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The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint 
paths, each connecting a different terminal pair from a set of k distinct vertex pairs. We 
determine, with an exception of two cases, the complexity of the Disjoint Paths problem 
for H-free graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is known to 
be polynomial-time solvable on the class of all graphs for every k ≥ 1. The latter does no 
longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We 
completely classify the complexity of k-Disjoint Connected Subgraphs for H-free graphs, 
and give the same almost-complete classification for Disjoint Connected Subgraphs for H-
free graphs as for Disjoint Paths. Moreover, we give exact algorithms for Disjoint Paths

and Disjoint Connected Subgraphs on graphs with n vertices and m edges that have 
running times of O (2nn2k) and O (3nkm), respectively.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A path from a vertex s to a vertex t in a graph G is an s-t path of G , and s and t are called its terminals. Two pairs 
(s1, t1) and (s2, t2) are disjoint if {s1, t1} ∩ {s2, t2} = ∅. In 1980, Shiloach [20] gave a polynomial-time algorithm for testing 
if a graph with disjoint terminal pairs (s1, t1) and (s2, t2) has vertex-disjoint paths P 1 and P 2 such that each P i is an si -ti
path. This problem can be generalized as follows.

Disjoint Paths

Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have pairwise vertex-disjoint paths P 1,. . . ,Pk such that P i is an si-ti path for i ∈

{1, . . . , k}?

✩ An extended abstract of this paper appeared in the proceedings of IWOCA 2021 [14].
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Fig. 1. An example of a yes-instance (G, Z1, Z2) of (2-)Disjoint Connected Subgraphs (left) together with a solution (right).

Karp [12] proved that Disjoint Paths is NP-complete. If k is fixed, that is, not part of the input, then we denote the problem 
as k-Disjoint Paths. For every k ≥ 1, Robertson and Seymour proved the following celebrated result.

Theorem 1 ([19]). For all k ≥ 2, k-Disjoint Paths is polynomial-time solvable.

The running time in Theorem 1 is cubic. This was later improved to quadratic time by Kawarabayashi, Kobayashi and 
Reed [13].

As Disjoint Paths is NP-complete, it is natural to consider special graph classes. The Disjoint Paths problem is known to 
be NP-complete even for graph of clique-width at most 6 [8], split graphs [9], interval graphs [16] and line graphs. The latter 
result can be obtained by a straightforward reduction (see, for example, [8,9]) from its edge variant, Edge Disjoint Paths, 
proven to be NP-complete by Even, Itai and Shamir [5]. On the positive side, Disjoint Paths is polynomial-time solvable for 
cographs, or equivalently, P4-free graphs [8].

We can generalize the Disjoint Paths problem by considering terminal sets Zi instead of terminal pairs (si, ti). We write 
G[S] for the subgraph of a graph G = (V , E) induced by S ⊆ V , where S is connected if G[S] is connected.

Disjoint Connected Subgraphs

Instance: a graph G and pairwise disjoint terminal sets Z1, . . . , Zk .
Question: Does G have pairwise disjoint connected sets S1, . . . , Sk such that Zi ⊆ Si for i ∈ {1, . . . , k}?

If k is fixed, then we write k-Disjoint Connected Subgraphs. We refer to Fig. 1 for a simple example of an instance 
(G, Z1, Z2) of 2-Disjoint Connected Subgraphs. Robertson and Seymour [19] proved in fact that k-Disjoint Connected 
Subgraphs is cubic-time solvable as long as |Z1| + . . .+|Zk| is fixed (this result implies Theorem 1). Otherwise, van ’t Hof et 
al. [23] proved that already 2-Disjoint Connected Subgraphs is NP-complete even if |Z1| = 2 (and |Z2| may have arbitrarily 
large size). The same authors also proved that 2-Disjoint Connected Subgraphs is NP-complete for split graphs. Afterwards, 
Gray et al. [7] proved that 2-Disjoint Connected Subgraphs is NP-complete for planar graphs. Hence, Theorem 1 cannot be 
extended to hold for k-Disjoint Connected Subgraphs.

We note that in recent years a number of exact algorithms were designed for k-Disjoint Connected Subgraphs. Cygan 
et al. [4] gave an O ∗(1.933n)-time algorithm for the case k = 2 (see [18,23] for faster exact algorithms for special graph 
classes). Telle and Villanger [21] improved this to time O ∗(1.7804n). Recently, Agrawal et al. [1] gave an O ∗(1.88n)-time 
algorithm for the case k = 3. Moreover, the 2-Disjoint Connected Subgraphs problem plays a crucial role in graph con-
tractibility: a connected graph can be contracted to the 4-vertex path if and only if there exist two vertices u and v such 
that (G − {u, v}, N(u), N(v)) is a yes-instance of 2-Disjoint Connected Subgraphs (see, e.g. [15,23]).

A class of graphs that is closed under vertex deletion is called hereditary. Such a graph class can be characterized by a 
unique set F of minimal forbidden induced subgraphs. Hereditary graphs enable a systematic study of the complexity of 
a graph problem under input restrictions: by starting with the case where |F | = 1, we may already obtain more general 
methodology and a better understanding of the complexity of the problem. If |F | = 1, say F = {H} for some graph H , then 
we obtain the class of H-free graphs, that is, the class of graphs that do not contain H as an induced subgraph (so, an 
H-free graph cannot be modified to H by vertex deletions only). In this paper, we start such a systematic study for Disjoint 
Paths and Disjoint Connected Subgraphs, both for the case when k is part of the input and when k is fixed.

Our results

By combining some of the aforementioned known results with a number of new results, we prove the following two 
theorems in Sections 3 and 4, respectively. In particular, we generalize the polynomial-time result for Disjoint Paths on 
P4-free graphs to hold even for Disjoint Connected Subgraphs. See Fig. 2 for an example of a graph H = sP1 + P4; we refer 
to Section 2 for undefined terminology.
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Fig. 2. The graph H = 3P1 + P4.

Theorem 2. Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 2, k-Disjoint Connected Subgraphs on H-free graphs is 
polynomial-time solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Theorem 3. Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4 , then Disjoint Connected Subgraphs is polynomial-time 
solvable for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Theorem 2 completely classifies, for every k ≥ 2, the complexity of k-Disjoint Connected Subgraphs on H-free graphs. 
Theorem 3 determines the complexity of Disjoint Paths and Disjoint Connected Subgraphs on H-free graphs for every 
graph H except if H ∈ {3P1, 2P1 + P2, P1 + P3}. In Section 5 we reduce the number of open cases from six to three by 
showing some equivalencies.

In Section 6 we complement the above results by giving exact algorithms for both problems based on Held-Karp type 
dynamic programming techniques [10,2]. In Section 7 we give some directions for future work. In particular we prove that 
both problems are polynomial-time solvable for co-bipartite graphs, which form a subclass of the class of 3P1-free graphs.

2. Preliminaries

We use H ⊆i H ′ to indicate that H is an induced subgraph of H ′ , that is, H can be obtained from H ′ by a sequence of 
vertex deletions. For two graphs G1 and G2 we write G1 + G2 for the disjoint union (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We 
denote the disjoint union of r copies of a graph G by rG . A graph is said to be a linear forest if it is a disjoint union of 
paths.

We denote the path and cycle on n vertices by Pn and Cn , respectively. The girth of a graph that is not a forest is the 
number of edges of a smallest induced cycle in it.

The line graph L(G) of a graph G has vertex set E(G) and there exists an edge between two vertices e and f in L(G)

if and only if e and f have a common end-vertex in G . The claw K1,3 is the 4-vertex star. It is readily seen that every 
line graph is claw-free. Recall that a graph is H-free if it does not contain H as induced subgraph. For a set of graphs 
{H1, . . . , Hr}, we say that a graph G is (H1, . . . , Hr)-free if G is Hi -free for every i ∈ {1, . . . , r}.

A clique is a set of pairwise adjacent vertices and an independent set is a set of pairwise non-adjacent vertices. A graph 
is split if its vertex set can be partitioned into two (possibly empty) sets, one of which is a clique and the other is an 
independent set. A graph is split if and only if it is (C4, C5, P4)-free [6]. A graph is a cograph if it can be defined recursively 
as follows: any single vertex is a cograph, the disjoint union of two cographs is a cograph, and the join of two cographs 
G1, G2 is a cograph (the join adds all edges between the vertices of G1 and G2). A graph is a cograph if and only if it is 
P4-free [3].

A graph G = (V , E) is multipartite, or more specifically, r-partite if V can be partitioned into r (possibly empty) sets 
V 1, . . . , Vr , such that there is an edge between two vertices u and v if and only if u ∈ V i and v ∈ V j for some i, j with 
i 
= j. If r = 2, we also say that G is bipartite. If there exist an edge between every vertex of V i and every vertex of V j for 
every i 
= j, then the multipartite graph G is complete.

The complement of a graph G = (V , E) is the graph G = (V , {uv | u, v ∈ V , u 
= v and uv /∈ E}). The complement of a 
bipartite graph is a cobipartite graph. A set W ⊆ V is a dominating set of a graph G if every vertex of V \ W has a neighbour 
in W , or equivalently, N[W ] (the closed neighbourhood of W ) is equal to V . We say that W is a connected dominating set if 
W is a dominating set and G[W ] is connected.

3. The proof of Theorem 2

We consider k-Disjoint Connected Subgraphs for fixed k. First, we show a polynomial-time algorithm on H-free graphs 
when H ⊆i sP1 + P4 for some fixed s ≥ 0. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P4-free graphs, or equivalently, cographs. This lemma is well known 
and follows immediately from the definition of a cograph: in the construction of a connected cograph G , the last operation 
must be a join, so there exists cographs G1 and G2, such that G obtained from adding an edge between every vertex of 
G1 and every vertex of G2. Hence, the spanning complete bipartite graph of G has non-empty partition classes V (G1) and 
V (G2).

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning complete bipartite subgraph.

Two instances of a problem � are equivalent when one of them is a yes-instance of � if and only if the other one is a 
yes-instance of �. We note that if two adjacent vertices will always appear in the same set of every solution (S1, . . . , Sk)

for an instance (G, Z1, . . . , Zk), then we may contract the edge between them at the start of any algorithm. This takes linear 
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time. Moreover, H-free graphs are readily seen (see e.g. [15]) to be closed under edge contraction if H is a linear forest. 
Hence, we can make the following observation.

Lemma 2. For k ≥ 2, from every instance of (G, Z1, . . . , Zk) of k-Disjoint Connected Subgraphs we can obtain in polynomial time 
an equivalent instance (G ′, Z ′

1, . . . , Z
′
k) such that every Z ′

i is an independent set. Moreover, if G is H-free for some linear forest H, then 
G ′ is also H-free.

We can now prove the following lemma.

Lemma 3. Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 1, k-Disjoint Connected Subgraphs on H-free graphs is polynomial-
time solvable.

Proof. Let H ⊆i sP1 + P4 for some s ≥ 0. Let (G, Z1, . . . , Zk) be an instance of k-Disjoint Connected Subgraphs, where G is 
an H-free graph. By Lemma 2, we may assume without loss of generality that G is connected and moreover that Z1, . . . , Zk
are all independent sets.

We first analyze the structure of a solution (S1, . . . , Sk) (if it exists). For i ∈ {1, . . . , k}, we may assume that Si is 
inclusion-wise minimal, meaning there is no S ′

i ⊂ Si that contains Zi and is connected. Consider a graph G[Si]. Either 
G[Si] is P4-free or G[Si] contains an induced r P1 + P4 for some 0 ≤ r ≤ s − 1. We will now show that in both cases, Si is 
the (not necessarily disjoint) union of Zi and a connected dominating set of G[Si] of constant size.

First suppose that G[Si] is P4-free. As G[Si] is connected and Zi is independent, we apply Lemma 1 to find that Si \ Zi
contains a vertex u that is adjacent to every vertex of Zi . Hence, by minimality, Si = Zi ∪ {u} and {u} is a connected 
dominating set of G[Si] of size 1.

Now suppose that G[Si] has an induced r P1 + P4 for some r ≥ 0, where we choose r to be maximum. Note that r ≤ s −1. 
Let W be the vertex set of the induced r P1 + P4. Then, as r is maximum, W dominates G[Si]. Note that G[W ] has r + 1 ≤ s
connected components. Then, as G[Si] is connected and W is a dominating set of G[Si] of size r + 4 ≤ s + 3, it follows 
from folklore arguments (see e.g. [22, Prop. 6.3.24]) that G[Si] has a connected dominating set W ′ of size at most 3s + 1. 
Moreover, by minimality, Si = Zi ∪ W ′ .

Hence, in both cases we find that Si is the union of Zi and a connected dominating set of G[Si ] of size at most t = 3s +1; 
note that t is a constant, as s is a constant.

Our algorithm now does as follows. We consider all options of choosing a connected dominating set of each G[Si], 
which from the above has size at most t . As soon as one of the guesses makes every Zi connected, we stop and return 
the solution. The total number of options is O (ntk), which is polynomial as k and t are fixed. Moreover, checking the 
connectivity condition can be done in polynomial time. Hence, the total running time of the algorithm is polynomial. �
The proof our next result is inspired by the aforementioned NP-completeness result of [23] for instances (G, Z1, Z2) where 
|Z1| = 2 but G is a general graph.

Lemma 4. The 2-Disjoint Connected Subgraphs problem is NP-complete even on instances (G, Z1, Z2) where |Z1| = 2 and G is a 
line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT. Let φ = φ(x1, . . . , xn) be an instance of 3-SAT with clauses 
C1, . . . , Cm . We construct a corresponding graph G = (V , E) as follows. We start with two disjoint paths P and P̄ on vertices 
pi, xi, qi and p̄i, ̄xi, ̄qi , respectively, where xi, ̄xi correspond to the positive and negative literals in φ, respectively. To be more 
precise, we define:

P = p1, x1,q1, p2, x2,q2, . . . , pn, xn,qn, and P = p̄1, x̄1, q̄1, . . . , p̄n, x̄n, q̄n,

We add the two edges e = p1 p̄1, and f = qnq̄n . For i = 1, . . . , n − 1, we also add edges qi p̄i+1 and q̄i pi+1. We now replace 
each xi by vertices x j1

i , x j2
i , . . . x jr

i , where j1, . . . , jr are the indices of the clauses C j that contain xi . That is, we replace the 
subpath pi, xi, qi of P by the path pi, x

j1
i , x j2

i , . . . x jr
i , qi . We do the same path replacement operation on P̄ with respect to 

every x̄i . Finally, we add every clause C j as a vertex and add an edge between C j and x j
i if and only if xi ∈ C j , and between 

C j and x̄ j
i if and only if x̄ j ∈ C j . This completes the description of G = (V , E). We refer to Fig. 3 for an illustration of our 

construction.
We now focus on the line graph L = L(G) of G . Let Z1 = {e, f } ⊆ E = V (L) and let Z2 consist of all vertices of L

that correspond to edges in G that are incident to some C j . Note that Z1 and Z2 are disjoint. Moreover, each clause C j
corresponds to a clique of size at most 3 in L, which we call the clause clique of C j . We claim that φ is satisfiable if and 
only if the instance (L, Z1, Z2) of 2-Disjoint Connected Subgraphs is a yes-instance.

First suppose that φ is satisfiable. Let τ be a satisfying truth assignment for φ. In G , we let P 1 denote the unique path 
whose first edge is e and whose last edge is f and that passes through all x j ∈ V if xi = 0 and through all x̄ j if xi = 1. 
i i
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C1◦

p1• x1
1◦ ◦ ◦ q1• p2• x1

2◦ ◦ ◦ q2• p3• ◦ ◦ q3•

p̄1•

e

x̄1
1◦ ◦ ◦ q̄1• p̄2• ◦ ◦ ◦ q̄2• p̄3• x̄1

3◦ ◦ q̄3•

f

Fig. 3. The construction described with edges added for the clause C1 = (x1 ∨ x2 ∨ x̄3).

In L we let S1 consist of all vertices of L(P 1); note that Z1 = {e, f } is contained in S1 and that S1 is connected. We let P 2

denote the “complementary” path in G whose first edge is e and whose last edge is f but that passes through all x j
i if and 

only if P 1 passes through all x̄ j
i , and conversely (i = 1, . . . , n). In L, we put all vertices of L(P 2), except e and f , together 

with all vertices of Z2 in S2. As τ satisfies φ, some vertex of each clause clique is adjacent to a vertex of P 2. Hence, as P 2

is a path, S2 is connected and we found a solution for (L, Z1, Z2).
Now suppose that (L, Z1, Z2) is a yes-instance of 2-Disjoint Connected Subgraphs. Then V (L) can be partitioned into 

two vertex-disjoint connected sets S1 and S2 such that Z1 ⊆ S1 and Z2 ⊆ S2. In particular, L[S1] contains a path P 1 from 
e to f . In fact, we may assume that S1 = V (P 1), as we can move every other vertex of S1 (if they exist) to S2 without 
disconnecting S2.

Note that P 1 corresponds to a connected subgraph that contains the adjacent vertices p1 and p̄1 as well as the adjacent 
vertices qn and q̄n . Hence, we can modify P 1 into a path Q in G that starts in p1 or p̄1 and that ends in qn or q̄n . Note that 
Q contains no edge incident to a clause vertex C j , as those edges correspond to vertices in L that belong to Z2. Hence, by 
construction, Q “moves from left to right”, that is, Q cannot pass through both some x j

i and x̄ j
i (as then Q needs to pass 

through either x j
i or x̄ j

i again implying that Q is not a path).

Moreover, if Q passes through some x j
i , then Q must pass through all vertices x jh

i . Similarly, if Q passes through some 
x̄ j

i , then Q must pass through all vertices x̄ jh
i . As Q connects the edges p1 p̄1 and qnq̄n , we conclude that Q must pass, for 

i = 1, . . . , n, through either every x jh
i or through every x̄ jh

i . Thus we may define a truth assignment τ by setting

xi =
{

1 if Q passes through all x̄ j
i

0 if Q passes through all x j
i .

We claim that τ satisfies φ. For contradiction, assume some clause C j is not satisfied. Then Q passes through all its literals. 
However, then in S2, the vertices of Z2 that correspond to edges incident to C j are not connected to other vertices of Z2, a 
contradiction. This completes the proof of the lemma. �
A straightforward modification of the reduction of Lemma 5 gives us Lemma 6. We can also obtain Lemma 6 by subdividing 
the graph G in the proof of Lemma 4 twice (to get a bipartite graph) or p times (to get a graph of girth at least p).

Lemma 5 ([23]). 2-Disjoint Connected Subgraphs is NP-complete for split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Lemma 6. 2-Disjoint Connected Subgraphs is NP-complete for bipartite graphs and for graphs of girth at least p, for every inte-
ger p ≥ 3.

We are now ready to prove Theorem 2.

Theorem 2 (restated) Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 1, k-Disjoint Connected Subgraphs on H-free graphs 
is polynomial-time solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Proof. If H contains an induced cycle Cs for some s ≥ 3, then we apply Lemma 6 by setting p = s + 1. Now assume that H
contains no cycle, that is, H is a forest. If H has a vertex of degree at least 3, then H is a superclass of the class of claw-free 
graphs, which in turn contains all line graphs. Hence, we can apply Lemma 4. In the remaining case H is a linear forest. If 
H contains an induced 2P2, we apply Lemma 5. Otherwise H is an induced subgraph of sP1 + P4 for some s ≥ 0 and we 
apply Lemma 3. �
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4. The proof of Theorem 3

We first prove the following result, which generalizes the corresponding result of Disjoint Paths for P4-free graphs due 
to Gurski and Wanke [8]. We show that we can use the same modification to a matching problem in a bipartite graph.

Lemma 7. Disjoint Connected Subgraphs is polynomial-time solvable for P4-free graphs.

Proof. For some integer k ≥ 2, let (G, Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs where G is a P4-free 
graph. By Lemma 2 we may assume that every Zi is an independent set. Now suppose that (G, Z1, . . . , Zk) has a solution 
(S1, . . . , Sk). Then G[Si] is a connected P4-free graph. Hence, by Lemma 1, G[Si] has a spanning complete bipartite graph 
on non-empty partition classes Ai and Bi . As every Zi is an independent set, it follows that either Zi ⊆ Ai or Zi ⊆ Bi . If 
Zi ⊆ Ai , then every vertex of Bi is adjacent to every vertex of Zi . Similarly, if Zi ⊆ Bi , then every vertex of Ai is adjacent to 
every vertex of Zi . We conclude that in every set Si , there exists a vertex yi such that Zi ∪ {yi} is connected.

The latter enables us to construct a bipartite graph G ′ = (X ∪ Y , E ′) where X contains vertices x1, . . . , xk corresponding 
to the set Z1, . . . , Zk and Y is the set of non-terminal vertices of G . We add an edge between xi ∈ X and y ∈ Y if and only 
if y is adjacent to every vertex of Zi . Then (G, Z1 . . . Zk) is a yes-instance of Disjoint Connected Subgraphs if and only if G ′
contains a matching of size k. It remains to observe that we can find a maximum matching in polynomial time, for example, 
by using the Hopcroft-Karp algorithm for bipartite graphs [11]. �

The first lemma of a series of four is obtained by a straightforward reduction from the Edge Disjoint Paths problem 
(see, e.g. [8,9]), which was proven to be NP-complete by Even, Itai and Shamir [5]. The second lemma follows from the 
observation that an edge subdivision of the graph G in an instance of Disjoint Paths results in an equivalent instance of
Disjoint Paths; we apply this operation a sufficiently large number of times to obtain a graph of large girth. The third 
lemma is due to Heggernes et al. [9]. We modify their construction to prove the fourth lemma.

Lemma 8. Disjoint Paths is NP-complete for line graphs.

Lemma 9. For every g ≥ 3, Disjoint Paths is NP-complete for graphs of girth at least g.

Lemma 10 ([9]). Disjoint Paths is NP-complete for split graphs, or equivalently, (C4, C5, 2P2)-free graphs.

Lemma 11. Disjoint Paths is NP-complete for (4P1, P1 + P4)-free graphs.

Proof. We reduce from Disjoint Paths on split graphs, which is NP-complete by Lemma 10. By inspection of this result 
(see [9, Theorem 3]), we note that the instances (G, {(s1, t1), . . . , (sk, tk)}) have the following property: the split graph G has 
a split decomposition (C, I), where C is a clique, I an independent set, C and I are disjoint, and C ∪ I = V (G), such that 
I = {s1, . . . , sk, t1, . . . , tk}. Now let G ′ be obtained from G by, for each terminal si , adding edges to s j and t j for all j 
= i. 
Then consider the instance (G ′, {(s1, t1), . . . , (sk, tk)}).

We note that G ′[C] is still a complete graph, while G ′[I] is a complete graph minus a matching. It is immediate that G ′
is 4P1-free. Moreover, any induced subgraph H of G ′ that is isomorphic to P4 must contain at least two vertices of I and at 
least one vertex of C . If H contains two vertices of C , then as G ′[C] is a clique, H contains two non-adjacent vertices in I . 
Similarly, if H contains one vertex of C (and thus three vertices of I), then H contains two non-adjacent vertices in I . Since 
C is a clique in G ′ and every (other) vertex of I is adjacent in G ′ to any pair of non-adjacent vertices of I , it follows that G ′
is P1 + P4-free as well.

We claim that (G, {(s1, t1), . . . , (sk, tk)}) is a yes-instance if and only if (G ′, {(s1, t1), . . . , (sk, tk)}) is a yes-instance. This 
is because the edges that were added to G to obtain G ′ are only between terminal vertices of different pairs. These edges 
cannot be used by any solution of Disjoint Paths for (G ′, {(s1, t1), . . . , (sk, tk)}), and thus the feasibility of the instance is 
not affected by the addition of these edges. �
We are now ready to prove Theorem 3.

Theorem 3 (restated) Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4 , then Disjoint Connected Subgraphs is 
polynomial-time solvable for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Proof. First suppose that H contains a cycle Cr for some r ≥ 3. Then Disjoint Paths is NP-complete for the class of H-free 
graphs, as Disjoint Paths is NP-complete on the subclass consisting of graphs of girth r + 1 by Lemma 9. Now suppose 
that H contains no cycle, that is, H is a forest. If H contains a vertex of degree at least 3, then the class of H-free graphs 
contains the class of claw-free graphs, which in turn contains the class of line graphs. Hence, we can apply Lemma 8. It 
remains to consider the case where H is a forest with no vertices of degree at least 3, that is, when H is a linear forest.
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If H contains four connected components, then the class of H-free graphs contains the class of 4P1-free graphs, and 
we can use Lemma 11. If H contains an induced P5 or two connected components that each have at least one edge, then 
H contains the class of 2P2-free graphs, and we can use Lemma 10. If H contains two connected components, one of 
which has at least four vertices, then H contains the class of (P1 + P4)-free graphs, and we can use Lemma 11 again. As 
H /∈ {3P1, 2P1 + P2, P1 + P3}, this means that in the remaining case H is an induced subgraph of P4. In that case even
Disjoint Connected Subgraphs is polynomial-time solvable on H-free graphs, due to Lemma 7. �
5. Reducing the number of open cases to three

Theorem 3 shows that we have the same three open cases for Disjoint Paths and Disjoint Connected Subgraphs, namely 
when H ∈ {3P1, P1 + P3, 2P1 + P2}. We show that instead of six open cases, we have in fact only three.

Proposition 1. Disjoint Paths and Disjoint Connected Subgraphs are equivalent for 3P1-free graphs.

Proof. Every instance of Disjoint Paths is an instance of Disjoint Connected Subgraphs. Let (G, Z1, . . . , Zk) be an instance 
of Disjoint Connected Subgraphs where G is a 3P1-free graph. By Lemma 2 we may assume that each Zi is an independent 
set. Then, as G is 3P1-free, each Zi has size at most 2. So we obtained an instance of Disjoint Paths. �
Proposition 2. Disjoint Paths on (P1 + P3)-free graphs and Disjoint Connected Subgraphs on (P1 + P3)-free graphs are polyno-
mially equivalent to Disjoint Paths on 3P1-free graphs.

Proof. We prove that we can solve Disjoint Connected Subgraphs in polynomial time on (P1 + P3)-free graphs if we have 
a polynomial-time algorithm for Disjoint Paths on 3P1-free graphs. Showing this suffices to prove the theorem, as Disjoint 
Paths is a special case of Disjoint Connected Subgraphs and 3P1-free graphs form a subclass of (P1 + P3)-free graphs.

Let (G, Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs, where G is a (P1 + P3)-free graph. Olariu [17]
proved that every connected P1 + P3-free graph is either triangle-free or complete multipartite. Hence, the vertex set of G
can be partitioned into sets D1, . . . , D p for some p ≥ 1 such that

– every G[Di] is 3P1-free or the disjoint union of complete graphs, and
– for every i, j with i 
= j, every vertex of Di is adjacent to every vertex of D j .

Using this structural characterization, we first argue that we may assume that each Zi has size 2, making the problem an 
instance of Disjoint Paths. Then we show that we can either solve the instance outright or can alter G to be 3P1-free.

First, we argue about the size of each Zi . By Lemma 2 we may assume that every Zi is an independent set and is thus 
contained in the same set D j . If G[D j] is 3P1-free, then this implies that any Zi that is contained in D j has size 2. If G[D j]
is a disjoint union of complete graphs, then each vertex of a Zi that is contained in D j belongs to a different connected 
component of D j and Zi ∪ {v} is connected for every vertex v /∈ D j . As at least one vertex v /∈ D j is needed to make such a 
set Zi connected, we may therefore assume that for a solution (S1, . . . , Sk) (if it exists), Si = Zi ∪ {v} for some v /∈ D j . The 
latter implies that we may assume without loss of generality that every such Zi has size 2 as well.

If p = 1, then each connected component of G is 3P1-free, and we are done. Hence, we assume that p ≥ 2. In fact, 
since any two distinct sets Di and D j are complete to each other, the union of any two 3P1-free graphs induces a 3P1-free 
graph. Therefore we may assume without loss of generality that only G[D1] might be 3P1-free, whereas G[D2], . . . , G[D p]
are disjoint unions of complete graphs.

Recall that Zi = {si, ti} for every i ∈ {1, . . . , k} and we search for a solution (P 1, . . . , Pk) where each P i is a path from 
si to ti . First suppose si and ti belong to D1. Then P i has length 2 or 3 and in the latter case, V (P i) ⊆ D1. Now suppose 
that si and ti belong to Dh for some h ∈ {2, . . . , k}. Then P i has length exactly 2, and moreover, the middle (non-terminal) 
vertex of P i does not belong to Dh .

We will now check if there is a solution (P 1, . . . , Pk) such that every P i has length exactly 2. We call such a solution to 
be of type 1. In a solution of type 1, every P i = siuti for some non-terminal vertex u of G . If si and ti belong to Dh for some 
h ∈ {2, . . . , p}, then u ∈ D j for some j 
= i. If si and ti belong to D1, then u ∈ D j for some j 
= 1 but also u ∈ D1 is possible, 
namely when u is adjacent to both si and ti .

Verifying the existence of a type 1 solution is equivalent to finding a perfect matching in a bipartite graph G ′ = A ∪ B
that is defined as follows. The set A consists of one vertex vi for each pair {si, ti}. The set B consists of all non-terminal 
vertices u of G . For {si, ti} ⊆ D1, there exists an edge between u and vi in G ′ if and only if in G it holds that u ∈ Dh for 
some h ∈ {2, . . . , p} or u ∈ D1 and u is adjacent to both si and ti . For {si, ti} ⊆ Dh with h ∈ {2, . . . , p}, there exists an edge 
between u and vi in G ′ if and only if in G it holds that u ∈ D j for some j ∈ {1, . . . , p} with h 
= j. We can find a perfect 
matching in G ′ in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

Suppose that we find that (G, {s1, t1}, . . . , {sk, tk}) has no solution of type 1. As a solution can be assumed to be of type 1 
if G[D1] is the disjoint union of complete graphs, we find that G[D1] is not of this form. Hence, G[D1] is 3P1-free. Recall 
that G[D j] is the disjoint union of complete graphs for 2 ≤ i ≤ p. It remains to check if there is a solution that is of type 2
meaning a solution (P 1, . . . , Pk) in which at least one P i , whose vertices all belong to D1, has length 3.
65



W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
To find a type 2 solution (if it exists) we construct the following graph G∗ . We let V (G∗) = A1 ∪ A2 ∪ B1 ∪ B2, where

– A1 consists of all terminal vertices from D1;
– A2 consists of all non-terminal vertices from D1;
– B1 consists of all terminal vertices from D2 ∪ · · · ∪ D p ; and
– B2 consists of all non-terminal vertices from D2 ∪ · · · ∪ D p .

Note that V (G∗) = V (G). To obtain E(G∗) from E(G) we add some edges (if they do not exist in G already) and also delete 
some edges (if these existed in G):

(i) for each {si, ti} ⊆ B1, add all edges between si and vertices of B2, and delete any edges between ti and vertices of B2;
(ii) add an edge between every two terminal vertices in B1 that belong to different terminal pairs; and
(iii) add an edge between every two vertices of B2.

We note that G∗[D1] is the same graph as G[D1] and thus G∗[D1] is 3P1-free. Moreover, G∗[B1 ∪ B2] is 3P1-free by part (i) 
of the construction. Hence, as there exists an edge between every vertex of A1 ∪ A2 and every vertex of B1 ∪ B2 in G and 
thus also in G∗ , this means that G∗ is 3P1-free. It remains to prove that (G, {s1, t1}, . . . , {sk, tk}) and (G∗, {s1, t1}, . . . , {sk, tk})
are equivalent instances.

First suppose that (G, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , Pk). Assume that the number of paths of length 3
in this solution is minimum over all solutions for (G, {s1, t1}, . . . , {sk, tk}). We note that (P 1, . . . , Pk) is a solution for 
(G∗, {s1, t1}, . . . , {sk, tk}) unless there exists some P i that contains an edge of E(G) \ E(G∗). Suppose this is indeed the 
case. As G∗[D1] = G[D1] and every edge between a vertex of A1 ∪ A2 and a vertex of B1 ∪ B2 also exists in G∗ , we find that 
the paths connecting terminals from pairs in D1 are paths in G∗ . Hence, si and ti belong to Dh for some h ∈ {2, . . . , p} and 
thus P i = siuti where u is a vertex of D j for some j ∈ {2, . . . , p} with j 
= h.

As we already found that (G, {s1, t1}, . . . , {sk, tk}) has no type 1 solution, there is at least one P i′ with length 3, so 
P i′ = si′ v v ′ti′ is in G[D1]. However, we can now obtain another solution for (G, {s1, t1}, . . . , {sk, tk}) by changing P i into 
si vti and P i′ into si′ uti′ , a contradiction, as the number of paths of length 3 in (P 1, . . . , Pk) was minimum. We conclude 
that every P i only contains edges from E(G) ∩ E(G∗), and thus (P 1, . . . , Pk) is a solution for (G∗, {s1, t1}, . . . , {sk, tk}).

Now suppose that (G∗, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , Pk). Consider a path P i . First suppose that si and ti
both belong to B1. Then we may assume without loss of generality that P i = siuti for some u ∈ A2. As B1 only contains 
terminals from pairs in D2 ∪ . . .∪ D p , the latter implies that P i is a path in G as well. Now suppose that si and ti both belong 
to A1. Then we may assume without loss of generality that P i = siuti for some non-terminal vertex of V (G) = V (G∗) or 
P i = siuu′ti for two vertices u, u′ in A2 ⊆ D1. Hence, P i is a path in G as well. We conclude that (P 1, . . . , Pk) is a solution 
for (G, {s1, t1}, . . . , {sk, tk}). This completes our proof. �
6. Exact algorithms

In this section, we briefly mention exact algorithms. Using Held-Karp type dynamic programming techniques [2,10], we 
can obtain exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs running in time O (2nn2k) and O (3nkm), 
respectively.

Theorem 4. Disjoint Paths can be solved in O (2nn2k) time.

Proof. We devise a Held-Karp type [10,2] dynamic programming algorithm. Given a set S ⊆ V (G), a vertex v ∈ S , and an 
integer i ∈ {1, . . . , k}, let D[S, v, i] be true if and only if S can be partitioned into vertex-disjoint paths P 1, . . . , P i such that 
P i starts in si and ends in v and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}. Then we set D[S, v, 1] to true if and only 
if S is equal to the vertex set of an s1-v path. The correctness of the base case is immediate from the definition. Beyond 
the base case, we set D[S, si, i] = D[S \ {si}, ti−1, i − 1] and for all v 
= si , D[S, v, i] is set to true if and only if there is a 
neighbour w ∈ S of v for which D[S \ {v}, w, i] is true. Indeed, if S can be partitioned into vertex-disjoint paths P 1, . . . , P i

such that P i starts in si and ends in v and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, then

– if v = si , then P i is a single-vertex path and thus S \ {si} can be partitioned into vertex-disjoint paths P 1, . . . , P i−1 such 
that P j is an s j-t j path for each j ∈ {1, . . . , i − 1}, and thus D[S \ {si}, ti−1, i − 1] is true;

– otherwise, let w be the vertex preceding v on P i , and thus S \ {v} can be partitioned into vertex-disjoint paths 
P 1, . . . , P i−1, Q i such that Q i starts in si and ends in w (Q i is the part of P i from si to w) and P j is an s j -t j
path for each j ∈ {1, . . . , i − 1}, and thus D[S \ {v}, w, i] is true.

Conversely, if v = si and D[S \ {si}, ti−1, i − 1] is true, then S \ {si} can be partitioned into vertex-disjoint paths P 1, . . . , P i−1

such that P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, and thus S can be partitioned into vertex-disjoint paths P 1, . . . , P i

such that P i starts and ends in si and P j is an s j-t j path for each j ∈ {1, . . . , i − 1}. Hence, D[S, si, i] is true. If v 
= si and 
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there is a neighbour w ∈ S of v for which D[S \{v}, w, i] is true, meaning that S \{v} can be partitioned into vertex-disjoint 
paths P 1, . . . , P i such that P i starts in si and ends in w and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, then S can be 
partitioned into vertex-disjoint paths P 1, . . . , P i−1, Q i such that Q i starts in si , follows P i and ends in v , and P j is an s j -t j

path for each j ∈ {1, . . . , i − 1}. Hence, D[S, v, i] is true.
Finally, the given instance of Disjoint Paths is a yes-instance if and only if there is a set S ⊆ V (G) for which D[S, tk, k]

is true. The correctness follows by definition.
It is immediate that the running time of the algorithm is O (2nn2k), as there are 2nnk table entries that each require at 

most O (n) time to fill. �
Theorem 5. Disjoint Connected Subgraphs can be solved in O (3nkm) time.

Proof. We propose a similar, but slightly more crude algorithm as the one before. Given a set S ⊆ V (G) and an integer 
i ∈ {1, . . . , k}, let D[S, i] be true if and only if S can be partitioned into vertex-disjoint set S1, . . . , Si such that S j is 
connected and Z j ⊆ S j for each j ∈ {1, . . . , i}. We set D[S, 1] to true if and only if Z1 ⊆ S and S is connected. Beyond the 
base case, we set D[S, i] to true if and only if there is a set S ′ ⊂ S for which Zi ⊆ S ′ , S ′ is connected, and D[S \ S ′, i − 1] is 
true. Finally, the given instance of Disjoint Connected Subgraphs is a yes-instance if and only if there is a set S ⊆ V (G) for 
which D[S, k] is true. The proof of correctness is similar (but simpler) to the proof of Theorem 4.

It is immediate that the running time is O (3nkm). Each table entry D[S, i] requires O (2|S|m) time to fill. Hence, the 
running time to fill all table entries where S has size � is k

(n
�

)
2�m. This means that the total running time is 

∑n
�=0

(n
�

)
2�mk =

O (3nkm), where the latter equality follows from the Binomial Theorem. �
7. Conclusions

We first gave a dichotomy for Disjoint k-Connected Subgraphs in Theorem 2: for every k, the problem is polynomial-
time solvable on H-free graphs if H ⊆i sP1 + P4 for some s ≥ 0 and otherwise it is NP-complete even for k = 2. Two 
vertices u and v are a P4-suitable pair if (G − {u, v}, N(u), N(v)) is a yes-instance of 2-Disjoint Connected Subgraphs. 
Recall that a graph G can be contracted to P4 if and only if G has a P4-suitable pair. Deciding if a pair {u, v} is a suitable 
pair is polynomial-time solvable for H-free graphs if H is an induced subgraph of P2 + P4, P1 + P2 + P3, P1 + P5 or 
sP1 + P4 for some s ≥ 0; otherwise it is NP-complete [15]. Hence, we conclude from our new result that the presence of 
the two vertices u and v that are connected to the sets Z1 = N(u) and Z2 = N(v), respectively, yield exactly three additional 
polynomial-time solvable cases.

We also classified, in Theorem 3, the complexity of Disjoint Paths and Disjoint Connected Subgraphs for H-free graphs. 
Due to Propositions 1 and 2, there are three non-equivalent open cases left and we ask the following:

Open Problem 1. Determine the computational complexity of Disjoint Paths on H-free graph for H ∈ {3P1, 2P1 + P2} and the 
computational complexity of Disjoint Connected Subgraphs on H-free graphs for H = 2P1 + P2 .

The three open cases seem challenging. We were able to prove the following positive result for a subclass of 3P1-free 
graphs, namely cobipartite graphs, or equivalently, (3P1, C5, C7, C9, . . .)-free graphs.

Theorem 6. Disjoint Paths is polynomial-time solvable for cobipartite graphs.

Proof. Let G = (A ∪ B, E), with cliques A and B , be the given cobipartite graph. If si and ti are adjacent in G , then use the 
direct edge between them as the path P i . We can then reduce the instance by removing si and ti . We now assume the 
instance has thus been reduced and (by abuse of notation) all terminal pairs are nonadjacent in G .

We now construct a bipartite graph G ′ by removing each edge within the cliques A and B as well as any edge sit j both 
of whose endpoints are terminals. We then obtain a new graph G ′′ by deleting each terminal vertex and adding for each 
terminal pair (si, ti), a new vertex xi whose neighbourhood is the union of the neighbourhoods of si and ti in G ′ . We claim 
that G contains the required k disjoint paths P 1 . . . Pk if and only if G ′′ contains a matching of size at least k. We can check 
the latter in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

We first assume that G contains the disjoint paths P 1 . . . Pk . Note that, since G is 3P1-free, we may assume each path 
has length at most 3. A matching M of size k is obtained as follows. For each i = 1 . . .k, if P i has length 2 we add the edge 
xi vi to M where vi is the interior vertex of P i . If P i has length 3 then we add its interior edge ui vi to M .

Next assume G ′′ contains a matching M of size k. For each edge of M which includes a vertex xi corresponding to a 
terminal pair (si, ti) we set P i to be si viti where vi is the vertex matched to xi . Note that any edge uv in G which contains 
no terminal vertex and has one endpoint in each of A and B lies on a path of length 3 between any two terminal vertices. 
Therefore, for each i such that the vertex xi is not matched in M , we can choose a distinct edge ui vi in M to obtain the 
path siui viti in G . �
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Finally, in Section 6 we obtained exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs running in time 
O (2nn2m) and O (3nkm), respectively. Faster exact algorithms are known for k-Disjoint Connected Subgraphs for k = 2 and 
k = 3 [4,21,1], but we are unaware if there exist faster algorithms for general graphs.

Open Problem 2. Is there an exact algorithm for Disjoint Paths or Disjoint Connected Subgraphs on general graphs where the 
exponential factor is (2 − ε)n or (3 − ε)n, respectively, for some ε > 0?
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