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Abstract. The shortest augmenting path technique is one of the fundamental ideas used
in maximum matching and maximum flow algorithms. Since being introduced by Edmonds
and Karp in 1972, it has been widely applied in many different settings. Surprisingly, despite
this extensive usage, it is still not well understood even in the simplest case: online bipartite
matching problem on trees. In this problem a bipartite tree T = (W ]B,E) is being revealed
online, i.e., in each round one vertex from B with its incident edges arrives. It was conjectured
by Chaudhuri et. al. [CDKL09] that the total length of all shortest augmenting paths found
is O(n logn). In this paper we prove a tight O(n logn) upper bound for the total length of
shortest augmenting paths for trees improving over O(n log2 n) bound [BLSZ15].

1. Introduction

One of the most fundamental techniques used to solve maximum matchings or flow problems is
the augmenting path technique. It augments the solution along residual paths until the maximum
size matching/flow is found. Intuitively, the work needed for that should be minimized if shortest
paths are chosen each time. In particular, this was the key concept that allowed Edmonds
and Karp in 1972 to show the first strongly polynomial time algorithm for the maximum flow
problem [EK72]. Since then it has been widely applied. Surprisingly, despite this effort, it is still
not well understood even in the simplest case — online bipartite matching problem on trees.
This may be due to the fact that shortest augmenting paths do not seem to have strong enough
structure admitting exact analysis. Other methods for choosing augmenting paths are easier to
analyze [BLSZ14, CDKL09]. Our work is meant as a step forward towards understanding the
shortest augmenting path method for computing the matching on bipartite graphs.

To be able to analyze this approach we adopt the following model. Let W and B be the
bipartition of vertices over which the tree will be formed. The set W (called white vertices) is
given up front to the algorithm, whereas the vertices in B (black vertices) arrive online. We
denote by Ft = 〈W ]Bt, Et〉 the forest after the t’th black vertex has arrived where X ] Y
is a disjoint sum of X and Y . The graphs Ft for t ∈ [n] = {1, . . . , n} are constructed online
in the following manner. We start with F0 = 〈W ]B0, E0〉 = 〈W ] ∅, ∅〉. In turn t ∈ [n] a
new vertex bt ∈ B together with all its incident edges E(bt) is revealed and Ft is defined as:
Et = Et−1 ∪ E(bt) and Bt = Bt−1 ∪ {bt}. In the model we consider, none of the newly added
edges is allowed to close the cycle. For simplicity we assume that we add in total n = |W | black
vertices. The final graph is a tree denoted as Fn = (W ]Bn, En).

The goal of the online algorithm is to compute for each Ft the maximum size matching
Mt, possibly making use of Mt−1. In this paper we study one specific algorithm, referred to
as the Shortest Augmenting Path algorithm. When bt arrives, the Shortest Augmenting Path
algorithm always chooses the shortest among all available augmenting paths. A natural question
that we ask is what is the total length of all paths applied by the Shortest Augmenting Path
algorithm. In this paper the unmatched vertices are referred to as free. For a vertex v we denote
its neighborhood in Ft as Nt(v). By F [X] = 〈X,E(X)〉 we denote a subgraph of F induced by
X ⊆W ∪B, where E(X) = {e ∈ E : e ⊆ X}.

∗The work of all authors was supported by Polish National Science Center grant 2013/11/D/ST6/03100.
Additionally, the work of P. Sankowski was partially supported by the project TOTAL (No 677651) that has
received funding from ERC.
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2. Motivation and Related Work

The online bipartite matching problem with augmentations has recently received increasing
attention [BHR17, BLSZ14, BLSZ15, CDKL09, GKKV95, GKS14]. The model we study has
been introduced in [GKKV95]. As mentioned before, the key point of this model is to focus on
bounding the total length of augmenting paths and not the running time of the algorithm. This
is motivated as follows. Imagine that the white vertices are servers and black vertices are clients.
The clients arrive online. A typical client may be a portable computing box, trying to connect to
a huge network of services with some specific request. The edges of the graph reflect eligibility of
the servers to answer clients request. The classical online model (as in [BM08, DJK13, KVV90])
does not allow preemption, i.e., the client cannot change the server. In such setting one must
accept some clients not being served while they could possibly be served with preemption. In
that model a famous ranking algorithm gives an optimal (1−1/e)-approximation [KVV90]. The
authors in [GKKV95] wonder if preemption makes sense. It may be beneficial to reallocate clients
provided that only a limited number of reallocations is needed. This leads to the question of
how many reallocations are needed if one insists on serving every client. In [GKKV95] a special
case is studied when each client can connect to at most two servers. In such scenario the authors
prove that the Shortest Augmenting Path algorithm performs O(n log n) reallocations and that
no algorithm can do better than that. Chaudhuri et al. [CDKL09] show that the Shortest
Augmenting Path algorithm makes a total of O(n log n) reallocations in the case of general
bipartite graph, provided that the clients arrive in a random order. They conjecture, however,
that this should be the case also for the worst case arriving order of clients. Until this paper, this
conjecture remained open even for trees. In [BLSZ15] the authors prove a bound of O(n log2 n)
for Shortest Augmenting Path algorithm given that the underlying graph is a tree. In this paper
we take a different approach and prove the conjecture of Chaudhuri et al. for trees. In this
restricted case, the authors of [CDKL09] proposed a different augmenting path algorithm that
achieves total paths’ length of O(n log n). Their algorithm, however, is only applicable to trees.
The Shortest Augmenting Path algorithm, on the other hand, applies to any bipartite graph and
also is very simple. This is the reason why we feel it is important to study this algorithm. Our
ultimate goal is to show the bound of O(n log n) for general bipartite graphs. We believe that
the techniques proposed in this paper are an important step forward on the path to achieve this
goal. In parallel work to ours [BHR17] the authors provide a bound of O(n log2 n) total number
of reallocations for the Shortest Augmenting Path algorithm on general bipartite graphs. This
recent result has been accepted to SODA 2018 and it nearly closes the conjecture of Chaudhuri
et al. We note, however, that their techniques alone do not lead to O(n log n) even for trees.
Before this result, for general graphs, nothing interesting was known for Shortest Augmenting
Path algorithm. A different algorithm was proposed achieving much worse O(n

√
n) bound on

the total length of augmenting paths [BLSZ14].
Our model is strongly related to dynamic algorithms. There, we are not only interested in

constructing short augmenting paths. An efficient way of finding them is the most important
aspect. Most papers in this area consider edge updates in a general fully-dynamic model which
allows for insertions and deletions of edges intermixed with each other. This is a much more
difficult scenario in which one cannot do much when constrained by our model. In particular,
if edges are added to a bipartite graph, one can show an instance for which any algorithm
maintaining a maximum matching performs Ω(n2) reallocations. Hence, it is reasonable to
stop insisting on matching every client and accept approximate solutions. Here we want to
approximate the maximum matching size and not the number of reallocations. One also needs
to keep in mind that a trivial greedy algorithm maintaining a maximal matching gives a 1/2-
approximation and preforms no reallocations at all. A 2/3-approximation algorithm by [NS13]
achieves O(

√
m) update time. Gupta and Peng give a (1 − ε)-approximation in O(

√
mε−2)

time per update [GP13]. The O(
√
m) barrier was broken by Bernstein and Stein who gave

a (2
3 − ε)-approximation algorithm that achieves O(m1/4ε−2.5) update time [BS15]. Finally,

(1− ε) approximation in O(mε−1) total time and with O(nε−1) total length of paths was shown
in [BLSZ14] in a model most related to ours, i.e., when vertices are added on one side of the
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bipartition. There are also randomized algorithms in the dynamic model [San07] maintaining
the exact size of a maximum matching with O(n1.495) update time. They do not imply any
bound on the number of changes to the matching as they use algebraic techniques that are not
based on augmenting paths.

3. The mini-max game

Our goal in this paper is to prove that the total length of all augmenting paths applied by
Shortest Augmenting Path algorithm on a tree is O(n log n). More formally, we want to prove
the following, where by ||π|| we denote the number of edges on a path π.

Theorem 1. Let πt be the path applied by Shortest Augmenting Path algorithm in turn t. Then∑n
t=1 ||πt|| ∈ O(n log n).

The idea is not to study directly the paths applied by Shortest Augmenting Path algorithm,
but a collection of other paths that are possibly longer. To be more precise, we model a scenario
where in each turn Shortest Augmenting Path algorithm gets the worst possible matching on
Ft (i.e., the one maximizing the shortest augmenting path). We then study the worst case
augmenting paths rather then the ones given by the matching produced by Shortest Augmenting
Path algorithm. Interestingly, these paths can be defined without mentioning any matching. In
this section we provide the appropriate definitions and show that they work as expected.

Let us consider what worst possible matching could there be. Think of a game, where the
algorithm chooses a shortest augmenting path, and the adversary chooses a matching where such
path is the longest. We are given graph Ft and the newly presented vertex bt. We are interested
in a matching where bt is not matched, so that we model the worst case matching before bt is
matched. The game starts in vertex bt, where the algorithm may choose which edge to follow
among the unmatched edges incident to bt. Then the algorithm stumbles upon a white vertex
where it has to follow the matching edge chosen by the adversary. The game continues until a
leaf is reached (either black or white, black meaning that the algorithm did not find a path). It
is not hard to see that the algorithm, when it has a choice, wants to minimize the distance to
a free white vertex, while the adversary tries to maximize it. This way we obtain a two-person
game, where the outcome of the game is the length of the shortest augmenting path. If the path
does not exist, we let the outcome be infinite. Throughout the paper we let ∞+ 1 =∞ and we
write x <∞ to indicate that x is simply an integer.

We move on to stating formal definitions. We start by introducing our game on any rooted
tree T whose vertices are either black or white. We then define the outcome of the algorithm
player in time t for a specific T closely related to Ft. For a rooted tree T we denote the list of
children of a vertex v in T as ChT (v) and a parent of v as parentT (v).

Definition 1. Let T be a rooted tree whose vertices are partitioned into two sets: V (T ) ⊆ B]W .
(1) For each b ∈ B we define its revenue as

mini-maxT (b) =

{
minw∈ChT (b) mini-maxT (w) + 1 if ChT (b) 6= ∅
∞ otherwise

(2) and for each w ∈W we define its revenue as

mini-maxT (w) =

{
maxb∈ChT (w) mini-maxT (b) + 1 if ChT (w) 6= ∅
0 otherwise.

(3) We let mini-max-nextT (v) be the child of v whose revenue determines the minimum or
the maximum respectively.1 If v has no children, mini-max-nextT (v) is undefined.

(4) We define the mini-max path starting in a vertex v as

mini-max-pathT (v) =

{
v ·mini-max-pathT (mini-max-nextT (v)) if mini-max-nextT (v) is defined,2
v otherwise.

1If there are more such vertices we choose the first one according to some predefined order on B ∪W .
2Symbol · denotes concatenation of paths.
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Figure 1. Example of a rooted mini-max tree with vertex revenues.

Definition 1 is illustrated by example in Figure 1. Based on this definition we can define the
first and the second mini-max distance from a given vertex to a white leaf in a specific time
moment t. In addition to that we define the first and second direction, i.e., the vertex one needs
to follow to find the first and second mini-max distance.

Definition 2. Let t ∈ [n] and v ∈ Bt∪W . Let T be the connected component of v in Ft rooted
in v. Let

distt(v) = mini-maxT (v),

dirt(v) = mini-max-nextT (v).

Let now S be a rooted tree, where from T we remove mini-max-nextT (v) and all its descendants.
Let

sec-distt(v) = mini-maxS(v),

sec-dirt(v) = mini-max-nextS(v).

Ft Ft \ {v,dirt(v)}

dirt(v)

v
v

sec-dirt(v)

0
1 ∞∞

1
0

0

0

1
2

3 ∞∞

1
0

0

0

1
2

Figure 2. Example of mini-max distances for a vertex v in turn t.

Definition 2 is illustrated by example in Figure 2. We next observe the monotonicity of the
mini-max distance functions we defined.

Observation 2. Fix a vertex u ∈ B ∪ W . The functions distt(u) and sec-distt(u) are non-
decreasing with respect to t for the whole range of t where u ∈ V (Ft).

Proof. Observe that if T is a component of v in Ft−1 rooted in v, then adding bt causes that bt
possibly becomes a child of some white vertex w ∈ V (T ) (see Figure 10 to the left in Appendix B).
Such change causes that either we take maximum over a larger set than before, or we take
maximum/minimum over a set whose values do not decrease. In all these cases we cannot
decrease the mini-max values. For the rigorous proof see Appendix A. �

We intuitively explained how the mini-max distances correspond to the augmenting paths
of the worst case matching, so the hope is that they bound from above the augmenting paths
applied by Shortest Augmenting Path algorithm. The next lemma shows that this intuition is
reflected in reality. It states that no matter what matching is given on Ft for some t ∈ [n], the
path chosen by Shortest Augmenting Path algorithm to match bt is bounded by distt(bt).
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Lemma 3. Let 1 6 t0 6 t 6 n and let ρt be the shortest augmenting path from bt0 to a free white
vertex according to any given matching M in Ft where bt0 is free. It holds that if distt(bt0) <∞
then ρt exists and ||ρt|| 6 distt(bt0).

Proof. For the proof we refer to Appendix A. �

4. Dead vertices

In this section we introduce another concept crucial for our result. We define here dead
vertices and give some intuition why this makes sense. In fact dead vertices reflect the infinity
of some mini-max distance functions. For completeness, in addition to defining dead vertices,
we describe the situations when the mini-max distance functions are infinite. We start with the
statements.

Definition 3. A vertex bt0 ∈ Bt breaks Hall’s condition in time t > t0 iff there exists X ⊆ Bt
such that

(1) bt0 ∈ X,
(2) |Nt(X)| < |X|, and
(3) X is minimal under inclusion set satisfying (2).

Lemma 4. Let 1 6 t0 6 t 6 n. Then distt(bt0) =∞ iff bt0 breaks Hall’s condition in time t.

Proof. "⇐" : Assume that distt(bt0) <∞. Then, by Lemma 3, an augmenting path exists from
bt0 for a maximum matching M where bt0 is free. By Hall’s theorem this implies that bt0 does
not break Hall’s condition. "⇒" : Deferred to Appendix B �

Lemma 4 reveals the following corollary.

Corollary 5. If distt(bt) is infinite, and we are given some maximum matching Mt−1 for Ft−1,
then there is no augmenting (with respect to Mt−1) path for bt in time t.

Proof. Follows directly from Hall’s theorem. �

We now move on to defining dead vertices. The definitions may not seem very intuitive, but
we provide some intuition shortly after introducing them.

Definition 4. We say that a vertex bt0 ∈ B is dead in turn t > t0 iff sec-distt(bt0) =∞.

Definition 4 combined with Lemma 4 implies, that any black vertex that breaks Hall’s condi-
tion in time t is dead in time t, but not necessarily the other way around.

Definition 5. A white vertex w ∈W is dead in time t iff distt(w) =∞.

We say that a vertex is alive iff it is not dead. We denote as At the set of vertices of Bt∪W that
are alive in turn t and as Dt the set of vertices of Bt∪W that are dead in turn t. If v ∈ At−1∩Dt,
we say that v dies in turn t. Note that due to monotonicity (Observation 2), once a vertex dies,
it never comes back alive. The following observations bring some intuition into the picture of
dead versus alive vertices. Observation 6 given below follows from Definitions 2, 4 and 5.

Observation 6.
(1) A black leaf is dead from the moment it arrives.
(2) A black vertex is dead iff it has at most one alive neighbour.
(3) A white vertex is dead iff it has at least one dead neighbour.

The intuition behind dead vertices is that they determine regions of Ft where Hall’s condition
is either broken or tight. The mini-max paths in turn t that correspond to finite mini-max
distances do not visit vertices that were dead in turn t − 1. Moreover, if a mini-max path in
Ft (whose corresponding mini-max distance is finite) enters a vertex that is alive in turn t, it
does not visit anymore vertices dead in turn t. We state this formally as Lemma 7. This reflects
the behavior of augmenting paths. If a maximum matching is maintained, then the augmenting
path from turn t does not enter the regions where Hall’s condition is tight in Ft−1.



6 B. BOSEK, D. LENIOWSKI, P. SANKOWSKI, AND A. ZYCH-PAWLEWICZ

Lemma 7. Let t ∈ [n] and v ∈ At. Pick any vertex as a root of the connected component of v
in Ft and let T be the corresponding rooted tree. Then V (mini-max-pathT (v)) ⊆ At.

Proof. See Appendix B. �

In the remainder of this section we specify precisely which vertices die in turn t. The first
lemma does not describe who dies or stays alive, but it is an important complement of the
subsequent two lemmas, which cover all the situations when vertices die.

Lemma 8. If bt does not break Hall’s condition in turn t, then bt has at least one neighbour in
Ft which was alive in turn t− 1.

Proof. See Appendix B. �

So if a black vertex added in turn t does not break Hall’s condition, then it has at least one
neighbour who was alive in turn t− 1. The next two lemmas cover two cases. The first lemma
states that if the new black vertex has at least two such neighbours, then no vertices die in turn
t. If, however, it has exactly one such neigbour, then some vertices die in turn t and the second
lemma describes precisely which ones.

Lemma 9. If bt has at least two neighbours which are alive in turn t− 1 then bt is alive in turn
t and no vertex dies in turn t.

Proof. See Appendix B. �

The last lemma covers the only case when vertices die in turn t. It shows that there is a
certain region around bt where vertices die, and a barrier for that region are special vertices
called life portals, defined below. The picture illustrating which region dies in turn t is given in
Figure 3.

Definition 6. A black vertex b is a life portal in turn t iff |Nt(b) ∩At−1| > 3. The set of life
portals in turn t is denoted as LPt.

Die in turn tDead in turn t− 1 Alive in turn t

Life portals

bt

Figure 3. The vertices that die in turn t.

Lemma 10. If bt has exactly one neighbour in Ft which was alive in turn t − 1 and there is a
path π from bt to v ∈ Bt ∪W such that

(1) all vertices of π were alive in turn t− 1 and
(2) there are no life portals from LPt on π,

then v dies in turn t. Vertices of Bt ∪W that cannot be reached from bt via such path do not
die in turn t.

Proof. See Appendix B. �

Corollary 11. Lemma 10 shows, that for all t such that bt does not break Hall’s condition and
has exactly one neighbour alive in turn t − 1, statement |Nt(b) ∩At−1| > 3 in Definition 6 is
equivalent to |Nt(b) ∩At| > 2.
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5. The proof

In the remainder of the paper we present the proof of Theorem 1, which states that if πt is the
path applied by Shortest Augmenting Path algorithm in turn t, then

∑n
t=1 ||πt|| ∈ O(n log n).

As we mentioned in Section 3, we do not study ||πt|| directly. Instead, we want to study distance
functions distt(bt) introduced in Section 3. By Lemma 3 given in Section 3 we know that distt(bt)
bounds ||πt|| from above. Recall that distt(bt) is the mini-max distance from bt to a white leaf
in Ft. By definition if distt(bt) <∞, then there is a path from bt to a white leaf which certifies
it. We introduce the formal definition of such path below.

Definition 7. Let t ∈ [n] and v ∈ Bt ∪W . Let T be a connected component of v in Ft rooted
at v. Then patht(v) = mini-max-pathT (v).

Note that by Definitions 1 and 2, if distt(bt) < ∞, then ||patht(bt)|| = distt(bt). In addition
to that, we define a path that certifies that sec-distt(bt) is finite.

Definition 8. Let t ∈ [n] and v ∈ Bt ∪ W . Let S be a connected component of v in Ft −
{v,dirt(v)} rooted at v, where Ft−{v,dirt(v)} denotes Ft with edge {v,dirt(v)} removed. Then
sec-patht(v) = mini-max-pathS(v).

Again by Definitions 1 and 2, if sec-distt(bt) <∞, then ||sec-patht(bt)|| = sec-distt(bt). Instead
of proving Theorem 1, in the remainder of this paper we prove that

∑
t:distt(bt)<∞ ||patht(bt)|| ∈

O(n log n). This is in fact a stronger statement. We claim that even if the adversary picks the
worst possible maximum matching in each turn, the Shortest Augmenting Path algorithm still
applies paths of total length O(n log n). Note that if distt(bt) = ∞, then due to Corollary 5
Shortest Augmenting Path algorithm cannot match the new vertex bt if the maximum matching
is given on the remaining vertices. Our proof of such simple statement is unfortunately rather
complex. Before we move on to it, we give some intuitions on where the actual problem hides.
It is enlightening to discover, that with the additional assumption that the black vertices are of
degree two or more, the statement above has a very simple proof.

Lemma 12. If each black vertex bt has degree at least 2, then
∑n

t=1 ||patht(bt)|| 6 n log2 n.

Proof. We start by observing that no vertex ever dies. In turn t = 0 the only presented vertices
are W , so by definition all vertices are alive in turn t = 0. Let t > 0 and assume that no vertices
died up until turn t− 1. Due to Lemma 9 no vertex dies in turn t and bt is alive in turn t. This
implies that distt(bt) < ∞ and sec-distt(bt) < ∞. Hence, patht(bt) and sec-patht(bt) are two
separate paths, contained in two different components of Ft−1 connected in turn t by bt. Also,
||patht(bt)|| 6 ||sec-patht(bt)||. Thus, patht(bt) is at most as long as the size of the smaller of the
two components. We pay for patht(bt) by charging 1 token to each vertex in every component
but the largest one among the components of Ft−1 connected by bt in turn t. A vertex v is
charged when v’s component size increases at least twice, so v cannot be charged more than
log2 n times. This gives a total charge of at most n log2 n. �

The essence of this proof is that every time a black vertex is added, it connects at least two
trees into one. As a consequence there are at least two alternative mini-max paths starting from
the added vertex, each in a separate tree. The length of the shorter of the two can be charged to
the vertices of the smaller tree. If we allow black vertices of degree 1, the situation becomes more
complicated, because: (1) there is no alternative path, i.e., the path needs to follow the only
edge adjacent to the newly added black vertex, and (2) no trees are merged. Nevertheless the
proof of Theorem 1 is a generalization of the proof of Lemma 12. The majority of the remainder
of this paper is devoted to addressing issue (2). We define trees which are merged in each turn
and allow introducing the charging scheme that generalizes the scheme of Lemma 12. We start,
though, by addressing issue (1). To that end we introduce a concept of a dispatching vertex.
Even though bt does not necessarily fork into two alternative mini-max paths, there is another
vertex which does. It is the first life portal on patht(bt). We refer to it as dispatching vertex in
turn t. To be more formal, we introduce the following definition.
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Definition 9. The dispatching vertex at time t ∈ [n] is the first black vertex on patht(bt) such
that |Nt(b) ∩At| > 2. We denote it as b̌t.

First observe that b̌t has two alive neighbours in turn t, so there are two alternative mini-max
paths branching from b̌t. Our next observation is that if b̌t 6= bt, then b̌t ∈ LPt: if bt has two
neighbours alive in t− 1, then due to Lemma 9 no vertex dies in turn t so bt has two neigbours
alive in turn t and hence bt = b̌t; otherwise, if bt has one neigbour alive in turn t− 1, then due
to Lemma 10 and Corollary 11 it holds that b̌t is the first life portal of LPt on patht(bt). Then
also b̌t is the first vertex on patht(bt) that remains alive. All vertices that follow b̌t on patht(bt)
remain alive as well. It may happen that patht(bt) contains no life portals, in which case there
is no dispatching vertex defined in turn t. This case however is not of concern, since the whole
patht(bt) dies in turn t due to Lemma 10. In general, we do not have to worry about vertices
that die, and we state this observation as Observation 13 preceded by Definition 10.

Definition 10. Let t ∈ [n] be such that distt(bt) <∞. We let patht(bt) = pathpt (bt) · pathst (bt),
where pathpt (bt) is the prefix of patht(bt) that dies (possibly empty) and pathst (bt) is the corre-
sponding suffix (also possibly empty).

Note that if b̌t is defined then pathst (bt) begins with b̌t. Since the final forest has 2n vertices
and each can die only once, we have the following:

Observation 13.
∑

t:distt(bt)<∞ ||pathpt (bt)|| 6 2n.

Thus, to bound
∑

t:distt(bt)<∞ ||patht(bt)|| it suffices to bound
∑

t:distt(bt)<∞ ||pathst (bt)||. We
conclude the list of properties of the dispatching vertex with the following observation.

Observation 14. Let t ∈ [n] and distt(bt) <∞ and b̌t is defined. Then ||pathst (bt)|| = distt(b̌t).

Proof. See Appendix C. �

To proceed further, we introduce the crucial notion in our proof: the notion of a level. The
levels are some numbers assigned to vertices: each vertex is assigned its level. The intuitive
meaning of the level of a vertex is the following. Consider patht(bt), which is the worst case
shortest augmenting path for a black vertex bt added in turn t. For a vertex v, if patht(bt)
crosses v, level in Ft returns the value representing the length of the suffix of patht(bt) starting
in v. Formally, the level function is defined in the following way.

Definition 11. For v ∈W ∪B and t ∈ {0, . . . , n} let

levelt(v) =

 sec-distt(v) v ∈W,
distt(v) v ∈ Bt,
0 otherwise.

It may at first seem confusing that the level of a white vertex is the second maximum distance
to a leaf. It is defined this way because, surprisingly, in every turn t the path patht(bt) enters
its white vertices through the edge determining the maximum distance from the white vertex to
a leaf. We illustrate the introduced definitions in Figure 4. We present there an example run of
an online scenario together with changing levels of vertices. We mark the dispatching vertices
in each turn. An important property of the level function is that the levels of vertices drop by
at most one along both patht(bt) and sec-patht(bt).

Lemma 15. For v ∈W∪Bt and u ∈ {dirt(v), sec-dirt(v)} it holds that |levelt(v)− levelt(u)| 6 1.

Proof. See Appendix C. �

We are ready to move on to the proof of Theorem 1. We consider two cases:
(1) the level of a dispatching vertex in turn t grows by at most a factor of β
(2) the level of a dispatching vertex in turn t grows by more than a factor of β

where β is some constant value greater than 1 which we reveal later on. The total length of paths
pathst (bt) satisfying case (1) is bounded by Lemma 16 while the total length of paths pathst (bt)
satisfying case (2) is bounded by Lemma 17.
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level 0
level 1

w1 w2 w3 w4 w5

b1 = b̌1

w1 w2 w3 w4 w5

b2 = b̌2

w1 w2 w3 w4 w5

b2 = b̌3

level 0
level 1
level 2
level 3

w1 w2 w3 w4 w5

b1 = b̌4

level 4
level 5

b2

b4 b3

b1

b1

b3

level 2

Figure 4. Levels

Lemma 16. For cases when distt(bt) <∞, b̌t is defined and levelt(b̌t) < β levelt−1(b̌t) the total
length of paths pathst (bt) is bounded by 2βn+ βn log2 n.

Proof. Let t be such that it satisfies the assumptions of the lemma. First observe that bt 6= b̌t,
otherwise levelt−1(b̌t) = 0 < levelt(b̌t)/β. Due to Lemma 8 and Lemma 9, bt has precisely one
neighbour alive in turn t− 1.

In order to show an appropriate charging scheme, consider the final forest F = Fn. We study
the connected components of a subforest F [At] of F induced on vertices alive in turn t. Recall
that vertices not yet presented are considered alive. In turn t some vertices, in particular bt, die.
Due to Lemma 10 vertices that die in turn t form a connected component D of F [At−1]. Then
the connected component C of b̌t in F [At−1] splits into D and components C1, . . . , Ck in F [At].
Let C1 be the largest component among C1, . . . , Ck. Due to Lemma 10, pathst (bt) is contained
entirely in one of the components C1, . . . , Ck, say pathst (bt) is contained in Ci. If i 6= 1, we can
charge the length of pathst (bt) by charging 1 token to the vertices of Ci. A particular vertex
can be charged at most log2 n tokens this way, as each time it is charged its component halves
the size. It remains to deal with the case when pathst (bt) is contained in the largest component
C1. For the reference see Figure 5. Let wp be the predecessor of b̌t on patht(bt). Let T be the

C1

C2 C3

C4

C5

bt

b̌t

wp

Figure 5. Splitting the component C into C1, . . . , C5 and D.

connected component of b̌t in Ft−1 rooted at b̌t and let Ty be the connected component of b̌t in
Ft−1 rooted at wp. For the reference see Figure 6. By Observation 14 and our assumptions it

b̌t

B CA

wp b̌t

B C

A

wp
T Ty

root b̌t: root wp:

Figure 6. The connected component of Ft−1 rooted in b̌t and wp.
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holds that

||pathst (bt)|| = distt(b̌t) < β distt−1(b̌t) =

= β min
w∈ChT (b̌t)

mini-maxT (w) + β 6 βmini-maxT (wp) + β.

The constant cost of β gives a total cost of βn over all turns. What remains to show is how to
charge the cost of βmini-maxT (wp). Since wp ∈ At−1 it holds that

mini-maxT (wp) = max
b∈ChTy (wp)\{b̌t}

mini-maxTy(b) + 1 6

6 max
b∈ChTy (wp)

mini-maxTy(b) + 1 = distt−1(wp) <∞.

Thus mini-maxT (wp) = ||mini-max-pathT (wp)||. We charge the vertices of mini-max-pathT (wp)
to pay for the cost given by its length. Due to Lemma 7 it holds that mini-max-pathT (wp) visits
only vertices that are alive in turn t − 1. By definition V (mini-max-pathT (wp)) ∩ C1 = ∅, so
each vertex of mini-max-pathT (wp) either dies in turn t or is contained in Ci for i > 1. To pay
for that, we charge β tokens to every vertex that dies in turn t and we charge β tokens to each
vertex of components C2 . . . Ck. The total charge for this case sums up to βn+ βn log2 n. If we
add the charge we needed for other cases, we obtain a total of 2βn+ βn log2 n. �

Lemma 17. For cases when distt(bt) <∞, b̌t is defined and levelt(b̌t) > β levelt−1(b̌t) the sum
of the lengths of paths pathst (bt) is bounded by β(β+1)

(β−1)2
n(2 lnn+ 3.4) + n.

Proof. Given the level function, we want to consider the vertices of F = Fn whose level in turn
t is above a certain value l. To be more precise, we need to consider the subforest of F induced
by such vertices. This forest changes dynamically as the turns pass by. We describe it more
formally below.

Definition 12. For t ∈ [n] and l ∈ N we define F l
t = F [{v ∈W ∪B : l 6 levelt(v)}].

Recall that if b ∈ B \Bt then levelt(b) = 0. For a subforest F ′ = 〈V ′, E′〉 of F = 〈W ∪B,E〉,
we denote a connected component of vertex v ∈ V ′ as comp(v, F ′). The family of all connected
components is denoted as C(F ′) = {comp(v, F ′) : v ∈ V ′}. For a fixed l we observe how F l

t

changes from turn t− 1 to t. Since the level function is monotonic, i.e., it satisfies levelt−1(v) 6
levelt(v) (see Observation 2), the following hold:

Observation 18. F l
t−1 is a subforest of F l

t . Also,

V(F l
t ) = V(F l

t−1) ∪ {v ∈ V(F ) : levelt−1(v) < l 6 levelt(v)}.

We fix a turn t for which distt(bt) < ∞, b̌t is defined, and levelt(b̌t) > β levelt−1(b̌t). The
idea is the following. We let l = levelt−1(b̌t) and l = levelt(b̌t). For the purpose of the proof we
need a function that describes some intermediate level between levelt−1() and levelt(). We thus
extend the level function to rational indices:

levelt−1/2(v) =

{
levelt−1(v) if v = b̌t
levelt(v) otherwise.

Observe that levelt(v) function is still monotonic in t after the extension. We illustrate these
definitions by example in Figure 7. We observe that on levels l from l to l − 1 the separate
components of F l

t−1/2 are merged in F l
t . It is this merging that allows us to provide the charging

scheme. The level defined for fractional indices may be interpreted as an additional fractional
turn between t− 1 and t.

Let us fix a level l. In every turn t = 0, 1
2 , 1, 1

1
2 , . . . , n a number of δ tokens is assigned to

every connected component C in F l
t such that |C| > ρl, where δ and ρ are constants that we

compute later. Smaller components are not assigned any tokens. Note that if l is large, only
large components are assigned tokens. We plan to use these tokens to pay for the mini-max
paths in each turn. First, however, we describe how we maintain such an assignment on level l.
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levelt−1(•) levelt(•) levelt−1/2(•)bt

b̌t

b̌t

bt
ww

w
l

l

l

l

Figure 7. Fractional levels

First we consider moving from turn t−1 to turn t−1/2. The forest F l
t−1/2 is obtained by adding

the set of vertices ∆ = V(F l
t−1/2) \ V(F l

t−1) = {v ∈ Bt ∪W : levelt−1(v) < l 6 levelt−1/2(v)}
to F l

t−1 (see Observation 18). We want to add some structure to this process. We divide
transformation from F l

t−1 to F l
t−1/2 into two sub-phases. In the first sub-phase, the vertices of ∆

form new singleton components: C′ =
⋃
v∈∆{〈{v}, ∅〉}, where 〈{v}, ∅〉 is a graph with only one

vertex v and without edges. Together with the set of connected components of F l
t−1 (referred

to as C(F l
t−1)) they form a family I = C(F l

t−1) ∪ C′. In the second sub-phase, components
in I merge whenever there is an edge of F connecting them, finally becoming the connected
components of F l

t−1/2. Every component C ∈ C(F l
t−1/2) can be assigned a set of components

IC = {C1 . . . Ck} ⊆ I that merged into C. There are two possible options:

(a) there is the component Ci ∈ I with size |Ci| > ρl, so Ci is already assigned δ tokens
(b) every Ci ∈ I satisfies |Ci| < ρl, so none of them is assigned any tokens.

In case (a), δ assigned to Ci, which ceases to exist, is now transferred to C. In case (b), if
|C| > ρl, every vertex v ∈ C chips in with a payment of δ

ρl , so the vertices of C pay in total at
least δ. We count the total amount that is paid at the end of the proof.

We now consider the transition from turn t− 1/2 to turn t. There is only one vertex, mainly
b̌t, which changes its level. Its level increases from l to l. Level l is only affected by this transition
if l < l 6 l. So, the forest F l

t is formed from F l
t−1/2 by adding b̌t. The only difference between

C(F l
t−1/2) and C(F l

t ) is that some family of separate components of C(F l
t−1/2) becomes connected

by b̌t and forms a new connected component comp(b̌t, F
l
t ). The set of components that merge

into comp(b̌t, F
l
t ) is precisely I ′ = C(comp(b̌t, F

l
t ) \ b̌t) ∪ {

〈
b̌t, ∅

〉
}. The way of assigning δ to

comp(b̌t, F
l
t ) if |comp(b̌t, F

l
t )| > ρl is the same as in the transition from t − 1 to t − 1/2. The

difference is that now we want to utilize some of the assigned tokens to pay for the mini-max
path in turn t. Thus, we distinguish three cases now:

(i) exactly one of the components C ′ ∈ I ′ satisfies |C ′| > ρl, so C ′ is assigned δ tokens,
(ii) every C ∈ I ′ satisfies |C| < ρl so none of them is assigned tokens,
(iii) two or more components C ′, C ′′ ∈ I ′ satisfy |C ′| > ρl and |C ′′| > ρl, so C ′ and C ′′ are

both already assigned δ tokens.

Cases (i) and (ii) are handled in the exactly same manner as in the transition from t − 1 to
t − 1/2. The difference is that in case (iii) we utilize δ tokens assigned to C ′ while δ tokens
assigned to C ′′ transfer to comp(b̌t, F

l
t ).

It remains to prove that the tokens utilized in turn t suffice to pay for ||pathst (bt)||. Obser-
vation 14 shows that levelt(b̌t) = ||pathst (bt)||. So we need to pay levelt(b̌t) tokens when moving
from turn t− 1/2 to t. Let ρ := (β − 1)/(β + 1). By Claim 19, proved later on, case (iii) occurs
on at least (l − l)/2 levels. Since l 6 l/β, we utilize at least δ(l − l/β)/2 = δ(1−1/β)

2 levelt(b̌t)
tokens. Setting δ := 2/(1− 1/β) allows paying the desired amount.

Now we count the sum of lengths of pathst (bt). Every vertex pays δ
ρl at most once per level

and the highest level is not greater than 2n, so the total amount paid by a vertex over all the
turns is bounded by δ

ρ

∑2n
l=1

1
l 6

δ
ρ(ln(2n) + 1). Hence, the total amount paid by all vertices is
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at most δ
ρn(lnn+ 1.7). If we plug in the constants ρ = (β− 1)/(β+ 1) and δ = 2/(1− 1/β) into

above bound, we obtain that
∑

t∈T ||pathst (bt)|| 6
β(β+1)
(β−1)2

n(2 lnn+ 3.4). �

To complete the proof of Lemma 17 we move on to proving the following Claim.

Claim 19. For a fixed t ∈ [n] let l0 = levelt−1(b̌t) + 1 and l1 =
⌊
(levelt−1(b̌t) + levelt(b̌t))/2

⌋
.

For ρ = β−1
β+1 and l ∈ {l0, . . . , l1} there exist two different vertices w1, w2 ∈ Nt(b̌t) ∩ At

such that comp(w1, F
l
t−1/2) and comp(w2, F

l
t−1/2) are two separate components of F l

t−1/2 and
|comp(wi, F

l
t−1/2)| > ρl for i ∈ {1, 2}.

Proof. Fix l ∈ {l0, . . . , l1}. By definition Nt(b̌t)∩At > 2. Thus, distt(b̌t) <∞ and sec-distt(b̌t) <
∞. We show that w1 = dirt(b̌t) and w2 = sec-dirt(b̌t) satisfy the desired conditions.

First note that w1, w2 ∈ V(F l
t−1/2), because levelt(wi) > levelt(b̌t)−1 > l1 for i ∈ {1, 2} due to

Lemma 15. Note also that comp(w1, F
l
t−1/2) and comp(w2, F

l
t−1/2) are two separate components

of F l
t−1/2 because the only path connecting w1 and w2 in F is through b̌t and b̌t /∈ V (F l

t ) because
levelt−1/2(b̌t) = levelt−1(b̌t) < l0 6 l.

Due to Lemma 15 the levels of vertices drop by at most one along patht(b̌t) and sec-patht(b̌t).
Let π1 be the prefix of patht(b̌t) of length l − l and π2 be the prefix of sec-patht(b̌t) of length
l − l, where l = levelt(b̌t). It holds that if v ∈ V (πi) then levelt−1/2(v) = levelt(v) > l. Because
l0−1 = levelt−1(b̌t) 6 levelt(b̌t)/β = l/β and l 6 l1 =

⌊
(l0 − 1 + l)/2

⌋
we have l 6 (l/β + l)/2 =

(1/β + 1) · l/2. This implies |comp(w,F l
t )| > l − l = 2β

β+1 ·
1+1/β

2 · l − l > 2β
β+1 · l − l = β−1

β+1 · l.
Setting ρ = (β − 1)/(β + 1) completes the proof of the claim. �

We can now put all the pieces together to prove our main result.

Theorem 20.
∑

t∈[n]:distt(bt)<∞ distt(bt) ∈ O(n log n).

Proof. By definition 10 we have patht(bt) = pathpt (bt) · pathst (bt). By Observation 13 it
holds that

∑
t∈[n]:distt(bt)<∞ ||pathpt (bt)|| 6 2n. If b̌t is undefined, then pathst (bt) is empty

so its length is 0. For the cases when b̌t is defined and levelt(b̌t) < β levelt−1(b̌t) we
have

∑
t∈[n]:distt(bt)<∞ ||pathst (bt)|| 6 2βn + βn log n. For the cases when b̌t is defined and

levelt(b̌t) > β levelt−1(b̌t) we have
∑

t∈[n]:distt(bt)<∞ ||pathst (bt)|| 6
β(β+1)
(β−1)2

n(2 lnn+ 3.4) +n. This
gives the theorem statement for any β > 1. �
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Appendix A. The mini-max game

Observation 2. Fix a vertex u ∈ B ∪ W . The functions distt(u) and sec-distt(u) are non-
decreasing with respect to t for the whole range of t where u ∈ V (Ft).

Proof. We only prove monotonicity of distt(v) here, the proof of monotonicity of sec-distt(v)
is analogous. Fix t ∈ [n]. We claim that distt−1(v) 6 distt(v) provided that v ∈ V (Ft−1).
Let T be a component of v in Ft−1 rooted at v and S be a component of v in Ft rooted at
v. Note that S is a subtree of T . By definition it holds that distt−1(v) = mini-maxT (v) and
distt(v) = mini-maxS(v). We prove our claim by a bottom-up induction on T . The inductive
hypothesis we prove is that mini-maxT (u) 6 mini-maxS(u) for u ∈ V (T ).

First assume that u is black. The neighborhood of u does not change from t − 1 to t, since
after u is presented, it never changes its neighborhood. Therefore ChT (u) = ChS(u). If u is
a leaf of T , then mini-maxT (u) = ∞ = mini-maxS(u). If u has children then by induction
hypothesis on children it follows that

mini-maxT (u) = min
w∈ChT (u)

mini-maxT (w) + 1 6ind min
w∈ChS(u)

mini-maxS(w) + 1 = mini-maxS(u).

Now assume that u is white. The neighborhood of u can change from t−1 to t, but it can only
increase, meaning that ChT (u) ⊆ ChS(u). If u is a leaf in T , then by the fact that mini-maxS(u)
is non-negative it holds that mini-maxT (u) = 0 6 mini-maxS(u). If u has children in T , then
by induction hypothesis we infer that

mini-maxT (u) = max
b∈ChT (u)

mini-maxT (b) + 1 6ind max
b∈ChT (u)

mini-maxS(b) + 1 6

6 max
b∈ChS(u)

mini-maxS(b) + 1 = mini-maxS(u).

�

Lemma 3. Let 1 6 t0 6 t 6 n and let ρt be the shortest augmenting path from bt0 to a free white
vertex according to any given matching M in Ft where bt0 is free. It holds that if distt(bt0) <∞
then ρt exists and ||ρt|| 6 distt(bt0).

Proof. Fix t0 ∈ [n] and t ∈ {t0, . . . , n}. Let T be the connected component of bt0 in Ft rooted
at bt0 . We prove our lemma by a bottom-up induction on T .

Before we state inductive hypothesis, we need to introduce a few more definitions. We denote
as ρT (v) the shortest alternating path from v to a free white vertex in the subtree of T rooted
at v. Here, an augmenting path is taken with respect to M and a white vertex is considered
free if it is free in the subtree. If there is no such alternating path we write ρT (v) = ⊥ for which
length ||⊥|| = ∞. It is not hard to see that such a path is either a single free white vertex, or
it starts with an unmatched edge if v is black and with a matched edge if v is white. When we
say that a vertex is unmatched from below, we mean that all its incident edges leading to its
children in T are free from matching. Similarly, we say that a vertex is unmatched from above,
if the edge leading to its parent in T is free from matching.

Our inductive hypothesis states the following. If v is
(a) black and unmatched from below or
(b) white and unmatched from above

then ||ρT (v)|| 6 mini-maxT (v).
Let us first assume that v is black. If v is a leaf in T , then ρT (v) = ⊥, so ||ρT (v)|| = ∞ =

mini-maxT (v), so the hypothesis is fulfilled. Let us consider the case when v is not a leaf. We
consider two sub-cases of this case. First assume that ρT (v) = ⊥. This implies that ρT (w) = ⊥
for all w ∈ ChT (v). By induction it holds that

mini-maxT (v) = min
w∈ChT (v)

mini-maxT (w) + 1 =ind ∞+ 1 =∞.

Now assume that ρT (v) 6= ⊥. Let w be a successor of v on ρT (v) and let w′ = mini-max-nextT (v).
Then by the power of induction we infer that

mini-maxT (v) = mini-maxT (w′) + 1 >ind ||ρT (w′)||+ 1 > ||ρT (w)||+ 1 = ||ρT (v)||.
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Let us now assume that v is white. If v is a leaf, then ||ρT (v)|| = 0 = mini-maxT (v) so
the hypothesis is fulfilled. If v is not a leaf, we again consider two cases. First assume that
ρT (v) = ⊥. In such case there has to be a vertex b′ ∈ ChT (v) matched to v, otherwise v is free
and the path ρT (v) exists. In such case ρT (b′) = ⊥ otherwise there would exist augmenting path
also from v. Then by inductive assumption mini-maxT (b′) =∞. From that it follows that

mini-maxT (v) = max
b∈ChT (v)

mini-maxT (b) + 1 > mini-maxT (b′) + 1 =ind ∞+ 1 =∞.

Now assume that ρT (v) 6= ⊥. In this case either v is free in its subtree and ||ρT (v)|| = 0 =
mini-maxT (v), or there is a vertex b′ ∈ ChT (v) matched to v. But then by the power of
induction we infer that

mini-maxT (v) = max
b∈ChT (v)

mini-maxT (b) + 1 > mini-maxT (b′) + 1 >ind ||ρT (b′)||+ 1 = ||ρT (v)||.

This proves the hypothesis, in particular this proves that ||ρT (bt0)|| 6 mini-maxT (bt0) =
distt(bt0). Note that if distt(bt0) < ∞, then ||ρT (bt0)|| < ∞, and that by definition implies that
ρt = ρT (bt0) exists and ||ρt|| = ||ρT (bt0)|| 6 distt(bt0). �
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Appendix B. Dead vertices

Lemma 4. Let 1 6 t0 6 t 6 n. Then distt(bt0) =∞ iff bt0 breaks Hall’s condition in time t.

Proof.
"⇐": Assume that distt(bt0) <∞. Then, by Lemma 3, an augmenting path exists from bt0 for a
maximum matching M where bt0 is free. By Hall’s theorem this implies that bt0 does not break
Hall’s condition.
"⇒": Let T be the connected component of bt0 in Ft rooted at bt0 . Assume distt(bt0) =∞. We
are going to define a subtree S of T such that V (S)∩Bt is precisely the set X that certifies that
bt0 breaks Hall’s condition in time t.

For that we first define a forest F that is a subgraph of T and pick one component of F to be
S. Let F = (WF ∪BF , EF ), whereWF = W ∩V (T ) are the white vertices of T , BF = Bt∩V (T )
are the black vertices of T and EF = E1 ∪ E2, where

E1 = {(parentT (w), w) : w ∈WF },
E2 = {(w,mini-max-nextT (w)) : w ∈WF and mini-max-nextT (w) exists}.

Next we let S be the connected component of bt0 in F rooted at bt0 . The construction of S is
shown in Figure 8. Before we proceed, we prove a helpful observation that mini-maxS(u) =∞

T E1 E2

bt0

Figure 8. The construction of rooted tree S in the proof of Lemma 4.

holds for all u ∈ V (S). To that end we assume for the sake of contradiction that there is
u ∈ V (S) such that mini-maxS(u) < ∞ and we pick the closest to the root such vertex. Then
mini-maxS(parentS(u)) =∞. We consider two cases. If u is white then v = parentS(u) is black
and thus

∞ = mini-maxS(v) = min
w∈ChS(v)

mini-maxS(w) + 1 6 mini-maxS(u) + 1 <∞.

This gives a contradiction. If, on the other hand, u is black then v = parentS(u) is white and
hence, due to the way S is constructed, v has only one child u in S. Thus

∞ = mini-maxS(v) = max
b∈ChS(v)

mini-maxS(b) + 1 = mini-maxS(u) + 1 <∞.

This also gives a contradiction.
Let us denote white vertices of S asWS = V (S)∩W and black vertices of S as BS = V (S)∩Bt.

Now let X = BS . We prove that conditions (1)-(3) of Definition 3 hold for X. Condition (1)
trivially holds. Let us consider condition (2). Since mini-maxS(w) = ∞ for all w ∈ WS ,
every w ∈ WS has a child in S and by the way S is constructed this child is unique. On the
other hand each black vertex b ∈ BS \ {bt0} has a unique parent. This gives a one-to-one map
f : BS \ {bt0} →WS (such that f(b) := parentS(b)) and implies |WS | = |BS \ {bt0}|.

We move on to proving condition (3). LetX ′  X. If bt0 /∈ X ′ then |X ′| = |f(X ′)| 6 |Nt(X
′)|.

So, we can assume that bt0 ∈ X ′. Then there exists b′ ∈ X \X ′ such that parentS(parentS(b′)) ∈
X ′. Thus

|X ′| = |X ′ \ {bt0}|+ 1 = |f(X ′ \ {bt0})|+ 1 = |f(X ′ \ {bt0}) ∪ {parentS(b′)}| 6 |Nt(X
′)|.
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This proves the minimality of X and ends the proof of the lemma. �

Lemma 7. Let t ∈ [n] and v ∈ At. Pick any vertex as a root of the connected component of v
in Ft and let T be the corresponding rooted tree. Then V (mini-max-pathT (v)) ⊆ At.

Proof. Observe that
mini-maxT (b′) 6 sec-distt(b

′) for b′ ∈ Bt. (1)
Let mini-max-pathT (v) = (v(1), v(2), . . . , v(k)). We prove that v(i) is alive by induction on
i = 1, 2, . . . , k. Vertex v(1) = v is alive by the assumptions of the lemma. We now assume that
v(i) is alive and aim to prove that v(i+1) is alive too. If v(i) ∈W then by Observation 6 we know
that all neighbours of v(i) are alive. In particular v(i+1) ∈ At. We are left with the case when
b := v(i) ∈ Bt and w := v(i+1) = mini-max-nextT (b) ∈ W . We aim to prove that w is alive, i.e.
distt(w) <∞. Let S be the connected component of v in Ft rooted in w. For the reference see
Figure 9.

r

T :

B

v

w

A
mini-max-pathT (v)

w

A

S: r

B

v

b

b

Ft−1

Figure 9. Aliveness of mini-max-patht(v)

Then
distt(w) = mini-maxS(w) = max

b′∈ChS(w)
mini-maxS(b′).

So it suffices to prove that mini-maxS(b′) <∞ for any child b′ of w in S. If b′ = b then

mini-maxS(b) 6by(1) sec-distt(b) <∞
where the last inequality holds by aliveness of b. If b′ 6= b then the subtree of b′ is identical for
T and S and as a consequence

mini-maxS(b′) = mini-maxT (b′) 6 max
b′′∈ChT (w)

mini-maxT (b′′) =

= mini-maxT (w)− 1 = mini-maxT (b)− 2 6by(1) sec-distt(b)− 2 <∞.
�

Lemma 8. If bt does not break Hall’s condition in turn t, then bt has at least one neighbour in
Ft which was alive in turn t− 1.

Proof. Let T be the component of bt in Ft rooted at bt. By Lemma 4 we have that

∞ > distt(bt) = min
w∈ChT (bt)

mini-maxT (w) + 1 = min
w∈ChT (bt)

distt−1(w) + 1.

Hence, the new vertex bt has a white neighbour w′ such that distt−1(w′) <∞. By definition w′
is alive in turn t− 1. �

Lemma 9. If bt has at least two neighbours which are alive in turn t− 1 then bt is alive in turn
t and no vertex dies in turn t.
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Proof. We first prove that no vertex dies in turn t. Let u ∈ Bt−1 ∪W for some t ∈ [n] and
assume that bt is as stated in the lemma. Let T be the connected component of u in Ft−1 rooted
at u and let S be the component of u in Ft rooted at u. If u is not connected to bt in Ft, then
by definition sec-distt−1(u) = sec-distt(u) since T = S. Hence, u does not die in turn t.

Otherwise Nt(bt) contains a vertex of T , let it be w. For this case, to prove that u does not
die in turn t, we show the following:

distt−1(u) <∞⇒ distt(u) <∞ and
sec-distt−1(u) <∞⇒ sec-distt(u) <∞.

Let Ft − {w, bt} be the graph obtained by removing edge {w, bt} from Ft. Let R be the
connected component of bt in Ft − {w, bt}, rooted at bt. The only difference between T and
S is that bt becomes a child of w in S and R is attached to T via edge (w, bt). This is illus-
trated in Figure 10 to the left. Note that the only vertices who change their mini-max revenue
are on the path πuw from u to w in T . Also, in the proof of Observation 2 we proved that
mini-maxT (v) 6 mini-maxS(v) for v ∈ V (T ). These two observations imply that it suffices to
show that mini-maxT (w) < ∞ ⇒ mini-maxS(w) < ∞. Due to the assumption of the lemma,
there exists w′ ∈ ChS(bt) such that mini-maxS(w′) = distt−1(w′) <∞. Thus

mini-maxS(bt) = min
w′′∈ChS(bt)

mini-maxS(w′′) + 1 6 mini-maxS(w′) + 1 <∞.

For the reference see Figure 10 to the right.

u

w
T

bt

S:

R

u

w

T

bt

S:

w′

mini-m
axS

(bt
) <
∞

mini-m
axS

(w
′ ) <
∞

Figure 10. The case when bt has at least two neighbours which are alive.

Hence

mini-maxS(w) = max{mini-maxT (w),mini-maxS(bt) + 1}

{
=∞ if mini-maxT (w) =∞,
<∞ otherwise.

To complete the proof it remains to show that bt ∈ At. Let T be a component of Ft rooted
at bt. Note that distt−1(w) = mini-maxT (w) for w ∈ ChT (bt). Since there exists w1, w2 ∈
ChT (bt) such that distt−1(wi) = mini-maxT (wi) < ∞ for i ∈ {1, 2}, we have distt(bt) <∞ and
sec-distt(bt) <∞. �

Lemma 10. If bt has exactly one neighbour in Ft which was alive in turn t − 1 and there is a
path π from bt to v ∈ Bt ∪W such that

(1) all vertices of π were alive in turn t− 1 and
(2) there are no life portals from LPt on π,

then v dies in turn t. Vertices of Bt ∪W that cannot be reached from bt via such path do not
die in turn t.

Proof. The illustration for this lemma is provided in Figure 3. By monotonicity of distt(v) and
sec-distt(v) functions with respect to t (see Observation 2), the vertices dead in turn t−1 remain
dead in turn t. By Definitions 2 and 4 vertex bt dies in turn t. By Observation 6 all other vertices
on π also die in turn t. What we need to prove is that the remaining vertices stay alive, i.e., do
not die in turn t.
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For the sake of this proof we introduce notation for a rooted subtree. For a rooted tree T
and a vertex u ∈ V (T ) we let ∆T (u) denote the subtree of T rooted at u containing u and all
its descendants in T . We first observe that LPt ⊆ At−1 due to Observation 6. For p ∈ LPt
let WAt−1(p) = Nt−1(p) ∩ At−1. Due to Definition 6, |WAt−1(p)| > 3. We first prove that life
portals remain alive, i.e., LPt ⊆ At. Let T be the connected component of Ft−1 rooted in p
and let S be the connected component of Ft rooted in p. Observe that WAt−1(p) ⊆ ChT (p).
There is only on vertex w ∈ ChT (p), for which ∆T (w) 6= ∆S(w). Hence, there exist two vertices
w1, w2 ∈WAt−1(p), for whom ∆T (wi) = ∆S(wi) for i ∈ {1, 2}. It then holds that for i ∈ {1, 2}:

∞ > distt−1(wi) > mini-maxT (wi) = mini-maxS(wi).

Also, ChT (p) \ {mini-max-nextT (p)} contains either w1 or w2, say it contains w1. Then

sec-distt(p) = min
w∈ChS(p)\{mini-max-nextT (p)}

mini-maxS(w) + 1 6 mini-maxS(w1) + 1 <∞.

Now let u ∈ Bt∪W \LPt such that u was alive in turn t−1. It remains to prove that u does not
die in turn t. If u is not connected to bt in Ft, then u obviously stays alive in turn t. Otherwise
there is a unique path from u to bt in Ft and this path contains a life portal, let it be p ∈ LPt.
Let now T be a component of u in Ft−1 rooted in u and let S be a component of u in Ft rooted
in u.

Let Ft − {w, bt} be the graph obtained by removing edge {w, bt} from Ft. Let R be the
connected component of bt in Ft−{w, bt}, rooted at bt. The only difference between T and S is
that bt becomes a child of some vertex w ∈ V (∆T (p)) and R is attached to T via edge (w, bt).
Also, in the proof of Observation 2 we proved that mini-maxT (v) 6 mini-maxS(v) for v ∈ V (T ).

Based on these observations, it suffices to show that mini-maxT (p) < ∞ ⇒ mini-maxS(p) <
∞. For that it suffices to show that mini-maxS(p) <∞. Now observe that WAt−1(p)∩ChS(p) >
2 (one of the vertices in WAt−1(p) could be p’s parent). Let w1, w2 ∈WAt−1(p)∩ChS(p). Then
there is wi ∈ {w1, w2} such that ∆T (wi) = ∆S(wi). Since wi ∈WAt−1(p), it holds that

∞ > distt−1(wi) > mini-maxT (wi) = mini-maxS(wi).

This implies that

mini-maxS(p) = min
w∈ChS(p)

mini-maxS(w) + 1 6 mini-maxS(wi) + 1 <∞.

�
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Appendix C. The proof

Observation 14. Let t ∈ [n] and distt(bt) <∞ and b̌t is defined. Then ||pathst (bt)|| = distt(b̌t).

Proof. The statement of the observation holds by definition if b̌t = bt. Otherwise the only
possible scenario is the one covered by Lemma 10. Let wp be the predecessor of b̌t on patht(bt).
According to Lemma 10 it holds that wp ∈ Dt. By Lemma 7 path patht(b̌t) cannot visit wp.
Therefore patht(b̌t) = pathst (bt), and this implies the desired claim. �

This section is devoted to proving Lemma 15. The proof requires analyzing many trees rooted
at the vertices of the considered mini-max paths. Such analysis becomes much simpler if we
reformulate some of the definitions introduced in the paper. We start by reformulating the
definition of the mini-max() function.

Definition 13. For w ∈ W , b ∈ Bt such that {w, b} ∈ E(W ∪Bt) the determined mini-max
distance is defined as

det-distt(w, b) =

{
minw′∈Nt(b)\{w} det-distt(b, w

′) + 1 if Nt(b) \ {w} 6= ∅
∞ otherwise,

det-distt(b, w) =

{
maxb′∈Nt(w)\{b} det-distt(w, b

′) + 1 if Nt(w) \ {b} 6= ∅
0 otherwise.

Vertex b′ ∈ Nt(w) \ {b} which determines the maximum is denoted as det-dirt(b, w). If there are
more such vertices we choose the first one in some predefined order on the vertices B ∪W . If
Nt(w)\{b} is empty then det-dirt(b, w) is not defined. Vertex w′ ∈ Nt(b)\{w} which determines
the minimum is denoted as det-dirt(w, b). If there are more such vertices we choose the first one
in some predefined order on the vertices B ∪W . If Nt(b) \ {w} is empty then det-dirt(w, b) is
not defined.

It is easy to observe that if we take a connected component of a vertex v ∈ W ∪ Bt and we
indicate v as a root then we obtain a rooted tree T and the following holds

mini-maxT (u) =

{
det-distt(parentT (u), u) if u 6= v,
distt(u) otherwise

for all u ∈ V (T ). As a consequence we obtain two observations that follow.

Observation 21. For w ∈W , b ∈ Bt the mini-max distance equals

distt(b) =

{
minw′∈Nt(b) det-distt(b, w

′) + 1 if Nt(b) 6= ∅
∞ otherwise.

distt(w) =

{
maxb′∈Nt(w) det-distt(w, b

′) + 1 if Nt(w) 6= ∅
0 otherwise.

Vertex w′ ∈ Nt(b) which determines the minimum equals dirt(b). If there are more such vertices
this is the first one in some predefined order on the vertices B ∪ W . If Nt(b) is empty than
dirt(b) is not defined. Vertex b′ ∈ Nt(w) which determines the maximum equals dirt(w). If there
are more such vertices this is the first one in some predefined order on the vertices B ∪W . If
Nt(w) is empty than dirt(w) is not defined.

Observation 22. For w ∈W , b ∈ Bt the mini-max distance equals

sec-distt(b) =

{
minw′∈Nt(b)\{dirt(b)} det-distt(b, w

′) + 1 if Nt(b) \ {dirt(b)} 6= ∅
∞ otherwise.

sec-distt(w) =

{
maxb′∈Nt(w)\{dirt(w)} det-distt(w, b

′) + 1 if Nt(w) \ {dirt(w)} 6= ∅
0 otherwise.

Vertex w′ ∈ Nt(b) \ {dirt(b)} which determines the minimum equals sec-dirt(b). If there are
more such vertices this is the first one in some predefined order on the vertices B ∪ W . If
Nt(b) \ {dirt(b)} is empty than sec-dirt(b) is not defined. Vertex b′ ∈ Nt(w) \ {dirt(b)} which
determines the maximum equals sec-dirt(w). If there are more such vertices this is the first one
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in some predefined order on the vertices B ∪W . If Nt(w) \ {dirt(b)} is empty than sec-dirt(w)
is not defined.

The meaning of dirt(·) and sec-dirt(·) functions is given by the following observation which
follows from Definition 13 and Observations 21 and 22.

Observation 23. For each v ∈ Bt ∪W it holds that

distt(v) = det-distt(v,dirt(v)) + 1,

sec-distt(v) = det-distt(v, sec-dirt(v)) + 1.

Observation 23 provides a formula for distt(v) and sec-distt(v) in terms of det-distt(v, ·). If
we want to determine det-distt(u, v) by distt(v) and sec-distt(v) it is worth noting that distt(v)
almost always equals distt(v). The only exception is when distt(v) is determined by u and equals
sec-distt(v).

Observation 24. For any edge {v, u} ∈ Et the following holds

det-distt(u, v) =

{
distt(v) if u 6= dirt(v)
sec-distt(v) otherwise.

Because dist() is a min (max) taken over a bigger set than sec-dist() we have the following.

Observation 25. For w ∈W and b ∈ Bt such that {w, b} ∈ Et the following is holds

distt(b) 6det-distt(w, b) 6 sec-distt(b),

sec-distt(w) 6det-distt(b, w) 6 distt(w).

The function det-distt(v, u), given an entry edge (v, u) to a vertex u, returns one plus the
distance of some neighbor det-dirt(v, u) of u other than v. This defines a determined mini-max
path in a natural recursive way. An undetermined mini-max path can be defined using the
notion of a determined mini-max path.

Definition 14. For any t = 0, . . . , n and {v, u} ∈ Et we define

det-patht(v, u) =

{
v · det-patht(u,det-dirt(v, u)) if det-dirt(v, u) exists,
v · u otherwise.

We observe the following.

Observation 26. Let t = 0, . . . , n and v ∈ Bt ∪W . Then

patht(v) =

{
det-patht(v,dirt(v)) if dirt(v) exists,
v otherwise.

sec-patht(v) =

{
det-patht(v, sec-dirt(v)) if sec-dirt(v) exists,
v otherwise.

The next observation shows a relation between mini-max functions and the lengths of the
corresponding mini-max paths.

Observation 27. For any t = 0, . . . , n and any edge {v, u} ∈ Et and x ∈W ∪Bt we have that

||det-patht(v, u)|| = det-distt(v, u) if det-distt(v, u) <∞,
||patht(x)|| = distt(x) if distt(x) <∞,

||sec-patht(x)|| = sec-distt(x) if sec-distt(x) <∞.

We are now ready to prove the following interesting property that says that the level of the
dir() and sec-dir() can not change by more than ±1.

Lemma 15. For v ∈W∪Bt and u ∈ {dirt(v), sec-dirt(v)} it holds that |levelt(v)− levelt(u)| 6 1.

Proof. We present the proof for v = w ∈ W and then u = b ∈ Bt. The case when v ∈ Bt is
symmetric. We split this case to the following four subcases.
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First subcase : We assume that dirt(w) = b and dirt(b) = w. Then

levelt(b) =Def.11. distt(b) =Obs.23. det-distt(b, w) + 1 =Obs.24.

= sec-distt(w) + 1 =Def.11. levelt(w) + 1.

Second subcase : We assume that dirt(w) = b and dirt(b) 6= w. Then

levelt(w) =Def.11. sec-distt(w) 6Obs.25. distt(w) =Obs.23.

= det-distt(w, b) + 1 =Obs.24. distt(b) + 1 =Def.11. levelt(b) + 1.

On the other side we have that

levelt(b) =Def.11. distt(b) =Obs.21 min
w′∈Nt(b)

det-distt(b, w
′) + 1 6

= det-distt(b, w) + 1 =Obs.24. sec-distt(w) + 1 =Def.11. levelt(w) + 1.

Third subcase : We assume that sec-dirt(w) = b and dirt(b) = w. Then

distt(b) + 2 6Obs.25. det-distt(w, b) + 2 =Obs.23. sec-distt(w) + 1 6Obs.25.

6 det-distt(b, w) + 1 =Obs.23. distt(b)

but it is not possible.
Fourth subcase : The last case describes situation when sec-dirt(w) = b and dirt(b) 6= w.

Then

levelt(w) =Def.11. sec-distt(w) =Obs.23. det-distt(w, b) + 1 =Obs.24.

= distt(b) + 1 =Def.11. levelt(b) + 1.

�
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