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Abstract

The problem of computing a connected network with minimum interference is a fundamental
problem in wireless sensor networks. Several models of interference have been studied in the
literature. The most common model is the receiver-centric, in which the interference of a node
p is defined as the number of other nodes whose transmission range covers p. In this paper,
we study the problem of assigning a transmission range to each sensor, such that the resulting
network is strongly connected and the total interference of the network is minimized.

For the one-dimensional case, we show how to solve the problem optimally in O(n3) time. For
the two-dimensional case, we show that the problem is NP-complete and give a polynomial-time
2-approximation algorithm for the problem.

1 Introduction

Wireless sensor networks have received significant attention in the last two decades due to their
potential civilian and military applications [7, 10]. A wireless sensor network consists of numer-
ous devices that are equipped with processing, memory, and wireless communication capabilities.
This kind of network has no pre-installed infrastructure, rather all communication is supported by
multi-hop transmissions, where intermediate nodes relay packets between communicating parties.
Since each sensor has a limited battery and each transmission decreases the battery charge, energy
consumption is a critical issue in wireless sensor networks. One well way to conserve energy is
to minimize the interference of the network. High interference increases the probability of packet
collisions and therefore packet retransmission, which can significantly affect the effectiveness and
the lifetime of the network.

In wireless networks design, the nodes are modeled as a set of points in the plane and each
node u is assigned a transmission range ρ(u). A node v can receive the signal transmitted by a
node u if and only if |uv| ≤ ρ(u), where |uv| is the Euclidean distance between u and v. There are
two common ways to model the induced communication graph: symmetric and asymmetric. In the
symmetric model [9, 12, 14, 15, 17], there is a non-directed edge between points p and q if and only
if |pq| ≤ min{ρ(p), ρ(q)}, and in the asymmetric model [1–3,18], there is a directed edge from node
p to node q if and only if |pq| ≤ ρ(p).
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Several models of interference have been studied in the literature. The model of Burkhart et
al. [5] measures the number of nodes affected by the communication on a single edge. This was
also studied by Moaveni-Nejad and Li [13], who further introduced the sender-centric model that
measures the number of receiving nodes affected by the communication from a single sender. They
showed that both problems can be solved optimally in polynomial-time, in the symmetric and
asymmetric models.

Von Rickenbach et al. [18] argued that the sender-centric model of interference is not realistic,
because the interference is actually felt by the receiver. Further, they argued that the model was
overly sensitive to the addition of single nodes. Instead, they formulated the receiver-centric model;
minimizing the maximum interference received at a node, where the interference received at a node
p is the number of nodes q (q 6= p) such that |pq| ≤ ρ(q). In the one-dimensional case, i.e., when
the points are located on a line, Von Rickenbach et al. [18] showed that one can always construct a
network with O(

√
n) interference, in the symmetric model. Moreover, they showed that there exists

an instance that requires Ω(
√
n) interference, and gave an O(n1/4) approximation algorithm for this

case. Tan et al. [15] proved that the optimal network has some interesting properties and, based on
these properties, one can compute a network with minimum interference in sub-exponential time.
Brise et al. [3] extend this result for the asymmetric model.

In the two-dimensional case, the problem has been shown to be NP-hard [3,4]. Halldórsson and
Tokuyama [9] showed how to construct a network with O(

√
n) interference for the symmetric model,

extending the result of [18]. For the asymmetric model, Fussen et al. [8] showed that one can always
construct a network with O(log n) interference and showed that their algorithm is asymptotically
optimal.

Another model of interference is to minimize the total interference of the network. That is,
given a set P of points in the plane, the goal is to assign ranges to the points to obtain a connected
communication graph in which the total interference is minimized. For the symmetric model,
Moscibroda and Wattenhofer [14] studied the problem in general metric graphs. They showed
that the problem is NP-complete and cannot be approximated within O(log n), and they gave an
O(log n) approximation algorithm for this problem. Lam et al. [12] proved that the problem is
NP-complete for points in the plane. For the one-dimensional case, Tan et al. [15] showed how to
compute an optimal network in O(n4) time.

For the asymmetric model, Bilò and Proietti [2] studied the problem of minimizing the total
interference in general metric graphs. They gave a logarithmic approximation algorithm for the
problem by reducing it to the power assignment problem in general graphs. Agrawal and Das [1]
studied the problem in two-dimensions. They gave two heuristics with experimental results.

Our results. In this paper, we consider the problem of minimizing the total interference in the
asymmetric model. We first give an O(n3)-time algorithm that solves the problem optimally, when
the points are located on a line. Then, we show that the problem is NP-complete for points in the
plane and give a 2-approximation algorithm for the problem. Our approach in the solution of the
one-dimensional problem is somewhat unconventional and involves assigning to each point both a
left range and a right range, see Section 3. We note that the approach of Tan et al. [15] (who
considered the problem in the symmetric model) would yield a significantly worse time bound in
our case, and that it would be interesting to check whether our approach can be applied also in
their setting to obtain an improved running time.
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2 Network Model and Problem Definition

Let P be a set of sensors in the plane. Each sensor p ∈ P is assigned a transmission range ρ(p). A
sensor q can receive a signal from a sensor p if and only if q lies in the transmission area of p. We
consider P as a set of points in the plane and the range assignment to the sensors as a function
ρ : P → R+. The communication graph induced by P and ρ is a directed graph Gρ = (P,E), such
that E = {(p, q) : |pq| ≤ ρ(p)}, where |pq| is the Euclidean distance between p and q. Gρ is strongly
connected if, for every two points p, q ∈ P , there exists a directed path from p to q in Gρ. A range
assignment ρ is called valid if the induced graph Gρ is strongly connected.

Given a communication graph Gρ = (P,E), in the receiver-centric interference model, the
interference of a point p, denoted by RI(p), is defined as the number of points in P \ {p} whose
transmission range covers p, i.e., RI(p) = |{q ∈ P \ {p} : |pq| ≤ ρ(q)}|. In the sender-centric
interference model, the interference of a point p, denoted by SI(p), is defined as the number of
points in P \ {p} within the transmission range of p, i.e., SI(p) = |{q ∈ P \ {p} : |pq| ≤ ρ(p)}|. The
total interference of Gρ, denoted by I(Gρ), is defined as

I(Gρ) =
∑
p∈P

RI(p) =
∑
p∈P

SI(p) .

In the Minimum Total Interference (MTIP ) problem, we are given a set P of points in the
plane and the goal is to find a range assignment ρ to the points of P , such that the graph Gρ
induced by P and ρ is strongly connected and I(Gρ) is minimized.

3 MTIP in 1D

In this section, we present an exact algorithm that solves MTIP in O(n3) time in 1D. Let P =
{p1, p2, . . . , pn} be a set of n points located on a horizontal line. For simplicity, we assume that for
every i < j, pi is to the left of pj .

For each 1 ≤ i ≤ j ≤ n, let P[i,j] ⊆ P be the set {pi, pi+1, . . . , pj}. A sink tree T x[i,j] of P[i,j]

rooted at px, where x ∈ {i, j}, is a directed tree that contains a directed path from each point
p ∈ P[i,j] \ {px} to px. Let ρx[i,j] be a range assignment to the points in P[i,j], such that the graph

induced by ρx[i,j] contains a sink tree T x[i,j] of P[i,j] rooted at px, and let I(T x[i,j]) denote the total
interference of T x[i,j]. We say that ρx[i,j] is an optimal range assignment to the points in P[i,j] if and

only if I(T x[i,j]) is minimized.

Let G = (P,E) be the complete directed graph on P . For each directed edge (pi, pj) ∈ E,
we assign a weight w(pi, pj) = |{pk ∈ P \ {pi} : |pipk| ≤ |pipj |}|. Let G[i,j] be the subgraph of G
induced by P[i,j]. Let T x[i,j] be a sink tree rooted at px in G[i,j] and let w(T x[i,j]) =

∑
(p,q)∈Tx

[i,j]
w(p, q)

denote its weight. Let ρx[i,j] be a range assignment to the points of P[i,j], such that its induced graph
contains a sink tree T x[i,j] rooted at px. Observe that if ρx[i,j] is an optimal range assignment to the
points of P[i,j], then its induced graph contains a unique sink tree T x[i,j].

Lemma 3.1. ρx[i,j] is an optimal range assignment to the points of P[i,j] if and only if T x[i,j] is a
minimum-weight sink tree rooted at px in G[i,j].

Proof. T x[i,j] is a sink tree in G[i,j] and, by the way we assigned weights to the edges of G, I(T x[i,j])

is equal to the weight of T x[i,j] in G[i,j], i.e., I(T x[i,j]) = w(T x[i,j]). On the other hand, let T be a sink
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tree rooted at px in G[i,j] of weight w(T ). We define a range assignment ρ′ to the points of P[i,j] as
follows: Set ρ′(px) = 0, and for each (pk, pl) ∈ T , set ρ′(pk) = |pkpl|. Consider the graph induced
by ρ′. Clearly, this graph contains T and I(T ) = w(T ). This implies that ρx[i,j] is an optimal range
assignment to the points of P[i,j] if and only if T x[i,j] is a minimum-weight sink tree rooted at px in
G[i,j].

By Lemma 3.1, to compute an optimal range assignment ρx[i,j], it is sufficient to compute a
minimum-weight sink tree rooted at px in G[i,j]. In Section 3.1, we show how to compute a
minimum-weight sink tree T x[i,j] in G[i,j], for every 1 ≤ i ≤ j ≤ n and for every x ∈ {i, j}. Then, in
Section 3.2, we use these trees to devise a dynamic programming algorithm that solves MTIP in
O(n3) time.

3.1 Computing all sink trees

In this section, we show how to compute a minimum-weight sink tree rooted at pi and a minimum-
weight sink tree rooted at pj in G[i,j], for every 1 ≤ i ≤ j ≤ n, in O(n3) time. The following
observation follows from the way we constructed G.

Observation 3.2. Let pi, pj, and pk be three points of P . If |pipj | < |pipk|, then w(pi, pj) <
w(pi, pk).

Let T x[i,j] be a minimum-weight sink tree rooted at px in G[i,j], where x ∈ {i, j}, and let OPT x[i,j]
denote its weight. The following lemma reveals the special structure of T x[i,j].

Lemma 3.3. For every two distinct edges (pk, pl) and (pk′ , pl′) in T x[i,j],

(i) if k < k′ < l, then k ≤ l′ < l; and

(ii) if k < l′ < l, then k < k′ < l.

Proof. zzzz

(i) Assume towards a contradiction that there exist two edges (pk, pl) and (pk′ , pl′), such that
k < k′ < l, and l′ < k or l′ ≥ l; see Figure 1. Notice that there is no path from pl to pk′ in
T x[i,j], otherwise, by replacing (pk, pl) by (pk, p

′
k) in T x[i,j], we obtain a sink tree rooted at px in

G[i,j] of weight less than OPT x[i,j], which contradicts the minimality of T x[i,j]. Thus, the path
from pk to px in T x[i,j] does not contain pk′ . We distinguish between two cases.

Case 1: l′ < k; see Figure 1(a). By Observation 3.2, w(pk′ , pk) < w(pk′ , pl′). Therefore, by
replacing (pk′ , pl′) by (pk′ , pk) in T x[i,j], we obtain a sink tree rooted at px in G[i,j] of weight
less than OPT x[i,j], which contradicts the minimality of T x[i,j].

Case 2: l′ ≥ l. If l′ = l, then, by Observation 3.2, w(pk, pk′) < w(pk, pl); see Figure 1(b).
Therefore, by replacing (pk, pl) by (pk, pk′) in T x[i,j], we obtain a sink tree rooted at px in G[i,j]

of weight less than OPT x[i,j], which contradicts the minimality of T x[i,j]. And, if l′ > l, then,

by Observation 3.2, w(pk′ , pl) < w(pk′ , pl′); see Figure 1(c). Therefore, by replacing (pk′ , pl′)
by (pk′ , pl) in T x[i,j], we obtain a sink tree rooted at px in G[i,j] of weight less than OPT x[i,j],
which contradicts the minimality of T x[i,j].
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pk

(a)

pl

(c)

pk′pl′ pk′ pl′pk pl

(b)

pk′pk pl = pl′

Figure 1: Illustration of the proof of Lemma 3.3.

(ii) Assume towards a contradiction that there exist two edges (pk, pl) and (pk′ , pl′), such that
k < l′ < l, and k′ ≤ k or k′ ≥ l; see Figure 2. We distinguish between two cases.
Case 1: k′ < k; see Figure 2(a). In this case, there is no path from pl′ to pk in T x[i,j], otherwise,

by replacing (pk′ , pl′) by (pk′ , pk) in T x[i,j], we obtain a sink tree rooted at px in G[i,j] of weight
less than OPT x[i,j], which contradicts the minimality of T x[i,j]. Thus, the path from pk′ to px in

T x[i,j] does not contain pk. Moreover, by Observation 3.2, w(pk, pl′) < w(pk, pl). Therefore, by

replacing (pk, pl) by w(pk, pl′) in T x[i,j], we obtain a sink tree rooted at px in G[i,j] of weight
less than OPT x[i,j], which contradicts the minimality of T x[i,j].

Case 2: k′ > l; see Figure 2(b). Notice that, since T x[i,j] is a sink tree, either no path from

pl′ to pk or no path from pl to pk′ exists in T x[i,j] (otherwise, T x[i,j] contains a cycle). Assume,
w.l.o.g., that there is no path from pl to pk′ in T x[i,j]. Thus, the path from k to x in T x[i,j]
does not contain the point pk′ . By Observation 3.2, w(pk′ , pl) < w(pk′ , pl′). Therefore, by
replacing (pk′ , pl′) by (pk′ , pl) in T x[i,j], we obtain a sink tree rooted at px in G[i,j] of weight
less than OPT x[i,j], which contradicts the minimality of T x[i,j].

(b)

pk′pl′pk pl

(a)

pk′ pl′pk pl

Figure 2: Illustration of the proof of Lemma 3.3.

Consider a minimum-weight sink tree T i[i,j] of weight OPT i[i,j] rooted at pi in G[i,j]. Let (pj , pk)

be the edge connecting pj to pk in T i[i,j]. Thus, (pj , pk) partitions T i[i,j] into two sub-trees T i rooted

at pi and T j rooted at pj ; see Figure 3. By Lemma 3.3, T i contains the points of P[i,k] and T j

contains the points of P[k+1,j]. Moreover, since T i[i,j] is a minimum-weight sink tree rooted at pi

in G[i,j], T
i is a minimum-weight sink tree rooted at pi in G[i,k] and T j is a minimum-weight sink

tree rooted at pj in G[k+1,j]. Therefore, OPT i[i,j] = OPT i[i,k] + w(pj , pk) + OPT j[k+1,j]. Similarly,

OPT j[i,j] = OPT i[i,k−1] + w(pi, pk) +OPT j[k,j].

Based on the aforementioned, to compute OPT i[i,j] (resp., OPT j[i,j]), we compute OPT i[i,k] +

w(pj , pk) +OPT j[k+1,j] (resp., OPT i[i,k−1] +w(pi, pk) +OPT j[k,j]), for each i ≤ k < j (resp., for each

i < k ≤ j), and take the minimum over these values. That is,
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pjpkpi pk+1T i T j

Figure 3: A minimum-weight sink tree T i[i,j] rooted at pi . (pj , pk) partitions T i[i,j] into T i and T j .

OPT i[i,j] =

 0 : if i = j

min
i≤k<j

{OPT i[i,k] + w(pj , pk) +OPT j[k+1,j]} : otherwise,

and

OPT j[i,j] =

 0 : if i = j

min
i<k≤j

{OPT i[i,k−1] + w(pi, pk) +OPT j[k,j]} : otherwise.

We compute OPT i[i,j] and OPT j[i,j], for each 1 ≤ i ≤ j ≤ n, using dynamic programming as

follows. We maintain two tables
←
S and

→
S each of size n × n, such that

←
S [i, j] = OPT i[i,j] and

→
S [i, j] = OPT j[i,j], for each 1 ≤ i ≤ j ≤ n. We fill the tables using Algorithm 1.

Algorithm 1 ComputeAllSinks(G,w)

1: for each i← 1 to n do←
S [i, i]← 0
→
S [i, i]← 0

2: for each d← 1 to n− 1 do
for each i← 1 to n− d do

j ← i+ d
←
S [i, j]← min

i≤k<j
{
←
S [i, k] + w(pj , pk)+

→
S [k + 1, j]}

→
S [i, j]← min

1<k≤j
{
←
S [i, k − 1] + w(pi, pk)+

→
S [k, j]}

Notice that, when we fill the cells
←
S [i, j], all the cells

←
S [i, k] and

→
S [k+1, j], for each i ≤ k < j,

are already computed, and when we fill the cells
→
S [i, j], all the cells

←
S [i, k − 1] and

→
S [k, j], for

each i < k ≤ j, are already computed. Therefore, each cell in the table is computed in O(n) time,
and the whole table is computed in O(n3) time.

3.2 Solving MTIP in 1D

In this section, we present an O(n3)-time algorithm that solves MTIP in 1D. That is, given a set
P = {p1, p2, . . . , pn} on an horizontal line, the algorithm computes a range assignment ρ for P ,
such that the graph Gρ induced by ρ is strongly connected and I(Gρ) is minimized. For simplicity,
we assume that for every i < j, pi is to the left of pj .

Given a range assignment ρ : P → R+, the interference of a point p ∈ P , denoted by Iρ(p), is
equal to the number of points in P \ {p} of distance at most ρ(p) from p (where ρ(p) is the range
assigned to p), i.e., Iρ(p) = |{q ∈ P \ {p} : |pq| ≤ ρ(p)}|. The cost of an assignment ρ, is defined as
cost(ρ) =

∑
p∈P Iρ(p). Notice that, cost(ρ) = I(Gρ), where Gρ is the graph induced by ρ.
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Instead of assigning each point in P a range, we assign each point two directional ranges, left
range assignment, ρl : P → R+, and right range assignment, ρr : P → R+. A pair of assignments
(ρl, ρr) is called a left-right assignment. Assigning a point p ∈ P a left range ρl(p) and a right range
ρr(p) implies that in the induced graph Gρlr , p can reach every point to its left up to distance ρl(p)
and every point to its right up to distance ρr(p). That is, Gρlr contains the directed edge (pi, pj) if

and only if one of the following holds: (i) i < j and |pipj | ≤ ρr(pi), or (ii) j < i and |pipj | ≤ ρl(pi).
A left-right assignment (ρl, ρr) is called valid if the graph induced by (ρl, ρr) is strongly connected.
The cost of a left-right assignment (ρl, ρr), is defined as cost(ρl, ρr) =

∑
p∈P max{Iρl(p), Iρr(p)}.

Notice that each left-right assignment (ρl, ρr) for P can be converted to a range assignment
ρ with the same cost by assigning each point p ∈ P a range ρ(p) = max{ρl(p), ρr(p)}. On the
other hand, each range assignment ρ for P can be converted to a left-right assignment with the
same cost, by assigning each point p ∈ P , ρl(p) = ρr(p) = ρ(p). To be more precise, either ρl(p)
or ρr(p) should be reduced to |pq|, where q is the farthest point in the appropriate direction (see
Observation 3.4). Therefore, instead finding an optimal range assignment, our algorithm finds a
left-right assignment of minimum cost.

Given a left-right assignment (ρl, ρr), let
←
Iρl (pi) = |{pj ∈ P : j < i and |pipj | ≤ ρl(pi)}| and

→
Iρr (pi) = |{pj ∈ P : j > i and |pipj | ≤ ρr(pi)}|. In addition to the cost function, we define

cost′(ρl, ρr) =
∑
p∈P (

←
Iρl (p)+

→
Iρr (p)), and refine the notion of optimal solution to include only

solutions (ρl, ρr) that minimize cost′(ρl, ρr) among all solutions with minimum cost(ρl, ρr).

Observation 3.4. Let (ρl, ρr) be an optimal solution. Then, for every point pi ∈ P , ρl(pi) = |pjpi|,
for some j ≤ i, and ρr(pi) = |pipk|, for some k ≥ i.

For every 1 ≤ i ≤ j ≤ n, let P[i,j] ⊆ P be the set {pi, pi+1, . . . , pj}.

Lemma 3.5. There exists an optimal solution (ρl, ρr) satisfying the following properties. Let pi be
a point in P , such that, ρl(pi) = |pipj |, for some j < i− 1, and ρr(pi) = |pipj′ |, for some j′ > i+ 1.
Then,

(P1) for each point pk ∈ P[j+1,i−1], ρ
l(pk) < |pkpj |;

(P2) for each point pk ∈ P[i+1,j′−1], ρ
r(pk) < |pkpj′ |;

(P3) for each point pk ∈ P[j+1,i−1], ρ
r(pk) ≤ |pkpi|; and

(P4) for each point pk ∈ P[i+1,j′−1], ρ
l(pk) ≤ |pkpi|;

Proof. zzzz

(P1) Assume towards a contradiction that there exists a point pk ∈ P[j+1,i−1], such that ρl(pk) =

|pkpl| ≥ |pkpj |, for some l ≤ j; see Figure 4(a,b). Let (ρ′l, ρ′r) be the assignment obtained from
(ρl, ρr) by assigning pi a range ρ′l(pi) = |pipk|. Thus, (i) the graph induced by (ρ′l, ρ′r) is still

strongly connected, (ii) Iρ′l(pi) < Iρl(pi) and Iρ′r(pi) = Iρr(pi), and (iii)
←
Iρ′l (pi) <

←
Iρl (pi).

Therefore, (ρ′l, ρ′r) is a valid assignment, cost(ρ′l, ρ′r) ≤ cost(ρl, ρr), and cost′(ρ′l, ρ′r) <
cost′(ρl, ρr), which contradicts the minimality of cost′(ρl, ρr).

(P2) The proof is symmetric to the proof of (P1).
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(a) (c)

pk pl′pipj

(b)

pkpl pipjpk pipl = pj

Figure 4: Illustration of the proof of Lemma 3.5.

(P3) Assume that there exists a point pk ∈ P[j+1,i−1], such that ρr(pk) = |pkpl′ | > |pkpi|, for some

l′ > i; see Figure 4(c). Assume, w.l.o.g., that |pjpk| ≤ |pipl′ |. By (P1), ρl(pk) < |pkpj |. Let
(ρ′l, ρ′r) be the assignment obtained from (ρl, ρr) by assigning pi a range ρ′l(pi) = |pipk| and
assigning pk a range ρ′l(pk) = |pkpj |. Thus, (i) the graph induced by (ρ′l, ρ′r) is still strongly

connected, (ii) Iρ′l(pi) ≤ Iρl(pi) and Iρ′l(pk) ≤ Iρr(pk), and (iii)
←
Iρ′l (pi)+

←
Iρ′l (pk) =

←
Iρl (pi).

Therefore, (ρ′l, ρ′r) is a valid assignment, cost(ρ′l, ρ′r) ≤ cost(ρl, ρr), and cost′(ρ′l, ρ′r) ≤
cost′(ρl, ρr), which implies that (ρ′l, ρ′r) is an optimal solution satisfying the lemma.

(P4) The proof is symmetric to the proof of (P3).

Let G = (P,E) be the complete directed graph on P , in which w(pi, pj) = |{pk ∈ P \ {pi} :
|pipk| ≤ |pipj |}|, for each directed edge (pi, pj) ∈ E. Let G[i,j] be the subgraph of G induced by

P[i,j]. Let (ρl[i,j], ρ
r
[i,j]) be an assignment for the points of P[i,j], such that the graph induced by

(ρl[i,j], ρ
r
[i,j]) contains a sink tree T x[i,j] rooted at px, where x ∈ {i, j}. In Lemma 3.1, we proved that,

for any x ∈ {i, j}, (ρl[i,j], ρ
r
[i,j]) is an optimal assignment (i.e., T x[i,j] is of minimum interference) if and

only if T x[i,j] is a minimum-weight sink tree rooted at px in G[i,j]. Combining this with Lemma 3.5,
we have the following corollary.

Corollary 3.6. Let (ρl, ρr) be an optimal solution satisfying the properties of Lemma 3.5. Let pi be
a point in P , such that, ρl(pi) = |pipk|, for some k < i−1, and ρr(pi) = |pipj |, for some j > i+1; see
Figure 5. Then, the graph induced by (ρl[k+1,i−1], ρ

r
[k+1,i−1]) is a minimum-weight sink tree T i[k+1,i]

rooted at pi in G[k+1,i], and the graph induced by (ρl[i+1,j−1], ρ
r
[i+1,j−1]) is a minimum-weight sink

tree T i[i,j−1] rooted at pi in G[i,j−1].

pjpipk pk+1 pj−1

T i
[i,j−1]

T i
[k+1,i]

Figure 5: Illustration of Corollary 3.6.

Lemma 3.7. Let (ρl, ρr) be an optimal solution satisfying the properties of Lemma 3.5 and let Gρlr

be the strongly connected graph induced by (ρl, ρr). Let pi be a point in P , such that, ρl(pi) = |pipk|,
for some k < i, and ρr(pi) = |pipj |, for some j > i. Then, for each point pj′ ∈ P[j,n], ρ

l(pj′) ≤
|pj′pj−1|.
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Proof. Assume towards a contradiction that there exists a point pj′ ∈ P[j,n], such that ρl(pj′) =
|pj′pl| ≥ |pj′pj−2|. We distinguish between two cases.
Case 1: l ≥ i; see Figure 6. Let pt ∈ P[l+1,j−1]. By (P1) in Lemma 3.5, ρl(pt) < |ptpl|, and by
(P3) in Lemma 3.5, ρr(pt) < |ptpj |. Thus, the points in P[l+1,j−1] could not be connected to the
points in P[1,n] \ P[l+1,j−1], which contradicts connectivity Gρlr .

pk ptpi pjpl pj′

Figure 6: Illustration of Case 1 in the proof of Lemma 3.7.

Case 2: l < i. By (P1) in Lemma 3.5, l < k; see Figure 7. By Corollary 3.6, the graph induced
by (ρl[l+1,j′−1], ρ

r
[l+1,j′−1]) is a minimum-weight sink tree T i[l+1,j′] rooted at pj′ . Therefore, since

(ρl, ρr) is of minimum cost′, either ρl(pi) = 0 or ρr(pi) = 0, which contradicts the assumption that
ρl(pi) > 0 and ρr(pi) > 0.

pk pi pjpl pj′

Figure 7: Illustration of Case 2 in the proof of Lemma 3.7.

For each 1 ≤ k ≤ i ≤ n, let OPT (i, k) denote the cost of an optimal solution (ρl[i,n], ρ
r
[i,n])

for the sub-problem defined by the set P[i,n], in which ρl(pi) = |pipk|; see Figure 8. Therefore,
the cost of an optimal solution for the whole problem is OPT (1, 1). For each i ≤ j ≤ n, let
∆(i, j, k) = max{0, w(pi, pj) − w(pi, pk)} denote the difference between w(pi, pj) and w(pi, pk).
That is,

∆(i, j, k) =

{
w(pi, pj)− w(pi, pk) : if |pipj | > |pipk|

0 : otherwise.

If i = n, then, clearly OPT (i, k) = 0. Otherwise, ρr(pi) > 0 and thus there exists a point
pj ∈ P[i+1,n], such that ρr(pi) = |pipj |, and, by Lemma 3.5 and Lemma 3.7, there exists a point

pt ∈ P[j,n], such that ρl(pt) = |ptpj−1|. Moreover, for i + 1 < j < t, by Corollary 3.6, the graph

induced by (ρl[i+1,j−1], ρ
r
[i+1,j−1]) is a minimum-weight sink tree T i[i,j−1] rooted at pi in G[i,j−1], and

the graph induced by (ρl[j,t−1], ρ
r
[j,t−1]) is a minimum-weight sink tree T t[j,t] rooted at pt in G[j,t]; see

Figure 8. If j = i+ 1 and t = j, then w(T i[i,j−1]) = w(T t[j,t]) = 0. Therefore,

OPT (i, k) = ∆(i, j, k) + w(T i[i,j−1]) + w(pt, pj−1) + w(T t[j,t]) +OPT (t, j − 1).

Based on the aforementioned, to compute OPT (i, k), we compute ∆(i, j, k) + w(T i[i,j−1]) +

w(T t[j,t]) + w(pt, pj−1) + OPT (t, j − 1), for each i < j ≤ n and for each j ≤ t ≤ n, and take the

minimum over these values. That is, if i = n, then OPT (i, k) = 0, otherwise

OPT (i, k) = min
i<j≤n
j≤t≤n

¶
∆(i, j, k) + w(T i[i,j−1]) + w(T t[j,t]) + w(pt, pj−1) +OPT (t, j − 1)

©
.
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pi pjpk pnpj−1

OPT (i, k)

pt
OPT (t, j − 1)

Figure 8: Computing OPT (i, k).

For each i < j ≤ n, let C(j) = min
j≤t≤n

¶
w(T t[j,t]) + w(pt, pj−1) +OPT (t, j − 1)

©
and observe that

C(j) depends only on t. Therefore,

OPT (i, k) = min
i<j≤n

¶
∆(i, j, k) + w(T i[i,j−1]) + C(j)

©
.

We compute OPT (i, k), for each 1 ≤ k ≤ i ≤ n, using dynamic programming as follows. We
maintain two tables M of size n × n and C of size 1 × n, such that M [i, k] = OPT (i, k), for each

1 ≤ k ≤ i ≤ n, and C[j] = C(j), for each 1 ≤ j ≤ n. In Section 3.1, we computed two tables
←
S and

→
S each of size n × n, such that

←
S [i, j] = w(T i[i,j]) and

→
S [i, j] = w(T j[i,j]), for each 1 ≤ i ≤ j ≤ n.

Algorithm 2 uses these tables to fill the table M and returns M [1, 1] = OPT (1, 1).

Algorithm 2 SolveMTIP (G,w)

1: for each i← n to 1 do
C[i]←∞
for each k ← 1 to i do

M [i, k]←∞
2: for each k ← 1 to n do

M [n, k]← 0
3: for each i← n− 1 to 1 do

for each j ← i+ 1 to n do
for each t← j to n do

C[j]← min{C[j] ,
→
S [j, t] + w(pt, pj−1) +M [t, j − 1]}

for each k ← 1 to i do
if |pipj | > |pipk| then

∆← w(pi, pj)− w(pi, pk)
else

∆← 0
M [i, k]← min{M [i, k] , ∆ +

←
S [i, j − 1] + C[j]}

4: return M [1, 1]

Notice that, when we fill the cell C[j], the cells M [t, j − 1] are already computed, for each
i < t ≤ n and for each 1 < j ≤ i. Moreover, when we fill the cell M [i, k], the cell C[j] is already
computed. Since for each i < j ≤ n, the cell C[j] is filled n − 1 times (for each 1 ≤ i < n) and

computed by taking the minimum over
→
S [j, t] + w(pt, pj−1) + M [t, j − 1], for each j ≤ t ≤ n, the

total time for filling the table C is O(n3). Moreover, each cell M [i, k] is computed by taking the
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minimum over ∆+
←
S [i, j − 1] + C[j], for each i < j ≤ n. Thus, each cell M [i, k] is computed in

O(n) time, and the whole table is computed in O(n3) time. Therefore, the total running time of
Algorithm 2 is O(n3).

The following theorem summarizes the result of this section.

Theorem 3.8. Let P be a set of n points located on a horizontal line. Then, one can compute in
O(n3) time a range assignment ρ to the points of P , such that the induced graph Gρ is strongly
connected and its total interference is minimized.

4 MTIP in 2D

In this section, we prove that MTIP is NP-complete in 2D and present a polynomial-time 2-
approximation algorithm for the problem.

Theorem 4.1. MTIP in 2D is NP-complete.

Proof. Given a range assignment ρ as a certificate, it is easy to verify in polynomial-time whether
the graph induced by ρ is strongly connected and whether its total interference is bounded by a
given value I. This implies that MTIP is in NP .

To prove hardness of MTIP, we show a polynomial-time reduction from the problem of deciding
whether a grid graph contains a Hamiltonian cycle, which is known to be NP-hard [11]. A grid
graph is a graph whose vertex set is a subset of the integer grid Z×Z, and two vertices are connected
by an edge if and only if the distance between them is equal to 1; see Figure 9(a).

Let G = (V,E) be a grid graph, where V = {v1, v2, . . . , vn}. We construct in polynomial-time
a set P of 5n points in the plane, and show that G contains a Hamiltonian cycle iff there exists
a range assignment ρ such that the induced graph Gρ is strongly connected and I(Gρ) = 9n. We
assume that the degree of each vertex in G is at least 2, otherwise G cannot contain a Hamiltonian
cycle.

vi

vj

ci

cj

(a) (b)

pir

pil

pit

pib

11
1.4 1

1

1.4

Pi

Figure 9: (a) A grid graph G. (The bold edges form a Hamiltonian cycle.) (b) The resulting set
P . Each set Pi ⊆ P corresponds to a vertex vi in G and consists of 5 points {ci, pir , pil , pit , pib}.
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We first transform the vertices of G to a set C = {c1, c2, . . . , cn} of n points on a grid of side
length 3.4, such that two vertices vi and vj are adjacent in G if and only if ci and cj (the points
corresponding to vi and vj) are adjacent in the new grid; see Figure 9. Then, for each point ci ∈ P ,
we locate four points pir , pil , pit , and pib on the grid edges incident to ci, such that the distance
between ci and each one of them is equal to 1; see Figure 9(b). Put Pi = {ci, pir , pil , pit , pib}. We
will refer to ci as the center of Pi and to the other four points as connectors. Let P =

⋃
vi∈V

Pi be

the resulting set. Clearly, |P | = 5n and P can be constructed in polynomial-time.

Lemma 4.2. Let ρ be a valid range assignment of P and let Gρ be the graph induced by ρ. Then,
for each 1 ≤ i ≤ n, SI(Pi) =

∑
p∈Pi

SI(p) ≥ 9.

Proof. Since ρ is a valid assignment, for each p ∈ Pi, we have ρ(p) ≥ 1. Hence, SI(ci) ≥ 4 and
SI(p) ≥ 1, for each p ∈ Pi \ {ci}. Moreover, since Gρ is strongly connected, the transmission range
of at least one of the points of Pi must cover at least one point from P \Pi, which means that either
ρ(ci) ≥ 2.4 or ρ(p) ≥ 1.4 for at least one connector p ∈ Pi. If ρ(ci) ≥ 2.4, then SI(ci) ≥ 6 (since the
degree of each vertex in G is at least 2), and therefore, SI(Pi) ≥ 10; see Figure 10(a). Otherwise,
at least one connector p ∈ Pi has ρ(p) ≥ 1.4. Then, SI(p) ≥ 2, and therefore SI(Pi) ≥ 9; see
Figure 10(b).

ci

pir

pil

pit

pib

ci

pir

pil

pit

pib

(a) (b)

Figure 10: SI(Pi) ≥ 9.

Corollary 4.3. Let ρ be a valid range assignment of P . Then, if SI(Pi) = 9, for some 1 ≤ i ≤ n,
then ρ(ci) < 2.4, exactly one connector p ∈ Pi has 1.4 ≤ ρ(p) <

√
2, and each of the other three

connectors p′ ∈ Pi has 1 ≤ ρ(p′) < 1.4.

Proof. During the proof of Lemma 4.2, we showed that if ρ(ci) ≥ 2.4, then SI(ci) ≥ 6, and hence
SI(Pi) ≥ 10. Thus, ρ(ci) < 2.4 and SI(ci) = 4. Moreover, for each point p ∈ Pi \ {ci}, ρ(p) ≥ 1,
and if 1.4 ≤ ρ(p) <

√
2, then SI(p) = 2. Since SI(Pi) = 9, exactly one point p ∈ Pi \ {ci} has

1.4 ≤ ρ(p) <
√

2, which completes the proof of the lemma.

We now prove the correctness of the reduction. Suppose that G contains a Hamiltonian cycle
C. We compute a valid range assignment ρ to the points of P , such that I(Gρ) = 9n. Consider C
as a directed cycle, such that, each vertex in C has in-degree 1 and out-degree 1. For each vertex
vi in G we assign ranges to the points of Pi as follows. We assign 1 to the center ci, assign 1.4 to
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one of the connectors (according to the outgoing edge incident to vi in C), and assign 1 to each
of the other three connectors. Since C is a Hamiltonian cycle, the graph induced by ρ is strongly
connected. Moreover, SI(Pi) = 9, for each 1 ≤ i ≤ n, and therefore I(Gρ) = 9n.

Conversely, suppose that there exists a valid range assignment ρ to the points of P , such that
I(Gρ) = 9n. By Lemma 4.2, SI(Pi) ≥ 9, for each 1 ≤ i ≤ n. Since I(Gρ) = 9n, we conclude that
SI(Pi) = 9, for each 1 ≤ i ≤ n. Moreover, by Corollary 4.3, in each set Pi, exactly one connector
p has 1.4 ≤ ρ(p) <

√
2 (where ρ(ci) < 2.4 and each of the other connectors p′ has 1 ≤ ρ(p′) < 1.4).

We construct a Hamiltonian cycle C in G as follows. For every two sets Pi and Pj , we add the edge
(vi, vj) to C if and only if the connector p ∈ Pi assigned range 1.4 ≤ ρ(p) <

√
2 covers a point in

Pj . Thus, C is a subgraph of G, and, since Gρ is strongly connected, C is connected. Moreover,
since each set Pi has exactly one point which reaches a point not in Pi, the degree of each vertex
in C is exactly 2. Therefore, C is a Hamiltonian cycle in G.

4.1 Approximation Algorithm for MTIP in 2D

Let P be a set of n points in the plane. Let ρ∗ be an optimal range assignment to the points
of P . Let Gρ∗ be the graph induced by ρ∗, and put OPT = I(Gρ∗). In this section, we present
a polynomial-time approximation algorithm that computes a valid range assignment ρ, such that
I(Gρ) ≤ 2 ·OPT .

Let s be a point of P . A broadcast tree for P rooted at s is a directed tree rooted at s, which
contains a directed path from s to each point p ∈ P \{s}. A sink tree for P rooted at s is a directed
tree rooted at s, which contains a directed path from each point p ∈ P \ {s} to s. We introduce
two variants of MTIP, namely MTIP1 and MTIP2. In MTIP1, the goal is to compute a range
assignment ρ1 to the points of P , such that the graph induced by ρ1 contains a broadcast tree Tρ1
for P rooted at s of minimum total interference. And, in MTIP2, the goal is to compute a range
assignment ρ2 to the points of P , such that the graph induced by ρ2 contains a sink tree Tρ2 for P
rooted at s of minimum total interference.

Let ρ1 and ρ2 be optimal range assignments for MTIP1 and MTIP2, respectively, and let Tρ1
and Tρ2 be the corresponding broadcast and sink trees. We compute a new range assignment ρ as
follows. For each point p ∈ P , we set ρ(p) = max{ρ1(p), ρ2(p)}. Let Gρ be the graph induced by
ρ. Then, Gρ is strongly connected, since given two points p, q ∈ P , one can get from p to q by first
following the directed path in Tρ2 from p to s and then following the directed path in Tρ1 from s
to q. In the next lemma we bound I(Gρ).

Lemma 4.4. I(Gρ) ≤ 2 ·OPT .

Proof. Consider the graph Gρ∗ . Since Gρ∗ is strongly connected, there exists a directed path from
s to each of the points in P \ {c} and vice versa. Thus, Gρ∗ contains broadcast and sink trees
rooted at s. Let T1 and T2 be such broadcast and sink trees, respectively. Clearly, I(T1) ≤ OPT
and I(T2) ≤ OPT . Since Tρ1 is a broadcast tree of minimum total interference and Tρ2 is a sink
tree of minimum total interference, we have I(Tρ1) ≤ I(T1) and I(Tρ2) ≤ I(T2). Moreover, since
I(Gρ) ≤ I(Tρ1) + I(Tρ2), we have I(Gρ) ≤ 2 ·OPT .

We now show how to solve MTIP1 and MTIP2 optimally, and therefore, by Lemma 4.4, we can
obtain a valid range assignment ρ, such that I(Gρ) ≤ 2 ·OPT .

13



Solving MTIP1

An optimal range assignment ρ1 for MTIP1 can be found easily. We assign s the range ρ1(s) =
maxp∈P |sp|, and for each point p ∈ P \ {s}, we assign p the range ρ1(p) = 0. Clearly, ρ1 induces a
broadcast tree Tρ1 rooted at s and I(Tρ1) = n− 1, which is optimal.

Solving MTIP2

The algorithm in this case is more involved. Let G = (P,E) be the complete weighted directed
graph on P , such that the weight of (p, q) ∈ E is w(p, q) = |{z ∈ P \ {p} : |pz| ≤ |pq|}|. Let
T = (P,ET ) be a sink tree rooted at s in G, and let w(T ) =

∑
(p,q)∈ET

w(p, q) denote its weight.
Let ρ2 be a range assignment to the points of P , such that the induced graph contains a sink tree
Tρ2 rooted at s. Observe that if ρ2 is an optimal range assignment for MTIP2, then the induced
graph contains a unique sink tree Tρ2 rooted at s. The following lemma generalizes Lemma 3.1 and
its proof is identical.

Lemma 4.5. ρ2 is an optimal range assignment for MTIP2 if and only if Tρ2 is a minimum-weight
sink tree rooted at s in G.

By Lemma 4.5, to compute an optimal range assignment ρ2 for MTIP2, it is sufficient to
compute a minimum-weight sink tree rooted at s in G. We compute a minimum-weight sink tree
rooted at s in G using Edmonds’ algorithm [6] (for finding minimum directed spanning trees in
directed graphs).

We construct the (inverse) complete weighted directed graph G′ = (P,E′), such that the weight
of (p, q) ∈ E′ is w′(p, q) = w(q, p) = |{z ∈ P \ {q} : |qz| ≤ |qp|}|. Clearly, T ′ is a broadcast tree
rooted at s in G′ of weight W if and only if T (the tree obtained by inverting the edges of T ′) is
a sink tree rooted at s in G of weight W . Therefore, in order to compute a minimum-weight sink
tree rooted at s in G, it suffices to compute a minimum-weight broadcast tree rooted at s in G′.
Since a minimum-weight broadcast tree rooted at s in G′ can be computed in O(n2) time [16] using
Edmonds’ algorithm, we can compute a minimum-weight sink tree rooted at s in G in O(n2) time.
Moreover, since G and G′ can be constructed in O(n2) time, we can solve MTIP2 in O(n2) time
(applying Lemma 4.5).

The following theorem summarizes the result of this section.

Theorem 4.6. Let P be a set of n points in the plane. Then, one can compute in O(n2) time
a valid range assignment ρ to the points of P , such that the graph Gρ induced by ρ is strongly
connected and its total interference is at most 2 ·OPT .
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