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Abstract

We study the problem of estimating the number of defective items d within a pile of n elements up
to a multiplicative factor of ∆ > 1, using deterministic group testing algorithms. We bring lower and
upper bounds on the number of tests required in both the adaptive and the non-adaptive deterministic
settings given an upper bound D on the defectives number. For the adaptive deterministic settings, our
results show that, any algorithm for estimating the defectives number up to a multiplicative factor of ∆
must make at least Ω

(

(D/∆2) log(n/D)
)

tests. This extends the same lower bound achieved in [1] for
non-adaptive algorithms. Moreover, we give a polynomial time adaptive algorithm that shows that our
bound is tight up to a small additive term.

For non-adaptive algorithms, an upper bound of O((D/∆2) (log(n/D) + log ∆)) is achieved by
means of non-constructive proof. This improves the lower bound O((log D)/(log ∆))D log n) from [1]
and matches the lower bound up to a small additive term.

In addition, we study polynomial time constructive algorithms. We use existing polynomial time
constructible expander regular bipartite graphs, extractors and condensers to construct two polynomial
time algorithms. The first algorithm makes O((D1+o(1)/∆2) · log n) tests, and the second makes (D/∆2) ·
quazipoly (logn) tests. This is the first explicit construction with an almost optimal test complexity.

1 Introduction

The problem of group testing is the problem of identifying or, in some cases, examining the properties of
a small amount of items known as defective items within a pile of elements using group tests. Let X be
a set of n items, and let I ⊆ X be the set of defective items. A group test is a subset Q ⊆ X of items.
The result of the test Q with respect to I is defined by Q(I) := 1 if Q ∩ I 6= ∅ and Q(I) := 0 otherwise.
While the defective set I is unknown to the algorithm, in many cases we might be interested in finding
the size of the defective set |I |, or at least an estimation of that value with a minimum number of tests.

Group testing was originally proposed as a potential solution for economising mass blood testing
during WWII [11]. Since then, group testing approach has been diversely applied in a wide area of
practical applications including DNA library screening [20], product testing quality control [22], file
searching in storage systems [17], sequential screening of experimental variables [18], efficient contention
algorithms for MAC [17,26], data compression [16], and computations in data stream model [8]. Recently,
during the COVID-19 pandemic outbreak, a number of researches adopted the group testing paradigm
not only to accelerate mass testing process, but also to dramatically reduce the number of kits required
for testing due to severe shortages in the testing kits supply [14,19,27].
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While an up-front knowledge of the value of d or at least an upper bound on it is required in many of
the algorithms aimed at identifying the defective items, estimating or finding the number of defectives is
an interesting problem on its own as well. Defectives estimation via group testing has been applied vastly
in biological and medical applications [7, 13, 23–25]. In [24], for example, group testing algorithms are
used to estimate aster-yellow virus transmitters proportion over the organisms in a natural population of
leafhoppers. Similarly, in [25], the authors estimate the infection rate of the yellow-fever virus in mosquito
population using group testing methods. On the other hand, in [13], group-testing-based estimation of
rare diseases prevalence is employed not only for its effectiveness but also because it naturally preserves
individual anonymity of the subjects.

Algorithms dedicated for this task might operate in stages or rounds. In each round, the tests are
defined in advance and tested in a single parallel step. Tests on some round might depend on the test
results of the preceding rounds. A single round algorithm is called non-adaptive algorithm, while a
multi-round algorithm is called adaptive algorithm.

In recent years, there has been an increasing interest in the problem of estimating the number of
defective items via group testing [2, 3, 5, 7, 9, 10, 12, 21]. The target in some of these papers is to find
an estimation d̂ within an additive factor of ǫ < 1 such that (1 − ǫ)d ≤ d̂ ≤ (1 + ǫ)d. For randomized
adaptive algorithms we have the following results. Falhatgar et.al. [12] give a randomised adaptive
algorithm that estimates d using 2 log log d+O(1/ǫ2 log 1/δ) queries in expectation where δ is the failure
probability of the algorithm. Bshouty et. al. [3] modified this result and gave an algorithm that uses
(1 − δ) log log d +O((1/ǫ2) log 1/δ) expected number of queries. Moreover, they proved a lower bound of
(1 − δ) log log d + Ω((1/ǫ) log(1/δ)) queries.

For randomized non-adaptive algorithms with constant estimation, Damaschke and Sheikh Muham-
mad give in [10] a randomized non-adaptive algorithm that makes O((log(1/δ)) log n) tests and in [2],
Bshouty gives the lower bound Ω(log n/ log log n).

In this paper, we are interested in deterministic adaptive and non-adaptive algorithms that estimate
the defective items set size d up to a multiplicative factor of ∆ > 1. Formally, let |I | := d and let D ≥ d.
We say that a deterministic algorithm A estimates d up to a multiplicative factor of ∆ if, given D as
an input to the algorithm, it evaluates an estimation d̂ such that d/∆ ≤ d̂ ≤ d∆. Bshouty et al. show
in [3] that, if no upper bound D is given to the algorithm, then any deterministic adaptive algorithm
(and therefore also non-deterministic algorithm) for this problem must make at least Ω(n) tests. This
is equivalent to testing all the items. This justifies the fact that any non-trivial efficient algorithm must
have some upper bound D for d.

Agarwal et.al. [1] consider this problem. They first give the lower bound of Ω((D/∆2) log(n/D))
queries for any non-adaptive deterministic algorithm. Moreover, using a non-constructive proof, they
give an upper bound of O (((log D)/(log ∆))D log n) queries.

We further investigate this problem. We bring new lower and upper bounds on the number of tests
required both in adaptive and non-adaptive deterministic algorithms. For the adaptive deterministic
settings, our results show that, any algorithm for estimating the defectives number up to a multiplicative
factor of ∆ must make at least Ω

(

(D/∆2) log(n/D)
)

tests. This extends the same lower bound achieved
in [1] for non-adaptive algorithms. Furthermore, we give a polynomial time adaptive algorithm that
shows that our bound is tight up to a small additive term.

For non-adaptive algorithms, we achieve an upper bound of O((D/∆2) (log(n/D) + log ∆)) by means
of non-constructive proof. This improves the lower bound O((log D)/(log ∆))D log n) from [1], and
matches the lower bound up to a small additive term.

We then study polynomial time constructive algorithms. For this task, we use existing polynomial
time constructible expander regular bipartite graphs, extractors and condensers to construct two poly-
nomial time algorithms. The first algorithm makes O((D1+o(1)/∆2) · log n) tests, and the second makes
(D/∆2) · quazipoly (log n) tests. To the best of our knowledge, this is the first explicit construction with
an almost optimal test complexity. Our results are summarised in Table 1.

2 Definitions and Preliminary Results

In this section, we give some notations and definition that will be used in this paper.
Let X = [n] := {1, · · · , n} be a set of items. Let I ⊆ X be a set of defective items, and let d denote

its size, i.e. d = |I |. In the group testing settings, a test is a subset Q ⊆ X of items. An answer to a test
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Bounds Adaptive/ Result Explicit/ Ref.

Non-Adapt. Non-Expl.

Lower B. Non-Adapt. D

∆2 log
n

D
- [1]

Lower B. Adaptive D

∆2 log
n

D
- Ours

Upper B. Adaptive D

∆2

(

log n

D
+ log∆

)

Explicit Ours

Upper B. Non-Adapt. logD

log∆D logn Non-Expl. [1]

Upper B. Non-Adapt. D

∆2

(

log n

D
+ log∆

)

Non-Expl. Ours

Upper B. Non-Adapt. D
1+o(1)

∆2 logn Explicit1 Ours

Upper B. Non-Adapt. D

∆2 ·Quazipoly(logn) Explicit Ours

Table 1: Upper and lower bounds on the number of tests required
for estimating defectives in deterministic group testing.

Q with respect to the defective items set I , is denoted by Q(I), such that Q(I) := 1 if Q ∩ I 6= ∅ and 0
otherwise. We denote by OI an oracle that for a test Q returns Q(I).

Let A be an algorithm with an access to OI , and let d = |I |. We say that the algorithm A estimates
d up to a multiplicative factor of ∆, if A gets as an input an upper bound D ≥ d and a parameter
∆ > 1, and outputs d̂ such that d/∆ ≤ d̂ ≤ d∆. We say that A is an adaptive algorithm, if its queries
depend on the result of previous queries, and non-adaptive if its queries are independent of previous ones
and therefore, can be executed in a single parallel step. We may assume that D ≥ ∆2, otherwise, the
algorithm trivially outputs d̂ = D/∆. We note here that ∆ ≥ 1 + Ω(1), that is, it is greater than a
constant that is greater than 1 and it may depend2 on n and/or D. This is implicit in [1] and is also
constrained in this paper. It is also interesting to investigate this problem when ∆ = 1 + o(n) where o()
(small o) is with respect to D and/or n.

We will use the following

Lemma 1. Chernoff’s Bound. Let X1, . . . , Xm be independent random variables taking values in
{0, 1}. Let X =

∑m
i=1 Xi denotes their sum and µ = E[X] denotes the sum’s expected value. Then

Pr[X > (1 + λ)µ] ≤

(

eλ

(1 + λ)(1+λ)

)µ

≤ e−
λ2µ
2+λ ≤







e−
λ2µ
3 if 0 < λ ≤ 1

e−
λµ
3 if λ > 1

. (1)

In particular,

Pr[X > Λ] ≤
(eµ

Λ

)Λ

. (2)

For 0 ≤ λ ≤ 1 we have

Pr[X < (1 − λ)µ] ≤

(

e−λ

(1 − λ)(1−λ)

)µ

≤ e−
λ2µ
2 . (3)

Moreover, we will often use the inequality

(n

k

)k

≤

(

n

k

)

≤
k
∑

i=0

(

n

i

)

≤
(en

k

)k

, (4)

1This result is true for ∆ > C for some constant C. See section 6.2.
2For example ∆ = log logn+ logD
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3 Upper Bound for Non-Adaptive Deterministic Algorithms

In this section, we give the upper bound for deterministic non-adaptive algorithm that estimates d up to
a multiplicative factor of ∆. We prove:

Theorem 2. Let D be some upper bound on the number of defective items d and ∆ > 1. Then, there is
a deterministic non-adaptive algorithm that makes

O

(

D

∆2

(

log
n

D
+ log ∆

)

)

tests and outputs d̂ such that d
∆

≤ d̂ ≤ d∆.

To prove the Theorem we need the following:

Lemma 3. Let ∆ > 1 and ℓ ≥ 2∆2. There is a non-adaptive deterministic algorithm that makes

t = O

(

ℓ

∆2

(

log
n

ℓ
+ log ∆

)

)

tests such that,

1. If the number of defectives d is less than ℓ/∆2, it outputs 0.

2. If it is greater than ℓ/∆, it outputs 1.

Proof. We choose a constant c such that (1 − ∆2/(cℓ))ℓ/∆
2

= 1/e. Note that

(

1 −
∆2

2ℓ

)ℓ/∆2

≥ 1 −
∆2ℓ

2ℓ∆2
=

1

2
>

1

e

and
(

1 −
2∆2

ℓ

)ℓ/∆2

=

(

(

1 −
2∆2

ℓ

)
ℓ

2∆2

)2

≤
1

e2
<

1

e
.

Therefore, such c exists and we have 1/2 ≤ c ≤ 2.
Consider a test Q ⊆ [n] chosen at random where each item i ∈ [n] is chosen to be in Q with probability

∆2/(cℓ). Let I be the set of defective items such that |I | = d, and let Q(I) be the result of the test Q
with respect to the set I . Then,

Pr[Q(I) = 0] =

(

1 −
∆2

cℓ

)d

. (5)

If d ≤ ℓ/∆2,

Pr[Q(I) = 0] ≥

(

1 −
∆2

cℓ

)ℓ/∆2

= e−1, (6)

if d = 2ℓ/∆2,

Pr[Q(I) = 0] =

(

1 −
∆2

cℓ

)2ℓ/∆2

= e−2, (7)

and if d = ℓ/∆, we get:

Pr[Q(I) = 0] =

(

(

1 −
∆2

cℓ

)
ℓ

∆2

)∆

= e−∆. (8)

Let Q1, Q2, . . . , Qt be a sequence of t i.i.d tests such that

t =
c′ℓ

(∆ − 1)2
ln

c′′∆2n

ℓ

where c′ = 54e2 and c′′ = 4e.
Let

η = e−1

(

1

2
+

1

2∆

)

.

Consider the following two events:
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1. A: There is a set of defectives I of size |I | ≤ ℓ/∆2 such that the number of tests with 0 answer is
less than ηt.

2. B: There is a set of defectives J of size |J | > ℓ/∆ such that the number of tests with 0 answer is
at least ηt.

Notice that, to prove the lemma it is enough to prove that Pr[A ∨ B] < 1. We will show that
Pr[A],Pr[B] < 1/2.

Let X1, . . . , Xt be random variables such that Xi = 1 if and only if Qi(I) = 0. Let X be the number
of tests that yield the result 0. Therefore, X =

∑t
i=1 Xi and define µ := E[X].

If |I | = d ≤ ℓ/∆2, then µ = t · E[Xi] = t ·Pr[Xi = 1]. By (6) we have

µ = E[X] ≥ t · e−1. (9)

By (3) in Lemma 1, for λ = 1/2 − 1/(2∆) we have

Pr[X ≤ ηt] = Pr[X ≤ (1 − λ)te−1] ≤ Pr[X ≤ (1 − λ)µ] ≤ e−
λ2µ
2 ≤ e−

(1−∆−1)2t

8e .

Using this result, equations (4) and the union bound, we can conclude that

Pr[A] ≤





ℓ/∆2
∑

i=0

(

n

i

)



 e−
(1−∆−1)2t

8e ≤

(

e∆2n

ℓ

)
ℓ

∆2

e−
(1−∆−1)2t

8e

=

(

e∆2n

ℓ

)
ℓ

∆2

e
− c′ℓ

8e∆2 ln c′′∆2n
ℓ =

(

e∆2n

ℓ

)
ℓ

∆2
(

c′′∆2n

ℓ

)− c′ℓ

∆2

<
1

2
.

On the other hand, for the event B, we have two cases.
Case I. 1 < ∆ ≤ 2.

If there is a set of defectives J of size |J | > ℓ/∆ such that more than ηt of the tests yield the
answer 0, then there is a set of defectives J ′ of size |J ′| = ℓ/∆ such that more than ηt of the tests
answers are 0. Denote by B′ the latter event. Then, by (8) we have µ = E[X] = e−∆t and for
λ = (e∆−1 − 1)/2 ≥ (∆ − 1)/2, η′ = (e−1 + e−∆)/2 ≤ η we get

Pr[B] ≤ Pr[B′] ≤

(

n

ℓ/∆

)

Pr [X ≥ ηt] ≤

(

n

ℓ/∆

)

Pr
[

X ≥ η′t
]

=

(

n

ℓ/∆

)

Pr [X ≥ (1 + λ)µ]

≤

(

e∆n

ℓ

) ℓ
∆

Pr [X ≥ (1 + λ)µ]

If 1 < ∆ ≤ 2 then 0 ≤ λ ≤ 1 and then by (1) in Lemma 1, we have

(

e∆n

ℓ

) ℓ
∆

Pr [X ≥ (1 + λ)µ] ≤

(

e∆n

ℓ

) ℓ
∆

e−λ2µ/3

≤

(

e∆n

ℓ

) ℓ
∆

e−(∆−1)2µ/12 since λ ≥ (∆ − 1)/2

=

(

e∆n

ℓ

) ℓ
∆

e−(∆−1)2e−∆t/12

=

(

e∆n

ℓ

) ℓ
∆
(

c′′∆2n

ℓ

)−c′ℓe−∆/12

≤

(

2en

ℓ

)ℓ (
c′′n

ℓ

)−(c′e−2/12)ℓ

<
1

2
1 ≤ ∆ < 2

Case II. ∆ > 2.
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In this case we have ℓ/∆ > 2ℓ/∆2. Therefore, if there is a set of defectives J of size |J | > ℓ/∆ such that
more than ηt of the tests yield the answer 0, then there is a set of defectives J ′ of size |J ′| = 2ℓ/∆2 such
that more than ηt of the tests answers are 0. Denote by B′′ the latter event. By (7), µ = E[X] = e−2t.
Let λ = 1/3 − 1/(3∆) < 1. Then ηt > (1 + λ)µ. By (1) in Lemma 1, we have

Pr[X ≥ ηt] ≤ Pr[X ≥ (1 + λ)µ] ≤ e−
λ2µ
3 ≤ e

−
(1−∆−1)2t

27e2 .

Then

Pr[A] ≤ Pr[B′′] ≤

(

n

2ℓ/∆2

)

e
−

(1−∆−1)2t

27e2 ≤

(

e∆2n

2ℓ

)
2ℓ
∆2

e
−

(1−∆−1)2t

27e2

=

(

e∆2n

2ℓ

)
2ℓ
∆2

e
− c′ℓ

27e2∆2 ln c′′∆2n
ℓ =

(

e∆2n

2ℓ

)
2ℓ
∆2
(

c′′∆2n

ℓ

)− c′ℓ

27e2∆2

<
1

2
.

We are now ready to prove Theorem 2.
Let A(ℓ,∆) be the algorithm from Lemma 3. Then, A(ℓ,∆) makes at most

cℓ

∆2
log

∆n

ℓ
(10)

queries for some constant c, and

1. If A(ℓ,∆) = 1, then d ≥ ℓ
∆2 .

2. If A(ℓ,∆) = 0, then d ≤ ℓ
∆
.

Consider the algorithm T (n,D,∆) that runs A(D/∆i,∆) for all i = 0, . . . , ⌈log D/ log ∆⌉. Let r be the
minimum integer such that A(D/∆r ,∆) = 1. Algorithm T (n,D,∆) then outputs d̂ = D/∆r+1. See
algorithm T in Figure 1.

T (n,D,∆)
1) r ← 0.
2) For each i = 0, 1, . . . , ⌈logD/ log∆⌉ do:

2.1) R← A(D/∆i,∆)
2.2) If (R = 1) then

r ← i

d̂← D/∆r+1

Output (d̂).

Figure 1: Algorithm T

We now prove:

Lemma 4. Algorithm T (n,D,∆) is deterministic non-adaptive that makes

O

(

D

∆2
log

(

∆n

D

))

tests and outputs d̂ that satisfies
d

∆
≤ d̂ ≤ ∆d.

Proof. For i = 0, if A(D/∆i,∆) = 1 then d ≥ D/∆2. Then d̂ = D/∆ ≤ ∆d and since D ≥ d we also
have d̂ = D/∆ ≥ d/∆.

For i > 0, if A(D/∆i−1,∆) = 0 and A(D/∆i,∆) = 1 then d ≤ D/∆i and d ≥ D/∆i+2. Then
d̂ = D/∆i+1 ≤ ∆d and d̂ ≥ d/∆.

6



Let q = ⌈log D/ log ∆⌉. Let t denote the number of queries performed by algorithm T (n,D,∆).
By (10), the number of tests is at most

q
∑

i=0

cD

∆i∆2
log

n∆i+1

D
≤

cD

∆2

∞
∑

i=0

1

∆i
log

n∆i+1

D

=
cD

∆2

(

(

log
n

D

)

∞
∑

i=0

1

∆i
+ (log ∆)

∞
∑

i=0

i + 1

∆i

)

≤
cD

∆2

(

∆

∆ − 1
log

n

D
+

∆2

(∆ − 1)2
log ∆

)

.

For the case when ∆ = 1 + Θ(1) we get

t = O
(

D log
n

D

)

and for the case when ∆ = ω(1) we get

t = O

(

D

∆2

(

log
n

D
+ log ∆

)

)

.

4 Lower Bound for Adaptive Deterministic Algorithm

In this section, we prove the following lower bound.

Theorem 5. Any deterministic adaptive group testing algorithm that given D > d, outputs d̂ that
satisfies d/∆ ≤ d̂ ≤ ∆d must make at least

Ω

(

D

∆2
log

n

D

)

queries.

For the proof, we use the following from [3].

Lemma 6. Let A be a deterministic adaptive algorithm that for a defective sets I ⊂ [n] makes the tests
T I
1 , T

I
2 . . . , T I

w(I) and let s(I) be the sequence of answers to these tests. If M = |{s(I)|I ⊆ [n]}| then the
test complexity of A is maxI w(I) ≥ log M .

The following Lemma assists us to prove the result declared by Theorem 5.

Lemma 7. Any deterministic adaptive algorithm such that, if the number of defectives d is less than or
equal d1 it outputs 0 and if it is greater than d2 it outputs 1, must make

Ω

(

d1 log
n

d2

)

tests.
In particular, when d1 = ℓ/∆2 and d2 = ℓ/∆ we get

Ω

(

ℓ

∆2

(

log
n

ℓ
+ log ∆

)

)

tests.

Proof. Let A be such algorithm. Let s(I) be the sequence of answers to the tests of A when the set of
defective items is I . Consider a set I of size d1 and let J = {J ⊆ [n] : |J | = d1, s(J) = s(I)}. Let
I ′ = ∪J∈J J . We claim that s(I ′) = s(I). Suppose for the contrary, s(I ′) 6= s(I). Then, since I ⊆ I ′,
there is a test Q ⊆ [n] that is asked by A that gives answer 0 to I and 1 to I ′. Since I ′ ∩Q 6= ∅, there is

7



a subset J ′ ∈ J such that J ′ ∩Q 6= ∅ and therefore Q gives answer 1 to J ′. Then s(J ′) 6= s(I) and we
get a contradiction.

Since s(I ′) = s(I) and algorithm A outputs 0 to I , it also outputs 0 to I ′. Therefore, |I ′| ≤ d2.
Therefore |J | ≤ N :=

(

d2
d1

)

. That is, for every possible sequence of answers s′ of the algorithm A, there

is at most N sets of size d1 that get the same sequence of answers. Since there are L :=
(

n
d1

)

such sets,
the number of different sequences of answers that A might have must be at least L/N . By Lemma 6,
the number of tests that the algorithm makes is at least

log

(

n
d1

)

(

d2
d1

) ≥ log

(

n

ed2

)d1

= Ω

(

d1 log
n

d2

)

.

The conclusions established by Lemma 7 show that the upper bound from Lemma 3 is tight. More-
over, using these results, we provide the following proof for Theorem 5.

Proof. Let d1 = D/∆2 − 1 and d2 = D. For sets of size less than or equal d1 the algorithm returns
d1/∆ ≤ d̂ ≤ ∆d1 and for sets of equal to d2 the algorithm returns d2/∆ < d̂ ≤ ∆d2. Since ∆d1 < d2/∆,
the above intervals are disjoint. So, the algorithm can distinguish between sets of size less that or equal
to d1 and sets of size greater than d2. By Lemma 7 the algorithm must make at least

Ω

(

D

∆2
log

n

D

)

tests.

5 Polynomial Time Adaptive Algorithm

In this section, we prove:

Theorem 8. Let D be some upper bound on the number of defective items d and ∆ > 1. Then, there is
a linear time deterministic adaptive algorithm that makes

O

(

D

∆2

(

log
n

D
+ log ∆

)

)

tests and outputs d̂ such that d
∆

≤ d̂ ≤ d∆.

We first describe the algorithm. The algorithm gets as an input the set of items X = [n] and splits
it into two equally-sized disjoint sets Q1 and Q2. The algorithm asks the queries defined by Q1 and
Q2 and proceeds in the splitting process on the sets that yielded positive answers only. We call these
sets defective sets. As long as the algorithm gets less than D/∆2 distinct defective sets, it continues
to split and test. Two cases can happen. Either it gets D/∆2 defective sets and then the algorithm
outputs d̂ = D/∆, or the number of the defective sets is always less than D/∆2 and then, the algorithm
finds all the defective items and returns their exact number. The algorithm is given in Figure 2. The
algorithm invokes the procedure Split(X) that on an input X = {a1, a2, . . . , an}, it returns the set W
where W := {X1, X2} such that Xi ⊆ X, X1 = {a1, a2, . . . , a⌊n/2⌋}, X2 = {a⌊n/2⌋+1, . . . , an} if |X| ≥ 2,
and W := {X} otherwise.

Lemma 9. Algorithm Adaptive-dEstimate is a deterministic adaptive algorithm that makes

2
D

∆2
log

n∆2

D
= O

(

D

∆2

(

log
n

D
+ log ∆

)

)

tests and outputs an estimation d̂ such that:

d

∆
≤ d̂ ≤ d∆.
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Adaptive-dEstimate (OI , X,∆, D)
1) Q← X,S ← ∅
2) While (|Q| ≤ D/∆2) do:

2.1) For each Qi ∈ Q
{

Q
(1)
i

, Q
(2)
i

}

← Split(Qi)

If (Q
(1)
i

(I) = 1) then S ← S ∪ {Q
(1)
i
}

If (Q
(2)
i

(I) = 1) then S ← S ∪ {Q
(2)
i
}

2.2) If ∀Si ∈ S, |Si| = 1

d̂← |S|

Output (d̂)
Else

Q← S, S ← ∅.

3) d̂← |Q| ·∆.

4) Output (d̂)

Figure 2: Algorithm Adaptive-dEstimate to estimate the number of defective items.

Proof. If d ≤ D
∆2 , then the splitting process in step 2 of the algorithm proceeds until each defective item

belongs to a distinct set. Eventually, the condition in step 2.2 is met and the algorithm outputs the exact
value of d. If d > D/∆2, then the splitting process stops when the number of defective sets |Q| exceeds
D/∆2. The algorithm halts and outputs d̂ = |Q|∆. Obviously, |Q| ≤ d. Therefore, d̂ = |Q|∆ ≤ d∆.
Moreover, |Q| > D/∆2 ≥ d/∆2 which implies that d̂ ≥ d/∆.

The number of iterations cannot exceed log n iterations. In the first log(D/∆2) iterations, in the

worst case scenario, the algorithm splits its current set Qi on each iteration into two sets Q
(1)
i and Q

(2)
i

such that Q
(1)
i (I) = Q

(2)
i (I) = 1. Therefore, the number of tests that the algorithm asks over all the first

log(D/∆2) iterations is at most
log(D/∆2)
∑

i=1

2i ≤ 2
D

∆2
.

Since |Q| ≤ D/∆2, in the other log n− log(D/∆2) iterations, the algorithm makes at most 2D/∆2 tests
each iteration. So, the total number of tests is at most

2
D

∆2

(

log n− log
D

∆2

)

+ 2
D

∆2
= O

(

D

∆2
log

n∆2

D

)

.

6 Polynomial Time Non-Adaptive Algorithm

In this section, we show how to use expanders, condensers and extractors to construct deterministic
non-adaptive algorithms for defectives number estimation. We prove:

Theorem 10. Let D be some upper bound on the number of defective items d and ∆ > 1. Then, there
is a polynomial time deterministic non-adaptive algorithm that makes

min
(

Do(1), 2log3(log n)
)

·
D

∆2
log n

tests and outputs d̂ such that d
∆

≤ d̂ ≤ d∆.
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6.1 Algorithms Using Expanders

Let G be a bipartite graph G = G(L,R,E) with left vertices L = [n], right vertices R = [m] and edges
E ⊆ L × R. For each edge (i, j) ∈ E, it holds that the endpoint i ∈ L and j ∈ R. For a vertex v ∈ L,
define Γ(v) to be the set of the neighbours of v in G i.e. Γ(v) := {u ∈ R|(v, u) ∈ E}. For a subset
S ⊆ L, we define Γ(S) to be the set of neighbours of S, meaning Γ(S) := ∪v∈SΓ(v). For a vertex
v ∈ L, the degree of v is defined as deg(v) := |Γ(v)|. We say that a bipartite graph G = G(L,R,E) is a
(k, a)-expander δ-regular bipartite graph if, the degree of every vertex in L is δ, and for every left-subset
S ⊆ L of size at most k, we have |Γ(S)| ≥ a|S|.

Lemma 11. Let X = [n] be a set of items and I ⊆ [n] is the set of defective items such that |I | = d is
unknown to the algorithm. Let G = G(L,R,E) be a (k, a)-expander δ-regular bipartite graph with |L| = n
and |R| = m. Then, there is a deterministic non-adaptive algorithm A, such that for n items, it makes
m tests and satisfies:

1. If |I | < ak/δ, then A outputs 0.

2. If |I | ≥ k, then A outputs 1.

Proof. For every j ∈ R, we define the test T (j) = {i|(i, j) ∈ E}. The number of tests is |R| = m. If
|I | ≥ k, then |Γ(I)| ≥ ak. Therefore, at least ak tests will give positive answer 1. If |I | < ak/δ, then,
since the degree of every vertex in L is δ, we have |Γ(I)| ≤ δ|I | < ak. This shows that, for this case, at
most ak − 1 tests give the answer 1. Hence, we can distinguish between the two cases.

Following the same proof of Lemma 4 with algorithm T in Figure 1, we have:

Lemma 12. Let A(ℓ,∆) be a deterministic non-adaptive algorithm such that, for n items, it makes
m(ℓ,∆) tests and satisfies:

1. If |I | < ℓ/∆2, then A outputs 0.

2. If |I | ≥ ℓ/∆, then A outputs 1.

Then, there is a deterministic non-adaptive algorithm T such that, given D > d, for n items it makes

⌈logD/ log∆⌉
∑

i=0

m

(

D

∆i
,∆

)

tests and outputs d̂ that satisfies d/∆ ≤ d̂ ≤ ∆d.

The parameters of the explicit construction of a (k, a)-expander δ-regular bipartite graph from [4]
are summarised in the following lemma.

Lemma 13. For any k > 0 and 0 < ǫ < 1, there is an explicit construction of a (k, a)-expander δ-regular
bipartite graph with

m = O(kδ/ǫ), δ = 2O(log3(log n/ǫ)), a = (1 − ǫ)δ.

We now prove:

Lemma 14. There is a polynomial time deterministic non-adaptive algorithm that makes

D

∆2
· 2O(log3(logn)) =

D

∆2
· quasipoly(log n)

tests and outputs d̂ that satisfies
d

∆
≤ d̂ ≤ ∆d.

Proof. We use the expander in Lemma 13. Recall that ∆ = 1 + Ω(1). Let r = min(∆, 2), ǫ = 1 − 1/r

and k = rℓ/∆2. Then a = δ/r = 2O(log3 log n) and m = m(ℓ,∆) = (ℓ/∆2)2O(log3 log n). By Lemma 11,
there is a deterministic non-adaptive algorithm A such that for n items, it makes m(ℓ,∆) tests and

1. If |I | < ak/δ = ℓ/∆2 then A outputs 0.

2. If |I | ≥ k = rℓ/∆2 then A outputs 1.

10



Algorithm A trivially satisfies the first condition required by Lemma 12. Consider item 2. If ∆ < 2 then
r = ∆ and then if |I | ≥ k = ℓ/∆ then A outputs 1. If ∆ > 2 then r = 2 and then if |I | ≥ k = 2ℓ/∆2

then A outputs 1. Since 2ℓ/∆2 < ℓ/∆, if |I | ≥ ℓ/∆ then A outputs 1.
Now by Lemma 12, there is a deterministic non-adaptive algorithm T such that, given D > d, for n

items, it makes
⌈logD/ log ∆⌉

∑

i=0

m

(

D

∆i
,∆

)

=
D

∆2
· 2O(log3(logn))

tests and outputs d̂ that satisfies d/∆ ≤ d̂ ≤ ∆d.

6.2 Algorithms Using Extractors and Condensers

Extractors are functions that convert weak random sources into almost-perfect random sources. We use
these objects to construct a non-adaptive algorithm for estimating d. We start with some definitions.

Definition 15. Let X be a random variable over a finite set S. We say that X has min-entropy at
least k if Pr[X = x] ≤ 2−k for all x ∈ S.

Definition 16. Let X and Y be random variables over a finite set S. We say that X and Y are ǫ−close
if maxP⊆S |Pr[X ∈ P ] −Pr[Y ∈ P ]| ≤ ǫ.

We denote by Uℓ the uniform distribution on {0, 1}ℓ. The notations Prx∈B or Ex∈B stand for the
fact that the probability and the expectation are taken when x is chosen randomly uniformly from B.

Definition 17. A function F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ is a k →ǫ k′ condenser if for every X with

min-entropy at least k and Y uniformly distributed on {0, 1}t̂, the distribution of (Y, F (X,Y )) is ǫ-close
to a distribution (Ut̂, Z) with min-entropy t̂+k′. A condenser is called (k, ǫ)-lossless condenser if k′ = k.
A condenser is called (k, ǫ)-extractor if m̂ = k′.

Let N̂ = {0, 1}n̂, T̂ = {0, 1}t̂ and M̂ = {0, 1}m̂, and let F : N̂ × T̂ → M̂ be a k →ǫ k′ condenser.

Consider the 2t̂ × 2n̂ matrix M induced by F . That is, for r ∈ T̂ and s ∈ N̂ , the entry Mr,s is equal to

F (s, r). For s ∈ N̂ , let M(s) be the sth column of M. Then, M(s)
r = Mr,s = F (s, r).

Definition 18. Let Σ be a finite set. An n-mixture over Σ is an n−tuple S := (S1, · · · , Sn) such that
for all i ∈ [n], Si ⊆ Σ.

Using these definitions and notations, we restate the result proved by Cheraghchi [6] (Theorem 9) in
the following lemma.

Lemma 19. Let F : {0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ be a k →ǫ k′ condenser. Let M be the matrix induced

by F . Then, for any 2t̂−mixture S = (S1, · · · , S2t̂
) over M̂ := {0, 1}m̂, the number of columns s in M

that satisfies

Pr
r∈T̂

[M(s)
r ∈ Sr] >

Er∈T̂ [|Sr |]

2k′
+ ǫ

is less than 2k.

Equipped with Lemma 19, we prove:

Lemma 20. If there is a k →ǫ k
′ condenser F : {0, 1}n̂×{0, 1}t̂ → {0, 1}m̂ then, there is a deterministic

non-adaptive algorithm A for n = 2n̂ items that makes m = 2t̂+m̂ tests and satisfies the following.

1. If the number of defectives is less than (1 − ǫ)2k′

then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1.

Proof. Consider the matrix M induced by the condenser F as explained above. We define the test

matrix T from M as follows. Let x ∈ {0, 1}m̂. Define e(x) ∈ {0, 1}2
m̂

such that e(x)y = 1 if and only

if x = y, where the bits in e(x) are indexed by the elements of {0, 1}2
m̂

. Each row r in the matrix M
is replaced by 2m̂ rows (in T ) such that in each entry Mr,s ∈ {0, 1}m̂ is replaced by the column vector

e(Mr,s)
T ∈ {0, 1}2

m̂

. The rows of the matrix T are indexed by T̂ × M̂ . Let T (i) denote the ith column
of T . Therefore, for r ∈ T̂ and j ∈ M̂ , the row (r, j) in the matrix T is denoted by T(r,j). Moreover,
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the ith entry of the row T(r,j) is denoted by T(r,j),i and T(r,j),i = T (i)
(r,j) = 1 if and only if Mr,i = j. The

size of the test matrix T is m× n.
Let the defective elements be si1 , . . . , siℓ and let y ∈ {0, 1}m indicate the tests result. Then, y is

equal to T (si1 ) ∨ · · · ∨ T (siℓ
). Let S = (Sr)r∈T̂ be a 2t̂−mixture over {0, 1}m̂ where for all r ∈ T̂ ,

Sr = {j ∈ {0, 1}m̂|y(r,j) = T
(si1 )

(r,j) ∨ · · · ∨ T
(siℓ

)

(r,j) = 1}. It is easy to see that:

1. |Sr| ≤ ℓ. This is because, by the definition of Sr, j ∈ Sr if and only if y(r,j) = 1. The entry y(r,j)

gets the value 1 if at least one of the entries T
(si1 )

(r,j) , · · · , T
(siℓ

)

(r,j) is 1. Any row in T (si1 ), · · · , T (siℓ
)

has exactly one entry that is equal to 1 in all the 2m̂ rows indexed by r. Hence, each row can cause
one item to be inserted to Sr.

2. For any sij ∈ {si1 , . . . , siℓ}, we have Prr∈T̂ [M
(sij )

r ∈ Sr] = 1

3. Given the matrix M, its test matrix T and the observed result y, for any column s the probability
Prr∈T̂ [M(s)

r ∈ Sr] can be easily computed.

If the number of defectives is less than (1− ǫ)2k′

then, by Lemma 19, all columns, except for at most
2k columns, satisfy

Pr
r∈T̂

[M(s)
r ∈ Sr] ≤

Er∈T̂ [|Sr|]

2k′
+ ǫ <

Er∈T̂ [(1 − ǫ)2k′

]

2k′
+ ǫ = 1.

So for less than 2k + 1 columns we have Prr∈T̂ [M(s)
r ∈ Sr] = 1. If the number of defectives is greater

than or equal 2k + 1, then for the columns of the defectives we have Prr∈T̂ [M
(s)
r ∈ Sr] = 1. So for more

than 2k columns we have Prr∈T̂ [M(s)
r ∈ Sr] = 1.

The following Lemma summarises the state of the art result due to Guruswami et. al. [15] on explicit
construction of expanders.

Lemma 21. For all positive integers n̂, k such that n̂ ≥ k, and all ǫ > 0, there is an explicit (k, ǫ)

extractor F : {0, 1}n̂ ×{0, 1}t̂ → {0, 1}m̂ with t̂ = log n̂+O(log k log (k/ǫ)) and m̂ = k′ = k−2 log 1/ǫ− c
for some constant c.

We now prove:

Lemma 22. There is a constant C such that for every ∆ > C, there is a polynomial deterministic non-
adaptive algorithm that estimates the number of defective items in a set of n items up to a multiplicative
factor of ∆ and asks

O

(

D1+o(1)

∆2
log n

)

queries.

Proof. We use the notations from Lemma 21. Let C = 27 · 2c−2. We choose ǫ = 2/3 and k′ such that

(1 − ǫ)2k′

= ℓ/∆2. Then

2k = 2k′+2 log(1/ǫ)+c = 27 · 2c−2 ℓ

∆2
<

ℓ

∆

By Lemma 20, there is a deterministic non-adaptive algorithm A for n = 2n̂ items that makes

m = 2t̂+m̂ = n̂2O(log k log(k/ǫ)) ℓ

(1 − ǫ)∆2
= 2log2 log(ℓ/∆) ℓ

∆2
log n

tests that satisfies the following:

1. If the number of defectives is less than (1 − ǫ)2k′

= ℓ/∆2 then A outputs 0.

2. If the number of defectives is greater than or equal 2k + 1 then A outputs 1 and, since 2k < ℓ/∆,
in particular, if the number of defectives is greater than or equal ℓ/∆ then A outputs 1.

By Lemma 12, the result follows.
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A similar work by Capalbo et.al. [4] gives an explicit constrction of a lossless condenser is summarised
in the following lemma:

Lemma 23. For all positive integers n̂, k and all ǫ > 0, there is an explicit lossless condenser F :
{0, 1}n̂ × {0, 1}t̂ → {0, 1}m̂ with t̂ = O(log3(n̂/ǫ)) and m̂ = k + log(1/ǫ) + O(1).

The construction from Lemma 23 yields a result that is similar to the one established in Lemma 22.
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