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Abstract. We present a new model for hybrid planarity that relaxes
existing hybrid representations. A graph G = (V,E) is (k, p)-planar if
V can be partitioned into clusters of size at most k such that G admits
a drawing where: (i) each cluster is associated with a closed, bounded
planar region, called a cluster region; (ii) cluster regions are pairwise
disjoint, (iii) each vertex v ∈ V is identified with at most p distinct points,
called ports, on the boundary of its cluster region; (iv) each inter-cluster
edge (u, v) ∈ E is identified with a Jordan arc connecting a port of u to a
port of v; (v) inter-cluster edges do not cross or intersect cluster regions
except at their endpoints. We first tightly bound the number of edges
in a (k, p)-planar graph with p < k. We then prove that (4, 1)-planarity
testing and (2, 2)-planarity testing are NP-complete problems. Finally,
we prove that neither the class of (2, 2)-planar graphs nor the class of 1-
planar graphs contains the other, indicating that the (k, p)-planar graphs
are a large and novel class.

Keywords: (k, p)-planarity · hybrid representations · cluster graphs

1 Introduction

Visualization of non-planar graphs is one of the most studied graph-drawing
problems in recent years. In this context, an emerging topic is hybrid repre-
sentations (see, e.g., [1,2,5,6,9]). A hybrid representation simplifies the visual
analysis of a non-planar graph by adopting different visualization paradigms
for different portions of the graph. The graph is divided into (typically dense)
subgraphs called clusters which are restricted to limited regions of the plane.
Edges between vertices in the same cluster are called intra-cluster edges, and
edges between vertices in different clusters are called inter-cluster edges. Inter-
cluster edges are represented according to the classical node-link graph drawing
paradigm, while the clusters and their intra-cluster edges are represented by

ar
X

iv
:1

80
6.

11
41

3v
2 

 [
cs

.D
S]

  2
1 

Se
p 

20
18
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Fig. 1. (a) A NodeTrix representation of a 3-clique and a corresponding (3, 4) represen-
tation. (b) An intersection-link representation of a 3-clique and a corresponding (3, 2)
representation.

adopting alternative paradigms. A hybrid representation thus reduces the num-
ber of inter-cluster edges and the visual complexity of much of the drawing at
the cost of creating cluster regions of high visual complexity. As a result, a hy-
brid representation provides an easy to read overview of the graph structure and
it admits a “drill-down” approach when a more detailed analysis of some of its
clusters is needed.

Different representation paradigms for clusters give rise to different types of
hybrid representations. For example, Angelini et al. [1] introduce intersection-
link representations, where clusters are represented as intersection graphs of sets
of rectangles, while Henry et al. [9] introduce NodeTrix representations, where
dense subgraphs are represented as adjacency matrices (see Fig. 1). Batagelj et al.
employ hybrid representations in the (X,Y )-clustering model [2], where Y and
X define the desired topological properties of the clusters and of the graph con-
necting the clusters, respectively. For instance, in a (planar, k-clique)-clustering
of a graph each cluster is a k-clique and the graph obtained by contracting each
cluster into a single node (called the graph of clusters) is planar. Given a graph
G and a hybrid representation paradigm P, the hybrid planarity problem asks
whether G can be represented according to P with no inter-cluster edge cross-
ings. Variants of the problem may or may not assume that the clustering is given
as part of the input.

In this paper, we present a general hybrid representation paradigm that re-
laxes the described hybrid paradigms. Given a graph G = (V,E), a (k,p) repre-
sentation Γ ofG is a hybrid representation in which: (i) each cluster ofG contains
at most k vertices and is identified with a closed, bounded planar region; (ii)
cluster regions are pairwise disjoint, (iii) each vertex v ∈ V is represented by at
most p distinct points, called ports, on the boundary of its cluster region; (iv)
each inter-cluster edge (u, v) ∈ E is represented by a Jordan arc connecting a
port of u to a port of v. A (k, p) representation is (k, p)-planar if edge curves
do not cross and do not intersect cluster regions except at their endpoints. We
say that a graph G is (k, p)-planar if it can be clustered so that it admits a
(k, p)-planar representation.

The definition of a (k, p) representation leaves the representation of clusters
and intra-cluster edges intentionally unspecified. It is thus a relaxation of hybrid
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representation paradigms where the number of ports used by the inter-cluster
edges depends on the geometry of the cluster regions. For example, in a NodeTrix
representation, the squared boundary of each matrix allows four ports for every
vertex except for the vertex in the first row/column of the matrix and the vertex
in the last row/column of the matrix, which both have only three ports. Hence, a
NodeTrix representation can be regarded as a constrained (k, 4) representation
(four ports for every vertex except for two, the vertices appear in the order
imposed by the matrix); see Fig. 1(a). Similarly, a (k, 2) representation relaxes
an intersection-link representation with clusters represented as isothetic unit
squares with their upper-left corners along a common line with slope 1; see
Fig. 1(b). We also remark that the use of different ports to represent a vertex
can be regarded as an example of vertex splitting [7,8]; however, while in the
papers that use vertex splitting to remove crossings the multiple copies of each
vertex can be placed anywhere in the drawing, in our model they are forced to
lay within the boundary of the same cluster region.

The results of this paper are the following:

– In Section 2, we give an upper bound on the edge density of a (k, p)-planar
graph and prove that this bound is tight for p < k.

– In Section 3, we observe that the class of (4, 1)-planar graphs coincides with
the class of IC-planar graphs, from which the NP-completeness of testing
(4, 1)-planarity follows. We then prove that testing (2, 2)-planarity is NP-
complete. These results imply that computing the minimum k such that a
graph is (k, p)-planar is NP-hard for both p = 1 and p = 2. Recall that a
graph is 1-planar if it admits a drawing where every edge is crossed at most
once, and that an IC-planar graph is a 1-planar graph that admits a drawing
where no two pairs of crossing edges share a vertex.

– The NP-completeness of the (2, 2)-planarity testing problem naturally sug-
gests to further investigate the combinatorial properties of (2, 2)-planar graphs.
In Section 4, we ask whether every 1-planar graph admits a (2, 2)-planar rep-
resentation (see, e.g. Fig. 6). We prove the existence of 1-planar graphs that
are not (2, 2)-planar and of (2, 2)-planar graphs that are not 1-planar. We
also give a sufficient condition for 1-planar graphs to be (2, 2)-planar.

Sections of certain proofs are removed to the appendix. These statements are
marked with [*].

2 Edge Density of (k, p)-Planar Graphs

In this section we give a tight bound on the number of edges of a (k, p)-planar
graph when p < k. First, given a (k, p)-planar representation Γ , we define a
skeleton of Γ to be a planar drawing ΓS obtained by the following transforma-
tion. We first replace each port in Γ with a vertex. Each cluster region Ri of Γ is
now an empty convex space surrounded by up to kp vertices. We connect these
vertices in a cycle and triangulate the interior. For our purposes any triangula-
tion is equivalent. The resulting representation is ΓS . Figure 2(b) illustrates a
skeleton of the (2, 2)-planar representation of Fig. 2(a).
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(a) (b)

Fig. 2. (a) A (2, 2)-planar representation Γ of a graph G; (b) A skeleton ΓS of Γ .

Theorem 1. [*] Let G be a (k, p)-planar graph with n vertices. G has m ≤
n(p+ 3

k + k
2 −

1
2 )− 6 edges. This bound is tight for any positive integers k, p and

n such that p < k and n = N · k, where N > 2.

Proof. Let Γ be a (k, p)-planar representation of G and let N be the number
of clusters of G. As each cluster contains at most k vertices, G has at most

N · k(k−1)2 intra-cluster edges.
Let Ri be a cluster region in Γ with pi ports in total. Let ΓS be a skeleton of

Γ , and let nS and mS denote the number of vertices and the number of edges of
ΓS , respectively. When ΓS is created, Ri is replaced with pi vertices and 2pi− 3
edges if pi > 1, or 0 edges if pi = 1. Letting minter be the number of inter-cluster
edges in G and s be the number of clusters in G containing a single vertex, we
have,

mS = minter +

N∑
i=1

(2pi − 3) + s. (1)

In other words, the total number of edges in ΓS is equal to the number of inter-
cluster edges in G plus the number of edges added for each cluster. Note that
mS ≤ 3nS−6, as ΓS is a planar drawing. As

∑N
i=1 pi = nS , rearranging generates

minter + 2nS − 3N + s ≤ 3nS − 6 and thus,

minter ≤ nS + 3N − 6− s ≤ N(kp+ 3)− 6. (2)

As m is equal to the sum of the number of inter-cluster and intra-cluster edges
in G, we have

m ≤ Nk(p+
3

k
+
k

2
− 1

2
)− 6. (3)

If all clusters contain k vertices, then N = n
k and Theorem 1 holds. Appendix

A completes the proof that m ≤ n(p + 3
k + k

2 −
1
2 ) − 6 in the case where some

clusters contain fewer than k vertices.
In order to show that the bound is tight for p < k, we describe a (k, p)-planar

representation Γk,p with N = n
k clusters and (kp+ 3)N − 6 inter-cluster edges.

Γk,p is possible for any pair of positive integers p and k such that p < k and for
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R1 R2

small end

large end

(a) (b)

Fig. 3. (a) A kp-connection of two cluster regions R1 and R2 (k = 5, p = 3). (b) A
cycle of N = 5 clusters; the bold edges highlight the two faces of degree N .

any N > 2. Γk,p has N clusters each with k vertices and thus kp ports. Let R1

and R2 be two cluster regions. We say that R1 and R2 are kp-connected if they
are connected by kp+1 edges as shown in Fig. 3(a). (Note that, since the number
of inter-cluster edges between two k-clusters is at most k2, we can create kp+ 1
edges between R1 and R2 only if p < k). More precisely, R1, which we refer to as
the small end of the kp-connection, is connected by means of p+ 1 consecutive
ports; the first p ports have k incident edges each, and the last port has an
additional edge. R2, which we refer to as the large end of the kp-connection, is
connected by means of p(k − 1) + 1 consecutive ports, each connected to one or
two edges. Notice that, since we use p(k − 1) + 1 ports for the large end, p + 1
for the small end and two ports can be shared by the two ends, each cluster
region can be the small end of one kp-connection and the large end of another
kp-connection. Thus, we can create a cycle with N clusters as shown in Fig. 3(b).
In the resulting representation there are two faces of degree N : One is the outer
face and the other one is inside the cycle. By triangulating these two faces with
N − 3 edges for each face, we obtain the (k, p)-representation Γk,p. The number
of inter-cluster edges of Γk,p is thus (kp+ 1)N + 2N − 6 = (kp+ 3)N − 6. �

3 Recognition of (k, p)-Planar Graphs

This section considers the problem of testing (k, p)-planarity for the cases in
which p = 1 and p = 2.

Theorem 2. [*] (k, 1)-planarity testing can be performed in linear time for k ≤
3, and it is NP-complete for k = 4.

Proof. The first part of Theorem 2 follows from the fact that the class of (k, 1)-
planar graphs coincides with the class of planar graphs for k = 1, 2, 3. The
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v1 v2 v3 v4

v1 ∧ v2 ∧ v3

v2 ∧ v3 ∧ v4

v1 ∧ v2 ∧ v4

v1 ∧ v3 ∧ v4

(a)

v1 v2 v3 v4c1,2 c2,3 c3,4c0,1 c4,5

plus

minus

(b)

Fig. 4. (a) A planar monotone representation of Φ0. (b) The variable cycle of G0 and
false literal boundaries.

second part follows from the fact that the (4, 1)-planar graphs coincide with the
IC-planar graphs [13]. Testing IC-planarity is known to be NP-complete [4].
Appendix B proves both equivalencies. �

Corollary 1. The problem of computing the minimum value of k such that a
graph is (k, 1)-planar is NP-hard.

We now focus on the (2, 2)-planarity testing problem, hereafter referred to as
(2, 2)-Planarity. We show that (2, 2)-Planarity is NP-complete by a reduc-
tion from the NP-complete problem Planar Monotone 3-SAT [3]. We say
that an instance of 3-SAT is monotone if every clause consists solely of positive
literals (a positive clause) or solely of negative literals (a negative clause). A
rectilinear representation of a 3-SAT instance is a planar drawing where each
variable and clause is represented by a rectangle, all the variable rectangles are
drawn along a horizontal line, and vertical segments connect clauses with their
constituent variables. A rectilinear representation is monotone if it corresponds
to a monotone instance of planar 3-SAT where positive clauses are drawn above
the variables and negative clauses are drawn below the variables, as shown in
Fig. 4(a). Given a monotone rectilinear representation Φ corresponding to a
boolean formula F , the problem Planar Monotone 3-SAT asks if F has a
satisfying assignment.

We denote by K−8 the graph created by removing two adjacent edges from
the complete graph K8. In our reduction we make use of the following transfor-
mation. Let v be a vertex of G. we replace v with a copy of K−8 by identifying
v with the vertex of K−8 with degree 5. After performing this operation we say
that v is a K-vertex. The following lemma, whose proof is in Appendix C, states
a useful property of the K-vertices.

Lemma 1. [*] Let v be a K-vertex of a graph G and let G′ be the K−8 subgraph
associated with v. In any (2, 2)-planar representation of G, each vertex of G′ is
clustered with another vertex in G′.

Theorem 3. [*] (2, 2)-Planarity is NP-complete.
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lj,1

lj,2 lj,3

openj

closedj

(a)

lj,1

lj,2 lj,3

openj

closedj

lj,1

(b)

v1 v2 v3 v4c1,2 c2,3 c3,4c0,1 c4,5

plus

minus

(c)

Fig. 5. (a) A clause gadget Cj . (b) A (2, 2)-planar representation of the clause gadget
Cj . (c) The graph G0.

Proof. (2, 2)-Planarity is trivially in NP. We prove the NP-hardness of (2, 2)-
Planarity by reduction from Planar Monotone 3-SAT. Given an instance
Φ of Planar Monotone 3-SAT, we construct a graph G that is a Yes instance
of (2, 2)-Planarity if and only if Φ is a Yes instance of Planar Monotone
3-SAT. For convenience, figures show the construction of the graph G0 corre-
sponding to the Planar Monotone 3-SAT instance Φ0 in Fig. 4(a). In figures,
we represent K-vertices and their associated K−8 subgraphs with solid dots, while
ordinary vertices are represented with hollow dots.

For each variable vi of F (with i = 1, . . . , n) create in G a K-vertex vi and
connect such K-vertices in a cycle, in the order implied by Φ (refer to Fig. 4(b)).
Split each edge (vi, vi+1) of the cycle with a K-vertex ci,i+1. Split the edge (v1,
vn) with the vertices c0,1 and cn,n+1. Finally, duplicate the edge (c0,1, cn,n+1)
and split the duplicated edges with the K-vertices plus and minus. We refer to
this subgraph as the variable cycle. Given a variable vi, let pi be the number
of positive clauses and qi be the number of negative clauses of F in which vi
appears. For 1 ≤ i ≤ n, connect ci−1,i to ci,i+1 with a path of ordinary vertices
of length equal to max(pi, qi). We refer to these paths as false literal boundaries.

For each clause Cj = (lj,1 ∨ lj,2 ∨ lj,3) in F , create a corresponding clause
gadget in G. Create ordinary vertices lj,1, lj,2, lj,3 and openj , create a K-vertex
closedj , and add an edge between any pair of vertices, as in Fig. 5(a). Observe
that in any (2, 2)-planar representation of a clause gadget, two of the four vertices
lj,1, lj,2, lj,3 and openj must be arranged in one cluster of size 2. This is due to
the fact that by Lemma 1, closedj must be clustered within its K−8 subgraph.
If lj,1, lj,2, lj,3 and openj were all clustered separately, the graph of clusters of G
would contain a K5 minor. Also, any 2-clustering of a clause gadget in which a
literal vertex is clustered with openj is (2, 2)-planar, as shown in Fig. 5(b).

Now, connect the clause gadgets with a tree structure corresponding to the
positions of clause rectangles in Φ. Let Cj be a clause rectangle in Φ with l1,
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l2, and l3 corresponding to the vertical segments descending from Cj from left
to right. If Cj is nested between vertical segments corresponding to literals m1

and m2 of another clause rectangle Ck, split the edges (lj,1, lj,3) and (mk,1,mk,2)
with K-vertices and connect the new K-vertices with an edge. If Cj is nested
under no other clause rectangle, split (lj,1, lj,3) with a K-vertex and connect the
new vertex to plus if Cj corresponds to a positive clause and to minus otherwise.
This procedure leads to a configuration consisting of two trees of clause gadgets
connected as in Fig. 5(c). This concludes the construction of G. Appendix D
proves that G is (2, 2)-planar if and only if Φ has a satisfying assignment. �

Corollary 2. The problem of computing the minimum value of k such that a
graph is (k, 2)-planar is NP-hard.

4 (2, 2)-Planarity and 1-Planarity

u

v

z

w
u
v

u

v

z

w

Fig. 6. Removal of a crossing
in a (2, 2) representation.

The NP-completeness of (2, 2)-Planarity sug-
gests further investigation into the combinatorial
properties of (2, 2)-planar graphs. In this section,
we study the relationship between (2, 2)-planarity
and 1-planarity. This is partly motivated by gen-
eral interest in 1-planar graphs (see, e.g., [10])
and partly by the following observation. Since a
1-planar graph admits a drawing where each edge is crossed by at most one
other edge, it seems reasonable to remove each crossing of the drawing by clus-
tering two of the vertices that are involved in the crossing as shown in Fig. 6. An
n-vertex 1-planar graph has at most 4n− 8 edges [12]. By Theorem 1, a (2, 2)-
planar graph with n vertices has at most 4n− 6 edges, so it is not immediately
clear that there are 1-planar graphs that are not (2, 2)-planar.

As we are going to show, however, there is an infinite family of 1-planar
graphs that are not (2, p)-planar for any value of p ≥ 1. On the positive side, we
demonstrate a large family of 1-planar graphs that are (2, 2)-planar.

Theorem 4. For every h > 2, there exists a 1-planar graph with n = 5 · 2h − 8
vertices and m = 18 · 2h − 36 edges that is not (2, p)-planar, for any p ≥ 1.

Proof. We define a recursive family of 1-plane graphs as follows. Graph H1

consists of a single kite K, which is a 1-plane graph isomorphic to K4 drawn
so that all the vertices are on the boundary of the outer face. Graph Hi, for
i = 2, 3, . . . , has 2i kites in addition to Hi−1; these kites form a cycle in the
outer face of Hi−1, and each kite contains a vertex of the boundary of the outer
face of Hi−1 (note that Hi−1 has 2i vertices on the boundary of the outer face).
See Fig. 7(a) for an example. The kites of Hi \ Hi−1 are called the external
kites of Hi. The embedding of Hi described in the definition will be called the
canonical embedding of Hi. We also consider another possible embedding, called
the reversed embedding. Let B be the boundary of the outer face in the canonical
embedding of Hi; in the reversed embedding of Hi the cycle B is the boundary
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Hi−1

Hi

(a) (b) (c) (d)

Fig. 7. (a) Definition of Hi. (b)–(c) Canonical and reversed embedding of H3. (d) H3.

of an inner face and all the rest of the graph is embedded outside B. See Fig. 7(b)
and Fig. 7(c) for an example. For any h > 2, let Hc

h be a copy of Hh with a
canonical embedding, and let Hr

h be a copy of Hh with a reversed embedding.
The graph obtained by identifying the external kites of Hc

h with the external
kites of Hr

h is denoted as Hh. Fig. 7(d) shows the graph H3. By construction, Hi

has ni = 2i+1−4 vertices and mi = 12·2i−18 edges. Hence, Hh has n = 5·2h−8
vertices and m = 18 · 2h − 36 edges.

We show that Hh is not (2, p)-planar for any p ≥ 1. Suppose that Hh has a
(2, p)-planar representation Γ for some p ≥ 1 and let GC be the graph of clusters
of Hh. Since Γ is planar, GC must be planar. GC can be obtained from Hh by
contracting each pair of vertices that is assigned to each cluster region (and
removing multiple edges). Contracting a pair of vertices u and v, the number of
vertices reduces by one and the number of edges reduces by the number of paths
of length at most 2 connecting u and v (for each path we remove one edge). In
Hh, there are at most 4 such paths between any pair of vertices. Hence, if we
contract q pairs of vertices, the number of vertices in GC is n′ = n− q, while the
number of edges is m′ ≥ m− 4q. If GC is planar, m′ ≤ 3n′ − 6 and thus it must
be m− 4q ≤ 3(n− q)− 6, which gives q ≥ m− 3n+ 6 = 3 · 2h − 6, i.e. we must
contract at least 3 · 2h− 6 pairs of vertices. Since there are 5 · 2h− 8 vertices, we

can contract at most 5·2h−8
2 pairs. Thus, it must be 3 · 2h− 6 ≤ 5 · 2h−1− 4, i.e.,

2h−1 ≤ 2, which can be satisfied only for h ≤ 2.
Note that our argument is independent of the 1-planar embedding ofHh. This

implies that the result holds for 1-planar graphs, not just for 1-plane graphs. �

Fig. 8. A (2, 2)-planar
representation of K7.

Theorem 4 motivates further investigation of
the relationship between 1-planar and (2, 2)-planar
graphs. Note that there are infinitely many (2, 2)-
planar graphs that are not 1-planar. For example, ob-
serve that every graph obtained by connecting with an
edge a planar graph and K7 has such a property, be-
cause K7 is not 1-planar (it has more than 4n−8 = 20
edges) but it is (2, 2)-planar, as depicted in Fig. 8.

In what follows, we describe a non-trivial family of 1-planar graphs that are
also (2, 2)-planar.
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(a) (b) (c)

Fig. 9. (a) A 1-planar graph G. (b) An ISDR of G. For each pair of crossing edges the
representative pair is indicated with a dashed line connecting the pair. Vertices shared
by different crossing pairs are replicated in each pair. (c) The ce-graph CE(G) of G.

Let G be a 1-plane graph, and let eu = (u1, u2) and ev = (v1, v2) be a pair of
crossing edges of G. Any pair 〈ui, vj〉, with 1 ≤ i, j ≤ 2, is a representative pair of
the edge crossing defined by eu, ev. An independent set of distinct representatives
(ISDR for short) of G is a set of representative pairs such that there is exactly
one representative pair per crossing and no two representative pairs in the set
have a common vertex. Fig. 9(b) shows an ISDR for the graph of Fig. 9(a).

We want to show that if a 1-plane graph G has an ISDR then it is (2, 2)-
planar. The crossing edges graph of G, called ce-graph for short and denoted as
CE(G), is the subgraph of G induced by the crossing pairs of G. G is pseudofore-
stal if CE(G) is a pseudoforest (i.e. it has at most one cycle in each connected
component). For example, the 1-planar graph of Fig. 9(a) is pseudoforestal,
as shown in Fig. 9(c). The pseudoforestal 1-planar graphs include non-trivial
subfamilies of 1-planar graphs, such as IC-planar graphs (whose ce-graph has
maximum degree one), or the 1-planar graphs such that each vertex is shared
by at most two crossing pairs (whose ce-graph has maximum degree two).

Theorem 5. A pseudoforestal 1-plane graph is (2, 2)-planar.

Proof. We start by proving that a 1-plane graph G contains an ISDR if and only
if G is pseudoforestal. It is known that a graph G can be oriented such that the
maximum in-degree is k if and only if its pseudoarboricity is k (i.e. the edges
of G can be partitioned into k pseudoforests) [11]. Thus, G is pseudoforestal if
and only if CE(G) can be oriented so that the maximum in-degree is one. We
now show that this is a necessary and sufficient condition for the existence of an
ISDR S in G. Assume that an ISDR exists. Let eu = (u1, u2) and ev = (v1, v2)
be two crossing edges and let 〈ui, vj〉 (1 ≤ i, j ≤ 2) be the representative pair of
eu and ev. Direct eu towards ui and ev towards vj . Doing this for each pair of
crossing edges defines an orientation for all edges of CE(G). In this orientation
each vertex of CE(G) has in-degree at most 1, since no two pairs in S share a
vertex. Now suppose that CE(G) has an orientation such that each vertex has
in-degree at most 1. For each pair of directed crossing edges (u1, u2), (v1, v2) in
CE(G), we add the pair 〈u2, v2〉 to S. Since each vertex v in CE(G) has in-
degree at most 1, v is a vertex of at most one pair in S. Thus, the pairs selected
for different crossing pairs are distinct and no two of them share a vertex.
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u1

v1

u2

v2

(a)

u′1

v′1

c

λ2
λ1

λu

λv

u1

v1

u2

v2

(b)

u1

v1

u′1

v′1

u2

v2

(c)

Fig. 10. (a) Two crossing edges eu and ev; (b) Construction of the cluster region and
replacement of eu and ev; (c) The resulting drawing.

We now describe how to use an ISDR S of G to construct a (2, 2)-planar
representation of G where each pair in S is represented as a 2-cluster that has
2 copies for each of its vertices. Let Γ be a 1-planar drawing of G that respects
the 1-planar embedding of G. Consider any two crossing edges eu = (u1, u2) and
ev = (v1, v2) and denote by c the point where they cross in Γ . Without loss
of generality, assume that 〈u1, v1〉 is the representative pair of eu and ev (see
Fig. 10 for an illustration). Subdivide the edge eu with a copy v′1 of v1 placed
between u1 and c along eu; analogously, subdivide the edge ev with a copy u′1 of
u1. Add a curve λ1 connecting u′1 to v′1 and a curve λ2 connecting u1 to v1. By
walking very close to the two edges eu and ev, these two curves can be drawn
without crossing any existing edge and so that the closed curve λ formed by λ1
and λ2 together with the portion of eu from u1 to v′1 and the portion of ev from
v1 to u′1 does not contain any vertex of Γ . Curve λ defines the cluster region for
the cluster containing u and v. Replace the edge eu with a curve λu connecting
u2 to u′1 and the edge ev with a curve λv connecting v2 to v′1. Again, by walking
very close to the two edges eu and ev, λu and λv can be drawn without crossing
existing edges and without crossing each other. The replacements of eu with
λu and of ev with λv remove the crossing between eu and ev. Repeating the
described procedure for every pair of crossing edges, all crossings are removed.
Since for each pair of crossing edges there is a distinct representative pair and
no two pair share a vertex, the result is a (2, 2)-planar representation of G. �

5 Open Problems

The results in this paper suggest the following open problems: (i) Tightly bound
the edge density of (k, p)-planar graphs for p ≥ k; (ii) Study the complexity
of (k, p)-planarity testing for larger values of k and p; (iii) Further study the
relationship between 1-planar graphs and (2, p)-planar graphs.
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Appendix

A Supplement for Proof of Theorem 1

In this section, we complete the proof of Theorem 1 in the case where some
clusters contain fewer than k vertices. Let G be a (k, p)-planar graph, Γ a (k, p)-
planar representation of G, and N the number of clusters of G. In Section 2 we
showed that m = n(p+ 3

k + k
2 −

1
2 )− 6 if all clusters contain exactly k vertices.

Denote by V1, . . . , VN the clusters of G and let ki be the size of cluster Vi.
We first add non-crossing inter-cluster edges so that the faces of Γ external to
the cluster regions are triangles. Let Γ0 be the resulting (k, p)-planar represen-
tation. Notice that Γ0 can have multiple edges. We then construct a sequence
Γ0, Γ1, . . . , ΓN of (k, p)-planar representations so that ΓN has all clusters of size
k and each Γi is obtained from Γi−1 by taking into account the cluster Vi. We de-
note by ni and mi the number of vertices and edges of Γi, respectively. If ki = k
cluster Vi is not modified and we set Γi = Γi−1. If ki = 1 we remove the single
vertex v in Vi and we triangulate the face that is created by this removal (see
Fig. 11(a) and Fig.11(b)). Also in this case multiple edges can be introduced.
The number of vertices of Γi is then ni = ni−1− 1, while the number of edges is
mi = mi−1−deg(v)+deg(v)−3 = mi−1−3. If 1 < ki < k, we augment the cluster
Vi with hi = k−ki dummy vertices, we add p·hi ports in between two consecutive
ports associated with two different vertices of Vi (see Fig. 11(c) and Fig. 11(d)).

We then add (k−hi)hi+ hi(hi−1)
2 = hik− h2

i

2 −
hi

2 edges internally to Vi and p ·hi
edges externally to Vi to triangulate the face enlarged by the insertions (again
multiple edges can be created). The number of vertices of Γi is ni = ni−1 + hi,

while the number of edges of Γi is mi = mi−1+phi+hik− h2
i

2 −
hi

2 . We now prove

the following claim that together with the fact that mN ≤ nN (p+ 3
k + k

2 −
1
2 )−6

(because ΓN has all clusters of size k) implies that m0 ≤ n0(p+ 3
k + k

2 −
1
2 )− 6.

Since n = n0 and m ≤ m0, the statement follows.

Claim 1 If mi ≤ ni(p+ 3
k + k

2 −
1
2 )− 6 then mi−1 ≤ ni−1(p+ 3

k + k
2 −

1
2 )− 6.

v

(a) (b)

Vi

(c)

Vi

(d)

Fig. 11. (a) A cluster Vi of size ki = 1, corresponding to a vertex v; (b) Removal of
v and triangulation; (c) A cluster Vi of size ki = 2; (d) Augmentation of Vi with p · hi

ports and triangulation of the face enlarged by the insertions.
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Clearly nothing has to be proven for ki = k. If ki = 1, we have mi−1 − 3 ≤
(ni−1− 1)(p+ 3

k + k
2 −

1
2 )− 6 which gives mi−1 ≤ ni−1(p+ 3

k + k
2 −

1
2 )− 6 + 3−

p− 3
k −

k
2 + 1

2 . In order to prove that Claim 1 holds in this case, we show that

3−p− 3
k −

k
2 + 1

2 ≤ 0, which can be rewritten as p+ 3
k + k

2 −
7
2 ≥ 0. Since p ≥ 1 we

have p+ 3
k + k

2 −
7
2 ≥

3
k + k

2 −
5
2 , which is greater than or equal to 0 for any integer

value of k. Consider now the case 1 < ki < k; notice that this case is possible

only for k ≥ 3. We have mi−1+phi+hik− h2
i

2 −
hi

2 ≤ (ni−1+hi)(p+ 3
k + k

2−
1
2 )−6,

which in turn gives mi−1 ≤ (ni−1 +hi)(p+ 3
k + k

2 −
1
2 )− 6− phi−hik+

h2
i

2 + hi

2 .

Again, we prove that hi(p+ 3
k + k

2 −
1
2 )− phi − hik+

h2
i

2 + hi

2 ≤ 0. Rearranging,
we obtain k2 − khi − 6 ≥ 0; since hi ≤ k − 2, we have k2 − khi − 6 ≥ 2k − 6,
which holds for every k ≥ 3.

B Supplement for Proof of Theorem 2

In this section, we complete the proof of Theorem 2 by showing that the class
of (k, 1)-planar graphs coincides with the class of planar graphs for k = 1, 2, 3
and that the class of (4, 1)-planar graphs coincides with the class of IC-planar
graphs.

If G is planar, G is trivially (k, 1)-planar for all positive integers k. Let G be a
(k, 1)-planar graph for some k ≤ 3, and let Γ be a (k, 1)-planar representation of
G. Replace each cluster of G of size h with an h-clique. Since h ≤ 3 the obtained
drawing is planar.

Recall that an IC-planar graph admits a 1-planar embedding in which no
two pairs of crossing edges share a vertex. Let G be an IC-planar graph, and let
Γ be an IC-planar embedding of G. Γ can be transformed into a (4, 1)-planar
representation of G by replacing the vertices incident to each pair of crossing
edges with a cluster.

Let G be a (4, 1)-planar graph and let Γ be a (4, 1)-planar representation of
G. Each cluster of G is a subgraph of a 4-clique and therefore each cluster region
in Γ can be replaced with a drawing that contains at most one pair of crossing
edges. As Γ contains no crossing inter-cluster edges, the resulting embedding is
IC-planar.

C Proof of Lemma 1

Lemma 1. [*] Let v be a K-vertex of a graph G and let G′ be the K−8 subgraph
associated with v. In any (2, 2)-planar representation of G, each vertex of G′ is
clustered with another vertex in G′.

Proof. Suppose there exists a (2, 2)-planar representation of G′ that leaves v
unclustered or clustered with a vertex outside of G′. If the remaining vertices
of the G′ subgraph are grouped into at least five clusters, G′ does not admit a
(2, 2)-planar representation because its graph of clusters includes a K5 subgraph.
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v v

(a)

v1 v2 v3 v4

c1,2 c2,3 c3,4
c0,1 c4,5

plus

minus

(b)

Fig. 12. (a) A (2, 2)-planar representation of a K-vertex v and its associated K−
8

subgraph. (b) A drawing of the variable cycle ofG0 with false literal boundaries oriented
according to variable assignment.

Alternatively, suppose the remaining vertices of G′ are grouped into four
clusters, in which case G′ consists of three 2-clusters and two vertices which may
or may not be clustered with additional vertices outside of G′. For the purpose of
our analysis, we may ignore any vertices outside of G′, as their presence cannot
affect the possibility of a (2, 2)-planar representation of G′.

Each 2-cluster can contain at most 1 intra-cluster edge, so any (2, 2)-planar
representation of G′ has 23 inter-cluster edges. However, by Equation 2, we have
that minter ≤ nS + 3N − 6− s in any (k, p)-planar representation Γ of a graph
G = (V,E), where s is the number of clusters consisting of a single vertex and
nS is the total number of vertices in the skeleton of Γ . When applied to G′,
Equation 2 implies that 23 ≤ 14 + 15 − 6 − 2 = 21, a contradiction. Thus any
(2, 2)-planar representation of G′ creates four 2-clusters as shown in Fig. 12(a).
�

D Supplement for Proof of Theorem 3

In this section, we complete the proof of Theorem 3 by proving that our con-
structed graph G is (2, 2)-planar if and only if the corresponding instance Φ of
Planar Monotone 3-SAT is a Yes instance.

Let Φ be a Yes instance of Planar Monotone 3-SAT, and let A be an
assignment function satisfying Φ. We show that the graph G corresponding to
Φ is (2, 2)-planar by constructing a (2, 2)-planar representation of G using Φ as
a template.

Replace each variable rectangle in Φ with the corresponding vertex of G and
draw the variable cycle. We refer to the region defined by the variable cycle and
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v1 v2 v3 v4

c1,2 c2,3 c3,4
c0,1 c4,5

plus

minus

(a)

v1 v2 v3 v4c1,2

c2,3
c3,4c0,1 c4,5

plus

minus

(b)

Fig. 13. (a) A drawing of the graph G0. (b) A (2, 2)-planar representation of G0.

the plus (minus) vertex as the positive side (negative side). For each variable vi,
draw its false literal boundary on the negative side if A(vi) = True and on the
positive side if A(vi) = False. Fig. 12(b) illustrates a drawing of the variable
cycle and false literal boundaries of G0 according to the assignment of v2 and v3
to True and v1 and v4 to False.

Let lj,i be the literal vertex corresponding to clause Cj and variable vi. Place
lj,i at the point of intersection between the rectangle associated with Cj and the
vertical segment connecting the rectangles Cj and vi.

Connect the three literal vertices of Cj to form a face, and insert closedj and
openj on the interior, creating one necessary crossing. Insert the tree structure
edges, which by construction can be added without creating crossings. Connect
literal vertices to variable vertices, which creates a crossing on a false literal
boundary precisely when the value assigned to a variable by A does not match
the literal. Fig. 13(a) illustrates such a drawing of G0.

Resolve each crossing at a false literal boundary by clustering the literal
vertex with a vertex on the boundary. The specification that each false literal
boundary has at least max(pi, qi) vertices ensures that this operation can be
performed. Because A satisfies F , each clause gadget has at least one literal
vertex that can be connected to its variable vertex without crossing a false
literal boundary. Cluster this vertex with openj to resolve each clause gadget
crossing. The result of this process is a (2, 2) representation of G as illustrated
in Fig. 13(b).

Let G be a Yes instance of (2, 2)-Planarity corresponding to an instance
Φ of Planar Monotone 3-SAT. We show that Φ is a Yes instance of Planar
Monotone 3-SAT.

Let Γ be a (2, 2)-planar representation of G. First, note that any vertices v1
and v2 connected by an edge in G must be drawn on the same side of the variable
cycle in any (2, 2)-planar representation of G. This follows from Lemma 1, as
neither v1 nor v2 can be clustered with any K-vertex in the variable cycle. Thus
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(a) (b)

(c) (d)

Fig. 14. Possible placements of the clause vertex closedj relative to its three corre-
sponding clause boundaries.

the positive (negative) clause gadgets must all be drawn on the same side of
the variable cycle as they are connected by the tree structure to plus (minus)
and the variable vertices. We refer to the sides of the cycle with the positive
and negative clause gadgets as the positive and negative sides of the cycle. As
a consequence of Lemma 1, each false literal boundary is drawn either on the
positive or on the negative side of the cycle as well.

Define an assignment function A by setting A(vi) to True (False) if the false
literal boundary for vi is drawn on the positive (negative) side of the vertex cycle
in Γ . We claim that at least one literal vertex of each positive (negative) clause
gadget is connected in Γ to a variable vertex with A(vi) set to True (False).

Without loss of generality, consider the case of a positive clause gadget Cj

with literals lj,1, lj,2, and lj,3 connected to variables v1, v2, and v3. Assume
for contradiction that every literal vertex of Cj is connected in Γ to a variable
v with A(v) = False, which means that the false literal boundaries of v1, v2,
and v3 are drawn on the positive side of the variable cycle. We show that any
placement of the K-vertex closedj creates an edge crossing in Γ , contradicting
our assumption.

Suppose first that closedj is placed outside the false literal boundaries. Then
each of v1, v2, and v3 must be clustered with a boundary vertex and the clause
gadget does not admit a (2, 2)-planar representation (see Fig. 14(a)). Now sup-
pose that closedj is drawn inside the false literal boundary of one constituent
variable, v2 for example. In this case, the path (closedj , lj,1, v1) intersects two
false literal boundaries. Because closedj and v2 are K-vertices, only lj,2 can be
clustered with a false literal boundary vertex and thus this placement creates at
least one necessary crossing (see Fig. 14(b)). Likewise, suppose that closedj is
drawn inside the false literal boundary of two constituent variables, for exam-
ple, v1 and v2. In this case, the path (closedj , lj,3, v3) crosses three false literal
boundaries and creates a necessary crossing (see Fig. 14(c)). Finally, suppose
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that closedj is drawn inside all three false literal boundaries (see Fig. 14(d)). In
this case, the path (closedj , lj,1, v1) crosses two false literal boundaries and cre-
ates a necessary crossing. Thus, regardless of the position of the a vertex closedj
in Γ , at least one of the literal vertices of Cj must match the assignment of its
associated variable vertex. This concludes the proof of our claim, i.e., that at
least one literal vertex li of each clause gadget Cj in Γ is connected to a variable
vi with A(vi) = li. Thus A is a satisfying assignment for F , and Φ is a Yes
instance of Planar Monotone 3-SAT.
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