
Theoretical Computer Science 898 (2022) 59–68
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Disjoint paths and connected subgraphs for H-free graphs ✩

Walter Kern a,1, Barnaby Martin b, Daniël Paulusma b,∗,2, Siani Smith b,
Erik Jan van Leeuwen c

a Department of Applied Mathematics, University of Twente, the Netherlands
b Department of Computer Science, Durham University, Durham, UK
c Department of Information and Computing Sciences, Utrecht University, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 May 2021
Received in revised form 1 September 2021
Accepted 18 October 2021
Available online 22 October 2021
Communicated by D.-Z. Du

Keywords:
Disjoint paths
H-free graph
Complexity dichotomy

The well-known Disjoint Paths problem is to decide if a graph contains k pairwise disjoint
paths, each connecting a different terminal pair from a set of k distinct vertex pairs. We
determine, with an exception of two cases, the complexity of the Disjoint Paths problem
for H-free graphs. If k is fixed, we obtain the k-Disjoint Paths problem, which is known to
be polynomial-time solvable on the class of all graphs for every k ≥ 1. The latter does no
longer hold if we need to connect vertices from terminal sets instead of terminal pairs. We
completely classify the complexity of k-Disjoint Connected Subgraphs for H-free graphs,
and give the same almost-complete classification for Disjoint Connected Subgraphs for H-
free graphs as for Disjoint Paths. Moreover, we give exact algorithms for Disjoint Paths

and Disjoint Connected Subgraphs on graphs with n vertices and m edges that have
running times of O (2nn2k) and O (3nkm), respectively.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A path from a vertex s to a vertex t in a graph G is an s-t path of G , and s and t are called its terminals. Two pairs
(s1, t1) and (s2, t2) are disjoint if {s1, t1} ∩ {s2, t2} = ∅. In 1980, Shiloach [20] gave a polynomial-time algorithm for testing
if a graph with disjoint terminal pairs (s1, t1) and (s2, t2) has vertex-disjoint paths P 1 and P 2 such that each P i is an si -ti
path. This problem can be generalized as follows.

Disjoint Paths

Instance: a graph G and pairwise disjoint terminal pairs (s1, t1) . . . , (sk, tk).
Question: Does G have pairwise vertex-disjoint paths P 1,. . . ,Pk such that P i is an si-ti path for i ∈

{1, . . . , k}?

✩ An extended abstract of this paper appeared in the proceedings of IWOCA 2021 [14].

* Corresponding author.
E-mail addresses: w.kern@twente.nl (W. Kern), barnaby.d.martin@durham.ac.uk (B. Martin), daniel.paulusma@durham.ac.uk (D. Paulusma),

siani.smith@durham.ac.uk (S. Smith), e.j.vanleeuwen@uu.nl (E.J. van Leeuwen).
1 Walter Kern recently passed away and we are grateful for his contribution.
2 Daniël Paulusma was supported by the Leverhulme Trust (RPG-2016- 258).
https://doi.org/10.1016/j.tcs.2021.10.019
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2021.10.019&domain=pdf
mailto:w.kern@twente.nl
mailto:barnaby.d.martin@durham.ac.uk
mailto:daniel.paulusma@durham.ac.uk
mailto:siani.smith@durham.ac.uk
mailto:e.j.vanleeuwen@uu.nl
https://doi.org/10.1016/j.tcs.2021.10.019

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
•z2 •z2

•z1 • •z1 • •z2 •z1 • •z1 • •z2

•z2 •z2

Fig. 1. An example of a yes-instance (G, Z1, Z2) of (2-)Disjoint Connected Subgraphs (left) together with a solution (right).

Karp [12] proved that Disjoint Paths is NP-complete. If k is fixed, that is, not part of the input, then we denote the problem
as k-Disjoint Paths. For every k ≥ 1, Robertson and Seymour proved the following celebrated result.

Theorem 1 ([19]). For all k ≥ 2, k-Disjoint Paths is polynomial-time solvable.

The running time in Theorem 1 is cubic. This was later improved to quadratic time by Kawarabayashi, Kobayashi and
Reed [13].

As Disjoint Paths is NP-complete, it is natural to consider special graph classes. The Disjoint Paths problem is known to
be NP-complete even for graph of clique-width at most 6 [8], split graphs [9], interval graphs [16] and line graphs. The latter
result can be obtained by a straightforward reduction (see, for example, [8,9]) from its edge variant, Edge Disjoint Paths,
proven to be NP-complete by Even, Itai and Shamir [5]. On the positive side, Disjoint Paths is polynomial-time solvable for
cographs, or equivalently, P4-free graphs [8].

We can generalize the Disjoint Paths problem by considering terminal sets Zi instead of terminal pairs (si, ti). We write
G[S] for the subgraph of a graph G = (V , E) induced by S ⊆ V , where S is connected if G[S] is connected.

Disjoint Connected Subgraphs

Instance: a graph G and pairwise disjoint terminal sets Z1, . . . , Zk .
Question: Does G have pairwise disjoint connected sets S1, . . . , Sk such that Zi ⊆ Si for i ∈ {1, . . . , k}?

If k is fixed, then we write k-Disjoint Connected Subgraphs. We refer to Fig. 1 for a simple example of an instance
(G, Z1, Z2) of 2-Disjoint Connected Subgraphs. Robertson and Seymour [19] proved in fact that k-Disjoint Connected
Subgraphs is cubic-time solvable as long as |Z1| + . . .+|Zk| is fixed (this result implies Theorem 1). Otherwise, van ’t Hof et
al. [23] proved that already 2-Disjoint Connected Subgraphs is NP-complete even if |Z1| = 2 (and |Z2| may have arbitrarily
large size). The same authors also proved that 2-Disjoint Connected Subgraphs is NP-complete for split graphs. Afterwards,
Gray et al. [7] proved that 2-Disjoint Connected Subgraphs is NP-complete for planar graphs. Hence, Theorem 1 cannot be
extended to hold for k-Disjoint Connected Subgraphs.

We note that in recent years a number of exact algorithms were designed for k-Disjoint Connected Subgraphs. Cygan
et al. [4] gave an O ∗(1.933n)-time algorithm for the case k = 2 (see [18,23] for faster exact algorithms for special graph
classes). Telle and Villanger [21] improved this to time O ∗(1.7804n). Recently, Agrawal et al. [1] gave an O ∗(1.88n)-time
algorithm for the case k = 3. Moreover, the 2-Disjoint Connected Subgraphs problem plays a crucial role in graph con-
tractibility: a connected graph can be contracted to the 4-vertex path if and only if there exist two vertices u and v such
that (G − {u, v}, N(u), N(v)) is a yes-instance of 2-Disjoint Connected Subgraphs (see, e.g. [15,23]).

A class of graphs that is closed under vertex deletion is called hereditary. Such a graph class can be characterized by a
unique set F of minimal forbidden induced subgraphs. Hereditary graphs enable a systematic study of the complexity of
a graph problem under input restrictions: by starting with the case where |F | = 1, we may already obtain more general
methodology and a better understanding of the complexity of the problem. If |F | = 1, say F = {H} for some graph H , then
we obtain the class of H-free graphs, that is, the class of graphs that do not contain H as an induced subgraph (so, an
H-free graph cannot be modified to H by vertex deletions only). In this paper, we start such a systematic study for Disjoint
Paths and Disjoint Connected Subgraphs, both for the case when k is part of the input and when k is fixed.

Our results

By combining some of the aforementioned known results with a number of new results, we prove the following two
theorems in Sections 3 and 4, respectively. In particular, we generalize the polynomial-time result for Disjoint Paths on
P4-free graphs to hold even for Disjoint Connected Subgraphs. See Fig. 2 for an example of a graph H = sP1 + P4; we refer
to Section 2 for undefined terminology.
60

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
• • • • • • •

Fig. 2. The graph H = 3P1 + P4.

Theorem 2. Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 2, k-Disjoint Connected Subgraphs on H-free graphs is
polynomial-time solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Theorem 3. Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4 , then Disjoint Connected Subgraphs is polynomial-time
solvable for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Theorem 2 completely classifies, for every k ≥ 2, the complexity of k-Disjoint Connected Subgraphs on H-free graphs.
Theorem 3 determines the complexity of Disjoint Paths and Disjoint Connected Subgraphs on H-free graphs for every
graph H except if H ∈ {3P1, 2P1 + P2, P1 + P3}. In Section 5 we reduce the number of open cases from six to three by
showing some equivalencies.

In Section 6 we complement the above results by giving exact algorithms for both problems based on Held-Karp type
dynamic programming techniques [10,2]. In Section 7 we give some directions for future work. In particular we prove that
both problems are polynomial-time solvable for co-bipartite graphs, which form a subclass of the class of 3P1-free graphs.

2. Preliminaries

We use H ⊆i H ′ to indicate that H is an induced subgraph of H ′ , that is, H can be obtained from H ′ by a sequence of
vertex deletions. For two graphs G1 and G2 we write G1 + G2 for the disjoint union (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). We
denote the disjoint union of r copies of a graph G by rG . A graph is said to be a linear forest if it is a disjoint union of
paths.

We denote the path and cycle on n vertices by Pn and Cn , respectively. The girth of a graph that is not a forest is the
number of edges of a smallest induced cycle in it.

The line graph L(G) of a graph G has vertex set E(G) and there exists an edge between two vertices e and f in L(G)

if and only if e and f have a common end-vertex in G . The claw K1,3 is the 4-vertex star. It is readily seen that every
line graph is claw-free. Recall that a graph is H-free if it does not contain H as induced subgraph. For a set of graphs
{H1, . . . , Hr}, we say that a graph G is (H1, . . . , Hr)-free if G is Hi -free for every i ∈ {1, . . . , r}.

A clique is a set of pairwise adjacent vertices and an independent set is a set of pairwise non-adjacent vertices. A graph
is split if its vertex set can be partitioned into two (possibly empty) sets, one of which is a clique and the other is an
independent set. A graph is split if and only if it is (C4, C5, P4)-free [6]. A graph is a cograph if it can be defined recursively
as follows: any single vertex is a cograph, the disjoint union of two cographs is a cograph, and the join of two cographs
G1, G2 is a cograph (the join adds all edges between the vertices of G1 and G2). A graph is a cograph if and only if it is
P4-free [3].

A graph G = (V , E) is multipartite, or more specifically, r-partite if V can be partitioned into r (possibly empty) sets
V 1, . . . , Vr , such that there is an edge between two vertices u and v if and only if u ∈ V i and v ∈ V j for some i, j with
i
= j. If r = 2, we also say that G is bipartite. If there exist an edge between every vertex of V i and every vertex of V j for
every i
= j, then the multipartite graph G is complete.

The complement of a graph G = (V , E) is the graph G = (V , {uv | u, v ∈ V , u
= v and uv /∈ E}). The complement of a
bipartite graph is a cobipartite graph. A set W ⊆ V is a dominating set of a graph G if every vertex of V \ W has a neighbour
in W , or equivalently, N[W] (the closed neighbourhood of W) is equal to V . We say that W is a connected dominating set if
W is a dominating set and G[W] is connected.

3. The proof of Theorem 2

We consider k-Disjoint Connected Subgraphs for fixed k. First, we show a polynomial-time algorithm on H-free graphs
when H ⊆i sP1 + P4 for some fixed s ≥ 0. Then, we prove the hardness result.

For the algorithm, we need the following lemma for P4-free graphs, or equivalently, cographs. This lemma is well known
and follows immediately from the definition of a cograph: in the construction of a connected cograph G , the last operation
must be a join, so there exists cographs G1 and G2, such that G obtained from adding an edge between every vertex of
G1 and every vertex of G2. Hence, the spanning complete bipartite graph of G has non-empty partition classes V (G1) and
V (G2).

Lemma 1. Every connected P4-free graph on at least two vertices has a spanning complete bipartite subgraph.

Two instances of a problem � are equivalent when one of them is a yes-instance of � if and only if the other one is a
yes-instance of �. We note that if two adjacent vertices will always appear in the same set of every solution (S1, . . . , Sk)

for an instance (G, Z1, . . . , Zk), then we may contract the edge between them at the start of any algorithm. This takes linear
61

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
time. Moreover, H-free graphs are readily seen (see e.g. [15]) to be closed under edge contraction if H is a linear forest.
Hence, we can make the following observation.

Lemma 2. For k ≥ 2, from every instance of (G, Z1, . . . , Zk) of k-Disjoint Connected Subgraphs we can obtain in polynomial time
an equivalent instance (G ′, Z ′

1, . . . , Z
′
k) such that every Z ′

i is an independent set. Moreover, if G is H-free for some linear forest H, then
G ′ is also H-free.

We can now prove the following lemma.

Lemma 3. Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 1, k-Disjoint Connected Subgraphs on H-free graphs is polynomial-
time solvable.

Proof. Let H ⊆i sP1 + P4 for some s ≥ 0. Let (G, Z1, . . . , Zk) be an instance of k-Disjoint Connected Subgraphs, where G is
an H-free graph. By Lemma 2, we may assume without loss of generality that G is connected and moreover that Z1, . . . , Zk
are all independent sets.

We first analyze the structure of a solution (S1, . . . , Sk) (if it exists). For i ∈ {1, . . . , k}, we may assume that Si is
inclusion-wise minimal, meaning there is no S ′

i ⊂ Si that contains Zi and is connected. Consider a graph G[Si]. Either
G[Si] is P4-free or G[Si] contains an induced r P1 + P4 for some 0 ≤ r ≤ s − 1. We will now show that in both cases, Si is
the (not necessarily disjoint) union of Zi and a connected dominating set of G[Si] of constant size.

First suppose that G[Si] is P4-free. As G[Si] is connected and Zi is independent, we apply Lemma 1 to find that Si \ Zi
contains a vertex u that is adjacent to every vertex of Zi . Hence, by minimality, Si = Zi ∪ {u} and {u} is a connected
dominating set of G[Si] of size 1.

Now suppose that G[Si] has an induced r P1 + P4 for some r ≥ 0, where we choose r to be maximum. Note that r ≤ s −1.
Let W be the vertex set of the induced r P1 + P4. Then, as r is maximum, W dominates G[Si]. Note that G[W] has r + 1 ≤ s
connected components. Then, as G[Si] is connected and W is a dominating set of G[Si] of size r + 4 ≤ s + 3, it follows
from folklore arguments (see e.g. [22, Prop. 6.3.24]) that G[Si] has a connected dominating set W ′ of size at most 3s + 1.
Moreover, by minimality, Si = Zi ∪ W ′ .

Hence, in both cases we find that Si is the union of Zi and a connected dominating set of G[Si] of size at most t = 3s +1;
note that t is a constant, as s is a constant.

Our algorithm now does as follows. We consider all options of choosing a connected dominating set of each G[Si],
which from the above has size at most t . As soon as one of the guesses makes every Zi connected, we stop and return
the solution. The total number of options is O (ntk), which is polynomial as k and t are fixed. Moreover, checking the
connectivity condition can be done in polynomial time. Hence, the total running time of the algorithm is polynomial. �
The proof our next result is inspired by the aforementioned NP-completeness result of [23] for instances (G, Z1, Z2) where
|Z1| = 2 but G is a general graph.

Lemma 4. The 2-Disjoint Connected Subgraphs problem is NP-complete even on instances (G, Z1, Z2) where |Z1| = 2 and G is a
line graph.

Proof. Note that the problem is in NP. We reduce from 3-SAT. Let φ = φ(x1, . . . , xn) be an instance of 3-SAT with clauses
C1, . . . , Cm . We construct a corresponding graph G = (V , E) as follows. We start with two disjoint paths P and P̄ on vertices
pi, xi, qi and p̄i, ̄xi, ̄qi , respectively, where xi, ̄xi correspond to the positive and negative literals in φ, respectively. To be more
precise, we define:

P = p1, x1,q1, p2, x2,q2, . . . , pn, xn,qn, and P = p̄1, x̄1, q̄1, . . . , p̄n, x̄n, q̄n,

We add the two edges e = p1 p̄1, and f = qnq̄n . For i = 1, . . . , n − 1, we also add edges qi p̄i+1 and q̄i pi+1. We now replace
each xi by vertices x j1

i , x j2
i , . . . x jr

i , where j1, . . . , jr are the indices of the clauses C j that contain xi . That is, we replace the
subpath pi, xi, qi of P by the path pi, x

j1
i , x j2

i , . . . x jr
i , qi . We do the same path replacement operation on P̄ with respect to

every x̄i . Finally, we add every clause C j as a vertex and add an edge between C j and x j
i if and only if xi ∈ C j , and between

C j and x̄ j
i if and only if x̄ j ∈ C j . This completes the description of G = (V , E). We refer to Fig. 3 for an illustration of our

construction.
We now focus on the line graph L = L(G) of G . Let Z1 = {e, f } ⊆ E = V (L) and let Z2 consist of all vertices of L

that correspond to edges in G that are incident to some C j . Note that Z1 and Z2 are disjoint. Moreover, each clause C j
corresponds to a clique of size at most 3 in L, which we call the clause clique of C j . We claim that φ is satisfiable if and
only if the instance (L, Z1, Z2) of 2-Disjoint Connected Subgraphs is a yes-instance.

First suppose that φ is satisfiable. Let τ be a satisfying truth assignment for φ. In G , we let P 1 denote the unique path
whose first edge is e and whose last edge is f and that passes through all x j ∈ V if xi = 0 and through all x̄ j if xi = 1.
i i

62

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
C1◦

p1• x1
1◦ ◦ ◦ q1• p2• x1

2◦ ◦ ◦ q2• p3• ◦ ◦ q3•

p̄1•

e

x̄1
1◦ ◦ ◦ q̄1• p̄2• ◦ ◦ ◦ q̄2• p̄3• x̄1

3◦ ◦ q̄3•

f

Fig. 3. The construction described with edges added for the clause C1 = (x1 ∨ x2 ∨ x̄3).

In L we let S1 consist of all vertices of L(P 1); note that Z1 = {e, f } is contained in S1 and that S1 is connected. We let P 2

denote the “complementary” path in G whose first edge is e and whose last edge is f but that passes through all x j
i if and

only if P 1 passes through all x̄ j
i , and conversely (i = 1, . . . , n). In L, we put all vertices of L(P 2), except e and f , together

with all vertices of Z2 in S2. As τ satisfies φ, some vertex of each clause clique is adjacent to a vertex of P 2. Hence, as P 2

is a path, S2 is connected and we found a solution for (L, Z1, Z2).
Now suppose that (L, Z1, Z2) is a yes-instance of 2-Disjoint Connected Subgraphs. Then V (L) can be partitioned into

two vertex-disjoint connected sets S1 and S2 such that Z1 ⊆ S1 and Z2 ⊆ S2. In particular, L[S1] contains a path P 1 from
e to f . In fact, we may assume that S1 = V (P 1), as we can move every other vertex of S1 (if they exist) to S2 without
disconnecting S2.

Note that P 1 corresponds to a connected subgraph that contains the adjacent vertices p1 and p̄1 as well as the adjacent
vertices qn and q̄n . Hence, we can modify P 1 into a path Q in G that starts in p1 or p̄1 and that ends in qn or q̄n . Note that
Q contains no edge incident to a clause vertex C j , as those edges correspond to vertices in L that belong to Z2. Hence, by
construction, Q “moves from left to right”, that is, Q cannot pass through both some x j

i and x̄ j
i (as then Q needs to pass

through either x j
i or x̄ j

i again implying that Q is not a path).

Moreover, if Q passes through some x j
i , then Q must pass through all vertices x jh

i . Similarly, if Q passes through some
x̄ j

i , then Q must pass through all vertices x̄ jh
i . As Q connects the edges p1 p̄1 and qnq̄n , we conclude that Q must pass, for

i = 1, . . . , n, through either every x jh
i or through every x̄ jh

i . Thus we may define a truth assignment τ by setting

xi =
{

1 if Q passes through all x̄ j
i

0 if Q passes through all x j
i .

We claim that τ satisfies φ. For contradiction, assume some clause C j is not satisfied. Then Q passes through all its literals.
However, then in S2, the vertices of Z2 that correspond to edges incident to C j are not connected to other vertices of Z2, a
contradiction. This completes the proof of the lemma. �
A straightforward modification of the reduction of Lemma 5 gives us Lemma 6. We can also obtain Lemma 6 by subdividing
the graph G in the proof of Lemma 4 twice (to get a bipartite graph) or p times (to get a graph of girth at least p).

Lemma 5 ([23]). 2-Disjoint Connected Subgraphs is NP-complete for split graphs, or equivalently, (2P2, C4, C5)-free graphs.

Lemma 6. 2-Disjoint Connected Subgraphs is NP-complete for bipartite graphs and for graphs of girth at least p, for every inte-
ger p ≥ 3.

We are now ready to prove Theorem 2.

Theorem 2 (restated) Let H be a graph. If H ⊆i sP1 + P4 , then for every k ≥ 1, k-Disjoint Connected Subgraphs on H-free graphs
is polynomial-time solvable; otherwise even 2-Disjoint Connected Subgraphs is NP-complete.

Proof. If H contains an induced cycle Cs for some s ≥ 3, then we apply Lemma 6 by setting p = s + 1. Now assume that H
contains no cycle, that is, H is a forest. If H has a vertex of degree at least 3, then H is a superclass of the class of claw-free
graphs, which in turn contains all line graphs. Hence, we can apply Lemma 4. In the remaining case H is a linear forest. If
H contains an induced 2P2, we apply Lemma 5. Otherwise H is an induced subgraph of sP1 + P4 for some s ≥ 0 and we
apply Lemma 3. �
63

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
4. The proof of Theorem 3

We first prove the following result, which generalizes the corresponding result of Disjoint Paths for P4-free graphs due
to Gurski and Wanke [8]. We show that we can use the same modification to a matching problem in a bipartite graph.

Lemma 7. Disjoint Connected Subgraphs is polynomial-time solvable for P4-free graphs.

Proof. For some integer k ≥ 2, let (G, Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs where G is a P4-free
graph. By Lemma 2 we may assume that every Zi is an independent set. Now suppose that (G, Z1, . . . , Zk) has a solution
(S1, . . . , Sk). Then G[Si] is a connected P4-free graph. Hence, by Lemma 1, G[Si] has a spanning complete bipartite graph
on non-empty partition classes Ai and Bi . As every Zi is an independent set, it follows that either Zi ⊆ Ai or Zi ⊆ Bi . If
Zi ⊆ Ai , then every vertex of Bi is adjacent to every vertex of Zi . Similarly, if Zi ⊆ Bi , then every vertex of Ai is adjacent to
every vertex of Zi . We conclude that in every set Si , there exists a vertex yi such that Zi ∪ {yi} is connected.

The latter enables us to construct a bipartite graph G ′ = (X ∪ Y , E ′) where X contains vertices x1, . . . , xk corresponding
to the set Z1, . . . , Zk and Y is the set of non-terminal vertices of G . We add an edge between xi ∈ X and y ∈ Y if and only
if y is adjacent to every vertex of Zi . Then (G, Z1 . . . Zk) is a yes-instance of Disjoint Connected Subgraphs if and only if G ′
contains a matching of size k. It remains to observe that we can find a maximum matching in polynomial time, for example,
by using the Hopcroft-Karp algorithm for bipartite graphs [11]. �

The first lemma of a series of four is obtained by a straightforward reduction from the Edge Disjoint Paths problem
(see, e.g. [8,9]), which was proven to be NP-complete by Even, Itai and Shamir [5]. The second lemma follows from the
observation that an edge subdivision of the graph G in an instance of Disjoint Paths results in an equivalent instance of
Disjoint Paths; we apply this operation a sufficiently large number of times to obtain a graph of large girth. The third
lemma is due to Heggernes et al. [9]. We modify their construction to prove the fourth lemma.

Lemma 8. Disjoint Paths is NP-complete for line graphs.

Lemma 9. For every g ≥ 3, Disjoint Paths is NP-complete for graphs of girth at least g.

Lemma 10 ([9]). Disjoint Paths is NP-complete for split graphs, or equivalently, (C4, C5, 2P2)-free graphs.

Lemma 11. Disjoint Paths is NP-complete for (4P1, P1 + P4)-free graphs.

Proof. We reduce from Disjoint Paths on split graphs, which is NP-complete by Lemma 10. By inspection of this result
(see [9, Theorem 3]), we note that the instances (G, {(s1, t1), . . . , (sk, tk)}) have the following property: the split graph G has
a split decomposition (C, I), where C is a clique, I an independent set, C and I are disjoint, and C ∪ I = V (G), such that
I = {s1, . . . , sk, t1, . . . , tk}. Now let G ′ be obtained from G by, for each terminal si , adding edges to s j and t j for all j
= i.
Then consider the instance (G ′, {(s1, t1), . . . , (sk, tk)}).

We note that G ′[C] is still a complete graph, while G ′[I] is a complete graph minus a matching. It is immediate that G ′
is 4P1-free. Moreover, any induced subgraph H of G ′ that is isomorphic to P4 must contain at least two vertices of I and at
least one vertex of C . If H contains two vertices of C , then as G ′[C] is a clique, H contains two non-adjacent vertices in I .
Similarly, if H contains one vertex of C (and thus three vertices of I), then H contains two non-adjacent vertices in I . Since
C is a clique in G ′ and every (other) vertex of I is adjacent in G ′ to any pair of non-adjacent vertices of I , it follows that G ′
is P1 + P4-free as well.

We claim that (G, {(s1, t1), . . . , (sk, tk)}) is a yes-instance if and only if (G ′, {(s1, t1), . . . , (sk, tk)}) is a yes-instance. This
is because the edges that were added to G to obtain G ′ are only between terminal vertices of different pairs. These edges
cannot be used by any solution of Disjoint Paths for (G ′, {(s1, t1), . . . , (sk, tk)}), and thus the feasibility of the instance is
not affected by the addition of these edges. �
We are now ready to prove Theorem 3.

Theorem 3 (restated) Let H be a graph not in {3P1, 2P1 + P2, P1 + P3}. If H ⊆i P4 , then Disjoint Connected Subgraphs is
polynomial-time solvable for H-free graphs; otherwise even Disjoint Paths is NP-complete.

Proof. First suppose that H contains a cycle Cr for some r ≥ 3. Then Disjoint Paths is NP-complete for the class of H-free
graphs, as Disjoint Paths is NP-complete on the subclass consisting of graphs of girth r + 1 by Lemma 9. Now suppose
that H contains no cycle, that is, H is a forest. If H contains a vertex of degree at least 3, then the class of H-free graphs
contains the class of claw-free graphs, which in turn contains the class of line graphs. Hence, we can apply Lemma 8. It
remains to consider the case where H is a forest with no vertices of degree at least 3, that is, when H is a linear forest.
64

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
If H contains four connected components, then the class of H-free graphs contains the class of 4P1-free graphs, and
we can use Lemma 11. If H contains an induced P5 or two connected components that each have at least one edge, then
H contains the class of 2P2-free graphs, and we can use Lemma 10. If H contains two connected components, one of
which has at least four vertices, then H contains the class of (P1 + P4)-free graphs, and we can use Lemma 11 again. As
H /∈ {3P1, 2P1 + P2, P1 + P3}, this means that in the remaining case H is an induced subgraph of P4. In that case even
Disjoint Connected Subgraphs is polynomial-time solvable on H-free graphs, due to Lemma 7. �
5. Reducing the number of open cases to three

Theorem 3 shows that we have the same three open cases for Disjoint Paths and Disjoint Connected Subgraphs, namely
when H ∈ {3P1, P1 + P3, 2P1 + P2}. We show that instead of six open cases, we have in fact only three.

Proposition 1. Disjoint Paths and Disjoint Connected Subgraphs are equivalent for 3P1-free graphs.

Proof. Every instance of Disjoint Paths is an instance of Disjoint Connected Subgraphs. Let (G, Z1, . . . , Zk) be an instance
of Disjoint Connected Subgraphs where G is a 3P1-free graph. By Lemma 2 we may assume that each Zi is an independent
set. Then, as G is 3P1-free, each Zi has size at most 2. So we obtained an instance of Disjoint Paths. �
Proposition 2. Disjoint Paths on (P1 + P3)-free graphs and Disjoint Connected Subgraphs on (P1 + P3)-free graphs are polyno-
mially equivalent to Disjoint Paths on 3P1-free graphs.

Proof. We prove that we can solve Disjoint Connected Subgraphs in polynomial time on (P1 + P3)-free graphs if we have
a polynomial-time algorithm for Disjoint Paths on 3P1-free graphs. Showing this suffices to prove the theorem, as Disjoint
Paths is a special case of Disjoint Connected Subgraphs and 3P1-free graphs form a subclass of (P1 + P3)-free graphs.

Let (G, Z1, . . . , Zk) be an instance of Disjoint Connected Subgraphs, where G is a (P1 + P3)-free graph. Olariu [17]
proved that every connected P1 + P3-free graph is either triangle-free or complete multipartite. Hence, the vertex set of G
can be partitioned into sets D1, . . . , D p for some p ≥ 1 such that

– every G[Di] is 3P1-free or the disjoint union of complete graphs, and
– for every i, j with i
= j, every vertex of Di is adjacent to every vertex of D j .

Using this structural characterization, we first argue that we may assume that each Zi has size 2, making the problem an
instance of Disjoint Paths. Then we show that we can either solve the instance outright or can alter G to be 3P1-free.

First, we argue about the size of each Zi . By Lemma 2 we may assume that every Zi is an independent set and is thus
contained in the same set D j . If G[D j] is 3P1-free, then this implies that any Zi that is contained in D j has size 2. If G[D j]
is a disjoint union of complete graphs, then each vertex of a Zi that is contained in D j belongs to a different connected
component of D j and Zi ∪ {v} is connected for every vertex v /∈ D j . As at least one vertex v /∈ D j is needed to make such a
set Zi connected, we may therefore assume that for a solution (S1, . . . , Sk) (if it exists), Si = Zi ∪ {v} for some v /∈ D j . The
latter implies that we may assume without loss of generality that every such Zi has size 2 as well.

If p = 1, then each connected component of G is 3P1-free, and we are done. Hence, we assume that p ≥ 2. In fact,
since any two distinct sets Di and D j are complete to each other, the union of any two 3P1-free graphs induces a 3P1-free
graph. Therefore we may assume without loss of generality that only G[D1] might be 3P1-free, whereas G[D2], . . . , G[D p]
are disjoint unions of complete graphs.

Recall that Zi = {si, ti} for every i ∈ {1, . . . , k} and we search for a solution (P 1, . . . , Pk) where each P i is a path from
si to ti . First suppose si and ti belong to D1. Then P i has length 2 or 3 and in the latter case, V (P i) ⊆ D1. Now suppose
that si and ti belong to Dh for some h ∈ {2, . . . , k}. Then P i has length exactly 2, and moreover, the middle (non-terminal)
vertex of P i does not belong to Dh .

We will now check if there is a solution (P 1, . . . , Pk) such that every P i has length exactly 2. We call such a solution to
be of type 1. In a solution of type 1, every P i = siuti for some non-terminal vertex u of G . If si and ti belong to Dh for some
h ∈ {2, . . . , p}, then u ∈ D j for some j
= i. If si and ti belong to D1, then u ∈ D j for some j
= 1 but also u ∈ D1 is possible,
namely when u is adjacent to both si and ti .

Verifying the existence of a type 1 solution is equivalent to finding a perfect matching in a bipartite graph G ′ = A ∪ B
that is defined as follows. The set A consists of one vertex vi for each pair {si, ti}. The set B consists of all non-terminal
vertices u of G . For {si, ti} ⊆ D1, there exists an edge between u and vi in G ′ if and only if in G it holds that u ∈ Dh for
some h ∈ {2, . . . , p} or u ∈ D1 and u is adjacent to both si and ti . For {si, ti} ⊆ Dh with h ∈ {2, . . . , p}, there exists an edge
between u and vi in G ′ if and only if in G it holds that u ∈ D j for some j ∈ {1, . . . , p} with h
= j. We can find a perfect
matching in G ′ in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

Suppose that we find that (G, {s1, t1}, . . . , {sk, tk}) has no solution of type 1. As a solution can be assumed to be of type 1
if G[D1] is the disjoint union of complete graphs, we find that G[D1] is not of this form. Hence, G[D1] is 3P1-free. Recall
that G[D j] is the disjoint union of complete graphs for 2 ≤ i ≤ p. It remains to check if there is a solution that is of type 2
meaning a solution (P 1, . . . , Pk) in which at least one P i , whose vertices all belong to D1, has length 3.
65

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
To find a type 2 solution (if it exists) we construct the following graph G∗ . We let V (G∗) = A1 ∪ A2 ∪ B1 ∪ B2, where

– A1 consists of all terminal vertices from D1;
– A2 consists of all non-terminal vertices from D1;
– B1 consists of all terminal vertices from D2 ∪ · · · ∪ D p ; and
– B2 consists of all non-terminal vertices from D2 ∪ · · · ∪ D p .

Note that V (G∗) = V (G). To obtain E(G∗) from E(G) we add some edges (if they do not exist in G already) and also delete
some edges (if these existed in G):

(i) for each {si, ti} ⊆ B1, add all edges between si and vertices of B2, and delete any edges between ti and vertices of B2;
(ii) add an edge between every two terminal vertices in B1 that belong to different terminal pairs; and
(iii) add an edge between every two vertices of B2.

We note that G∗[D1] is the same graph as G[D1] and thus G∗[D1] is 3P1-free. Moreover, G∗[B1 ∪ B2] is 3P1-free by part (i)
of the construction. Hence, as there exists an edge between every vertex of A1 ∪ A2 and every vertex of B1 ∪ B2 in G and
thus also in G∗ , this means that G∗ is 3P1-free. It remains to prove that (G, {s1, t1}, . . . , {sk, tk}) and (G∗, {s1, t1}, . . . , {sk, tk})
are equivalent instances.

First suppose that (G, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , Pk). Assume that the number of paths of length 3
in this solution is minimum over all solutions for (G, {s1, t1}, . . . , {sk, tk}). We note that (P 1, . . . , Pk) is a solution for
(G∗, {s1, t1}, . . . , {sk, tk}) unless there exists some P i that contains an edge of E(G) \ E(G∗). Suppose this is indeed the
case. As G∗[D1] = G[D1] and every edge between a vertex of A1 ∪ A2 and a vertex of B1 ∪ B2 also exists in G∗ , we find that
the paths connecting terminals from pairs in D1 are paths in G∗ . Hence, si and ti belong to Dh for some h ∈ {2, . . . , p} and
thus P i = siuti where u is a vertex of D j for some j ∈ {2, . . . , p} with j
= h.

As we already found that (G, {s1, t1}, . . . , {sk, tk}) has no type 1 solution, there is at least one P i′ with length 3, so
P i′ = si′ v v ′ti′ is in G[D1]. However, we can now obtain another solution for (G, {s1, t1}, . . . , {sk, tk}) by changing P i into
si vti and P i′ into si′ uti′ , a contradiction, as the number of paths of length 3 in (P 1, . . . , Pk) was minimum. We conclude
that every P i only contains edges from E(G) ∩ E(G∗), and thus (P 1, . . . , Pk) is a solution for (G∗, {s1, t1}, . . . , {sk, tk}).

Now suppose that (G∗, {s1, t1}, . . . , {sk, tk}) has a solution (P 1, . . . , Pk). Consider a path P i . First suppose that si and ti
both belong to B1. Then we may assume without loss of generality that P i = siuti for some u ∈ A2. As B1 only contains
terminals from pairs in D2 ∪ . . .∪ D p , the latter implies that P i is a path in G as well. Now suppose that si and ti both belong
to A1. Then we may assume without loss of generality that P i = siuti for some non-terminal vertex of V (G) = V (G∗) or
P i = siuu′ti for two vertices u, u′ in A2 ⊆ D1. Hence, P i is a path in G as well. We conclude that (P 1, . . . , Pk) is a solution
for (G, {s1, t1}, . . . , {sk, tk}). This completes our proof. �
6. Exact algorithms

In this section, we briefly mention exact algorithms. Using Held-Karp type dynamic programming techniques [2,10], we
can obtain exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs running in time O (2nn2k) and O (3nkm),
respectively.

Theorem 4. Disjoint Paths can be solved in O (2nn2k) time.

Proof. We devise a Held-Karp type [10,2] dynamic programming algorithm. Given a set S ⊆ V (G), a vertex v ∈ S , and an
integer i ∈ {1, . . . , k}, let D[S, v, i] be true if and only if S can be partitioned into vertex-disjoint paths P 1, . . . , P i such that
P i starts in si and ends in v and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}. Then we set D[S, v, 1] to true if and only
if S is equal to the vertex set of an s1-v path. The correctness of the base case is immediate from the definition. Beyond
the base case, we set D[S, si, i] = D[S \ {si}, ti−1, i − 1] and for all v
= si , D[S, v, i] is set to true if and only if there is a
neighbour w ∈ S of v for which D[S \ {v}, w, i] is true. Indeed, if S can be partitioned into vertex-disjoint paths P 1, . . . , P i

such that P i starts in si and ends in v and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, then

– if v = si , then P i is a single-vertex path and thus S \ {si} can be partitioned into vertex-disjoint paths P 1, . . . , P i−1 such
that P j is an s j-t j path for each j ∈ {1, . . . , i − 1}, and thus D[S \ {si}, ti−1, i − 1] is true;

– otherwise, let w be the vertex preceding v on P i , and thus S \ {v} can be partitioned into vertex-disjoint paths
P 1, . . . , P i−1, Q i such that Q i starts in si and ends in w (Q i is the part of P i from si to w) and P j is an s j -t j
path for each j ∈ {1, . . . , i − 1}, and thus D[S \ {v}, w, i] is true.

Conversely, if v = si and D[S \ {si}, ti−1, i − 1] is true, then S \ {si} can be partitioned into vertex-disjoint paths P 1, . . . , P i−1

such that P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, and thus S can be partitioned into vertex-disjoint paths P 1, . . . , P i

such that P i starts and ends in si and P j is an s j-t j path for each j ∈ {1, . . . , i − 1}. Hence, D[S, si, i] is true. If v
= si and
66

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
there is a neighbour w ∈ S of v for which D[S \{v}, w, i] is true, meaning that S \{v} can be partitioned into vertex-disjoint
paths P 1, . . . , P i such that P i starts in si and ends in w and P j is an s j -t j path for each j ∈ {1, . . . , i − 1}, then S can be
partitioned into vertex-disjoint paths P 1, . . . , P i−1, Q i such that Q i starts in si , follows P i and ends in v , and P j is an s j -t j

path for each j ∈ {1, . . . , i − 1}. Hence, D[S, v, i] is true.
Finally, the given instance of Disjoint Paths is a yes-instance if and only if there is a set S ⊆ V (G) for which D[S, tk, k]

is true. The correctness follows by definition.
It is immediate that the running time of the algorithm is O (2nn2k), as there are 2nnk table entries that each require at

most O (n) time to fill. �
Theorem 5. Disjoint Connected Subgraphs can be solved in O (3nkm) time.

Proof. We propose a similar, but slightly more crude algorithm as the one before. Given a set S ⊆ V (G) and an integer
i ∈ {1, . . . , k}, let D[S, i] be true if and only if S can be partitioned into vertex-disjoint set S1, . . . , Si such that S j is
connected and Z j ⊆ S j for each j ∈ {1, . . . , i}. We set D[S, 1] to true if and only if Z1 ⊆ S and S is connected. Beyond the
base case, we set D[S, i] to true if and only if there is a set S ′ ⊂ S for which Zi ⊆ S ′ , S ′ is connected, and D[S \ S ′, i − 1] is
true. Finally, the given instance of Disjoint Connected Subgraphs is a yes-instance if and only if there is a set S ⊆ V (G) for
which D[S, k] is true. The proof of correctness is similar (but simpler) to the proof of Theorem 4.

It is immediate that the running time is O (3nkm). Each table entry D[S, i] requires O (2|S|m) time to fill. Hence, the
running time to fill all table entries where S has size � is k

(n
�

)
2�m. This means that the total running time is

∑n
�=0

(n
�

)
2�mk =

O (3nkm), where the latter equality follows from the Binomial Theorem. �
7. Conclusions

We first gave a dichotomy for Disjoint k-Connected Subgraphs in Theorem 2: for every k, the problem is polynomial-
time solvable on H-free graphs if H ⊆i sP1 + P4 for some s ≥ 0 and otherwise it is NP-complete even for k = 2. Two
vertices u and v are a P4-suitable pair if (G − {u, v}, N(u), N(v)) is a yes-instance of 2-Disjoint Connected Subgraphs.
Recall that a graph G can be contracted to P4 if and only if G has a P4-suitable pair. Deciding if a pair {u, v} is a suitable
pair is polynomial-time solvable for H-free graphs if H is an induced subgraph of P2 + P4, P1 + P2 + P3, P1 + P5 or
sP1 + P4 for some s ≥ 0; otherwise it is NP-complete [15]. Hence, we conclude from our new result that the presence of
the two vertices u and v that are connected to the sets Z1 = N(u) and Z2 = N(v), respectively, yield exactly three additional
polynomial-time solvable cases.

We also classified, in Theorem 3, the complexity of Disjoint Paths and Disjoint Connected Subgraphs for H-free graphs.
Due to Propositions 1 and 2, there are three non-equivalent open cases left and we ask the following:

Open Problem 1. Determine the computational complexity of Disjoint Paths on H-free graph for H ∈ {3P1, 2P1 + P2} and the
computational complexity of Disjoint Connected Subgraphs on H-free graphs for H = 2P1 + P2 .

The three open cases seem challenging. We were able to prove the following positive result for a subclass of 3P1-free
graphs, namely cobipartite graphs, or equivalently, (3P1, C5, C7, C9, . . .)-free graphs.

Theorem 6. Disjoint Paths is polynomial-time solvable for cobipartite graphs.

Proof. Let G = (A ∪ B, E), with cliques A and B , be the given cobipartite graph. If si and ti are adjacent in G , then use the
direct edge between them as the path P i . We can then reduce the instance by removing si and ti . We now assume the
instance has thus been reduced and (by abuse of notation) all terminal pairs are nonadjacent in G .

We now construct a bipartite graph G ′ by removing each edge within the cliques A and B as well as any edge sit j both
of whose endpoints are terminals. We then obtain a new graph G ′′ by deleting each terminal vertex and adding for each
terminal pair (si, ti), a new vertex xi whose neighbourhood is the union of the neighbourhoods of si and ti in G ′ . We claim
that G contains the required k disjoint paths P 1 . . . Pk if and only if G ′′ contains a matching of size at least k. We can check
the latter in polynomial time by using the Hopcroft-Karp algorithm for bipartite graphs [11].

We first assume that G contains the disjoint paths P 1 . . . Pk . Note that, since G is 3P1-free, we may assume each path
has length at most 3. A matching M of size k is obtained as follows. For each i = 1 . . .k, if P i has length 2 we add the edge
xi vi to M where vi is the interior vertex of P i . If P i has length 3 then we add its interior edge ui vi to M .

Next assume G ′′ contains a matching M of size k. For each edge of M which includes a vertex xi corresponding to a
terminal pair (si, ti) we set P i to be si viti where vi is the vertex matched to xi . Note that any edge uv in G which contains
no terminal vertex and has one endpoint in each of A and B lies on a path of length 3 between any two terminal vertices.
Therefore, for each i such that the vertex xi is not matched in M , we can choose a distinct edge ui vi in M to obtain the
path siui viti in G . �
67

W. Kern, B. Martin, D. Paulusma et al. Theoretical Computer Science 898 (2022) 59–68
Finally, in Section 6 we obtained exact algorithms for Disjoint Paths and Disjoint Connected Subgraphs running in time
O (2nn2m) and O (3nkm), respectively. Faster exact algorithms are known for k-Disjoint Connected Subgraphs for k = 2 and
k = 3 [4,21,1], but we are unaware if there exist faster algorithms for general graphs.

Open Problem 2. Is there an exact algorithm for Disjoint Paths or Disjoint Connected Subgraphs on general graphs where the
exponential factor is (2 − ε)n or (3 − ε)n, respectively, for some ε > 0?

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] A. Agrawal, F.V. Fomin, D. Lokshtanov, S. Saurabh, P. Tale, Path contraction faster than 2n , SIAM J. Discrete Math. 34 (2020) 1302–1325.
[2] R. Bellman, Dynamic programming treatment of the travelling salesman problem, J. ACM 9 (1962) 61–63.
[3] D.G. Corneil, H. Lerchs, L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163–174.
[4] M. Cygan, M. Pilipczuk, M. Pilipczuk, J.O. Wojtaszczyk, Solving the 2-disjoint connected subgraphs problem faster than 2n , Algorithmica 70 (2014)

195–207.
[5] S. Even, A. Itai, A. Shamir, On the complexity of timetable and multicommodity flow problems, SIAM J. Comput. 5 (1976) 691–703.
[6] S. Földes, P.L. Hammer, Split graphs, Congr. Numer. XIX (1977) 311–315.
[7] C. Gray, F. Kammer, M. Löffler, R.I. Silveira, Removing local extrema from imprecise terrains, Comput. Geom. Theory Appl. 45 (2012) 334–349.
[8] F. Gurski, E. Wanke, Vertex disjoint paths on clique-width bounded graphs, Theor. Comput. Sci. 359 (2006) 188–199.
[9] P. Heggernes, P. van ’t Hof, E.J. van Leeuwen, R. Saei, Finding disjoint paths in split graphs, Theory Comput. Syst. 57 (2015) 140–159.

[10] M. Held, R.M. Karp, A dynamic programming approach to sequencing problems, J. Soc. Ind. Appl. Math. 10 (1962) 196–210.
[11] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput. 2 (1973) 225–231.
[12] R.M. Karp, On the complexity of combinatorial problems, Networks 5 (1975) 45–68.
[13] K. Kawarabayashi, Y. Kobayashi, B.A. Reed, The disjoint paths problem in quadratic time, J. Comb. Theory, Ser. B 102 (2012) 424–435.
[14] W. Kern, B. Martin, D. Paulusma, S. Smith, E.J. van Leeuwen, Disjoint paths and connected subgraphs for H-free graphs, in: Proc. IWOCA 2021, in: LNCS,

vol. 12757, 2021, pp. 414–427.
[15] W. Kern, D. Paulusma, Contracting to a longest path in H-free graphs, in: Proc. ISAAC 2020, in: LIPIcs, vol. 181, 2020, pp. 22:1–22:18.
[16] S. Natarajan, A.P. Sprague, Disjoint paths in circular arc graphs, Nord. J. Comput. 3 (1996) 256–270.
[17] S. Olariu, Paw-free graphs, Inf. Process. Lett. 28 (1988) 53–54.
[18] D. Paulusma, J.M.M. van Rooij, On partitioning a graph into two connected subgraphs, Theor. Comput. Sci. 412 (48) (2011) 6761–6769.
[19] N. Robertson, P.D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Comb. Theory, Ser. B 63 (1995) 65–110.
[20] Y. Shiloach, A polynomial solution to the undirected two paths problem, J. ACM 27 (1980) 445–456.
[21] J.A. Telle, Y. Villanger, Connecting terminals and 2-disjoint connected subgraphs, in: Proc. WG 2013, in: LNCS, vol. 8165, 2013, pp. 418–428.
[22] E.J. van Leeuwen, Optimization and Approximation on Systems of Geometric Objects, PhD Thesis, University of Amsterdam, 2009.
[23] P. van ’t Hof, D. Paulusma, G.J. Woeginger, Partitioning graphs into connected parts, Theor. Comput. Sci. 410 (2009) 4834–4843.
68

http://refhub.elsevier.com/S0304-3975(21)00634-4/bibA9EC9FCE5E6EB3C8DFAD6B3AECEB29EDs1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib39A54DEE1CE6DCE187AE556E7B199779s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib7C9BA76701D2E68C8C289F5A6E08FE5As1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib9C589CC600DDE846C946B90282400997s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib9C589CC600DDE846C946B90282400997s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib52457F7A4E9B55190F5D3CF84CDD26D5s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibDB1E61540314BD0689BCE0E81AAC41BEs1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib7F104F4F60E332870DCA98BEE97C8E76s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibF050CF56DA05C6DFA21EFE23C3602B13s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib684330D5D1CE010BC9A9789836640408s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib7C90439DFF19A27046DACBC7FE6D57D8s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib091DD2141EA9AE73A67ECDD0BC6F908Ds1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibF396A685D969DE1E7163383BD4A37EDBs1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibB437BFEDC1B8BAEC53800499ACBBD9B0s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib10DE23A93E82BAA871A2E79A8D9AE982s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib10DE23A93E82BAA871A2E79A8D9AE982s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib0417B53AE489E61E87A9B340750A9D29s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib47D382AD3AB95B94CDD5E98CEC6CB7F2s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibB3B08E30C4A2B098013369FE63ADDE6Es1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibE6BD1ADCF043B0CEC193B7D6AF02E52Es1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bibD74355A822B87F7E3BF787A0B725398Ds1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib408008702F70BF75D06BEC8A1F2083B6s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib83C707D08B6CE275EDA97B8850A7E466s1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib34ACB2A4D5B79D0DE9C5EE911154E36Es1
http://refhub.elsevier.com/S0304-3975(21)00634-4/bib283FCA32E163A24CE84A583CA56E071Fs1

	Disjoint paths and connected subgraphs for H-free graphs
	1 Introduction
	Our results

	2 Preliminaries
	3 The proof of Theorem 2
	4 The proof of Theorem 3
	5 Reducing the number of open cases to three
	6 Exact algorithms
	7 Conclusions
	Declaration of competing interest
	References

