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Abstract

Let G = (V,E) be an undirected graph, LG ∈ R
V ×V be the associated Laplacian matrix, and b ∈

R
V be a vector. Solving the Laplacian system LGx = b has numerous applications in theoretical

computer science, machine learning, and network analysis. Recently, the notion of the Laplacian

operator LF : RV → 2R
V

for a submodular transformation F : 2V → R
E
+ was introduced, which

can handle undirected graphs, directed graphs, hypergraphs, and joint distributions in a unified

manner. In this study, we show that the submodular Laplacian system LF (x) ∋ b can be solved

in polynomial time. Furthermore, we also prove that even when the submodular Laplacian system

has no solution, we can solve its regression form in polynomial time. Finally, we discuss potential

applications of submodular Laplacian systems in machine learning and network analysis.

1. Introduction

In spectral graph theory, the Laplacian matrix (or simply Laplacian) LG = DG − AG associated

with an undirected graph G = (V,E) is an important object, where DG ∈ R
V×V is a diagonal

matrix with the (v, v)-th element equal to the degree of v ∈ V and AG ∈ R
V×V is the adjacency

matrix of G. Using the Laplacian LG of an undirected graph G, one can extract various informa-

tion regarding G, such as commuting time of random walks, maximum cut, and diameter of the

graph. Further, a cornerstone result in spectral graph theory is Cheeger’s inequality (Alon, 1986;

Alon and Milman, 1985), which associates the community structure of G with the second smallest

eigenvalue of LG. See Chung (1997) for a survey on this area.

An important problem considering Laplacians for undirected graphs is solving the Laplacian

system LGx = b for a graph G = (V,E) and a vector b ∈ R
V ; in terms of electrical circuits,

this problem can be interpreted as follows: We regard each edge e ∈ E as a resistance of 1Ω
and each vertex v ∈ V as a joint connecting these resistances. Then, the solution x provides the

electric potential at the vertices when a current of b(v)A flows through each v ∈ V . Based on this

interpretation, it is evident that the Laplacian system has a solution only when
∑

v∈V b(v) = 0, that

is, the amount of inflow is equal to that of outflow.

Solving Laplacian systems has numerous applications such as in simulating random walks (Cohen et al.,

2016), generating spanning trees (Kelner and Madry, 2009), constructing sparsifiers (Spielman and Srivastava,
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2011), faster interior point methods (Daitch and Spielman, 2008), semi-supervised learning (Joachims,

2003; Zhou et al., 2003; Zhu et al., 2003), and network analysis (Brandes and Fleischer, 2005; Hayashi et al.,

2016; Mavroforakis et al., 2015; Newman, 2005). For more applications of solving Laplacian sys-

tems, refer to Vishnoi (2013).

Although the concept of Laplacians for undirected graphs was first introduced in the 1980s,

it is only recently that the notions of Laplacian operators for directed graphs (Yoshida, 2016) and

hypergraphs (Louis, 2015) have been proposed and corresponding Cheeger’s inequalities have been

obtained.1 It is important to note that these operators are no longer linear, and therefore, cannot be

expressed using matrices. Furthermore, recently, Yoshida (2017) showed that these operators can

be systematically constructed using the cut function F : 2V → R
E
+ associated with an undirected

graph, directed graph, or hypergraph, where Fe : S 7→ F (S)(e) is equal to one if the edge e ∈ E
is cut, and zero otherwise. A key property used in the analysis of the constructed operators is the

submodularity of the cut function, which is given by

Fe(S) + Fe(T ) ≥ Fe(S ∪ T ) + Fe(S ∩ T )

for every S, T ⊆ V . Indeed, this construction can be applied to any submodular transformation

F : 2V → R
E
+, that is, each function Fe : S 7→ F (S)(e) is non-negative submodular, and corre-

sponding Cheeger’s inequality was obtained when F (∅) = F (V ) = 0 (Yoshida, 2017). In what

follows, we always assume that a submodular transformation is normalized, that is, F (∅) = 0, and

F (V ) = 0 to avoid technical triviality.

Submodular Laplacian Systems. Because solving Laplacian systems based on undirected graphs

have numerous applications, it is natural to consider solving Laplacian systems for general submod-

ular transformations, which are referred to as submodular Laplacian systems. It should be noted that

the Laplacian operator LF : RV → 2R
V

associated with a submodular transformation F : 2V → R
E
+

is multi-valued, and therefore, the question here is computing x ∈ R
V such that LF (x) ∋ b for a

given vector b ∈ R
V . As the first contribution of our study, we show the tractability of submodular

Laplacian systems:

Theorem 1 Let F : 2V → R
E
+ be a submodular transformation and b ∈ R

V be a vector. Then, we

can compute x ∈ R
V

LF (x) ∋ b

in polynomial time, if it exists.

Because the algorithm used in Theorem 1 is based on the ellipsoid method, the time complexity is

large albeit polynomial. Later, in Section 3.2, we will discuss more efficient algorithms when F is

given by a directed graph or hypergraph.

In some special cases of the abovementioned problem, a direct interpretation is possible, which

is discussed in the following lines. Suppose F : 2V → R
E
+ is constructed from a directed graph

G = (V,E). Then, we regard each arc uv ∈ E as an ideal diode of 1Ω, that is, if the electric

potential of u is higher than or equal to that of v, then each arc represents a resistance of 1Ω,

and otherwise, no current flows through it. Then, the solution x for this directed graph provides

the electric potential at the vertices when a current of b(v)A flows through each v ∈ V . For

1. Precisely speaking, several Laplacian matrices have been proposed for directed graphs (Chung, 2007; Li and Zhang,

2012; Zhou et al., 2005); however, these Laplacians are well-defined only for strongly connected directed graphs.
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hypergraphs, a hyperedge acts as a circuit element in which current flows from a vertex of the

highest potential to that of the lowest.

Solving Laplacian systems for undirected graphs has been intensively studied. The first nearly-

linear-time algorithm was achieved by Spielman and Teng (2014), and the current fastest algorithm

runs in Õ(|E| log1/2 |V |) time (Cohen et al., 2014), where Õ(·) hides a polylogarithmic factor. In

contrast, to the best of our knowledge, there is no prior study on solving Laplacian systems for

directed graphs and hypergraphs.

Submodular Laplacian Regression. When the given submodular Laplacian system LF (x) ∋ b

does not admit a solution, we may want to find b′ ∈ R
V close to b such that LF (x) ∋ b′ has a

solution; this serves as motivation for the following submodular Laplacian regression problem:

min
p∈RV

‖p‖22 subject to LF (x) ∋ b+ p for some x ∈ R
V .

It should be noted that once we have solved this problem, we can obtain x ∈ R
V with LF (x) ∋ b+p

in polynomial time by applying Theorem 1. The second contribution of this study is the following:

Theorem 2 We can solve the submodular Laplacian regression problem in polynomial time.

1.1 Applications

In this section, we discuss potential applications of our results in machine learning and network

analysis.

Semi-supervised Learning Semi-supervised learning is a framework for predicting unknown la-

bels of unlabeled data based on both labeled and unlabeled instances. In the case of supervised

learning, we utilize only labeled instances to predict the labels of unlabeled instances. However, in

many realistic scenarios, only a few of labeled instances are available compared with a large number

of unlabeled instances; in such cases, the unlabeled instances also need to be effectively utilized to

predict the unknown labels. This type of learning is referred to as semi-supervised learning.

Formally, the problem of semi-supervised learning can be stated follows: The given dataset V is

partitioned into a set T of labeled instances and set U of unlabeled instances. Each labeled instance

v ∈ T has its label x̃(v) ∈ {−1,+1}. The aim of this problem is to predict the labels x(v) of

unlabeled instances v ∈ U .

A standard approach to semi-supervised learning is using Laplacians associated with undi-

rected graphs. In this method, first, the training dataset is transformed into a similarity graph

G = (V,E,w), where w : E → R is a weight function; then, the labels of unlabeled instances are

predicted using the Laplacian matrix LG ∈ R
V×V for the constructed similarity graph. In particular,

a similarity graph represents pairwise representations among labeled and unlabeled instances.

Another well known approach proposed by Zhu et al. (2003) involves solving the Laplacian

system LGx = b under the constraints that b(v) = 0 for all v ∈ U and x(v) = x̃(v) for all v ∈ T .

Since its introduction, many variants of this approach have been proposed based on Laplacians for

undirected graphs, which have applied to various applications.

Using submodular Laplacian systems, we can extend previous semi-supervised learning algo-

rithms to more general similarity expressions, such as directed graphs and hypergraphs. An arc

represents that the tail vertex is closer to +1 than the head vertex. A hyperedge represents that all

3
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incident vertices have similar labels. Furthermore, we can express more complicated relationships

with general submodular functions.

To develop a general framework for semi-supervised learning, we extend Theorem 1 by impos-

ing constraints x(v) = x̃(v) (v ∈ T ) and b(v) = b̃(v) (v ∈ U), where x̃ ∈ R
T and b̃ ∈ R

U are

provided as a part of the input. It should be noted that the semi-supervised setting is a special case

of this problem for which b̃ is the zero vector. Then, we show the following:

Theorem 3 Let F : 2V → R
E
+ be a submodular transformation and suppose V is partitioned into

disjoint subsets T ⊆ V and U ⊆ V . Let x̃ ∈ R
T and b̃ ∈ R

U be vectors. Then, we can compute

x ∈ R
V that satisfies LF (x) ∋ b, x(v) = x̃(v) for all v ∈ T and b(v) = b̃(v) for all v ∈ U in

polynomial time if it exists.

Network Analysis A typical task in network analysis is measuring the importance, or central-

ity, of vertices and edges. There are many centrality notions depending on applications, and for

undirected graphs, some notions are defined using Laplacians matrices.

Before describing these centrality notions, we require some definitions. Let G = (V,E) be an

undirected graph, and for each v ∈ V , let ev ∈ R
V be the vector with ev(v) = 1 and ev(w) = 0 for

w ∈ V \{v}. Then, for vertices u, v ∈ V , the quantity RG(u, v) := (eu−ev)
⊤L+

G(eu−ev) ∈ R+

is called the effective resistance from u to v, where L+
G ∈ R

V×V is the pseudo-inverse of the

Laplacian LG ∈ R
V×V . The effective resistance can be considered as the resistance of the circuit

associated with G when a current is passed from u to v.

In (Hayashi et al., 2016; Mavroforakis et al., 2015), the effective resistance RG(u, v) of an edge

uv ∈ E is directly used as the centrality of an edge, and is referred to as the spanning tree centrality,

because it is known to be equal to the probability that the edge is used when sampling a spanning

tree uniformly at random.

Brandes and Fleischer (2005) introduced the current flow closeness centrality of a vertex, which

is defined as

τC(v) =
n∑

u∈V :u 6=v RG(u, v)
.

This notion implicitly assumes that the effective resistance satisfies the triangle inequality, that is,

RG(u, v)+RG(v,w) ≥ RG(u,w) for every u, v, w ∈ V and hence can be seen as a (quasi-)metric.

Then, we regard a vertex as important when it is close to every other vertex; in other words, it is in

the center of the network.

Newman (2005) introduced the notion of the current flow betweenness centrality of a vertex,

which is defined as

τB(v) =
1

(|V | − 1)(|V | − 2)

∑

s,t∈V :v 6=s 6=t6=v

τst(v),

where τst(v) =
∑

w:vw∈E |x(v)−x(w)| for x = L+
G(es − et). In words, τst(v) is the total current

passing through the edges incident to v when a current of 1A flows from s to t. Intuitively, we

regard a vertex as important when a large fraction of the current passes through it.

It is natural to inquire whether these notions can be extended to directed graphs, hypergraphs,

or general submodular transformations. Using Theorem 1, we can define the effective resistance

RF (u, v) for u, v ∈ V in terms of the Laplacian LF : RV → 2R
V

associated with a submodular

transformation F : 2V → R
E
+. That is, we define

RF (u, v) := (eu − ev)
⊤L+

F (eu − ev),
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where L+
F (eu−ev) ∈ R

V is the vector x ∈ R
V obtained by applying Theorem 1 with b = eu−ev.

When there is no solution, we define RF (u, v) = ∞. The formal definition is deferred to Section B.

For directed graphs and hypergraphs, as in the case of undirected graphs, the effective resistance

RF (u, v) can be seen as the resistance of the circuit associated with the graph when a current is

passed from u to v. Note that RF (u, v) may not be equal to RF (v, u) for directed graphs.

Further, we can generalize centrality notions mentioned above to general submodular trans-

formations. As mentioned earlier, the implicit assumption when defining current flow closeness

centrality is of the triangle inequality of effective resistance. Here, we show that it also holds for

general submodular transformations:

Theorem 4 Let F : 2V → R
E
+ be a submodular transformation. Then, effective resistance RF (u, v)

satisfies triangle inequality.

1.2 Organization

The notions used in this paper are reviewed in Section 2. Then, we prove Theorems 1 and 2 in

Sections 3 and 4, respectively. Due to space limitations, the proofs of Theorems 3 and 4 are deferred

to Sections A and B, respectively.

2. Preliminaries

For a positive integer n ∈ N, the set {1, . . . , n} is denoted by [n]. For a vector x ∈ R
V and a set

S ⊆ V , x(S) denotes the sum
∑

v∈S x(v).

2.1 Distributive lattice and the Birkoff representation theorem

A subset S in a poset (X,�) is called a lower ideal if S is down-closed with respect to the partial

order �. The Birkoff representation theorem (Birkhoff, 1937; Fujishige, 2005) states that for any

distributive lattice D ⊆ 2V with ∅, V ∈ D, there uniquely exists a poset P on a partition Π(V ) of

V and a partial order � such that S ∈ D if and only if S is a lower ideal in P . The poset P can be

constructed as follows. Let us define an equivalence relation ∼ on V as i ∼ j if any S ∈ D contains

either both, i and j, or none. Let Π(V ) be the set of equivalence classes induced by ∼. Then, a

partial order � on Π(V ) is defined as [i] � [j], where [i] and [j] are equivalence classes containing

i and j, respectively, if any set S ∈ D containing j also contains i. It can be confirmed that � is a

well-defined partial order. Then, P = (Π(V ),�) is the desired poset.

Using the Hasse diagram of P , one can maintain the poset P in a digraph with n vertices and

m arcs. We refer to such a digraph as the Birkoff representation of D. Since n = O(|V |) and

m = O(n2), the Birkoff representation is a compact representation of a distributive lattice, even if

D contains exponentially many subsets. Furthermore, if D is the set of minimizers of a submodular

function, one can construct the Birkoff representation in strongly polynomial time using submodular

function minimization algorithms (see Fujishige (2005)).

2.2 Submodular functions

Let D ⊆ 2V be a distributive lattice. A function F : D → R is called submodular if

F (S) + F (T ) ≥ F (S ∪ T ) + F (S ∩ T )

5
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for every S, T ∈ D. For a submodular function F : D → R, the submodular polyhedron PD(f) and

base polyhedron BD(F ) associated with F are defined as

PD(F ) = {x ∈ R
V : x(S) ≤ F (S) (S ∈ D)}

BD(F ) = {x ∈ PD(F ) : x(E) = F (V )},

respectively. We omit the subscripts D when it is clear from the context.

For a submodular function F : D → R, its Lovász extension f : RV → R is defined as

f(x) = max
w∈BD(F )

〈x,w〉,

where 〈·, ·〉 is the inner product. We note that f is an extension considering f(1S) = F (S) for every

S ∈ D, where 1S ∈ R
V is a vector with 1S(i) = 1 if i ∈ S and 1S(i) = 0 otherwise. Moreover, f

is convex and positively homogeneous, that is, f(αx) = αf(x) for every α ≥ 0. It is known that

the subdifferential of f at x is argmaxw∈BD(F )〈x,w〉, and this is denoted by ∂f(x).

2.3 Submodular Laplacians

A transformation F : 2V → R
E
+ is called submodular if each function Fe : S 7→ F (S)(e) is sub-

modular. We now formally introduce the Laplacian operator associated with a submodular transfor-

mation:

Definition 5 (Submodular Laplacian operator (Yoshida, 2017)) Let F : 2V → R
E
+ be a submod-

ular transformation. Then, the Laplacian LF : RV → 2R
V

of F is defined as

LF (x) =
{∑

e∈E

we〈we,x〉 : we ∈ ∂fe(x) (e ∈ E)
}
=
{
WW⊤x : W ∈

∏

e∈E

∂fe(x)
}
,

where fe : R
V → R is the Lovász extension of Fe for each e ∈ E.

Here, we have 〈x,y〉 =
∑

e∈E fe(x)
2 for any y ∈ LF (x), and hence we can write x⊤LF (x) to

denote this quantity.

As a descriptive example, consider an undirected graph G = (V,E) and the associated submod-

ular transformation F : 2V → R
E
+. Then, for every edge e = uv ∈ E we have

∂fe(x) =





{eu − ev} if x(u) > x(v),

{ev − eu} if x(u) < x(v),{
αeu − αev : α ∈ [−1, 1]

}
if x(u) = x(v).

We can confirm that LF (x)(v) =
∑

w:vw∈E

(
x(v)−x(w)

)
= LG(x)(v) for every v ∈ V , where LG

is the standard Laplacian matrix associated with G. Refer to (Yoshida, 2017) for further examples.

2.4 Convex optimization

We use the following basic results from convex optimization.
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Theorem 6 (Rockafellar (1996, Corollary 28.3.1)) Let f, g1, . . . , gm : Rn → R be proper convex

functions. Consider the optimization problem

min
x∈Rn

f(x) subject to gi(x) ≤ 0. (i = 1, . . . ,m)

Assume that the optimal value is finite and the Slater condition is satisfied. Then, a feasible solution

x is optimal if and only if there exists a Lagrange multiplier ϕ ∈ R
m
+ such that (x,ϕ) is a saddle

point of the Lagrangian

P (x,ϕ) := f(x) +
∑

i∈[m]

ϕ(i)gi(x).

Equivalently, x is optimal if and only if there exists ϕ ∈ R
m
+ satisfying the Karush-Kuhn-Tucker

(KKT) condition together with x.

3. Solving Submodular Laplacian Systems

In this section, we prove Theorem 1. Throughout this section, we fix a submodular transformation

F : RV → R
E
+ and a vector b ∈ R

V . We describe a general method based on the ellipsoid method

in Section 3.1. Then, in Section 3.2, we discuss a more efficient algorithm when F : 2V → R
E
+ is

given by a directed graph or hypergraph.

3.1 General case

Let fe : R
V → R (e ∈ E) be the Lovász extension of Fe. We consider the following optimization

problem:

min
x∈RV ,η∈RE

1

2
‖η‖22 − 〈b,x〉 subject to fe(x) ≤ η(e) (e ∈ E). (1)

This problem is equivalent to minimizing 1
2

∑
e∈E fe(x)

2 − 〈b,x〉 = 1
2x

⊤LF (x) − 〈b,x〉, which

is continuously differentiable and convex. Then, we can directly show that the minimizer x∗ of the

latter problem satisfies LF (x) ∋ b from the first order condition. By considering (1), however, we

can exploit the combinatorial structure of the problem to obtain a more efficient algorithm.

Introducing the Lagrange multiplier ϕ ≥ 0, we can obtain the corresponding Lagrangian as

P (x,η,ϕ) =
1

2
‖η‖22 − 〈b,x〉 +

∑

e∈E

ϕ(e)(fe(x)− η(e)) (2)

=
1

2
‖η‖22 − 〈ϕ,η〉 −

[
〈b,x〉 −

∑

e∈E

ϕ(e)fe(x)

]
.

Thus,

min
x,η

P (x,η,ϕ) = −
1

2
‖ϕ‖22 −max

x

[
〈b,x〉 −

∑

e∈E

ϕ(e)fe(x)

]
= −

1

2
‖ϕ‖22 −

(
∑

e∈E

ϕ(e)fe

)∗

(b),

7
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where (·)∗ is the Fenchel conjugate. Since Lovász extensions are positively homogeneous, we

can confirm that
(∑

e∈E ϕ(e)fe
)∗

(b) is equal to either infinity or zero. Thus, we obtain the dual

problem:

min
ϕ≥0

1

2
‖ϕ‖22 subject to

(
∑

e∈E

ϕ(e)fe

)∗

(b) ≤ 0. (3)

The constraint can be checked with submodular function minimization. To see this, we observe

the following:

Lemma 7 We have

(
∑

e∈E

ϕ(e)fe

)∗

(b) = sup
x∈RV

[
〈b,x〉 −

∑

e∈E

ϕ(e)fe(x)

]
≤ 0

if and only if

max
x∈[0,1]V

[
〈b,x〉 −

∑

e∈E

ϕ(e)fe(x)

]
= max

X⊆V

[
b(X) −

∑

e∈E

ϕ(e)Fe(X)

]
≤ 0.

Proof (⇒) Trivial.

(⇐) Suppose there is x ∈ R
V such that 〈b,x〉−

∑
e∈E ϕ(e)fe(x) > 0. By the assumption that

F (V ) = 0, we have f(x) = f(x+ α1) for any α ∈ R, where 1 ∈ R
V is the all-one vector. This

holds because fe(x+ α1) = maxw∈B(Fe)〈w,x+ α1〉 = maxw∈B(Fe)〈w,x〉 = fe(x), where we

used the fact that 〈w,1〉 = 0 holds for any w ∈ B(Fe) as Fe(V ) = 0.

Now, by adding α1 to x for a large α ∈ R, we can assume x(v) ≥ 0 for every v ∈ V . More-

over, x 6= 0 because f(0) = 0. Since the Lovász extension f is positively homogeneous, for

x′ = x/‖x‖∞ ∈ [0, 1]V , we have f(x′) = f(x/‖x‖∞) = f(x)/‖x‖∞ > 0.

By Lemma 7, we obtain the following dual problem:

min
ϕ≥0

1

2
‖ϕ‖22 subject to

∑

e∈E

ϕ(e)Fe(X)− b(X) ≥ 0 (X ⊆ V ). (4)

A separation oracle for the constraint can be implemented by submodular function minimization.

Therefore, we can use the ellipsoid method to solve (4).

Theorem 8 The following hold:

(1) (1) is feasible if and only if (4) is bounded.

(2) A strong duality holds between (1) and (4), that is, the optimal values of (1) and (4) coincide.

(3) We can solve (1) in polynomial time.

(4) The optimal solution (x∗,η∗) for (1) satisfies LF (x
∗) ∋ b.

8
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Proof (1) Standard.

(2) It is clear that (1) satisfies Slater’s condition and hence the claim holds.

(3) Since we can compute the subgradient of fe at a given point x, we have a separation oracle

for (1). Thus the ellipsoid method solves (1).

(4) Let (x∗,η∗) be an optimal solution of (1). Based on Theorem 6, there exists ϕ∗ ≥ 0 such

that (x∗,η∗,ϕ∗) is a saddle point of the Lagrangian P . Since ∂P
∂η = η−ϕ, we have ϕ∗ = η∗ using

the saddle condition. By complementary slackness, if ϕ∗(e) > 0, we have fe(x
∗) = η∗(e) for any

e ∈ E. If ϕ∗(e) = 0, we have fe(x
∗) ≤ 0, and since fe(x

∗) ≥ 0, we obtain fe(x
∗) = η∗(e) for

e ∈ E. Thus, we conclude that ϕ∗(e) = fe(x
∗) for e ∈ E. Finally, by the saddle condition for x∗,

we must have ∑

e∈E

ϕ∗(e)∂fe(x
∗) =

∑

e∈E

fe(x
∗)∂fe(x

∗) ∋ b,

which implies b ∈ LF (x
∗).

3.2 Flow-like formulation for directed graphs and hypergraphs

If each submodular function Fe : 2
V → R+ is of constant arity, we can use a different formulation.

First, we enumerate all extreme points of the base polytope B(Fe) for each Fe. Let Ve be the

set of extreme points of B(Fe) (e ∈ E). The constraint fe(x) ≤ η(e) in (1) is equivalent to

〈w,x〉 ≤ η(e) for all extreme points w ∈ Ve. Therefore, (1) is equivalent to

min
x∈RV ,η∈RE

1

2
‖η‖22 − 〈b,x〉 subject to 〈w,x〉 ≤ η(e) (w ∈ Ve, e ∈ E) (5)

For each extreme point w ∈ Ve, we introduce a “flow” variable ϕ(e,w). By a calculation

similar to that in Section 3.1, we can obtain the following dual problem:

min
ϕ≥0

1

2

∑

e∈E

(
∑

w∈Ve

ϕ(e,w)

)2

subject to
∑

e∈E

∑

w∈Ve

ϕ(e,w)w = b. (6)

Then, the constraint
∑

e∈E

∑
w∈Ve

ϕ(e,w)w = b can be interpreted as a “flow boundary con-

straint”, as illustrated in the following examples.

Example 1 (Cut functions of directed graphs) Let G = (V,E) be a directed graph and Fe :
2V → R+ (e ∈ E) be the cut function associated with e. The extreme points of B(Fe) for e = uv
are 0 and eu − ev. Since the value of ϕ(e,0) does not interact with the constraint, we can assume

that ϕ(e,0) = 0. Then, the constraint is the ordinary flow boundary constraint:
∑

uv∈E ϕ(uv) −∑
vu∈E ϕ(vu) = b(u) (u ∈ V ), where we denote ϕ(uv,ev − eu) by ϕ(uv). Now (6) is equivalent

to the quadratic cost flow problem, which can be solved in O(|E|4 log |E|) time (Végh, 2012).

Example 2 (Cut functions of hypergraphs) Let G = (V,E) be a hypergraph and Fe : 2
V →

R+ (e ∈ E) be the cut function associated with e. The extreme points of B(Fe) are in the form of

eu − ev (u, v ∈ e, u 6= v). The value of ϕ(e,eu − ev) can be interpreted as a “flow” from v to

u through a hyperedge e. Indeed, we can construct the equivalent (ordinary) flow network G′ as

follows. The vertex set of G′ is V , and for each distinct u, v ∈ e, an arc uv in G′ is drawn. Then,

any flow ϕ′ in G′ with the boundary b, which can be computed via minimizing a quadratic function

under a flow constraint, corresponds to the original variable ϕ in (6).

9
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4. Submodular Laplacian Regression

In this section, we prove Theorem 2.

First, we explain when a submodular Laplacian system, or equivalently (4), is feasible. Let

F : 2V → R
E
+ be a submodular transformation and b ∈ R

V be a vector. Then, we can observe

that (4) is feasible if and only if there exists no S ⊆ V such that Fe(S) = 0 for every e ∈ E and

b(S) > 0, or equivalently, Fe(S) = 0 for every e ∈ E implies b(S) ≤ 0. We define ker(F ) :=
{S ⊆ V : Fe(S) = 0 (e ∈ E)}, which is the set of S ⊆ V that minimizes all Fe (e ∈ E). Then,

the regression problem reduces to the following optimization problem.

min
p∈RV

‖p‖22 subject to (b+ p)(S) ≤ 0 (S ∈ ker(F )) (7)

Since the minimizers of each Fe form a distributive lattice, ker(F ) is also a distributive lattice.

Hence, (7) can be considered as the minimum norm point problem in PD(−b), where D = kerF .

To handle (7) efficiently, we use the Birkoff representation of ker(F ) because it has a polyno-

mial size. To this end, note that ker(F ) is the lattice of minimizers of
∑

e∈E Fe, since each Fe

is nonnegative. Then, the Birkoff representation can be efficiently constructed from the minimum

norm point of B(
∑

e Fe). Refer to (Fujishige, 2005, Section 7.1 (a)) for further details.

The minimum norm point problem (7) is slightly different from the one used for submodular

function minimization considering that (i) the target polytope is a submodular polyhedron PD(−b)
rather than a base polyhedron BD(−b), and (ii) the lattice D is not a Boolean lattice 2V but a

distributive lattice on V . In the following subsection, we present two algorithms for solving this

problem. The first one is the standard Frank-Wolfe iterative algorithm (Section 4.1), while the other

is a combinatorial algorithm (Section 4.2).

4.1 Frank-Wolfe algorithm

Given the Birkoff representation of D = kerF as a directed graph with n vertices and m arcs, we

can optimize linear functions over the polyhedron PD(−b) in O(m+n log n) time using the greedy

algorithm. This fact suggests to use the Frank-Wolfe algorithm (Jaggi, 2013) to solve (7). To this

end, we restrict ourselves to a compact region C := PD(−b) ∩ {x ∈ R
V : x ≥ −b}. Based on

the analysis of the Frank-Wolfe algorithm in Jaggi (2013), we need to bound the squared Euclidean

diameter of C. Trivially, |V | · ‖−b‖22 is an upper bound. We obtain the following convergence rate:

Theorem 9 Let pk ∈ C be a sequence generated by the Frank-Wolfe algorithm for (7) (k =

0, 1, . . . ) and p∗ be the optimal solution. Then, ‖pk‖22 − ‖p∗‖22 ≤
4|V |·‖b‖22

k+1 . Each iteration of

the Frank-Wolfe algorithm takes O(m+ n log n) time.

Theorem 9 is unsatisfactory because we cannot guarantee LF (x) ∋ b+pk has a solution for any k.

The algorithm discussed in the next subsection resolves this issue.

4.2 Combinatorial algorithm

In this section, we present a combinatorial algorithm for the minimum norm point problem (7). First,

we show that this problem can be reduced to parametrized submodular minimization. Although we

only need to consider a modular function H : 2V → R, that is, S 7→ −b(S), to solve (7), we aim to

10
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describe it in the most general case. Formally, we need to solve the following:

max
w∈PD(H)

−
1

2
‖w‖22. (8)

Since PD(H) is down-closed, the optimal solution must be a nonpositive vector. Therefore, we

consider the following problem:

min
x∈RV

+

h(x) +
1

2
‖x‖22, (9)

where h : RV → R is the Lovász extension of H .

Lemma 10 The problems (8) and (9) are strong dual to each other. Furthermore, if w∗ is the

optimal solution of (8), then x∗ := −w∗ is the optimal solution for (9), and vice versa.

Proof Using the Fenchel strong duality, we have

min
x∈RV

+

[
h(x) +

1

2
‖x‖22

]
= min

x∈RV

+

max
w∈BD(H)

[
w⊤x+

1

2
‖x‖22

]

= min
x∈RV

+

max
w∈PD(H)

[
w⊤x+

1

2
‖x‖22

]
(since x ∈ R

V
+)

= max
w∈PD(H)

min
x∈RV

+

[
w⊤x+

1

2
‖x‖22

]
(by the Fenchel strong duality)

= max
w∈PD(H),w≤0

−
1

2
‖w‖22.

The second assertion can be checked by direct calculation.

Therefore we focus on (9). In what follows, we will show that an optimal solution to (9) can be

constructed by solving parametrized submodular minimization:

min
S∈D

H(S) + α|S|, (10)

where α ∈ R is a parameter. Let Aα be an optimal solution to (10).

Lemma 11 (Bach (2010, Proposition 8.2)) If α < β, then Aβ ⊆ Aα.

For a vector x ∈ R
V and a scalar α ∈ R, we write {x ≥ α} (resp., {x > α}) to denote the set

{v ∈ V | x(v) ≥ α} (resp., {v ∈ V | x(v) > α}).

Lemma 12 If h(x) < +∞, then {x ≥ α} ∈ D for any α ∈ R.

Proof Here, we prove the contrapositive. Suppose that {x ≥ α} 6∈ D for some α ∈ R; this

indicates that there exist u, v ∈ V such that u � v and x(u) < x(v). Let us take an arbitrary

w∗ ∈ B(H) and consider w∗+ t(ev−eu), where t > 0. Then, since u � v, any S ∈ D containing

v must also contain u. Thus w∗ + t(ev − eu) ∈ B(H). Since x(u) < x(v), 〈x,w∗ + t(ev − eu)〉
attains infinity as t → +∞, that is, h(x) = +∞.

11
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Lemma 13 Define z ∈ R
V
+ as z(v) := max

{
sup{α : v ∈ Aα}, 0

}
(v ∈ V ). Then z is a minimizer

of (9).

Proof We can check that {z > α} ⊆ Aα ⊆ {z ≥ α} for α ≥ 0 using the definition of z and

Lemma 11. Therefore, Aα = {z ≥ α} almost everywhere. Let x ∈ R
V
+ be a feasible solution such

that h(x) < +∞. Then for any α ∈ R, {x ≥ α} ∈ D holds through Lemma 12. Furthermore, we

have

h(z) +
1

2
‖z‖22 =

∫ ∞

0
H({z ≥ α})dα +

∑

v∈V

∫
z(v)

0
αdα

=

∫ ∞

0

[
H({z ≥ α})dα +

∑

v∈V

α1α≥z(v)

]
dα

≤

∫ ∞

0

[
H({x ≥ α})dα +

∑

v∈V

α1α≥x(v)

]
dα

= h(x) +
1

2
‖x‖22,

where the inequality follows since the integrand is equal to H(Aα) + α|Aα| almost everywhere.

Now, we consider the following modular case: H(S) = −
∑

i∈S b(i). Considering the above-

mentioned arguments, we only need to solve minS∈D
∑

i∈S(α − b(i)) for all α ∈ R. Using

the approach used in Picard and Queyranne (1982), we define the following directed graph. Let

G′ = (U,A) be the digraph corresponding to the Birkoff representation of D. Then, define a di-

rected graph G = (U ∪ {s, t}, A ∪ Ā), where Ā := {su : u ∈ U} ∪ {ut : u ∈ U}. In addition,

define a capacity function c on ∈ A ∪ Ā as

c(a) :=





+∞ if a ∈ A,

min{−α+ b(u), 0} if a = su,

min{α− b(u), 0} if a = ut.

(11)

Then, the minimum st-cuts in G provide the desired minimizers. Refer to Figure 1 for an illustrative

example.

Furthermore, the capacity function c satisfies the so-called GGT structure (Gallo et al., 1989)2;

the capacities of arcs from source s are nonincreasing, whereas the capacities of arcs to sink t are

nondecreasing, while the others are constant. For such a capacity function, all the values of α
at which the value of minimum st-cuts change can be computed in O(nm2 log n2

m ) time using a

parametric flow algorithm (Gallo et al., 1989), where n and m are the number of vertices and arcs

in G, respectively.

Theorem 14 Assume that the Birkoff representation of D is given as a directed graph with n ver-

tices and m arcs. Then, there exists a strongly polynomial time algorithm for (7) with time com-

plexity O(nm2 log n2

m ).

2. The original GGT structure assumes that the capacities of arcs from source s are nondecreasing, whereas the capaci-

ties of arcs to sink t are nonincreasing, while the others are constant. We can transform our capacity function to this

setting by replacing α with −α.
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4

12 3

(a) The Birkoff representation of D.

4

12 3s

t

+∞ +∞−α+ b(12)

−α+ b(3)

α− b(4)

S ∪ {s}

(b) The directed graph G and its minimum st-cut

S∪{s}. The arcs with zero capacity are ommited.

Figure 1: This figure illustrates the method used to solve minS∈D
∑

i∈S(α− b(i)) using minimum

st-cut for D = {∅, {4}, {3, 4}, {1, 2, 4}, {1, 2, 3, 4}}.

Theorem 2 is immediate from the above theorem and the fact that we can construct the Birkoff

representation of ker(F ) in polynomial time as previously discussed.
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Appendix A. Semi-supervised Learning

In this section, we prove Theorem 3.

We consider the problem of solving b ∈ LF (x) under constraints that x(v) = x̃(v) for all

v ∈ T and b(v) = b̃(v) for all v ∈ U . To find such x and b, we consider the following optimization

problem.

min
x∈RV ,η∈RE

1

2
‖η‖2 −

∑

v∈U

b̃(v)x(v)

subject to x(v) = x̃(v) (v ∈ T )
fe(x) ≤ η(e) (e ∈ E)

(12)

The following theorem shows that (12) can be solved in polynomial time, and an obtained optimal

solution x satisfies b ∈ LF (x).

Theorem 15 There is a polynomial time algorithm that solves (12). In addition, for an optimal

solution (x∗,η∗) to (12), x∗(v) = x̃(v) holds for each v ∈ T , and there exists some b ∈ L(x∗)
such that b(v) = b̃(v) holds for each v ∈ U .
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Proof (12) is equivalent to the following problem:

min
x∈RV

1

2

∑

e∈E

fe(x)
2 −

∑

v∈U

b̃(v)x(v)

subject to x(v) = x̃(v) (v ∈ T )

(13)

This problem can be viewed as an unconstraint convex programming with variables (x(v))v∈U . As

we can compute the subdifferential of this objective function, we can solve (12) with the ellipsoid

method in polynomial time.

Let (x∗,η∗) be an optimal solution. Since x∗ is a solution to (12), x∗(v) = x̃(v) holds for each

v ∈ T . From the first-order optimality condition, there exists we ∈ ∂fe(x
∗) for each e ∈ E such

that
∑

e∈E we(v)fe(x
∗)− b̃(v) = 0 for all v ∈ U . It follows that b ∈ LG(x

∗) for some b such that

b(v) = b̃(v).

To derive more efficient algorithms for special cases such as directed graphs and hypergraphs,

we introduce a flow-like formulation, which is an extension of (5) and (6).

Let Ve be the set of extreme points of B(Fe) for each e ∈ E. Then, the original primal prob-

lem (12) is equivalent to:

min
x∈RV ,η∈RE

1

2
‖η‖2 −

∑

v∈U

b̃(v)x(v)

subject to
∑

v∈U

w(v)x(v) +
∑

v∈T

w(v)x̃(v) ≤ η(e) (w ∈ Ve, e ∈ E)
(14)

with regarding (x(v))v∈U as variables. The dual problem is

min
ϕ≥0

1

2

∑

e∈E

(
∑

w∈Ve

ϕ(e,w)

)2

−
∑

e∈E,w∈Ve

ϕ(e,w)

(
∑

v∈T

w(v)x̃(v)

)

subject to
∑

e∈E,w∈Ve

ϕ(e,w)w(v) = b̃(v) (v ∈ U).
(15)

The first constraint can be interpreted as a flow boundary constraint on v ∈ U . In the cases of

constant arity submodular transformations, including directed graphs and hypergraphs, the number

of variables (ϕ(e, w))e∈E,w∈Ve
in the dual problem is bounded by a polynomial in |V |. As discussed

in Section 3.2, if F is given by a directed graph or a hypergraph, this dual problem can be reduced

to the quadratic cost flow problem, which can be solved in O(|E|4 log |E|) time (Végh, 2012).

Appendix B. Triangle Inequality of Effective Resistance

In this section, we prove Theorem 4.

We start with rephrasing effective resistance.

Lemma 16 Let F : 2V → R
E
+ be a submodular transformation. Suppose (4) is feasible for b =

eu − ev , and let ϕ∗ ∈ R
E be an optimal solution. Then we have RF (u, v) = ‖ϕ∗‖2.
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Proof Let x∗ ∈ R
V be an optimal solution to the primal problem (1) for b = eu − ev. From the

strong duality, we have

1

2

∑

e∈E

fe(x
∗)2 − 〈eu − ev,x

∗〉 = −
1

2
‖ϕ∗‖2.

From the complementary slackness condition, we have ϕ∗(e) = fe(x
∗) for all e ∈ E. In addition,

due to the first-order optimality condition, we have LF (x
∗) ∋ eu − ev. Substituting them to the

above equation, we obtain

‖ϕ∗‖2 = (eu − ev)L
+
F (eu − ev),

and the claim holds.

Lemma 17 (Triangle inequality of effective resistance) Let F : 2E → R
E
+ be a submodular trans-

formation. Suppose that effective resistances RF (u, v) and RF (v,w) are bounded. Then, it holds

that

RF (u, v) +RF (v,w) ≥ RF (u,w).

Proof Suppose (xuv,ϕuv), (xvw,ϕvw) and (xuw,ϕuw) are saddle points of the above Lagrangian (2)

for b = eu − ev, b = ev − ew and b = eu − ew, respectively. Let ϕuv ∨ ϕvw ∈ R
E be

ϕuv ∨ ϕvw(e) = max{ϕuv(e),ϕvw(e)}. We show ϕuv ∨ ϕvw is a feasible solution to (4) for

b = eu − ew. It is enough to show for any S ⊆ V , the constraint

∑

e∈E

(ϕuv ∨ ϕvw)(e)Fe(S)− (eu − ew)(S) ≥ 0

holds. If u 6∈ S or w ∈ S, the constraint holds since (eu − ew)(S) ≤ 0 and Fe is non-negative for

each e ∈ E. Hence we consider S such that u ∈ S and w 6∈ S. When v ∈ S, we have
∑

e∈E

(ϕuv ∨ ϕvw)(e)Fe(S)− (eu − ew)(S) ≥
∑

e∈E

ϕvw(e)Fe(S)− 1

=
∑

e∈E

ϕvw(e)Fe(S)− (ev − ew)(S) ≥ 0.

The last inequality holds because ϕvw is a feasible solution to (4) for b = ev − ew.

Similarly, when v 6∈ S, we have

∑

e∈E

(ϕuv ∨ϕvw)(e)Fe(S)− (eu − ew)(S) ≥
∑

e∈E

ϕuv(e)Fe(S)− 1

=
∑

e∈E

ϕuv(e)Fe(S)− (eu − ev)(S) ≥ 0.

Since ϕuv ∨ ϕvw is a feasible solution to (4) for b = eu − ew, by Lemma 16, we can show the

triangle inequality as follows:

RF (u,w) = ‖ϕuw‖
2 ≤ ‖ϕuv ∨ ϕvw‖

2 ≤ ‖ϕuv‖
2 + ‖ϕvw‖

2 = RF (u, v) +RF (v,w),

and the claim holds.
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