2012.00589v1 [cs.LG] 1 Dec 2020

arXiv

Train Tracks with Gaps: Applying the
Probabilistic Method to Trains

William Kuszmaul

MIT CSAIL, USA
kuszmaul@mit.edu

—— Abstract

We identify a tradeoff curve between the number of wheels on a train car, and the amount of track
that must be installed in order to ensure that the train car is supported by the track at all times.
The goal is to build an elevated track that covers some large distance ¢, but that consists primarily
of gaps, so that the total amount of feet of train track that is actually installed is only a small
fraction of £. In order so that the train track can support the train at all points, the requirement is
that as the train drives across the track, at least one set of wheels from the rear quarter and at least
one set of wheels from the front quarter of the train must be touching the track at all times.

We show that, if a train car has n sets of wheels evenly spaced apart in its rear and n sets of
wheels evenly spaced apart in its front, then it is possible to build a train track that supports the
train car but uses only ©(¢/n) feet of track. We then consider what happens if the wheels on the
train car are not evenly spaced (and may even be configured adversarially). We show that for any
configuration of the train car, with n wheels in each of the front and rear quarters of the car, it is
possible to build a track that supports the car for distance ¢ and uses only O (Zk’%) feet of track.
Additionally, we show that there exist configurations of the train car for which this tradeoff curve
is asymptotically optimal. Both the upper and lower bounds are achieved via applications of the
probabilistic method.

The algorithms and lower bounds in this paper provide simple illustrative examples of many of
the core techniques in probabilistic combinatorics and randomized algorithms. These include the
probabilistic method with alterations, the use of McDiarmid’s inequality within the probabilistic
method, the algorithmic Lovdsz Local Lemma, the min-hash technique, and the method of conditional
probabilities.

2012 ACM Subject Classification Theory of computation

Keywords and phrases probabilistic method, algorithms, trains, Lovasz Local Lemma, McDiarmid’s
Inequality

Digital Object Identifier 10.4230/LIPIcs.FUN.2020.19

Funding Funded by a Fannie and John Hertz Fellowship and an NSF GRFP fellowship. Research
also was sponsored by the United States Air Force Research Laboratory and was accomplished
under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the United States Air Force or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

Acknowledgements The author would like to thank Michael A. Bender, Bradley C. Kuszmaul, and
Charles E. Leiserson for several useful conversations about train tracks. The author would also like
to thank Jake Hillard for offering his engineering expertise, and observing that train tracks with an
asymptotically small number of pillars would likely encounter practical difficulties in the real world.

A Gap in the Track. A few years ago, while traveling on a train, and on only a few
hours of sleep, I was staring out the window. The train crossed a bridge over a road, and the
ground was momentarily replaced by a steep drop. Startled, my sleep-deprived mind briefly
wondered whether there was still a track underneath us. Of course there is, I thought to
myself. Without a track, the train car would have fallen into the gap.

© William Kuszmaul;
licensed under Creative Commons License CC-BY
10th International Conference on Fun with Algorithms (FUN 2020).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 19; pp. 19:1 19
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fur Informatik, Dagstuhl Publishing, Germany

mailto:kuszmaul@mit.edu
https://doi.org/10.4230/LIPIcs.FUN.2020.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Ah, no so fast! responded the latent mathematician inside me. If the train car had more
than two sets of wheels, then perhaps it could cross the bridgeless gap without falling in. It
was true.

Consider, for example, a train with four sets of wheels: one set in the rear, one set in the
front, and one set in each of the first and third quartiles.

e

As long as the gap in the track is less than the distance between any pair of wheels, then
at least three sets of wheels will touch track at all times. Assuming that the center of mass of
the train is in the middle half of the train, it follows that the train does not fall into the gap.

In fact, continued the latent mathematician, what if we have n sets of wheels? Maybe we
can build a mono-rail using an asymptotically small amount of track.

That’s a stupid idea, responded 1. Gaps in train track are not something to optimize.

But I was sleep deprived, so I did it anyway.

The Basic Observation: More Wheels Means Less Track. Consider a train car with
2n sets of wheels. Half the sets are evenly dispersed across the first quarter of the train car,
and half the sets are evenly dispersed across the final quarter. The train can safely drive
down the track as long as at least one set of wheels from each side of the train car is touching
track at all times. The train car looks something like this:

n wheels n wheels

Want to build a monorail, but you’re short on track? No problem! You can get away
with filling in only an O(1/n) fraction of the track:

Every fourth of a train length, we place a piece of track whose length is a ﬁ fraction of
the length of the train car. We get asymptotic cost savings!

To see that this is the best we can do, suppose that the fraction of track that is filled in
is less than %, and for symmetry sake suppose the track is circular (i.e., the end of the track
loops back to the start). If we place the train at a random position in the circular track,
then each wheel has a less than % chance of touching track. By a union bound, it follows
that the probability of any wheel in the rear quarter of the train touching the track is less
than 1. Thus no matter how the track is placed, if the total fraction of track that is filled in
is less than %, then there is some position at which the train falls through.

Paper Outline. The rest of the paper considers the situation in which the wheels on the
train car are placed unevenly (and possibly even adversarially!) in each of the front and rear
quarters of the car. Section [I| describes the problem in more detail, and shows that for any
configuration of the train car, with n wheels in each of the front and rear quarters of the
car, it is possible to efficiently build a track that supports the car for distance £ and uses
only O (“O%) feet of track. Section |2 then establishes a matching lower bound, showing

that there exist configurations of the train car for which Q (%) feet of track are required.
Both the upper and lower bounds are achieved via applications of the probabilistic method.

The train-track problem serves as a veritable playground for applying many of the core
techniques from probabilistic combinatorics and randomized algorithms to a simple and
fun problem. Section [3| give three alternative algorithms for achieving the upper bound of
(0] (“f"), each of which builds on a different technique.

Combined, the algorithms and lower bounds in this paper give simple illustrative examples
of the algorithmic Lovasz Local Lemma, the min-hash technique, the method of conditional
probabilities, the probabilistic method with alterations, and the use of McDiarmid’s inequality
within the probabilistic method.

1 Train Cars with Arbitrary Wheel Arrangements

Consider a train car that has n wheels in its rear quarter and n wheels in its front quarter,
but suppose that the wheels aren’t evenly spaced. For example, maybe the rear of the car
looks something like this:

Rear Quarter of Train Car

e © o0 © o ©°

Can we still fill in an asymptotically small fraction of the track in a way that will allow
the train car to drive down the track? In other words, can we place down a small amount of
track in a way so that, as the train drives down it there is always at least one wheel from
each of the front and rear quarters of the train touching track? It turns out that, via a simple
application of the probabilistic method with alterations, we can.

To formalize the situation, let’s focus just on the first quarter of the train. (In particular,
up to a constant factor in the amount of train track that we install, we can consider the
two quarters of the train separately.) Suppose this portion of the train is f feet long, and
assume that each of the n sets of wheels resides at a distinct integer offset from the rear of
the train. Our goal is to build a train track that is ¢ feet long. We build the train track out
of pillars that are each 1 foot long and are each placed at integer positions on the track.
We are required to put down the pillars in a way so that, as the train drives down the track,
at least one wheel from the rear quarter is always touching the track (i.e., touching some
pillar). We want to use as little track as possible, with the best we could hope for being a
total of % pillars.

As a reminder, there are three variables: the number of wheels n (in the quarter of the
train car that we’re considering), the length f of one quarter of the train car, and the length
¢ of the train track. In general, we have n < f < ¢. Note that, although n and f could
reasonably be close to one another (e.g., f = 2n), we also want to be able to handle cases
where n < f. This allows for the train car to be configured in truly strange ways — for
example, the positions of the wheels could even form a geometric series:

Rear Quarter of Train Car

1.1 A Randomized Algorithm for Building Track

Our algorithm is a simple example of the probabilistic method with alterations. In particular,
we begin by randomly constructing a track that uses only a small number of pillars, and
4

then we show that this track can be slightly altered in order to support the rear of the train
car at every point.
We begin by installing each pillar randomly with probability 2. Even though this

n
strategy has nothing to do with the structure of where the wheels are on the train, it already
does remarkably well. In particular, if we place the train at some given position on the track,

then there are n different pillar positions that could potentially hold up the rear quarter.
Inn

Each of these pillars positions has a 2% probability of having a pillar installed. It follows

n
that, for a given position on the track, the rear quarter of the train has a

)
n

probability of falling through the track. Taking advantage of the identity (1 — %)k <1

— e

which holds for any k£ > 1, it follows that the wheels fall through the track with probability

at most,
1 1

elnn =

In other words, out of all the places we can place the train on the track, only a %-fraction
of them will be problematic (in expectation). To fix this, we can just install one additional
pillar to remedy each of these problematic positions. The result is a train track that fully
supports the rear quarter of our train, and that uses only (m%) ? total feet of track, in
expectation.

Of course, this isn’t quite as good as we did when the wheels were evenly spaced out (we
are a roughly Inn factor worse). But it’s still pretty amazing! No matter how the wheels
are distributed across each quarter of the train car, we can get away with installing only a
0] (1“7") fraction of the track!

The algorithm and analysis described above can be summarized in the following theorem:

Theorem 1.1. Consider a 4f-foot long train car, and suppose that the rear quarter of a
train car contains n sets of wheels, each of which resides at a distinct integer distance from
the rear of the car. In time O(¢n), one can construct an (-foot long train track with the
following two properties: (1) as the train car drives down the track at least one set of wheels
from the rear of the car is always touching track; and (2) the track consists of 1-foot pillars,
with the total expected number of pillars being at most O (“ﬂ)

n

2 A Matching Lower Bound

In this section we show that using O (61“7”) pillars is optimal for some configurations of
the train car. We are again going to use the probabilistic method, but this time in a more
sophisticated way.

We continue to focus only on the rear quarter of the train car, which is f feet long. We
set f = 2n, and we construct the rear quarter of the train car by placing n wheels at integer
positions in the set {1,2,...,2n}. We will then consider a track of length £ = 2f, and show
that Q(logn) pillars are necessary in order to support the rear quarter of the train car at all
positions on the track. Recall that each pillar is one foot wide and is placed at an integer
offset on the track.

Let C be the set of wheel-positions in the rear quarter of the train car. We choose C
by placing a wheel at each position in {1,2,...,2n} independently with probability % This
means that C' has n wheels in expectation, but may not actually have exactly n wheels. The
important thing to note is that, with at least 50% probability, C' has n or more wheels.

Now consider a track layout given by a subset T of {1,2, ..., 4n}, and satisfying |T'| = “‘T”.
Whereas C is a random variable, T is a fixed set.

Define X¢ 1 to be the event that, for every possible position of the rear quarter of the
train on the track, at least one wheel from the rear quarter of the train is supported by track.
From the perspective of the train car, X¢ 1 is a good event. Formally, X¢ r occurs if for
every offset k € {0,1,...,2n}, we have (k+C)NT # O[T

The key to proving the desired lower bound is to show that the probability of X¢c ¢

occurring is very small, namely that Pr[X¢ 7] < Wln) Because T is a lr‘T”—Clomcmt subset
(Inn)/4
of {1,2,...,4n}, there are at most ((1n4$/4) possibilities for T'. Taking a union bound over

all of these possibilities implies that

Pr[Xc¢ r for any T| < %
On the other hand, we know that the number of wheels |C| is less than n with probability at
most 1/2. By a union bound, the probability that either |C| has fewer than n wheels or that
Xc,r holds for some T is less than 1. It follows that there must exist a car C' with n or more
wheels for which no track T of size smaller than (Inn)/4 satisfies X¢ . In fact, with slightly
more careful bookkeeping, one can show that an even stronger property is true: almost all
choices of how to place n wheels in C require a track of size larger than (Inn)/4 to support
the car.

To complete the lower bound, the challenge becomes to show that Pr[X¢ 7| is very small.
That is, for a given choice of track T containing (Inn)/4 pillars, the probability that T
supports the rear-quarter of the train car C is small.

Rather than examine the event X 1 directly, we instead examine a related quantity.
Define Y 7 to be the number of positions k € {0,1,...,2n} for which (k+ C)NT =0 (i.e.,
the number of positions in which the rear quarter of the car, given by C, falls through the
track 7).

The relationship between X¢ 7 and Yo r is that X¢ 7 occurs only if Yo = 0. Our
approach to completing the analysis will be to first show that E[Y¢ 7] is relatively large, and
then to show that the probability of Yo 1 deviating substantially from its expected value is
small. This, in turn, implies that Pr[Yo r = 0] is small, completing the analysis. In other
words, the problem of proving that there exists a train-car configuration requiring a large
amount of track is reduced to the problem of proving a concentration inequality on the
random variable Y¢ 7.

For each position k € {0,1,...,2n}, the set T — k consists of (Inn)/4 elements. Since
each of these elements is contained in C' with probability 1/2, the probability that C' avoids
all of the elements in 7' — k is given by,

11
2(Inn)/4 - nl/4’

Summing over the values of k, it follows that the expected number of positions k& in which
(C+E)NT =01is

3/4

E[Yor] = 2n- >n

ni/4

Recall that the rear quarter of the train car is length 2n, and that the train track is length ¢ = 4n. We
only wish to consider offsets k such that the rear quarter of the train car still sits entirely on potential
track. That is, we wish to consider k such that (k + {1,2,...,2n}) C {1,2,...,4n}, meaning that the
values of k that we care about are k € {0,1,...,2n}.

For an integer r and a set S, we use r + S to denote the set {s+r|s € S}.

The final step of the analysis is to prove a concentration inequality on Yo 7. Standard
Chernoff bounds do not apply here because Yo 1 is not a sum of independent indicator
random variables. Instead, we employ a more powerful tool, namely McDiarmid’s Inequality:

Theorem 2.1 (McDiarmid ’89 [8]). Let Ai,..., A, be independent random variables over
an arbitrary probability space. Let F be a function mapping (41, ..., An) to R, and suppose
F satisfies,

sup |F(ay,as, .. ai—1, 05,0511, 0m) — Far, a0, ..., 0;-1,05, Gix1, - - - am)| < R,

for all 1 < i < m. That is, if Ay, As,..., A;i—1, Ait1,..., Ay are fixed, then the value of
A; can affect the value of F(Ay,...,An) by at most R; this is known as the Lipschitz
Condition. Then for all S > 0,

Pr[|F(A1,...,An) —E[F(A1,...,An)]| > R- 8] < 2e7257/m.

To apply McDiarmid’s Inequality to our situation, recall that Y¢ 1 is defined to be the
number of positions in the track 7" that the rear quarter of the car, given by C, falls though.
Whereas the track T is fixed, each of the 2n possible wheels in C' is picked with probability
1/2. Define the indicator random variables Aj, Ao, ..., As, so that A; indicates whether
i € C. As required by McDiarmid’s Inequality, the A;’s are independent of one-another, and
Yo r is a function of the A;’s.

Now we show that the Lipschitz condition holds with R = (Inn)/4. Recall that the track
T consists of only (Inn)/4 pillars. Out of the 2n possible wheels ¢ that C' could contain,
each of those wheels i is only relevant (to the car’s stability) when the car is k feet down the
track for some k that places wheel 7 on top of a pillar. Since there are only (Inn)/4 pillars,
each wheel i is only relevant to the train car’s stability for (Inn)/4 positions k on the track.
In other words, for a given wheel position ¢ € {1,2,...,2n}, there are only (Inn)/4 values
of k€ {0,1,...,2n} for which (C' + k) N'T can possibly contain i. As a result, each A; can
only affect the value of Yo 1 by at most (Inn)/4, meaning that the Lipschitz condition holds
with R = (Inn)/4.

Applying McDiarmid’s Inequality, we get that

Pr[n®* — Yo >n®® - (Inn)/4] < 2",

When n is large, this probability is much smaller than ﬁ It follows that Pr[Xc 1] =

(Inn)/4

PriYer =0] < ﬁ Summing over all possible options for the track 7', the probability

(Inn)/4

that any of them support the train car C is therefore less than 1/2. It follows that some
train car C' with n or more wheels fails to be supported by any track 7' consisting of (Inn)/4
or fewer pillars. This completes the lower bound, and establishes the following theorem.

Theorem 2.2. There exists a set of wheel positions C' C {1,2,...,2n} such that |C| > n,
and such that in order for a track T C {1,2,...,4n} to support the set of wheels at every
position (meaning that (C'+ k) NT # () for each k € {0,...,2n}) the track T must have size
Q(n),

n

3 Three Algorithms for Building Track

In this section, we revisit the problem of constructing a train track that uses O (“%) feet
of track, and present three alternative algorithms for this problem, each of which gives the
same guarantees as the algorithm in Section

We continue to assume that the wheels of the train car are at integer positions, and we
focus only on the n wheels in the rear quarter of the train car. We use C' to denote the Se;

of positions of wheels, meaning that C is an n-element subset of {1,..., f}. Our goal is to
construct a set of pillars T' C {1,2,...,¢} such that for each k € {0,1,...,¢ — f}, the set
(C' 4+ k)N T is non-empty. As was the case in Section |1} we want an algorithm that runs in
expected time O(nf) and produces a set T' with expected size O (“%)
Each of the three algorithms applies a different core technique from the overlap of
probabilistic combinatorics and randomized algorithms:
A Deterministic Algorithm (Section . The first algorithm uses the method of
conditional probabilities to derandomize the algorithm given in Section [I]
An Application of the Algorithmic Lovasz Local Lemma (Section The
second algorithm uses the algorithmic version of the Lovasz Local Lemma due to Moser
and Tardos [9).
An Application of the Min-Hash Technique (Section The final algorithm uses
a variant of the min-hash technique, which has previously found important applications
in locality sensitive hashing and string alignment [2-4}/6}7,/10].

3.1 A Deterministic Algorithm

In this section, we use the method of conditional probabilities [1] in order to design a
deterministic algorithm for the train-track problem.

The basic idea behind the method of conditional probabilities is as follows. Suppose
X1,..., X, are independent real-valued random variables, and that F' : R — R is an objective
function that we wish to minimize. We are given that E[F(X7q,..., X,)] < R for some value
R, and we wish to find values of z1,...,z, € R for which F(z1,...,2¢) < R. The method
of conditional probabilities takes an iterative approach. Suppose we already have values of
T1,...,T such that

E[F(.I‘l, e 7xkan+1, ce ,X()] < R.

Then there must exist some value x4 such that
E[F(wl,...7x;€,xk+1,X;€+2,...,X¢)] SR (1)

The key challenge in applying the method of conditional probabilities is to design an objective
function F that both captures the problem at hand, but that also allows for one to efficiently
determine which value of xj11 satisfies . This, in turn, allows for one to iteratively
determine values for all of x1,...,xy such that F(xy,...,2¢) < R.

In order to apply the method of conditional probabilities to the train-track problem,
we define X1,..., X, to be zero-one random variables, each of which takes value 1 with
probability . Given values z1, ...,z for random variables X1, ..., X,;, we can construct
a train track T by first setting T3 = {i | ; = 1}, and then defining T to be T7 with one
additional pillar for each position k£ in which the train wheels C' fall through the track
T1. Since our goal is to minimize the size of T, we define our objective function to be
F(zy,...,z¢) = |T).

In Section [1, we showed that E[F(Xy,...,X¢)] < (1 +1nn)/n. Suppose that we have
values x1, ...,z € {0,1} such that

lnn

E[F(21,..., %k Xgt1,---, X)) < (1 +1nn)/n. (2)
Moreover, suppose that we maintain values po,...,p,—s such that each p; denotes the
probability that the set of wheels (C'+1) fall through the track T' = {j | z; = 1}U{j | X; = 1}.
This means that we can compute E[F(z1, ..., 2k, Xgt1,...,X¢)] as

Inn

‘{z|xl—1}‘+—€ B+ i 3)
‘ 8

The first two terms represent E[|T1|], and the third term represents E[|T \ T1]].

Given values of x1, ...,z such that holds, we wish to find a value of z441 € {0, 1}
so that will hold for k + 1. If we set x;+1 = 1, then this has the effect of increasing the
expected initial size of |T7| by 1— 1“7"7 and of zeroing out any p;’s for which k+1 € (C+4). On
the other hand, if we set zy1 = 0, then this has the effect of decreasing the expected initial
size of |T1| by 2% and replacing each p; for which k + 1 € (C + i) with W It follows
that in time O(n), one can update (3) in order to determine E[F' (1, ..., k41, Xkt2, - - -, Xe)]
for each of the two possible values of z1. By selecting the value that minimizes the expected
objective function, we can guarantee that

1+Inn

E[F(l‘h ooy Lht1, Xk+2, ey X()] S T
Continuing like this, we can find values of x1, ..., xy such that F(z1,...,z¢) < (1+1Inn)/n
in time O(¢n). Using these z1,...,xy to construct the track T results in a track that uses at

most (1 + Inn)/n pillars, as desired.

3.2 An Application of the Algorithmic Lovasz Local Lemma

Given a large collection of unlikely events Fy, ..., FE,,, such that each event F; is related to
only a small number of other events F;, the Lovasz Local Lemma is a technique for showing
that there exists a way for all m events to mutually not occur. In one of its most basic forms,
the Lovasz Local Lemma can be stated as follows:

Theorem 3.1 (Lovédsz and Erdés *73 [5]). Suppose X1,..., X, are independent random
variables, possibly over different probability spaces. Let E1, ..., E,, be events such that each
E, is determined by some subset of the X,;’s — that is, there exists an index set I; C [s] such
that F; is determined by the outcome of the X;’s for which j € I;. Say that two events F;
and E; depend on each other if I; N I; # (. Let p be such that Pr[E;] < p for each i, and
let d be such that each E; depends on at most d different E;’s (including E;). If pde < 1,
where e is the universal constant, then there is a positive probability that none of the events
FEq, ..., E, occur.

The algorithmic version of the Lovasz Local Lemma gives an efficient algorithm for
constructing values of Xi,..., X, in order to ensure that none of the events E1,..., E,,
occur.

Theorem 3.2 (Moser and Tardos '10 |9]). Suppose that the conditions from Theorem
hold. Consider the following algorithm for choosing values of X1, ..., Xs: First independently
sample each of X1, ..., X, from its defining probability distribution; then, as long as their
exists at least one event Ej; that holds, pick such an event E; and resample the X;’s for each
j € I;. Each time that the X;’s are resampled for some event E;, we call the resamplings a
phase of the algorithm. The algorithm terminates once the X;’s have been assigned values
that result in no events E; occurring.

The above algorithm, known as the fix-it algorithm, terminates in finite expected time,
and the expected number of phases is at most n/d.

In order to apply the Algorithmic Lovdsz Local Lemma to our problem, we define
X1,..., X to be independent zero-one random variables, each taking value 1 with probability
w. Each X; is the indicator variable for whether we include pillar 7 in the train track.
We then define events Ey, ..., E,_; so that F; is the event that the rear-quarter of the train
car falls through the track at position 7. That is, E; occurs if (C' +1i)N{j | X; =1} =0.

Each event E; depends on only n different X;’s, and each X is relevant to only n different
E’s. Tt follows that each event F; depends on at most n? other E}’s (including E;). This

means that we can apply the Algorithmic Lovész Local Lemma with d = n2.
9

In order for a given event E; to occur, there are n different pillars that all must fail to
appear in the track. The probability of this happening is

IN

1+2lnn\" 1 1
h elt2Inn = gp2°

PrlE] = (1
tEi] (n en?

Using d = n? an p = m%, we can apply the Lovasz Local Lemma in order to conclude
that there exists a choice of pillars X1,..., Xy so that the wheels in C are supported along
the entire track. This alone is not a useful observation since, of course, setting X1,..., X,
all to 1 would trivially support the wheels in C' at all points. On the other hand, if we apply
the algorithmic version of the Lovasz Local Lemma, then get an additional fact: that the
fix-it algorithm terminates after only O(¢/n?) phases in expectation.

Since each phase resamples only n different X;’s, the resamples contribute at most O(£/n)
pillars in expectation. On the other hand, the initial configuration of the X;’s contributes at
most (1 + 21Inn)/n pillars in expectation. It follows that, at the end of the fix-it algorithm,
the resulting track configuration will use at most (2 + 2Inn)/n pillars in expectation. A
careful implementation of the fix-it algorithm will run in expected time O(¢n), as desired.

3.3 An Application of Min-Hash

Given a collection of sets S, Min-Hashing is a technique for randomly sampling one element
for each set S € §. The technique works by first hashing each element s of each set S in S
to a random real number h(s) € (0,1). For each set S € S, one then samples the element
s € S with minimum hash h(s).

The Min-Hashing technique plays important roles in both Locality Sensitive Hashing [237]
and string-alignment algorithms [4,/6/10]. The key property of Min-Hashing is that if two
sets S1,S5 € S are similar to one-another, then their min-hash is likely to be the same. And
more generally, if an element s is the minimum-hashed element in one set S € S, then s is
likely to also be the minimum-hashed element in other sets.

In our application of Min-Hashing, we need not actually use hash functions. Instead, we
assign random real numbers r1,...,7, € (0,1) to each of the ¢ possible track pillars. For
each possible offset k € {0,1,2,...,¢ — f}, define the set Sy = (C + k) to be the positions
that the wheels in C' take when the train car is k feet down the track. We construct a train
track T' by adding the pillar argmingg, 7, for each set S;. That is, for each position that
the train could sit in the track, we look at all possible pillars that could hold the rear-quarter
of the train up, and we include in our track the pillar with the minimum assigned random
value r;. We say that this pillar s is sampled from Sk.

By construction, the set of pillars T is guaranteed to support the wheels C at every
position. What is less clear is whether |T| will be small. Here is where we take advantage of
the properties of Min-Hashing, and the fact that many of the sets S sample the same pillars
as one another.

The key observation is that almost all of the pillars s that are sampled have small random
values rs. Consider, in particular, the probability that for a given set Sy, we sample a pillar
s for which rs > (Inn)/n. This means that all n pillars in Sy, were assigned random values
larger than (Inn)/n, which happens with probability at most,

(In n) " 1 1
1—-—) < =—.
n — elnn n
It follows that, out of the ¢ — f samplings that occur, the expected number of pillars s

for which rs > (Inn)/n that are sampled is at most (¢ — f)/n < £/n. On the other hand,

even if every pillar s for which r; < (Inn)/n is sampled, the expected number of them is at
10

most ¢(Inn)/n. The total number of sampled pillars, and thus the size of T', is therefore at
most £(1 + Inn)/n, in expectation. This completes the analysis of the algorithm.

—— References

1
2

10

N. Alon and J. H. Spencer. The probabilistic method. John Wiley & Sons, 2004.

A. Z. Broder. On the resemblance and containment of documents. In Proceedings. Compression
and Complexity of Sequences 1997 (Cat. No. 97TB100171), pages 21-29. IEEE, 1997.

A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-wise independent
permutations. Journal of Computer and System Sciences, 60(3):630-659, 2000.

M. Charikar, O. Geri, M. P. Kim, and W. Kuszmaul. On estimating edit distance: Alignment,
dimension reduction, and embeddings. In /5th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2018.

P. Erdés and L. Lovasz. Problems and results on 3-chromatic hypergraphs and some related
questions. In Colloquia Mathematics Societatis Janos Bolai 10. Infinite and Finite Sets,
Keszthely (Hungary). Citeseer, 1973.

W. Kuszmaul. Efficiently approximating edit distance between pseudorandom strings. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1165-1180. Society for Industrial and Applied Mathematics, 2019.

M. S. Manasse. On the efficient determination of most near neighbors: horseshoes, hand
grenades, web search and other situations when close is close enough. Synthesis Lectures on
Information Concepts, Retrieval, and Services, 4(4):1-88, 2012.

C. McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148—
188, 1989.

R. A. Moser and G. Tardos. A constructive proof of the general lovasz local lemma. Journal
of the ACM (JACM), 57(2):11, 2010.

B. D. Ondov, T. J. Treangen, P. Melsted, A. B. Mallonee, N. H. Bergman, S. Koren, and A. M.
Phillippy. Mash: fast genome and metagenome distance estimation using minhash. Genome
biology, 17(1):132, 2016.

11

	1 Train Cars with Arbitrary Wheel Arrangements
	1.1 A Randomized Algorithm for Building Track

	2 A Matching Lower Bound
	3 Three Algorithms for Building Track
	3.1 A Deterministic Algorithm
	3.2 An Application of the Algorithmic Lovász Local Lemma
	3.3 An Application of Min-Hash

