J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and
P. Wadler. Haskell 98: A non-strict, purely functional language, 1999.

[41] G. Plotkin and J. Power. Adequacy for algebraic effects. In F. Honsell and
M. Miculan, editors, Foundations of Software Science and Computation
Structures (FoSSaCS 2001), volume 2030 of Lecture Notes in Computer
Science, pages 1–24. Springer, 2001. doi:10.1007/3-540-45315-6_1.

[42] J. Power and H. Watanabe. Combining a monad and a comonad. Theo-
ret. Comput. Sci., 280(1-2):137–162, 2002. doi:10.1016/S0304-3975(01)
00024-X.

[43] W. W. Tait. Intensional interpretations of functionals of finite type I. J.
Symbolic Logic, 32(2):198–212, 06 1967. doi:10.2307/2271658.

[44] G. Winskel. The Formal Semantics of Programming Languages. MIT
Press, Cambridge, Massachusetts, 1993. doi:10.7551/mitpress/3054.

001.0001.

43

https://doi.org/10.4204/EPTCS.66.12
https://doi.org/10.1007/978-3-642-11957-6_26
https://doi.org/10.4204/EPTCS.32.5
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.2168/LMCS-11(1:1)2015
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1016/S0304-3975(01)00024-X
https://doi.org/10.1016/S0304-3975(01)00024-X
https://doi.org/10.2307/2271658
https://doi.org/10.7551/mitpress/3054.001.0001
https://doi.org/10.7551/mitpress/3054.001.0001

	1 Introduction
	2 Monads for Effectful Guarded Iteration
	3 A Metalanguage for Guarded Iteration
	4 Generic Denotational Semantics
	5 Functional Types
	6 Operational Semantics and Adequacy
	7 Conclusions and Further Work

