
Push-forward method for piecewise deterministic
biochemical simulations

Guilherme C.P. Innocentini

Universidade Federal do ABC, Santo André, Brazil

Arran Hodgkinson
Quantitative Biology and Medicine, University of Exeter, United Kingdom

Hodgkinson Laboratories Limited, Sheffield, United Kingdom

Fernando Antoneli

Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil

Arnaud Debussche

University of Rennes, CNRS, IRMAR - UMR 6625, F- 35000 Rennes, France

Ovidiu Radulescu
University of Montpellier, CNRS, LPHI - UMR CNRS 5235, Montpellier, France

Abstract

A biochemical network can be simulated by a set of ordinary differential equa-
tions (ODE) under well stirred reactor conditions, for large numbers of mo-
lecules, and frequent reactions. This is no longer a robust representation when
some molecular species are in small numbers and reactions changing them are
infrequent. In this case, discrete stochastic events trigger changes of the smooth
deterministic dynamics of the biochemical network. Piecewise-deterministic
Markov processes (PDMP) are well adapted for describing such situations. Al-
though PDMP models are now well established in biology, these models remain
computationally challenging. Previously we have introduced the push-forward
method to compute how the probability measure is spread by the deterministic
ODE flow of PDMPs, through the use of analytic expressions of the correspond-
ing semigroup. In this paper we provide a more general simulation algorithm
that works also for non-integrable systems. The method can be used for bio-
chemical simulations with applications in fundamental biology, biotechnology
and biocomputing. This work is an extended version of the work presented at
the conference CMSB2019.

Preprint submitted to Elsevier 15th February 2021

ar
X

iv
:2

00
9.

06
57

7v
2

 [
q-

bi
o.

Q
M

]
 1

2
Fe

b
20

21

1. Introduction

Stochastic simulation is a powerful tool in biology. Moreover, stochasticity
is a general property of biochemical networks, having multiple origins. Noise
is generated intrinsically by these molecular systems when neither the law of
large numbers nor the averaging theorem can be applied, for instance when
some of the constituent molecular species are present in small numbers and
trigger relatively slow reactions [5]. There are also extrinsic sources of noise,
resulting from a fluctuating cellular environment. The extrinsic noise paradigm
also applies to stochasticity resulting from manipulating biochemical networks
in an artificial environment such as lab on a chip or simply in a titration device
[1].

Stochastic simulation is used in single cell experimental studies, where the
amounts of mRNA [26, 20, 4, 25] and protein [9, 10] products of a gene can be
determined for each cell. By double- or multiple-fluorophore fluorescence tech-
niques, products from several genes can be quantified simultaneously and one
can have access to multivariate probability distributions of mRNA or proteins.
The stochastic dynamics of promoters and gene networks can have important
consequences for fundamental biology [8] but also for HIV [21] and cancer re-
search [11]. Predicting the probability distributions of biochemical networks’
products is also instrumental for lab-on-a-chip applications, when one wants to
optimize and control the functioning of these networks. For these reasons we
aim to develop effective methods for computing time-dependent distributions
for stochastic models. Our main objective is the reduction of computation time
which is prerequisite for parameter scans and machine learning applications [12].

The traditional stochastic simulation protocol uses the chemical master equa-
tion and the Gillespie algorithm. In such a protocol all the chemical reactions
are simulated individually as discrete stochastic events. Simulations on relev-
ant experimental times have to cope with 106 − 109 such events and generate
102 − 104 samples in order to get statistically significant estimates of molecu-
lar species distributions. Altogether, these simulations are extremely costly in
terms of execution time.

An important reduction of the simulation time is obtained by noticing that
the sources of noise can be localized in small parts of the system that behave
discretely, or in the discrete environmental variables in the case of intrinsic
or extrinsic noise, respectively. The remaining, large part of the system con-
sists of molecular species in large numbers that evolve continuously. This leads
to piecewise-deterministic Markov process (PDMP) approximations of the bio-
chemical dynamics, coupling discrete state Markov chain dynamics with con-
tinuous state ordinary differential equations (ODE) dynamics. The justification
of the PDMP approximations of the chemical master equation can be found in
[5, 6]. Although simpler than the chemical master equation, direct simulation
of the PDMP remains time consuming because the Markov chains can still have
a very large number of states [5].

In the CMSB2019 proceedings paper we have introduced new methods for
simulating PDMPs for gene networks [16]. A gene network PDMP model can be

2

simulated by numerical integration of ODEs satisfied by the mRNA and the pro-
tein species, coupled to the Markov chain describing the successive transitions of
the gene promoters [28, 5, 22, 18]. The simulation becomes particularly effective
when analytic solutions of the ODEs are available [14].

Probability distributions of PDMP are solutions of the Liouville-master par-
tial differential equations (PDEs). Numerical integration of these PDEs is an
interesting alternative to direct simulation, combining precision and speed for
small models. Finite difference methods, however, are of limited use in this con-
text as they can not cope with high dimensional models (for instance, extant
gene networks applications are restricted to the dimension 2, corresponding to
a single promoter, with or without self-regulation see [14, 17]).

Another interesting method for computing time dependent distributions is
the push-forward method. For gene networks, this method has been first intro-
duced in [13] and further adapted for continuous mRNA variables in [14]. It is
based on the idea to compute the probability distribution of gene products as
the push-forward measure of the semigroup defined by the ODEs. This method
is an approximation, as one has to consider that the discrete PDMP variables
are piecewise constant on a deterministic time partition. The transition rates
between promoter states were computed using a mean field approximation in
[14]. In the CMSB2019 proceeding paper, the mean field approximation was re-
placed by the next order approximation taking into account the second moment
of the protein distribution [16]. In this paper we extend the method to general
PDMP models, thus covering all biochemical networks, with both intrinsic and
extrinsic noise simulation protocols.

2. Models

2.1. ODE models of biochemical networks
A biochemical network is defined by a set of chemical reactions and a set

of chemical species. The amounts of different chemical species form a vector
x = (x1, x2, . . . , xN) ∈ RN+ , where xi is the concentration of the species i. Each
reaction is characterized by a stoichiometric vector νi ∈ ZN and a reaction rate
function Ri : RN+ → R. When all chemical species are present in large numbers,
the biochemical network is well described by a systems of ODEs

dx

dt
=

r∑
i=1

νiRi(x), (1)

For example, a simple gene transcription model can be obtained when a
large number, let’s say G, of a specific gene is present in the cell and, moreover,
the gene promoter has just two states: active and inactive. In this simple
model the gene product is the mRNA concentration. The vector of species
concentration is given by: x1 = P (inactive promoter concentration), x2 =
P ∗ (active promoter concentration) and x3 = X (mRNA concentration). The
concentration of inactive promoters is measured by the ratio between the number

3

of inactive promoters (GI) and the cell volume Vcell, so P = GI/Vcell; the same
holds for the concentrations of active promoters and mRNA, P = GA/Vcell,
where GA is the number of active promoters. The reactions are P → P ∗,
P ∗ → P , P ∗ → P ∗ + X, X → ∅. Thus, the stoichiometric vectors are ν1 =
(−1, 1, 0), ν2 = (1,−1, 0), ν3 = (0, 0, 1), ν4 = (0, 0,−1) and reaction functions
R1 = k1P , R2 = k2P

∗, R3 = k3P
∗, R4 = k4X, where the reaction rate constants

ki, 1 ≤ i ≤ 4, have dimension [1/time]. For large copy numbers of P , P ∗ and
X the simple transcription model reads:

dP

dt
= −k1P + k2P

∗,
dP ∗

dt
= k1P − k2P

∗,
dX

dt
= k3P

∗ − k4X . (2)

Note that dP
dt + dP∗

dt = 0 and so one of the first two equations can be discarded.
We must emphasize that gene transcription is only one of the many possible

examples of our formalism. The formalism defined by (1) covers all biochemical
network models and have large applicability in cell physiology.

2.2. PDMP models
When some, but not all, species are present in low numbers and there are

also slow reactions, a stochastic representation, such as a piecewise deterministic
Markov process (PDMP), is more appropriate than the deterministic equations
(1).

For instance, in the simple transcription model (2), assume that there is
only one copy of the gene, meaning G = GA + GI = 1. In this case, it does
not make sense to describe the time evolution of promoter variables by differ-
ential equations anymore. In this scenario, the promoter variables are discrete
numbers. As the copy number of the gene is one, is more suitable to replace
the concentration P by the discrete variable GA assuming values GA = 1 or
GA = 0. The same holds for P ∗, that is replaced by GI ∈ {0, 1}. Moreover,
since GA +GI = 1 one of these variables can be discarded.

The switching between the two discrete states of GA can be described by
a continuous time Markov chain with transition rates k1 and k2. That is, if
GA(0) = 1, then GA(t) = 1 for 0 ≤ t < T1 where T1 is a random time such
that P[T1 > t] = exp(−k2t) and GA(t) = 0 for T1 ≤ t < T1 + T2 where T2 is a
random time such that P[T2 > t] = exp(−k1t).

Moreover, suppose that the switching constants, k1 and k2, are small com-
pared to k4, and also that k3/k4 � 1. Thus, the variable X has a switching
behavior alternating accumulation and degradation periods when GA = 1 and
GA = 0, respectively, each one described by ODEs:

dX

dt
=

{
k3/Vcell − k4X when GA = 1
−k4X when GA = 0

, (3)

where Vcell is the cell volume.
Using methods from [6] it is possible to show that the “hybrid system”

(GA/Vcell, X), with X given by (3), converges to (2), as G→∞.

4

The PDMP formalism can be extended to a rather general class of biochem-
ical network models as follows:

A PDMP biochemical model is a stochastic process ζt having states in a
set of the form E = RN+ × S, where S is a finite set encoding discrete states
of the biochemical model, and ζt = (xt, st), where xt is a vector in RN+ whose
components xit (1 ≤ i ≤ N) encode the dynamics of i continuous biochemical
species, and st describes the jump Markov process between the discrete states.
The PDMP ζt = (xt, st) is determined by three characteristics:

1) For all fixed s ∈ S, a vector field Vs : RN+ → RN determining a unique
global flow Φs(t,x) in RN+ , such that, for t > 0,

dΦs(t,x)

dt
= Vs(Φs(t,x)), Φs(0,x) = x. (4)

The flow Φs(t,x) represents a one parameter semigroup fulfilling the prop-
erties

(i) Φs(0,x0) = x0,
(ii) Φs(t+ t′,x0) = Φs(t

′,Φs(t,x0)).

2) A transition rate matrix H : RN+ → MNs×Ns(R), such that Hr,s(x) is the
(r, s) element of the matrix H, Ns = #S is the number of states. If
(s 6= r), Hr,s(x) is the rate of probability to jump to the state r from the
state s. Furthermore, Hs,s(x) = −

∑
r 6=sHr,s(x) for all s ∈ S and for all

x ∈ RN .

3) A jump rate λ : E → R+. The jump rate can be obtained from the transition
rate matrix

λ(x, s) =
∑
r 6=s

Hr,s(x) = −Hs,s(x). (5)

From these characteristics, right-continuous sample paths {xt : t > 0} start-
ing at ζ0 = (x0, s0) ∈ E can be constructed as follows. Define

xt(ω) := Φs0(t,x0) for 0 ≤ t ≤ T1(ω), (6)

where T1(ω) is a realisation of the first jump time of st, with the distribution

F (t) = P[T1 > t] = exp

(
−
∫ t

0

λ(Φs0(u,x0), s0) du

)
, t > 0, (7)

and ω is the element of the probability space for which the particular realisation
of the process is given. The pre-jump state is ζT−1 (ω)(ω) = (Φs0(T1(ω),x0), s0)

and the post-jump state is ζT1(ω)(ω) = (Φs0(T1(ω),x0), s), where s has the
distribution

P[s = r] =
Hr,s0(Φs0(T1(ω),x0), s0)

λ(Φs0(T1(ω),x0), s0)
, for all r 6= s0. (8)

5

We then restart the process ζT1(ω) and recursively apply the same procedure at
jump times T2(ω), etc..

Note that between each two consecutive jumps xt follow deterministic ODE
dynamics defined by the vector field Vs. At the jumps, the values xt are con-
tinuous. More general definitions of PDMPs include jumps in the continuous
variables but will not be discussed here.

We define multivariate probability density functions ps(t,x). These functions
satisfy the Liouville-master equation which is a system of partial differential
equations:

∂ps(t,x)

∂t
= −∇x.(Vs(x)ps(t,x)) +

∑
s′

Hs,s′(x)ps′(t,x). (9)

This general formalism covers all biochemical models that have discrete vari-
ables. As salient examples we can cite gene networks [14], ion channels dynamics
for neuron networks [2], lab on chip biochemical devices [1].

2.3. PDMP models of ON/OFF gene networks
A particular example of PDMP biochemical model is represented by the

gene networks. Because these models are extensively used in systems biology,
we provide their details in this subsection.

Two state ON/OFF gene networks generalize the simple two state single
gene transcription model, by considering more interacting genes and by using
separate variables for the two gene products: mRNA and protein.

To each gene we associate a discrete variable σi with two possible values
σi = 0 for a non-productive state (OFF) and σi = 1 for a productive state
(ON). Furthermore, a gene i produces proteins and mRNAs in the amounts yi
and ri, respectively. A gene network state is described by the N−dimensional
vector xt = (r1(t), y1(t), r2(t), y2(t), . . . , rN/2(t), yN/2(t)). The gene products
amounts satisfy ODEs:

dyi
dt

= biri − aiyi,

dri
dt

= ki(σi)− ρiri (10)

The coupling between genes is modeled at the level of discrete state transitions.
The elements of the matrix H are functions of products from various genes. For
instance, if a gene i inhibits a gene j the transition rate from ON to OFF of the
gene j is an increasing function of the protein concentration yi.

As a first example that we denote as model M1, let us consider a two genes
network; the expression of the first gene being constitutive and the expression of
the second gene being activated by the first. We consider that the transcription
activation rate of the second gene is proportional to the concentration of the
first protein f2y1. All the other rates are constant f1, h1, h2, representing the
transcription activation rate of the first gene, and the transcription inactivation
rates of gene one and gene two, respectively. For simplicity, we consider that

6

the two genes have identical protein and mRNA parameters b1 = b2 = b, a1 =
a2 = a, ρ1 = ρ2 = ρ. We further consider that ki = k0 if the gene i is OFF and
ki = k1 > k0 if the gene i is ON.

The gene network has four discrete states, in order (0, 0), (1, 0), (0, 1), and
(1, 1). Then, the transition rate matrix for the model M1 is

H(y1, y2) =


−(f1 + f2y1) h1 h2 0

f1 −(h1 + f2y1) 0 h2

f2y1 0 −(f1 + h2) h1

0 f2y1 f1 −(h1 + h2)

 . (11)

The Liouville-master equation for the model M1 reads

∂p1

∂t
=− ∂[(br1 − ay1)p1]

∂y1
− ∂[(k0 − ρr1)p1]

∂r1
− ∂[(br2 − ay2)p1]

∂y2
− ∂[(k0 − ρr2)p1]

∂r2

+ h2p3 + h1p2 − (f1 + f2y1)p1,

∂p2

∂t
=− ∂[(br1 − ay1)p2]

∂y1
− ∂[(k1 − ρr1)p2]

∂r1
− ∂[(br2 − ay2)p2]

∂y2
− ∂[(k0 − ρr2)p2]

∂r2

+ f1p1 + h2p4 − (h1 + f2y1)p2,

∂p3

∂t
=− ∂[(br1 − ay1)p3]

∂y1
− ∂[(k0 − ρr1)p3]

∂r1
− ∂[(br2 − ay2)p3]

∂y2
− ∂[(k1 − ρr2)p3]

∂r2

+ h1p4 + f2y1p1 − (h2 + f1)p3,

∂p4

∂t
=− ∂[(br1 − ay1)p4]

∂y1
− ∂[(k1 − ρr1)p4]

∂r1
− ∂[(br2 − ay2)p4]

∂y2
− ∂[(k1 − ρr2)p4]

∂r2

+ f1p3 + f2y1p2 − (h1 + h2)p4.
(12)

The modelM2 differs from the modelM1 by the form of the activation function.
Instead of a linear transcription rate f2y1 we use a Michaelis-Menten model
f2y1/(K1 + y1). This model is more realistic as it takes into account that the
protein p1 has to attach to specific promoter sites which become saturated when
the concentration of this protein is high.

The transition rate matrix for the model M2 is

H(y1, y2) =


−(f1 + f2y1

K1+y1
) h1 h2 0

f1 −(h1 + f2y1
K1+y1

) 0 h2
f2y1
K1+y1

0 −(f1 + h2) h1

0 f2y1
(K1+y1) f1 −(h1 + h2)

 . (13)

7

The Liouville-master equation for the model M2 reads

∂p1

∂t
=− ∂[(br1 − ay1)p1]

∂y1
− ∂[(k0 − ρr1)p1]

∂r1
− ∂[(br2 − ay2)p1]

∂y2
− ∂[(k0 − ρr2)p1]

∂r2

+ h2p3 + h1p2 − (f1 + f2y1/(K1 + y1))p1,

∂p2

∂t
=− ∂[(br1 − ay1)p2]

∂y1
− ∂[(k1 − ρr1)p2]

∂r1
− ∂[(br2 − ay2)p2]

∂y2
− ∂[(k0 − ρr2)p2]

∂r2

+ f1p1 + h2p4 − (h1 + f2y1/(K1 + y1))p2,

∂p3

∂t
=− ∂[(br1 − ay1)p3]

∂y1
− ∂[(k0 − ρr1)p3]

∂r1
− ∂[(br2 − ay2)p3]

∂y2
− ∂[(k1 − ρr2)p3]

∂r2

+ h1p4 + f2y1/(K1 + y1)p1 − (h2 + f1)p3,

∂p4

∂t
=− ∂[(br1 − ay1)p4]

∂y1
− ∂[(k1 − ρr1)p4]

∂r1
− ∂[(br2 − ay2)p4]

∂y2
− ∂[(k1 − ρr2)p4]

∂r2

+ f1p3 + f2y1/(K1 + y1)p2 − (h1 + h2)p4.

3. Simulation methods

3.1. Monte-Carlo method
The Monte-Carlo method utilizes the direct simulation of the PDMP based

on the iteration of the following equations:

dx

dt
= Vs0(x(t)),

dF

dt
= −λ(x, s0)F, (14)

for t ∈ [0, T1) with initial conditions x(0) = x0, F (0) = 0, and stopping condi-
tion F (T1) = U , where U is random variable, uniform in the range [0, 1), followed
by the choice of the next discrete state s1 by using the matrix H(x(T1)).

A large number Nmc of sample traces is generated and the values of xt are
stored at selected times. Multivariate time dependent probability distributions
are then estimated from this data.

The complete algorithm is presented in the Algorithms 1 and 2.
The direct simulation of PDMPs needs the solutions of Eqs. (14) which can

be obtained by numerical integration. This is not always computationally easy.
Problems may arise for fast switching promoters when the ODEs have to be in-
tegrated many times on small intervals between successive jumps. Alternatively,
the numerical integration of the ODEs can be replaced by analytic solutions or
quadrature. Analytic expressions are always available for the gene network flow

8

Algorithm 1 NextState

Input: 1. x initial value continuous variable, 2. s initial discrete state, 3. t0
initial time, 4. tmax maximal time

Output: 1. (x0, x1, . . . , xn), 2. (t0, t1, . . . , tn) 3. s new discrete state
1: x0 := x; s0 := s
2: U := randunif([0, 1))
3: solve dx

dt = Vs0(x), dF
dt = −λ(x, s0)F with initial data x(t0) = x0,F (t0) = 1,

until F (t) = U or t = tmax, return x0 = x(t0), . . . , xn = x(tn), where
t0 < t1 < . . . < tn, tn = min(F−1(U), tmax).

4: V := randunif([0, 1))
5: CUM := 0; I := 0
6: while CUM < V do
7: I := I + 1
8: CUM := CUM +HI,s0(x)/

∑
J 6=s0 HJ,s0(x)

9: end while
10: return ((x0, x1, . . . , xn), (t0, t1, . . . , tn), I)

(10) and read

Φyi (t, y0, r0) = y0 exp(−ait)

+ bi

[(
r0 −

ki(σi)

ρi

)
exp(−ρit)− 1

ai − ρi
+
ki(σi)

ρi

1− exp(−ait)
ai

]
,

Φri (t, y0, r0) = (r0 − ki/ρi) exp(−ρit) + ki/ρi.

Let us consider the following general expression of the jump intensity func-
tion

λ(x, s) = c0(s) +

N∑
i

ci(s)yi +

N∑
i

di(s)fi(yi),

where fi are non-linear functions, for instance Michaelis-Menten function

fi(p
i) =

pi

Ki + pi

or Hill functions
fi(yi) =

(yi)
ni

Kni
i + (yi)ni

.

If di = 0 for all 1 ≤ i ≤ N , the cumulative distribution function of the wait-
ing time T1 can be solved analytically [14], otherwise it can be obtained by
quadrature. For example, for the model M2 one has

λ(x, s) =

(
f1 + f2

y1

K1 + y1

)
δs,1 +

(
h1 + f2

y1

K1 + y1

)
δs,2

+ (h2 + f1)δs,3 + (h2 + h1)δs,4,

9

Algorithm 2 PDMPmontecarlo

Input: 1. p0(x, s), initial distribution of (x0, s0). 2. τ time step for computing
the time-dependent distribution. 3. δx bin size in one direction.

Output: nt vectors H0, . . . ,Hnt,
representing the distribution at times 0, τ, . . . , ntτ

1: for i := 1 to nt do
2: Hi := nMx dimensional null vector
3: end for
4: for m := 1 to Nmc do
5: Draw (x0, s0) from the distribution p0(x, s)
6: x := x0,s := s0

7: t := t0; i := 0
8: while t < ntτ do
9: ((x0, . . . , xn), (t0, . . . , tn), snext) := NextState(x, s, t, tM)

10: for j := 1 to n do
11: if tj ≤ iτ < tj+1 then
12: Xi := (xj + xj+1)/2
13: increment by 1/((δx)NNmc),

the bin corresponding to Xi in the histogram Hi

14: i := i+ 1
15: end if
16: end for
17: x := xn
18: s := snext
19: t := tn
20: nr := nr + 1
21: end while
22: end for
23: return (H0, . . . ,Hnt)

where δi,j is Kronecker’s delta. In this case, the waiting time T1 is obtained as
the unique solution of the equation

− log(U) =

[
(f1 + f2)T1 + f2

∫ T1

0

1

K1 + Φy1(t′, y0, r0)
dt′
]
δs0,1

+

[
(h1 + f2)T1 + f2

∫ T1

0

1

K1 + Φy1(t′, y0, r0)
dt′
]
δs0,2

+ (h2 + f1)T1δs0,3 + (h2 + h1)T1δs0,4,

(15)

where U is a random variable, uniformly distributed in the range [0, 1). In our
implementation of the algorithm we solve (15) numerically, using the bisection
method.

10

3.2. Finite difference Liouville master equation method
The finite difference Liouville master equation method for a given number of

genes, Ng, uses a discrete approximation of the domain to compute the numer-
ical solution across time for a given higher-dimensional system (12), with ini-
tial conditions given by p1(0, y1, r1, . . .) := δ(y1, r1, . . .) and p2(0, r1, y1, . . .) :=
. . . := p2Ng (0, y1, r1, . . .) := 0 where δ(·) is the Dirac delta function. We com-
pute the solution for 2Ng distributions, since each gene has both an ON and
OFF state, respectively.

In order to achieve the simulation of the equations given by system (12), we
begin by discretising each of the domains into nη intervals, whose centres are
given by {η1, . . . , ηnη} ∈ y meeting the condition that η1 < η2 < . . . < ηnη and
where, likewise, an arbitrary discrete value in yi would be denoted ηi,j . Each
ηi, j then represents a unique, discrete, jth position in the protein abundance
domain spanned by yi. Likewise, mRNA would have an analogous discretisation
given by all ρi,j , ∀j ∈ {1, . . . , nρ}. Time is then similarly discretised by a time-
step τ into nt + 1 temporal locations given by {0, τ, . . . , τnt}. The task then
becomes the computation of the solution at each of these discrete locations in
the domain, such that the sink and source terms may be trivially calculated but
where the derivative terms warrant further explanation.

The solution to the advection equation under a uniform coefficient, χ, is given
by a translation in the relevant domain. To achieve this, whilst also maintaining
the stability of the system, as a whole, we implement a simultaneous forwards-
and backwards-difference discrete operator scheme. This means that for an
arbitrary probability density function, pk(t, yi, . . .), we write the discrete partial
derivative operator as

χ
∂

∂yi
pk(t, ηi,j , . . .) =


|χ|pk(t, ηi,j−1, . . .)− pk(t, ηi,j , . . .)

ηi,j − ηi,j−1
if χ > 0

|χ|pk(t, ηi,j+1, . . .)− pk(t, ηi,j , . . .)

ηi,j+1 − ηi,j
otherwise.

(16)
This may be evaluated as such for each term within the system of equations,
given by (12), and guarantees the probability balance of the system, as a whole.

Beyond the computation of the equation’s solutions at a single time-step
the solutions must be computed robustly across time. We therefore employ a
McCormack predictor-corrector scheme [19], given explicitly for any ith time-
step by

p′k,i+1 = pk,i + τFk(p1,i, . . . , pNg,i)

pk,i+1 =
1

2
(pk,i + p′k,i+1) +

1

2
τFk(p′1,i+1, . . . , p

′
Ng,i+1)

∀k ∈ {1, . . . , 2Ng},
(17)

where pk,i = pk(ti, y1, r1, . . .), Fk(p1, . . . , p2Ng) = ∂pk/∂t and p′k,i is the discrete
nomenclature for a prediction of the solution for pk at time ti.

11

The method for solving the problem, in totality, is then given by Algorithm
3 where, again, the partial derivative terms on the right-hand side of each equa-
tion are evaluated using (16). Algorithm 3 is a direct implementation of (17)
as an algorithm with the concurrent calculation of the distributions Pt, ∀t ∈
{0, τ, . . . , ntτ} from the individual distributions pk,i, ∀k ∈ {1, . . . , 2Ng}, i ∈
{0, . . . , nt}. For each time-step, we solve the right-hand side of the equation
using the predictor corrector scheme, update the value of each distribution, and
calculate the total distribution, Pt.

Algorithm 3 PDMPLiouvillemaster

Input: 1. p1,0, p2,0, p3,0, p4,0 initial distributions in (y1, r1, . . . , yNg , rNg), where
pi,t := pi(t, y1, r1, . . . , yNg , rNg), ∀i ∈ {1, . . . , 2Ng}. 2. τ time step for
computing the time-dependent distribution. 3. δy, δr bin size for the protein
and mRNA distributions, respectively.

Output: nt + 1 distributions P0, . . . , Pnt representing the sums of the indi-
vidual distributions in (y1, r1, y2, r2) at times 0, τ, . . . , ntτ , respectively

1: for i := 1 to nt do
2: for j := 1 to 2Ng do
3: Use pk,i−1 and discretised right hand side of PDE in (12) to compute

the temporal gradient, ∂tpj,i−1

4: Compute predicted solution at next time step as p′j,i = pj,i−1+τ∂tpj,i−1

5: end for
6: Set Pi = 0
7: for j := 1 to 2Ng do
8: Use prediction p′k,i and discretised right hand side of PDE in 12 to

compute the temporal gradient, ∂tp′j,i
9: Compute corrected solution at next time step as

pj,i = 1
2 (pj,i−1 + p′j,i) + 1

2τ∂tp
′
j,i

10: Set Pi = Pi + pj,i
11: end for
12: end for
13: return (P0, . . . , Pnt)

3.3. Push-forward method
3.3.1. General algorithm

This method allows one to compute the multivariate probability distribution
of the continuous variable x at a time τ given the probability distribution of
(x, s) at time 0.

In order to achieve this we consider a deterministic partition τ0 = 0 < τ1 <
. . . < τM = τ of the interval [0, τ] such that ∆M = maxj∈[1,M](τj − τj−1)
is small. The main approximation of this method is to assume that st, for
t ∈ [0, τ], is piecewise constant on this partition, more precisely, that st = sj :=
sτj , for t ∈ [τj , τj+1), 0 ≤ j ≤ M − 1. This is rigorously true for intervals

12

Algorithm 4 PDMPpushforward

Input: 1. p0(x, s), initial distribution of (x0, s0). 2. τ time step for computing
the time-dependent distribution

Output: nt vectors H0, . . . ,Hnt,
representing the distribution at times 0, τ, . . . , ntτ

1: compute H0, P0 from initial distribution
2: for i := 1 to nt do
3: for j := 1 to nNx do
4: for s0 := 1 to Ns do
5: solve dx0

dt = Vs0(x0), dΠ0
dt = H(x0)Π0 with initial conditions x0(0) =

Cj ,Π0(0) = I from t = 0 to t = τ1
6: for s1 := 1 to Ns do
7: solve dx1

dt = Vs1(x1), dΠ1
dt = H(x1)Π1 with initial conditions

x1(τ1) = x0(τ1),Π1(0) = I from t = τ1 to t = τ2
8: for s2 := 1 to Ns do
9: solve dx2

dt = Vs2(x2), dΠ2
dt = H(x2)Π2 with initial conditions

x2(τ2) = x1(τ2),Π2(0) = I from t = τ2 to t = τ3
10: for s3 := 1 to Ns do
11: solve dx3

dt = Vs3(x3) with initial conditions x3(τ3) = x2(τ3)
from t = τ3 to t = τ4

12: PM = Π2s3,s2Π1s2,s1Π0s1,s0P0s0
13: x = x3(τ4)
14: Hi(BIN(x)) = Hi(BIN(x)) + PMHi−1(j) BIN(x) : bin

containing x
15: end for
16: end for
17: end for
18: end for
19: end for
20: end for

[τj , τj+1) completely contained between two successive random jump times of
st. This situation becomes very frequent for a very fine partition (large M).
Thus, the error generated by the approximation vanishes in the limit M → ∞
(the rigorous result is Theorem 1 given in the Results section).

For each path realization SM := (s0, s1, . . . , sM−1) ∈ Ω := SM of the discrete
states, we can compute x(t), t ∈ [0, τ] as the continuous solution of the following
ODE with piecewise-defined r.h.s:

dx

dt
= Vsj (x), for t ∈ [τj , τj+1), 0 ≤ j ≤M − 1 (18)

and with the initial condition x(0) = x0.
In order to compute the probability P[SM] of a path realization we can use

13

s0=1 s1=1 s2=1 s3=0 s4=0

t

x

0 τ1 τ2 τ3 τ4 τ

Figure 1: Deterministic partition of time in the push forward method. Trajectories of the
PDMP model (red line) having a jump of the discrete state inside [τ2, τ3) are replaced by a
trajectory (black line) having a jump of the discrete state at τ3.

the fact that, given xt, st is a finite state Markov process. Therefore,

P[SM] = ΠsM−1,sM−2
(τM−2, τM−1) . . .Πs1,s0(τ0, τ1)PS0 (s0), (19)

where PS0 : S → [0, 1] is the initial distribution of the discrete state, and
Π(τj , τj+1) is the solution, at t = τj+1, of

dΠ(τj , t)

dt
= H(xt)Π(τj , t) (20)

with Π(τj , τj) = I and xt is given by (18).
In order to compute the probability distribution of x at time τ one has to

sum the contributions of all solutions of (18), obtained for the NM
s realisations

of promoter state paths with weights given by the probabilities of the paths.
Suppose that we want to estimate the distribution of x(τ), using a multivari-

ate histogram with bin centers c(l1,...,lN) = (cl11 , . . . , c
lN
N), 1 ≤ li ≤ nx, 1 ≤ i ≤ N

where nx is the number of bins in each direction xi, 1 ≤ i ≤ N . The initial
distribution of x at time t = 0 is given by the bin probabilities p(l1,...,lN)

0 , 1 ≤
i ≤ N, 1 ≤ li ≤ nx and the distribution at time τ are given by the probabilities
p

(l1,...,lN)
τ , 1 ≤ i ≤ N, 1 ≤ li ≤ nx.
Let x(l1,...,lN)(t) be the solution of (18) with x(l1,...,lN)(0) = c(l1,...,lN) and

let (l′1, . . . , l
′
N) be the histogram bin containing x(l1,...,lN)(τ). The application

(l1, . . . , lN)→ (l′1, . . . , l
′
N) := ψ(l1, . . . , lN) is in general many to one. Given the

14

probability P[SM] of a path SM ∈ Ω, the push forward distribution of x(τ) is
computed as

p
(l′1,...,l

′
N)

τ =
∑
SM∈Ω

∑
ψ(l1,...,lN)=(l′1,...,l

′
N)

p
(l1,...,lN)
0 P[SM] , (21)

The push-forward method can be applied recursively to compute the dis-
tribution at times τ, 2τ, . . . , ntτ . The complete algorithm is schematized in
Algorithm 4 for the choice M = 4.

Remark 1. The Algorithm 4 can be used for computing the full multivariate
probability distribution of the vector x(t), but also for computing marginal dis-
tributions. For gene network the full multivariate distribution implies products
from all genes, whereas a marginal distribution can select only one, or a small
number of genes. For marginals, the dimension N is replaced by Nm < N where
Nm is the number of components of interest of the vector x(t).

Remark 2. For gene networks, the numerical integration of the ODEs (steps
7,9,11 in the Algorithm 4) can be replaced by symbolic solutions. For each path
realization SM := (s0, s1, . . . , sM−1) ∈ Ω := {0, 1, . . . , 2N − 1}M of promoter
states, we can compute the protein and mRNA levels, yt and rt, respectively,
of all genes i ∈ {1, N}, at t = τ :

riτ = ri0e
−ρτ +

k0

ρ
(1− e−ρτ) +

k1 − k0

ρ

M−1∑
j=1

e−ρτ (e−ρτj+1 − e−ρτj)sij (22)

yiτ = yi0e
−aτ +

bri0
a− ρ

(e−ρτ − e−aτ) +
bk0

ρ

(
1− e−aτ

a
+
e−aτ − e−ρτ

a− ρ

)
+

b(k1 − k0)

ρ
e−aτ

M∑
j=1

sij−1wj , (23)

for i ∈ {1, . . . , N}. Here,

wj =
e(a−ρ)τ − e(a−ρ)τj

a− ρ
(eρτj − eρτj−1)

− e(a−ρ)τj − e(a−ρ)τj−1

a− ρ
eρτj−1 +

eaτj − eaτj−1

a

with sij := 0 if promoter i is OFF for t ∈ [τj , τj+1) and sij := 1 if promoter i is
ON for t ∈ [τj , τj+1).

3.3.2. Complexity issues
The complexity of the push forward algorithm scales as ntnNx NM

s (N +N2
s),

because there are NM
s possible paths SM , nNx histogram bins, and nt time

complexity for solving (18), (20) is O(N + N2
s). The complexity of com-

puting marginal distributions of Nm < N variables is lower and scales as
ntn

Nm
x NM

s (N +N2
s).

15

3.3.3. Mean field push-forward method
A way to mitigate the computational burden of the Algorithm 4 is to use

the mean field approximation. In the mean field approximation, the probabil-
ities P[SM] are computed from averaged equations that are identical for each
histogram bin.

More precisely, equation (20) is replaced by

dΠ(t′, t)

dt
= E[H(xt)] Π(t′, t) (24)

where t′ ≤ t, Π(t′, t′) = I.
Using a Taylor expansion of H(xt) around the expectation E[xt], one gets

dΠ(t′, t)

dt
= H(E[xt]) +

1

2

(
H ′′(E[xt]) : Var(xt)

)
Π(t′, t), (25)

where Var(xt) is the variance/covariance matrix of xt, H ′′ is the element-wise
second derivative matrix of H and : stands for the double dot product.

In (25) the moments E[xt] and Var(xt) are either available analytically or
are solutions of ODEs obtained using moment closures such as in [23].

The main advantage of the mean-field approximation is that the transition
matrix elements can be computed outside the discrete variables loop. The com-
plete algorithm is presented in the Algorithm 5. The time complexity in this
case is ntnNx NM

s N , because in the innermost loop one has to solve only (18),
whose time complexity is O(N).

For gene networks, the mean field push-forward procedure can be applied
also to ODE dynamics of the individual genes. This is possible because during
ON or OFF periods, the ODE dynamics of one gene is uncoupled from that of
another gene. Furthermore, the Ns × Ns transition matrix H can be replaced
by N/2 2 × 2 transition matrices of one gene with elements averaged over the
values of the other genes. This approximation reduces the complexity of the
calculations to 2nt(nx)2N2M , which is linear in the number of genes. The mean
field push-forward algorithm for gene networks is presented in the Algorithm 6.

This method has already been used for particular models. In [14] we have
replaced the regulation term f2y1(t) occurring in the transition matrix of the
gene network model M1 by its mean f2E[y1(t)]. This means that the gene 2
switches between its ON and OFF states with rates given by the mean of the
regulatory protein y1. In this case both H and Π can be computed analytically,
which leads to a drastic reduction in the execution time. This simple mean
field approach is suitable for the model M1, which contains only linear regula-
tion terms. For non-linear regulation terms, Π can not generally be computed
analytically. Moreover, the naive mean field approach introduces biases. For
instance, in the case of the modelM2, the approximation f2y1(t)/(K1 +y1(t)) ≈
f2E[y1(t)] /(K1 +E[y1(t)]) is poor. In the CMSB2019 paper we proposed a bet-
ter approximation [16], in which we replace f2y1(t)/(K1 + y1(t)) by its mean
value and use

E
[

f2y1(t)

K1 + y1(t)

]
≈ f2E[y1(t)]

(K1 + E[y1(t)])
− f2

(K1 + E[y1(t)])3
Var(y1(t)), (26)

in order to correct the bias. This approach is generalized by (25).

16

Algorithm 5 PDMPpushforwardmeanfield

Input: 1. pg0(x, s), initial distribution of (x0, s0). 2. τ time step for computing
the time-dependent distribution

Output: nt vectors H0, . . . ,Hnt representing the distribution of x at times
0, τ, . . . , ntτ

1: compute H0, P0 from initial distribution
2: for i := 1 to nt do
3: for s0 := 1 to Ns do
4: for s1 := 1 to Ns do
5: for s2 := 1 to Ns do
6: for s3 := 1 to Ns do
7: Compute

PM (s0, s1, s2, s3) = Πs3,s2(τ2, τ3)Πs2,s1(τ1, τ2)Πs1,s0(τ0, τ1)P0s0
where Π(t′, t) is the solution of (25).

8: end for
9: end for

10: end for
11: end for
12: for s0 := 0 to 1 do
13: for j := 1 to nNx do
14: solve dx0

dt = Vs0(x0), with initial conditions x0(0) = Cj , from t = 0
to t = τ1

15: for s1 := 0 to 1 do
16: solve dx1

dt = Vs1(x1) with initial conditions x1(τ1) = x0(τ1) from
t = τ1 to t = τ2

17: for s2 := 0 to 1 do
18: solve dx2

dt = Vs2(x2) with initial conditions x2(τ2) = x1(τ2) from
t = τ2 to t = τ3

19: for s3 := 0 to 1 do
20: solve dx3

dt = Vs3(x3) with initial conditions x3(τ3) = x2(τ3)
from t = τ3 to t = τ4

21: x = x3(τ4)
22: Hi(BIN(x)) = Hi(BIN(x))+PM (s0, s1, s2, s3)Hi−1(j) where

BIN(x) is the bin containing x
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for

17

Algorithm 6 PDMPpushforwardmeanfieldgenenetwork

Input: 1. for each gene g ∈ {1, 2, . . . , N/2}, p0(x, s), initial distribution of
(x0, s0), where x = (r, p). 2. τ time step for computing the time-dependent
distribution

Output: for each gene g ∈ {1, 2, . . . , N/2}, nt vectors H0, . . . ,Hnt representing
the distribution at times 0, τ, . . . , ntτ

1: for g := 1 to N/2 do
2: compute H0, P0 from initial distribution for gene g
3: for i := 1 to nt do
4: for s0 := 0 to 1 do
5: for s1 := 0 to 1 do
6: for s2 := 0 to 1 do
7: for s3 := 0 to 1 do
8: Compute

PM (s0, s1, s2, s3) = Πs3,s2(τ2, τ3)Πs2,s1(τ1, τ2)Πs1,s0(τ0, τ1)P0s0
where Π(t′, t) is the solution of (25) for gene g.

9: end for
10: end for
11: end for
12: end for
13: for s0 := 1 to 2 do
14: for j := 1 to n2

x do
15: solve dx0

dt = Vs0(x0), with initial conditions x0(0) = Cj , from t = 0
to t = τ1, and Vs is defined by (10) for gene g

16: for s1 := 1 to Ns do
17: solve dx1

dt = Vs1(x1) with initial conditions x1(τ1) = x0(τ1) from
t = τ1 to t = τ2

18: for s2 := 1 to Ns do
19: solve dx2

dt = Vs2(x2) with initial conditions x2(τ2) = x1(τ2)
from t = τ2 to t = τ3

20: for s3 := 1 to Ns do
21: solve dx3

dt = Vs3(x3) with initial conditions x3(τ3) = x2(τ3)
from t = τ3 to t = τ4

22: x = x3(τ4)
23: Hi(BIN(x)) = Hi(BIN(x)) + PM (s0, s1, s2, s3)Hi−1(j)

where BIN(x) is the bin containing x
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for
30: end for

18

As in [14] we can use analytic expressions for E[y1(t)], but also for Var(y1(t)).
These expressions can be found in the Appendix A. Although the elements
of matrix H have analytic expressions, the elements of the matrix Π contain
integrals that must be computed numerically. For the model M2, we have

Π1(τ, τ ′) =

[
(1− p1,on) + p1,one

−ε1(τ ′−τ) (1− p1,on)(1− e−ε1(τ ′−τ))

p1,on(1− e−ε1(τ ′−τ)) p1,on + (1− p1,on)e−ε1(τ ′−τ)

]
, (27)

for the transition rates of the first gene, where p1,on = f1/(f1 + h1), ε1 =
(f1 + h1)/ρ, and

Π2(τ, τ ′) =

[
K(τ, τ ′) + h2

∫ τ ′
τ
K(t, τ ′) dt h2

∫ τ ′
τ
K(t, τ ′) dt

1−K(τ, τ ′)− h2

∫ τ ′
τ
K(t, τ ′) dt 1− h2

∫ τ ′
τ
K(t, τ ′) dt

]
, (28)

for the transitions of the second gene, where K(τ, τ ′) = e−
∫ τ′
τ

(h2+F2(t)) dt and
F2(t) = f2E

[
y1(t)

K1+y1(t)

]
.

4. Results

4.1. Convergence of the push-forward method
The probability distribution obtained with the push-forward method con-

verges to the exact PDMP distribution in the limit M → ∞. This is a con-
sequence of the following theorem:

Theorem 1. Let ΦSM (t,x) be the flow defined by the formulas (18), such that
xt = ΦSM (t,x(0)) for t ∈ [0, τ]. Let µMt : B(RN)→ R+ be the probability meas-
ure defined as µMt (A) =

∑
SM∈Ω P[SM]µ0(Φ−1

SM
(t, A)), where µ0 : B(RN)→ R+

is the probability distribution of x at t = 0, P[SM] is given by (19), and B(RN)
is the σ-algebra of Borel sets on RN . Let µt, the exact distribution of xt for the
PDMP defined in Section 2.2, with initial values (x0, s0) distributed according
to µ0 × PS0 . Assume that the vector fields Vs, s ∈ S, and the transition matrix
H are C1 functions and that there exists a bounded set of RN such that all flows
Φs, s ∈ S, leave B invariant. Assume that |τi− τi−1| < C/M for all i ∈ [1,M],
where C is a positive constant. Then, for all t ∈ [0, τ], µMt converges in distri-
bution to µt, when M → ∞. More precisely, for all Lipschitz functions ϕ on
RN , there exists a constant κ depending on the data of the PDMP, τ and the
Lipschitz constant of ϕ such that:∣∣∣∣∫

B

ϕ(x)µMt (dx)−
∫
B

ϕ(x)µt(dx)

∣∣∣∣ = |E(ϕ(ΦSM (t,x)))− E(ϕ(xt))| ≤ κ/M.

Also for all Borel set A in B(RN) such that µt(∂A) = 0 we have µMt (A)→ µt(A)
when M →∞. Here, ∂A denotes the boundary of A.

The proof of this theorem is given in Appendix B. It is inspired by the
classical proof of weak order of convergence for the Euler scheme for a stochastic
differential equation (see [24]).

19

Remark 3. If the flows Φs are not known explicitly, a numerical scheme can
be used. This introduces another source of error. Our proof easily extends
and provide a similar result of convergence. If one wants to investigate the
convergence of p(l1,...,lN)

τ given by (21), this follows from the above theorem only
under the assumption that the probability that the PDMP is on the boundary
of the bins at time t is 0. Note this is not restrictive and happens only in
pathological situations. Also, if the initial distribution has a smooth density, we
can prove that the error estimate above holds for borelian bounded functions
ϕ, thus we can choose ϕ to be an indicator function and obtain error bounds
for these probabilities without this restriction. More precisely, we have for any
Borel set A: ∣∣µMt (A)− µt(A)

∣∣ ≤ κ/M,

where now κ depends on the Lipschitz constant of the initial density, see Remark
4 in Appendix B.

4.2. Testing the performance of various methods
4.2.1. Testing accuracy and speed of push-forward method compared to the Monte-

Carlo method
In order to test the push-forward method, we compared the resulting prob-

ability distributions with the ones obtained by the Monte-Carlo method using
the direct simulation of the PDMP. We considered the models M1 and M2 with
the following parameters: ρ = 1, p1 = f

f+h = 1/2, a = 1/5, b = 4, k0 = 4,
k1 = 40 for the two genes. For the parameter ε = f+h

ρ we used two values:
ε = 0.5 for slow genes and ε = 5.5 for fast genes. We tested the slow-slow and
the fast-fast combinations of parameters.

The initial distribution of the promoters state was PS0 ((0, 0)) = 1 where the
state (0, 0) means that both promoters are OFF. The initial probability measure
µ0 was a delta Dirac distribution centered at r1 = r2 = 0 and y1 = y2 = 0.
This initial condition is obtained by always setting the direct simulation of the
PDMP to start from r1(0) = r2(0) = 0, y1(0) = y2(0) = 0, and s1

0 = s2
0 = 0.

The simulations were performed between t0 = 0 and tmax = 20 for fast genes
and between t0 = 0 and tmax = 90 for slow genes. In order to estimate the
distributions we have used MC = 50000 samples for the highest sampling. The
push-forward method was implemented with M = 10 equal length sub-intervals
of [0, τ]. The time step τ was chosen to be τ = 2 for fast genes and τ = 15 for
slow genes. The procedure was iterated 10 times for fast genes (up to tmax = 20)
and 6 times for slow genes (up to tmax = 90).

The execution times are shown in the Table 1. The comparison of the prob-
ability distributions are illustrated in the Figures 2 and 3. In order to quantify
the relative difference between methods we use the L1 distance between distri-
butions. More precisely, if p(x) and p̃(x) are probability density functions to be
compared, the distance between them is

d =

∫
|p(x)− p̃(x)| dx. (29)

20

Model Monte-Carlo high sampling [min] Push-forward [s]
M1 slow-slow 45 20
M1 fast-fast 74 30
M2 slow-slow 447 20
M2 fast-fast 758 30

Table 1: Execution times for different methods. All the methods were implemented in Matlab
R2013b running on a single core (multi-threading inactivated) of a Intel i5-700u 2.5 GHz
processor. The Monte-Carlo method computed the next jump waiting time (Algoritm 1) using
the analytical solution of (15) for M1 and the numerical solution of (15) for M2. The push-
forward method used Algorithm 6 and analytic solutions for mRNA and protein trajectories
from (23), (18) and numerical computation of the integrals in (28), for both models.

Figure 2: Histograms of protein for the second gene, produced by the Monte-Carlo method
(green lines) and by the Push-forward method (black lines) for the model M1. The green
dotted line results from low sampling Monte-Carlo with similar execution time as the push-
forward method, whereas the solid green line results from high sampling Monte-Carlo. The
distances, defined by (29), are between low sampling and high sampling Monte-Carlo (d∗) and
between push-forward and high sampling Monte-Carlo (d).

21

Figure 3: Histograms of protein for the second gene, produced by the Monte-Carlo method
(green lines) and by the Push-forward method (black lines) for the model M2. The green
dotted line results from low sampling Monte-Carlo with similar execution time as the push-
forward method, whereas the solid green line results from high sampling Monte-Carlo. The
distances, defined by (29), are between low sampling and high sampling Monte-Carlo (d∗) and
between push-forward and high sampling Monte-Carlo (d).

This distance was computed for distributions resulting from the push-forward
method and the Monte-Carlo method with the highest sampling. We have also
used a reduced sampling Monte-Carlo scheme whose execution time is similar
to the one of the push-forward method. The distributions resulting from low
sampling and high sampling Monte-Carlo were compared using the same dis-
tance. Figures 2 and 3 clearly show that, for the same execution time, the
push-forward method outperforms the Monte-Carlo method.

22

4.2.2. Comparing the Monte Carlo, push-forward and Liouville-master methods
Using Python, we have implemented Algorithm 4 for the one gene model,

to compute mRNA (r(t)) and protein (y(t)) probability densities P (r, t) and
P (y, t), respectively. For the one gene model, we have considered two switching
regimes: slow (ε = 0.5) and fast (ε = 5.5). Also in Python, we have implemented
Algorithm 5 for the two genes model, to compute the probability densities for
mRNA and protein associated to gene one (P (r1, t) and P (y1, t)) and for mRNA
and protein associated to gene two (P (r2, t) and P (y2, t)). For the two genes
model, we have considered four different switch configurations: slow-slow, fast-
fast, slow-fast and fast-slow. For all implementations each time interval [0, τ]
has been partitioned into four sub-intervals of equal sizes (M = 4) resulting
in the sequence {s0, s1, s2, s3}, representing the state of the switch inside each
sub-interval (s = sj := stj for t ∈ [tj , tj+1), j = 0, ...,M − 1), leading to 24 path
realizations. For all slow genes we have set t0 = 0, t4 = 9 and evaluated the
solution up to tmax = 90, using the composition rule between successive time
intervals. For all fast genes we have set t0 = 0, t4 = 1 and evaluated the solution
up to tmax = 20, using the composition rule between successive time intervals,
as well.

Model Monte-Carlo PF LME
(high sampling)

One gene slow - 2.55 97.39
One gene fast - 5.12 21.64

Two genes slow-slow 45 6.86 97.39
Two genes fast-fast 74 10.85 21.64
Two genes slow-fast 243 9.22 21.64
Two genes fast-slow 249 8.83 97.39

Table 2: Execution times (in minutes for all cases) for different methods to compute the
probability distributions for one gene model and two genes model. Methods: PF = Push-
forward, LME = Liouville-master equation

We have compared the results obtained by the implementation of the push
forward method (PF), as described above, with Monte-Carlo simulation (MC)
(Algorithms 1 and 2) and with numerical solution of the Liouville-master equa-
tion (LME) (Algorithm 3). The comparison between execution times for each
model and each method can be found in Table 2 (all the execution times are
expressed in minutes).

In order to illustrate our results we have produced Figures 4, 5, 6 and 7, for
selected models and for methods: Push forward (PF), Monte-Carlo simulation
(MC) and Liouville-master equation (LME).

The one gene model (Figures 4 and 5) has as initial conditions p0(0) = 1,
where p0(0) is the probability to find the switch in state 0 at time t = 0, and
r(0) = y(0) = 0, for both switch regimes: slow and fast. The two genes model
(Figures 6 and 7) has as initial conditions p1

0(0) = p2
0(0) = 1 (meaning that

at time t = 0 both genes are in state 0 with probability one), r1(0) = y1(0) =

23

Figure 4: This set of plots shows the comparison between the computed probability distribu-
tion for mRNA (P (r, t)) and protein (P (y, t)), using the push forward method (Algorithm 4),
direct Monte-Carlo simulation (Algorithms 1 and 2) and numerical solution of the Liouville-
master Equation (Algorithm 3). The model is for one gene in the slow switch regime (ε = 0.5).
The execution times of PF is 2.55 minutes in Python and 97.39 minutes for LME in MATLAB.
The values dLME and dPF are shown in each plot and measure the distances between the
LME equation and MC simulation, PF and MC simulation, respectively, as given in (29). The
value of parameters are: p0 = 0.5, k0 = 4, k1 = 40, a = 1/5 and b = 4. For initial conditions
we set: r(0) = y(0) = 0 and p0(0) = 1.

24

Figure 5: This set of plots shows the comparison between the computed probability dis-
tribution for mRNA (P (r, t)) and protein (P (y, t)), using PF (Algorithm 4), MC simulation
(Algorithms 1 and 2) and numerical solution LME (Algorithm 3). The model is for one gene
producing in the fast switch regime (ε = 5.5). The execution time of the PF is 5.12 minutes
in Pyhton, and 21.64 minutes for LME in MATLAB. The values dLME and dPF are shown
in each plot and measure the distances between the LME equation and MC simulation, and
PF and MC simulation, respectively, as given in (29). The value of parameters are: p0 = 0.5,
k0 = 4, k1 = 40, a = 1/5 and b = 4. For initial conditions we set: r(0) = y(0) = 0 and
p0(0) = 1.

25

Figure 6: This set of plots shows the comparison between the computed probability density
for mRNA (P (r2, t)) and protein (P (y2, t)) associated to gene two, using PF (Algorithm 5),
MC simulation (Algorithms 1 and 2) and numerical solution LME (Algorithm 3). The model
is M1 in the slow-slow regime (ε = 0.5). The execution time of PF is 6.86 minutes in Python,
and 97.39 minutes for LME in MATLAB. The values dLME and dPF are shown in each
plot and measure the distances between the LME equation and MC simulation, and PF and
MC simulation, respectively, as given in (29). The value of parameters, for both genes are:
p0 = 0.5, k0 = 4, k1 = 40, a = 1/5 and b = 4. For initial conditions we set: r1(0) = y1(0) =
r2(0) = y2(0) = 0 and p0(0) = 1.

26

Figure 7: This set of plots shows the comparison between the computed probability density
for mRNA (P (r2, t)) and protein (P (y2, t)) associated to gene two, using PF (described in
Algorithm 5), MC simulation (Algorithms 1 and 2) and numerical solution LME (Algorithm 3).
The model is M1 in the fast-slow regime (ε1 = 5.5 and ε2 = 0.5). The execution time of PF
is 8.83 minutes in Python and 97.39 minutes for LME in MATLAB. The values dLME and
dPF are shown in each plot and measure the distances between the LME equation and MC
simulation, and PF and MC simulation, respectively, as given in (29). The value of parameters,
for both genes are: p0 = 0.5, k0 = 4, k1 = 40, a = 1/5 and b = 4. For initial conditions we
set: r1(0) = y1(0) = r2(0) = y2(0) = 0 and p0(0) = 1.

27

r2(0) = y2(0) = 0, for both switch configurations: slow-slow and slow-fast. We
used the same parameters for all the models and for all the genes: ε1 = ε2 = 0.5
(slow switch), ε1 = ε2 = 5.5 (fast switch), p1

0 = p2
0 = 0.5, ρ1 = ρ2 = 1,

k1(σ1 = 0) = k2(σ2 = 0) = 4, k1(σ1 = 1) = k2(σ2 = 1) = 40, a1 = a2 = 1/5 and
b1 = b2 = 4. We have quantified the relative difference between the distributions
obtained by two distinct methods using the L1 distance (29). The distance
between the distributions obtained by the Push Forward method and the Monte-
Carlo method (high sampling) is indicated in the plots by dPF , and the distance
between the distributions obtained by the Liouville-master equation and Monte-
Carlo method (high sampling) is indicated by dLME .

5. Discussion and conclusion

Combining direct simulation of PDMP gene network models and analytic
formulae for the ODE flow provides an effective, easy to implement method
for computing time dependent, multivariate probability distributions of these
models. However, the precision of the Monte-Carlo estimates of the distributions
increases with

√
MC, whereMC is the number of Monte-Carlo samples. For this

reason, the execution time of the Monte-Carlo method, although smaller when
compared to PDMP simulation methods, which implement numerical resolution
of the ODEs, such as reported in [18] (data not shown), is large when compared
to the push-forward method. The push-forward method represents an effective
alternative to Monte-Carlo and Liouville-master equation methods, ensuring
reduced execution time.

With respect to an earlier implementation of this method for gene networks
in [13] we used promoter states instead of mRNA copy numbers as discrete vari-
ables of the PDMP. As a consequence, the number of discrete states is lower and
we can afford to increase the number M of temporal subdivisions. Compared
to the similar work done in [14] we used second moments of the protein distri-
bution, which took into account the correlation of the promoter states and lead
to increased accuracy in the case of nonlinear regulation. Although the protein
moments and the exponential transition rate matrix Π can be computed numer-
ically, the effectiveness of the push-forward method is increased when analytic
expressions are available for these quantities. In this paper, these expressions
were computed for particular cases.

The push-forward method is an approximate method, and its accuracy relies
on the careful choice of the temporal and spatial step densities, namely of the
integers M , nt, nx. We have rigorously proved that the convergence of the
push-forward method is of order one, with errors that scale with 1/M .

We situate our findings in the broader effort of the community to produce
new effective simulation algorithms for computational biology. Although in
this manuscript we restricted ourselves to examples of modeling gene networks,
the push forward method and the algorithms of this paper can be applied to
a broader class of phenomena where some continuous quantity is perturbed
by a discrete stochastic process. A very interesting and important example
is the stochastic representation of ion channel kinetics in neuron models [2].

28

The system of equations describing the kinetics of an ion channel is mathem-
atically equivalent to the system of equations describing our one gene model.
More complex neuron models with multiple types of ion channels (stochastic
versions of Hodgkin-Huxley or Morris-Lecar deterministic models, for instance)
are also covered by our PDMP formalism and algorithms. Thus, the push for-
ward method as presented in Algorithm 4 can be used to obtain the histograms
for the membrane voltage for rather general neuron models. A detailed com-
parison between the push forward method and the one presented in [2] will be
the subject of a future work.

Appendices

Appendix A. Expectation and variance of the protein

For the sake of completeness, we give explicit formulas for the expectation
and the variance of the protein synthesized by a constitutive promoter (gene 1
of models M1 and M2). The details of the calculation can be found in [16].

The expectation is given by

E[yt] = M0 +M1e
−at +M2e

−ρt +M3e
−εt, (A.1)

where

M0 =
b(k0 + (k1 − k0)p1)

a
,

M1 = E[x0]− bE[y0]

a− ρ
+

bk0

a(a− ρ)
+
b(k1 − k0)(p10 − p1)

(a− ρε)(a− ρ)
+
b(k1 − k0)p1

a(a− ρ)
,

M2 =
bE[y0]

a− ρ
− bk0

a− ρ
− b(k1 − k0)(p10 − p1)

ρ(1− ε)(a− ρ)
− b(k1 − k0)p1

a− ρ
,

M3 =
b(k1 − k0)(p10 − p1)

ρ(1− ε)(a− ερ)
.

The variance is given by

Var(yt) = Var(y0)e−2at + b2 Var(r0)

(
e−ρt − e−at

a− ρ

)2

−
[

(p10 − p1)(k1 − k0)b

ρ(1− ε)

(
e−ρεt − e−at

a− ρε
− e−εt − e−at

a− ρε

)]2

+
p1(1− p1)(k1 − k0)2b2

ρ2
(V0 + V1e

−(a+ρε)t + V2e
−ρ(1+ε)t + V3e

−2at + V4e
−(a+ρ)t + V5e

−2ρt)

+
(1− 2p1)(p10− p1)(k1 − k0)2b2

ρ2
(V6e

−ρεt + V7e
−(a−ρε)t + V8e

−ρ(ε+1)t + V9e
−(a+ρε)t + V10e

−ρt + V11e
−2ρt),

(A.2)

29

where

V0 =
a+ (ε+ 1)ρ

a(a+ ρε)(a+ ρ)(ε+ 1)
, V1 = − 2

(a2 − ρ2ε2)(a− ρ)(ε− 1)
,

V2 =
2

(a− ρε)(a− ρ)(ε2 − 1)
, V3 =

1

a(a− ρε)(a− ρ)2
,

V4 =
2(a+ (1− 2ε)ρ)

(a− ρε)(a− ρ)2(a+ ρ)(ε− 1)
, V5 = − 1

(ε− 1)(a− ρ)2
,

V6 = − 2(2a+ (2− ε)ρ)

a(ε− 2)(2a− ρε)(a+ (1− ε)ρ)
, V7 =

2

(1− ε)a(a− ρ)(a− ρε)
,

V8 =
2

(a− ρε)(a− ρ)(ε− 1)
, V9 =

2(a+ (1− 2ε)ρ)

(a− ρ)2(ε− 1)(a− ρε)(a+ (1− ε))
,

V10 =
2

(a− ρ)2(2− ε)(1− ε)
, V11 =

2

(a− ρ)2(2a− ρε)(a− ρε)
.

Appendix B. Proof of the Theorem 1

For simplicity, we consider only the case N = 1, the proof generalizes imme-
diately to N > 1 at the price of cumbersome notations. We also consider the
case when the process x always belongs to [0, 1]. Thus, we may assume that Vs,
s ∈ S and H are bounded as well as their derivatives. We first consider the case
of a Lipschitz function ϕ.

We denote by (x, s) the PDMP starting with the random initial data dis-
tributed along µ0 and by (x(t, ζ0), s(t, ζ0)) the PDMP starting from the determ-
inistic initial data ζ0 = (x0, s0).

In this proof, we use the letter κ for a constant which depends on Vs, s ∈ S,
H and τ .

The push-forward algorithm can be rewritten as follows: starting from s̃(0) =
s0, x̃(0) = x0, we set x̃(τj+1) = Φs(τj)(τj+1− τj , x̃(τj)) and then choose s(τj+1)
randomly, it is equal to r ∈ S with probability Πs(τj),r(τj , τj+1), the latter
matrix being defined in (20).

In fact, we consider more generally the approximation of E(ϕ(x(τ), s(τ)), for
a function ϕ : R× S → R, by E(ϕ(x̃(τ), s̃(τ)). The result is obtained when we
choose ϕ independent on s ∈ S.

We first assume that ϕ is C1 with respect to x. Let us denote by L its
Lipschitz constant with respect to x:

|ϕ(x1, s)− ϕ(x2, s)| ≤ L|x1 − x2|

for x1, x2 ∈ R, s ∈ S.
The main tool for the proof is the generator of the process:

Lϕ(x, s) = Vs(x)∂xϕ+
∑
r∈S

(ϕ(x, r)− ϕ(x, s))Hr,s(x),

30

and the forward Kolmogorov equation:

du

dt
(t, x, s) = Lu(t, x, s), x ∈ R, s ∈ S, t > 0.

When u(0, x, s) = ϕ(x, s) for x ∈ R, s ∈ S, it is well known that u(t, x0, s0) =
E(ϕ(x(t, ζ0), s(t, ζ0))) (see [7]). Therefore,

E(ϕ(x(t), s(t)) =

∫
R×S

E(ϕ(x(t, ζ0), s(t, ζ0)))dµ0(ζ0)

=

∫
R×S

u(t, x0, s0)dµ0(x0, s0).

It follows from Proposition A.1 in [6] that u satisfies the formula:

u(t, x, s) = ϕ(Φs(t, x), s) exp

(
−
∫ t

0

λ(Φs(σ, x))dσ

)
+
∑
s∈S

∫ t

0

u(t− σ,Φs(σ, x), r,)Hr,s(Φs(σ, x)) exp

(
−
∫ σ

0

λ(Φs(τ, x))dτ

)
dσ

Following [6] we apply Gronwall’s lemma to show that, when ϕ is Lipschitz
with respect to x, so is u, with a Lipschitz constant less than κ‖ϕ‖0,1. Here, κ
depends on the characteristics of the PDMP and the time horizon τ ; ‖ϕ‖0,1 is
the sum of the supremum of ϕ with its Lipschitz constant. Moreover, it follows
from the forward Kolmogorov equation that its time derivative is also bounded.
Hence,

|u(t1, x1, s)− u(t2, x2, s)| ≤ κ‖ϕ‖0,1(|x1 − x2|+ |t1 − t2|). (B.1)

Now we rewrite the error as follows:

E(ϕ(x(τ, ζ0), s(τ, ζ0))− E(ϕ(x̃(τ, ζ0), s̃(τ, ζ0))

= E(u(τ, x0, s0)− u(0, x̃(τ, ζ0), s̃(τ, ζ0)))

=

M−1∑
j=0

E(u(τ − τj , x̃(τj , ζ0), s̃(τj , ζ0))− u(τ − τj+1, ζ0, x̃(τj+1, ζ0), s̃(τj+1, ζ0))

On each interval [τj , τj+1] we have, by chain rule and the forward Kolmogorov
equation, that

d

dt
[u(τ − t, x̃(t, ζ0), s̃(τj , ζ0))]

= −du
dt

(τ − t, x̃(t, ζ0), s̃(t, ζ0)) +
dx̃

dt
(t)∂xu(τ − t, x̃(t, ζ0), s̃(τj , ζ0)

= −du
dt

(τ − t, x̃(t, ζ0), s̃(t, ζ0)) + Vs̃(τj ,ζ0)(x̃(t, ζ0))∂xu(τ − t, x̃(t, ζ0), ζ0, s̃(τj , ζ0)

= −
∑
r∈S

(u(τ − t, x̃(t, ζ0), r)− u(τ − t, x̃(t, ζ0), s̃(τj , ζ0)))Hr,s̃(τj ,ζ0)(x̃(t, ζ0)).

31

Hence,

E
(
u(τ − τj , x̃(τj , ζ0), s̃(τj), ζ0)− u(τ − τj+1, x̃(τj+1, ζ0), s̃(τj+1, ζ0))

)
= E

(∫ τj+1

τj

∑
r∈S

(u(τ − t, x̃(t, ζ0), r)− u(τ − t, x̃(t, ζ0), s̃(τj , ζ0)))Hr,s̃(τj ,ζ0)(x̃(t, ζ0))dt

)

+ E(u(τ − τj+1, x̃(τj+1, ζ0), s̃(τj , ζ0))− u(τ − τj+1, x̃(τj+1, ζ0), s̃(τj+1, ζ0)))

= E

(∫ τj+1

τj

∑
r∈S

(u(τ − t, x̃(t, ζ0), r)− u(τ − t, x̃(t, ζ0), s̃(τj , ζ0)))Hr,s̃(τj ,ζ0)(x̃(t, ζ0))dt

)

+ E

(∑
r∈S

(u(τ − τj+1, x̃(τj+1, ζ0)), s̃(τj , ζ0)− u(τ − τj+1, x̃(τj+1, ζ0), r)

)
Πr,s̃(τ,ζ0j)(τj , τj+1).

By eq. (20), we have that

Π(τj , τj+1) = I +

∫ τj+1

τj

H(x̃(t), ζ0)Π(τj , t)dt,

where I is the identity matrix.
Since H is bounded, it follows from Gronwall’s lemma that Π is bounded

and
‖Π(τj , t)− I‖ ≤ κ|t− τj |

for some constant κ, where ‖ ·‖ is a norm on the space of matrices. For instance
we may take the supremum of the modulus of the coefficients of a matrix. Hence,

‖Π(τj , τj+1)− I −
∫ τj+1

τj

H(x̃(t, ζ0))dt‖ = ‖
∫ τj+1

τj

H(x̃(t, ζ0))(I −Π(τj , t))dt‖

≤ κ|τj+1 − τj |2,

for another constant κ. In particular, for r 6= s̃(τj):

|Πr,s̃(τj)(τj , τj+1)−
∫ τj+1

τj

Hr,s̃(τj ,ζ0)(x̃(t, ζ0))dt‖ ≤ κ|τj+1 − τj |2,

Moreover,
|x̃(τj+1,ζ0) − x̃(t, ζ0)| ≤ κ|τj+1 − t|,

since its derivative is Vs̃j (x̃(t)), which is bounded. We have shown in (B.1) that
u is Lipschitz with respect to x and t, thus

|u(τ − t, x̃(t, ζ0), r)−u(τ − τj+1, x̃(τj+1, ζ0), r)| ≤ κ(‖ϕ‖0,1 + 1)|τj+1− t|. (B.2)

32

Now we have the following estimate

|E(u(τ − τj , x̃(τj , ζ0), s̃(τj , ζ0))− u(τ − τj+1, x̃(τj+1, ζ0), s̃(τj+1, ζ0)))|

=

∣∣∣∣∣E
(∫ τj+1

τj

∑
r∈S

(u(τ − t, x̃(t, ζ0), r)− u(τ − t, x̃(t, ζ0), s̃(τj , ζ0)))Hr,s̃(τj ,ζ0)(x̃(t, ζ0))dt

)∣∣∣∣∣
+ E

(∑
r∈S

(u(τ − τj+1, x̃(τj+1, ζ0), s̃(τj , ζ0))− u(τ − τj+1, x̃(τj+1, ζ0), r))Πr,s̃(τj ,ζ0)(τj , τj+1)

)

≤

∣∣∣∣∣E
(∫ τj+1

τj

∑
r∈S

(u(τ − t, x̃(t, ζ0), r)− u(τ − t, x̃(t, ζ0), s̃(τj , ζ0)))

+ (u(τ − τj+1, x̃(τj+1, ζ0)), s̃(τj , ζ0)− u(τ − τj+1, x̃(τj+1, ζ0), r))Hr,s̃(τj),ζ0(x̃(t, ζ0))dt

)∣∣∣∣∣
+ κ|τj+1 − τj |2

≤ κ(‖ϕ‖0,1 + 1)|τj+1 − τj |2

and so

|E(ϕ(x(τ, ζ0), s(τ, ζ0))− E(ϕ(x̃(τ, ζ0), s̃(τ, ζ0))| ≤
M−1∑
j=0

κ|(‖ϕ‖0,1 + 1)τj+1 − τj |2

≤ Cκτ(‖ϕ‖0,1 + 1)/M.

The final error estimate is obtained by taking ϕ depending only on x and integ-
rating with respect to µ0:∣∣∣∣∣

∫
[0,1]

ϕ(x)µMt (dx) −
∫
B

ϕ(x)µt(dx)

∣∣∣∣
=

∣∣∣∣∣
∫

[0,1]

E(ϕ(x(τ, ζ0)))− E(ϕ(x̃(τ, ζ0)))dµ0(ζ0)

∣∣∣∣∣
≤ Cκτ(‖ϕ‖0,1 + 1)/M

When ϕ is only Lipschitz, we obtain the same result by choosing a sequence
of C1 functions which converges uniformly to ϕ and whose Lipschitz constants
do not exceed L. This finishes the proof of the first statement. It is classical
that this implies that the left-handed side converges to zero when

max
j=0,...,M−1

|τj+1 − τj | → 0

for any uniformly continuous and bounded function ϕ. We conclude thanks to
the Portemanteau theorem [3].

33

Remark 4. When ϕ is only borelian bounded but µ0 has a C1 and Lipschitz
density f0, the proof can be adapted. We observe that the only point where the
Lipschitz property of ϕ is used is to obtain (B.1) which is used to derive (B.2).
To replace (B.2), we can instead write the explicit formula for E(ϕ(x(t), s(t))
and E(ϕ(x̃(t), s̃(t)). Since the flows Φs, s ∈ S are C1 diffeomorphisms that
depend smoothly on time, we see that (B.2) still holds, but on the left-handed
side, κ(‖ϕ‖0,1 + 1) must be replaced by a constant which depends on ‖f0‖0,1
and the supremum of ϕ.

References

[1] A. Abate, L. Cardelli, M. Kwiatkowska, L. Laurenti, and B. Yordanov.
Experimental biological protocols with formal semantics, International
Conference on Computational Methods in Systems Biology, pp. 165–182.
Springer, 2018.

[2] D.F. Anderson, B. Ermentrout, and P.J. Thomas. Stochastic Representa-
tions of Ion Channel Kinetics and Exact Stochastic Simulations of Neuronal
Dynamics, Journal for Computational Neuroscience, 38(1):67-82, 2015.

[3] P. Billingsley. Convergence of Probability Measures, Second Edition. Wiley
series in Probability and Statistics, 1999.

[4] L. Cai, N. Friedman, and X.S. Xie. Stochastic protein expression in indi-
vidual cells at the single molecule level. Nature, 440(7082):358, 2006.

[5] A. Crudu, A. Debussche, and O. Radulescu. Hybrid stochastic simplifica-
tions for multiscale gene networks. BMC Systems Biology, 3(1):89, 2009.

[6] A. Crudu, A. Debussche, A. Muller, and O. Radulescu. Convergence of
stochastic gene networks to hybrid piecewise deterministic processes. An-
nals of Applied Probability, 22:1822–1859, 2012.

[7] M. Davis. Markov Models and Optimization. Chapman and Hall, 1993.

[8] A. Eldar and M.B. Elowitz. Functional roles for noise in genetic circuits.
Nature, 467(7312):167, 2010.

[9] M.B. Elowitz, A.J. Levine, E.D. Siggia, and P. S. Swain. Stochastic gene
expression in a single cell. Science, 297(5584):1183–1186, 2002.

[10] M.L Ferguson, D. Le Coq, M. Jules, S. Aymerich, O. Radulescu, N. De-
clerck, and C.A. Royer. Reconciling molecular regulatory mechanisms with
noise patterns of bacterial metabolic promoters in induced and repressed
states. Proceedings of the National Academy of Sciences USA, 109:155,
2012.

[11] P.B. Gupta, C.M. Fillmore, G. Jiang, S.D. Shapira, K. Tao, C. Kuper-
wasser, and E.S. Lander. Stochastic state transitions give rise to phenotypic
equilibrium in populations of cancer cells. Cell, 146(4):633–644, 2011.

34

[12] U. Herbach, A. Bonnaffoux, T. Espinasse, and O. Gandrillon. Inferring
gene regulatory networks from single-cell data: a mechanistic approach.
BMC Systems Biology, 11(1):105, 2017.

[13] G.C.P. Innocentini, M. Forger, O. Radulescu, and F. Antoneli. Protein
synthesis driven by dynamical stochastic transcription. Bulletin of Math-
ematical Biology, 78(1):110–131, 2016.

[14] G.C.P. Innocentini, A. Hodgkinson, and O. Radulescu. Time dependent
stochastic mRNA and protein synthesis in piecewise-deterministic models
of gene networks. Frontiers in Physics, 6:46, 2018.

[15] G.C.P. Innocentini, M. Forger, A.F. Ramos, O. Radulescu, and J.E.M.
Hornos. Multimodality and flexibility of stochastic gene expression. Bul-
letin of Mathematical Biology, 75(12):2600–2630, 2013.

[16] G.C.P. Innocentini, A. Hodgkinson, F. Antoneli, and O. Radulescu. Effect-
ive computational methods for hybrid stochastic gene networks. Computa-
tional Methods in Systems Biology: 17th International Conference, CMSB
2019, Trieste, Italy, September 18–20, 2019, Proceedings, LNBI 11773: 60,
Springer Nature, 2019.

[17] P. Kurasov, A. Lück, D. Mugnolo, and V. Wolf. Stochastic hybrid models
of gene regulatory networks – a PDE approach. Mathematical Biosciences,
305:170–177, 2018.

[18] Y. Ting Lin and N.E. Buchler. Efficient analysis of stochastic gene dynamics
in the non-adiabatic regime using piecewise deterministic markov processes.
Journal of The Royal Society Interface, 15(138):20170804, 2018.

[19] R.W. MacCormack. The Effect of Viscosity in Hypervelocity Impact
Cratering Frontiers of Computational Fluid Dynamics 2002, pp. 27-43,
2001.

[20] A. Raj, C.S. Peskin, D. Tranchina, D.Y. Vargas, and S. Tyagi. Stochastic
mRNA synthesis in mammalian cells. PLoS Biology, 4(10):e309, 2006.

[21] B.S. Razooky, A. Pai, K. Aull, I.M. Rouzine, and L.S. Weinberger. A
hardwired HIV latency program. Cell, 160(5):990–1001, 2015.

[22] M.G. Riedler. Almost sure convergence of numerical approximations for
piecewise deterministic Markov processes. Journal of Computational and
Applied Mathematics, 239:50–71, 2013.

[23] A. Singh and J.P. Hespanha. Stochastic hybrid systems for studying bio-
chemical processes. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 368 : 4995–5011, 2010.

[24] D. Talay. Discrétisation d’une équation différentielle stochastique et calcul
approché d’espérances de fonctionnelles de la solution. RAIRO Modél.
Math. Anal. Numér., 20:141–179, 1986.

35

[25] K. Tantale, F. Mueller, A. Kozulic-Pirher, A. Lesne, J.-M. Victor, M.-
C. Robert, S. Capozi, R. Chouaib, V. Bäcker, J. Mateos-Langerak, et al.
A single-molecule view of transcription reveals convoys of RNA polymerases
and multi-scale bursting. Nature Communications, 7:12248, 2016.

[26] M. Thattai and A. Oudenaarden. Stochastic gene expression in fluctuating
environments. Genetics, 167(1):523–530, 2004.

[27] P. Thomas, N. Popović, and R. Grima. Phenotypic switching in gene reg-
ulatory networks. Proceedings of the National Academy of Sciences USA,
111(19):6994–6999, 2014.

[28] S. Zeiser, U. Franz, O. Wittich, and V. Liebscher. Simulation of genetic net-
works modelled by piecewise deterministic Markov processes. IET Systems
Biology, 2(3):113–135, 2008.

36

	1 Introduction
	2 Models
	2.1 ODE models of biochemical networks
	2.2 PDMP models
	2.3 PDMP models of ON/OFF gene networks

	3 Simulation methods
	3.1 Monte-Carlo method
	3.2 Finite difference Liouville master equation method
	3.3 Push-forward method
	3.3.1 General algorithm
	3.3.2 Complexity issues
	3.3.3 Mean field push-forward method

	4 Results
	4.1 Convergence of the push-forward method
	4.2 Testing the performance of various methods
	4.2.1 Testing accuracy and speed of push-forward method compared to the Monte-Carlo method
	4.2.2 Comparing the Monte Carlo, push-forward and Liouville-master methods

	5 Discussion and conclusion
	Appendix A Expectation and variance of the protein
	Appendix B Proof of the Theorem 1

