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Abstract. We consider extension variants of Vertex Cover and In-
dependent Set, following a line of research initiated in [9]. In particu-
lar, we study the Ext-CVC and the Ext-NSIS problems: given a graph
G = (V,E) and a vertex set U ⊆ V , does there exist a minimal connected
vertex cover (respectively, a maximal non-separating independent set) S,
such that U ⊆ S (respectively, U ⊇ S). We present hardness results for
both problems, for certain graph classes such as bipartite, chordal and
weakly chordal. To this end we exploit the relation of Ext-CVC to Ext-
VC, that is, to the extension variant of Vertex Cover. We also study
the Price of Extension (PoE), a measure that reflects the distance of a
vertex set U to its maximum efficiently computable subset that is ex-
tensible to a minimal connected vertex cover, and provide negative and
positive results for PoE in general and special graphs.

Key words: extension problems, connected vertex cover, upper con-
nected vertex cover, price of extension, special graph classes, approxima-
tion algorithms, NP-completeness

1 Introduction

We consider the extension variant of the (Minimum) Connected Vertex
Cover (Min CVC) problem and its associated price of extension (PoE); we
call this variant Extension Connected Vertex Cover problem (Ext-CVC
for short). Intuitively, the extension variant of a minimization problem Π is the
problem of deciding whether a partial solution U for a given instance of Π can
be extended to a minimal (w.r.t. inclusion) feasible solution for that instance;
PoE refers to the maximum size subset of U that can be extended to a minimal
feasible solution. A framework for extension problems is developed in [10] where
a number of results are given for several hereditary and antihereditary graph
problems. Particular complexity results for the extension of graph problems,
such as Vertex Cover, Hitting Set, and Dominating Set, are given in [2,
3, 6, 9, 20–22]. A subset S ⊆ V of a connected graph G = (V,E) is a connected
vertex cover (CVC for short) if S is a vertex cover (i.e., each edge of G is incident



to at least a vertex of S) and the subgraph G[S] induced by S is connected. The
corresponding optimization problem (Minimum) Connected Vertex Cover
(Min CVC) consists in finding a CVC of minimum size [12, 16, 17]. Given a
(connected) vertex cover S of a graph G = (V,E), an edge e ∈ E is private to a
vertex v ∈ S if v is the only vertex of S incident to e. Hence, a vertex cover S of
G is minimal iff each vertex v ∈ S has a private edge. A CVC S of G is minimal
if for every v ∈ S, S \ {v} is either not connected or not a vertex cover.

In this paper we study Extension Connected Vertex Cover (Ext-
CVC): given a connected graph G = (V,E) together with a subset U ⊆ V of
vertices, the goal is to decide whether there exists a minimal (w.r.t. inclusion)
CVC of G containing U ; note that for several instances the answer is negative.
In this latter case we are also interested in a new maximization problem where
the goal is to find the largest subset of vertices U ′ ⊆ U which can be extended
to a minimal feasible solution. This concept is defined as the Price of Extension
(PoE) in [9]. For the two extreme cases U = ∅ and U = V , we note that for the
former the question is trivial since there always exists a minimal CVC [27], while
for the latter (U = V ) the problem is equivalent to finding a minimal CVC of
maximum size, (called Upper CVC in the paper).

1.1 Graph definitions and terminology

Throughout this article, we consider a simple connected undirected graph with-
out loops G = (V,E) on n = |V | vertices and m = |E| edges. Every edge e ∈ E
is denoted as e = uv for u, v ∈ V . For X ⊆ V , NG(X) = {v ∈ V : vx ∈ E, for
some x ∈ X} and NG[X] = X ∪ NG(X) denotes the closed neighborhood of X.
For singleton sets X = {x}, we simply write NG(x) or NG[x], even omitting G
if it is clear from the context; for a subset X ⊂ V , NX(v) = NG(v) ∩ X. The
number of neighbors of x, called degree of x, is denoted by dG(x) = |NG(x)| and
the maximum degree of the graph G is denoted by ∆(G) = maxv∈V dG(v). A
leaf is a vertex of degree one, and Vl denotes the set of leaves in G. For X ⊆ V ,
G[X] denotes the subgraph induced by X, that is the subgraph only containing
X as vertices and all edges of G with both endpoints in X. A connected graph
G = (V,E) is biconnected, if for each pair of vertices x, y there is a simple cycle
containing both x and y, or equivalently, the removal of any vertex maintains
connectivity. A cut-set X ⊂ V is a subset of vertices such that the deletion
of X from G strictly increases the number of connected components. A cut-set
which is a singleton is called a cut-vertex and a cut-set X is minimal if ∀x ∈ X,
X \ {x} is not a cut-set. Hence, a graph is biconnected iff it is connected and
it does not contain any cut-vertex. In this article, Vc(G) denotes the set of cut-
vertices of a graph G; we will simply write Vc if G is clear from the context.
A graph G = (L ∪ R,E) is split (resp. bipartite) where the vertex set L ∪ R is
decomposed into a clique L and an independent set R (resp. two independent
sets). A graph is chordal if all its cycles of length at least four have a chord,
that is, an edge connecting nonconsecutive vertices of the cycle. There are many
characterizations of chordal graphs. One of them, known as Dirac’s theorem,
asserts that a graph G is chordal iff each minimal cut-set of G is a clique. Recall
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that S ⊆ V is a vertex cover, if for each e = uv ∈ E, S ∩ {u, v} 6= ∅ while
S ⊆ V is an independent set if for each pair of vertices u, v of S, uv /∈ E; S is a
vertex cover iff V \ S is an independent set of G = (V,E). The minimum vertex
cover problem (Min VC for short) asks to find a vertex cover of minimum size
and the maximum independent set problem (Max IS for short), asks to find an
independent set of maximum size for a given graph.

1.2 Problem definitions

As mentioned above, we consider the extension variants of two optimization
problems: the (Minimum) Connected Vertex Cover problem (Min CVC)
and the (Maximum) Non Separating Independent Set problem (Max
NSIS). A non separating independent set S of a connected graph G = (V,E) is
a subset of vertices of G which is independent (i.e., any two vertices in S are non
adjacent) and S is not a cut-set of G. Max NSIS asks to find a non separating
independent set of maximum size. Min CVC and Max NSIS have been stud-
ied in [16, 12, 30, 15, 26] where it is proved that the problems are polynomially
solvable in graphs of maximum degree 3, while in graphs of maximum degree 4
they are NP-hard.

Ext-CVC
Input: A connected graph G = (V,E) and a presolution (also called set of
forced vertices) U ⊆ V .
Question: Does G have a minimal connnected vertex cover S with U ⊆ S?

Dealing with Ext-NSIS, the goal to decide the existence of a maximal NSIS
excluding vertices from V \ U .

Ext-NSIS
Input: A connected graph G = (V,E) and a frontier subset U ⊆ V .
Question: Does G have a maximal NSIS S with S ⊆ U?

Considering the possibility that some set U might not be extensible to any
minimal solution, one might ask how far is U from an extensible set. This con-
cept, introduced in [9], is called Price of Extension (PoE). This notion is defined
in an attempt to understand what effect the additional presolution constraint has
on the possibility of finding minimal solutions. A similar approach has already
been used in the past under the name the Price of Connectivity in [7] for the con-
text of connectivity because it is a crucial issue in networking applications. This
notion has been introduced in [7] for Min VC and is defined as the maximum
ratio between the connected vertex cover number and the vertex cover number.
In our context, the goal of PoE is to quantify how close efficiently computable
extensible subsets of the given presolution U are to U or to the largest possible
extensible subsets of U . To formalize this, we define two optimization problems
as follows:
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Max Ext-CVC
Input: A connected graph G = (V,E) and a set of vertices U ⊆ V .
Feasible Solution: Minimal connected vertex cover S of G.
Goal: Maximize |S ∩ U |.

Min Ext-NSIS
Input: A connected graph G = (V,E) and a set of vertices U ⊆ V .
Feasible Solution: Maximal non separating independent set S of G.
Goal: Minimize |S ∪ U |.

For Π ∈ {Max Ext-CVC,Min Ext-NSIS}, we denote by optΠ(G,U) the
value of an optimal solution. Since for both of them optΠ(G,U) = |U | iff (G,U)
is a yes-instance of the extension variant, we deduce that Max Ext-CVC and
Min Ext-NSIS are NP-hard since Ext-CVC and Ext-NSIS are NP-complete.
Actually, for any class of graphs G, Max Ext-CVC is NP-hard in G iff Min
Ext-NSIS is NP-hard in G since for any graph G ∈ G it can be shown that:

optMax Ext-CVC(G,U) + optMin Ext-NSIS(G,V \ U) = |V | . (1)

The price of extension PoE is defined exactly as the ratio of approximation,
i.e., the best possible lower (resp. upper) bound on apx

opt that can be achieved in

polynomial time. In particular, we say that Max Ext-CVC (resp. Min Ext-
NSIS) admits a polynomial ρ-PoE if for every instance (G,U), we can efficiently
compute a solution S of G which satisfies |S ∩ U |/optMax Ext-CVC(G,U) > ρ
(resp., |S ∪ U |/optMin Ext-NSIS(G,U) 6 ρ).
Considering Max Ext-CVC on G = (V,E) in the particular case U = V ,
we obtain a new problem called Upper Connected Vertex Cover (Upper
CVC) where the goal is to find the largest minimal CVC. To our best knowledge,
this problem has never been studied, although Upper VC has been extensively
studied [5, 14, 25].

Upper CVC
Input: A connected graph G = (V,E).
Feasible Solution: Minimal connected vertex cover S ⊆ V .
Goal: Maximize |S|.

1.3 Related work

Garey and Johnson proved that (minimum) CVC is NP-hard in planar graphs
of maximum degree 4 [16]. Moreover, it is shown in [28, 30] that the problem
is polynomially solvable for graphs of maximum degree 3, while NP-hardness
proofs for bipartite and for bi-connected planar graphs of maximum degree 4,
are presented in [12, 15, 26]. The approximability of Min CVC has been con-
sidered in some more recent studies. The NP-hardness of approximating Min
CVC within 10

√
5 − 21 is proven in [15] while a 2-approximation algorithm

is presented in [27]. Moreover, in [12] the problem is proven APX-complete in
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bipartite graphs of maximum degree 4. They also propose a 5
3 -approximation al-

gorithm for Min CVC for any class of graphs where Min VC is polynomial-time
solvable. Parameterized complexity for Min CVC and Max NSIS have been
studied in [23, 24] while the enumeration of minimal connected vertex covers is
investigated in [18] where it is shown that the number of minimal connected
vertex covers of a graph of n vertices is at most 1.8668n, and these sets can be
enumerated in time O(1.8668n). For chordal graphs (even for chordality at most
5), the authors are able to give a better upper bound. The question to better
understand the close relation between enumerations and extension problems is
relevant because in this article we prove that Ext-CVC and Max Ext-CVC
are polynomial-time solvable in chordal graphs. Finally, one can find problems
that are quite related to Min CVC in [8].

Maximum minimal optimization variants have been studied for many classi-
cal graph problems in recent years, for example, in [5], Boria et al. have stud-
ied the Maximum Minimal Vertex Cover Problem (Upper VC in short)
from the approximability and parameterized complexity point of views. The
Minimum Maximal Independent Set problem, also called Minimum Inde-
pendent Dominating Set (Min ISDS) asks, given a graph G = (V,E), for
a subset S ⊆ V of minimum size that is simultaneously independent and domi-
nating. From the NP-hardness and exact solvability point of views, Min IDS is
equivalent to Upper VC [25], but they seem to behave differently in terms of
approximability and parameterized complexity [1]. Although Min IDS is polyno-
mially solvable in strongly chordal graphs [13], it is hard to approximate within
n(1−ε), for any ε > 0, in certain graph classes [13, 11]. Regarding parameterized
complexity, Fernau [14] presents an FPT-algorithm for Upper VC with running
time O∗(2k), where k is the size of an optimum solution, while it is proved that
Min IDS with respect to the standard parameter is W [2]-hard. Moreover, Boria
et al. [5] provide a tight approximation result for Upper VC in general graphs:

they present a n
1
2 approximation algorithm together with a proof that Upper

VC is NP-hard to approximate within n
1
2−ε, for any ε > 0. Furthermore, they

present a parameterized algorithm with running time (1.5397k) where k is the
standard parameter, by modifying the algorithm of [14]; they also show that
weighted versions of Upper VC and Min IDS are in FPT with respect to the
treewidth.

Regarding the extension variant of Dominating Set, namely Ext-DS, it is
proven in [22, 21] that it is NP-complete, even in special graph classes like split
graphs, chordal graphs, and line graphs. Moreover, a linear time algorithm for
split graphs is given in [20] when X,Y is a partition of the clique part. In [9], it
is proved that Ext-VC is NP-complete in cubic graphs and in planar graphs of
maximum degree 3, while it is polynomially decidable in chordal and circular-arc
graphs.

1.4 Summary of results and organization

The rest of the paper is organized as follows. In Section 2, after showing the rela-
tion between Ext-VC and Ext-CVC, we provide additional hardness results for
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Ext-CVC in bipartite graphs and weakly triangulated graphs, the latter leading
to hardness results for Upper VC and Upper CVC. We then focus on bounds
for PoE in Section 3, providing inapproximability results for Max Ext-CVC in
general and bipartite graphs. In Section 4 we discuss the (in)approximability of
a special case of Max Ext-CVC, namely Upper CVC. Note that all results
given in the paper for Ext-CVC are valid for Ext-NSIS as well. Due to lack of
space the proofs of statements marked with (∗) are deferred to the full version
of the paper.

2 Solvability and hardness of extension problems

Let us begin by some simple observations: (G,U) with G = (V,E) and U ⊆ V is
a yes-instance of Ext-CVC iff (G,V \U) is a yes-instance of Ext-NSIS. Hence,
all complexity results given in this section for Ext-CVC are valid for Ext-NSIS
as well. A leaf (v ∈ Vl) never belongs to a minimal connected vertex cover S
(apart from the extreme case where G consists of a single edge), while any cut-
vertex v ∈ Vc necessarily belongs to S. This implies that for trees, we have a
simple characterization of yes-instances for n > 3: (T,U), where T = (V,E) is a
tree, is a yes-instance of Ext-CVC iff U is a subset of cut-set Vc, or equivalently
U ⊆ Vc = V \Vl. For an edge or a cycle Cn = (V,E), (Cn, U) is a yes-instance iff
U 6= V ; since a path Pn = (V,E) is a special tree the case of graphs of maximum
degree 2 is settled. Dealing with split graphs, a similar but more complicated
characterization can be given. In the next subsection we will deduce more general
results for Ext-CVC by showing and exploiting relations to Ext-VC.

2.1 Relation between Ext-VC and Ext-CVC

The following two properties allow to make use of known results for Ext-VC to
obtain results for Ext-CVC.

Proposition 1. (∗) Ext-CVC is polynomially reducible to Ext-VC in chordal
graphs.

Proposition 2. Ext-CVC is NP-complete in graphs of maximum degree ∆+1
if Ext-VC is NP-complete in graphs of maximum degree ∆, and this holds even
for bipartite graphs.

Proof. Given an instance (G,U) of Ext-VC, where G = (V,E) with V =
{v1, . . . , vn} and U ⊆ V , we build an instance (G′ = (V ′, E′), U ′) of Ext-CVC
by adding a component H = (VH , EH) to the original graph G.
The construction of H is depicted to the
right where VH = {v′i, v′′i : 1 6 i 6 n}
is the vertex set. The new instance of
Ext-CVC is given by (G′, U ′) and con-
sists of connecting the component H to
G by linking viv

′
i for each 1 6 i 6 n and

by setting U ′ = U .
v′1 v′2 v′n−1 v′n

v′′1 v′′2 v′′n−1 v′′n
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Clearly G′ is of maximum degree ∆+ 1 if G is of maximum degree ∆. Moreover,
it is not difficult to see that (G,U) is a yes-instance of Ext-VC iff (G′, U ′) is a
yes-instance of Ext-CVC. To maintain bipartiteness, we apply an appropriate
subdivision of H. ut

Using polynomial time decidability of Ext-VC in chordal graphs, parameter-
ized complexity results (considering that the reduction increases the size of the
instances only linearly), and NP-completeness in cubic bipartite graphs [9], we
deduce:

Corollary 3. Ext-CVC is polynomial-time decidable in chordal graphs and
NP-complete in bipartite graphs of maximum degree 4. Ext-CVC parameter-
ized with |U | is W[1]-complete, and there is no 2o(n+m)-algorithm for n-vertex,
m-edge bipartite graphs of maximum degree 4, unless ETH fails.

2.2 Additional hardness results

We first strengthen the hardness result of Corollary 3 to bipartite graphs of
maximum degree 3. This result could appear surprising since the optimization
problem Min CVC is polynomial-time solvable in graphs of maximum degree 3.

Theorem 4. Ext-CVC is NP-complete in bipartite graphs of maximum degree
3 even if U is an independent set.

Proof. We reduce from 2-balanced 3-SAT, denoted (3, B2)-SAT, where an
instance I = (C,X) is given by a set C of CNF clauses over a set of Boolean
variables X such that each clause has exactly 3 literals and each variable appears
exactly 4 times, twice negative and twice positive. Deciding whether an instance
of (3, B2)-SAT is satisfiable is NP-complete by [4].

Consider an instance (3, B2)-SAT with clauses C = {c1, . . . , cm} and vari-
ables X = {x1, . . . , xn}. We build a bipartite graph G = (V,E) together with a
set of forced vertices U as follows:

• For each clause c = `1 ∨ `2 ∨ `3 where `1, `2, `3 are literals, introduce a
subgraph H(c) = (Vc, Ec) with 6 vertices and 6 edges. Vc contains three
specified literal vertices `1c , `

2
c , `

3
c . The set of forced vertices in H(c), denoted

by Uc is given by Uc = {`1c , `2c , `3c}. The gadget H(c) is illustrated in the left
part of Figure 1.

• For each variable x introduce 21 new vertices which induce the subgraph
H(x) = (Vx, Ex) illustrated in Figure 1. The vertex set Vx contains four
special vertices tc1x , tc2x , f c3x and f c4x , where it is implicitly assumed (w.l.o.g.)
that variable x appears positively in clauses c1, c2 and negatively in clauses
c3, c4. The independent set Ux = {1x, 3x, 5x, 6x, 8x, 10x, 12x} is in U (i.e.,
forced to be in each feasible solution). The subgraph Hx − Ux induced by
Vx \Ux consists of an induced matching of size 5 and of 4 isolated vertices.
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H(c) for c = (`1 ∨ `2 ∨ `3)

`1c

`2c

`3c

1c

2c

3c

H(x)

tc1x

tc2x

fc4
x

fc3
x

1x 2x
3x

4x5x

6x

7x

8x

9x

10x

11x

12x

px1

px2

px3

px4

px5

H(x2)

H(x1)

H(x3)

r1,2

r2,3

Fig. 1. Clause gadget H(c) and Variable gadget H(x) for Ext-CVC are shown on the
left and in the middle of the figure respectively. Forced vertices (in U) are marked in
Black. On the right, the way of connecting variable gadgets is depicted. Crossing edges
between H(c) and H(x) are marked with dashed lines.

• We connect each gadget H(xi) to H(xi+1) by linking vertex 12xi to vertex
6xi+1 using an intermediate vertex ri,i+1 for all 1 6 i 6 n− 1. We also add a
pendant edge incident to each ri,i+1 with leaf r′i,i+1 ; an illustration of this
connection is depicted on the right of Figure 1.

• We interconnect H(x) and H(c) where x is a variable occurring in literal `i
of clause c by adding edge `ict

c
x (resp., `icf

c
x), where tcx (resp., f cx) is in H(x)

and `ic is in H(c), if x appears positively (resp., negatively) in clause c. These
edges are called crossing edges.

Let U = (
⋃
c∈C Uc) ∪ (

⋃
x∈X Ux). This construction takes polynomial time

and G is a bipartite graph of maximum degree 3.

Claim. (*) I = (C,X) is satisfiable iff G admits a minimal CVC containing U .

The proof of the claim, deferred to the full version of the paper, completes the
proof of the theorem. ut

Now, we will prove that the polynomial-time decidability of Ext-CVC in
chordal graphs given in Corollary 3 cannot be extended to the slightly larger class
of weakly chordal (also called weakly triangulated 3) graphs which are contained
in the class of 4-chordal graphs. For any integer k > 3, a graph is called k-
chordal if it has no induced cycle of length greater than k. Thus, chordal graphs
are precisely the 3-chordal graphs. The problem of determining whether a graph
is k-chordal is known to be co-NP-complete when k is a part of the instance [29].

Theorem 5. (∗) Ext-CVC is NP-complete in weakly triangulated graphs.

3 This class is introduced in [19], as the class of graphs G = (V,E) with no chordless
cycle of five or more vertices in G or in its complement G = (V,E).
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3 Bounds on the price of extension of Max Ext-CVC

Using Propositions 1 and 2, we can derive negative and positive approximation
results for Max Ext-CVC.

First, let us observe Min Ext-NSIS does not admit O(n1−ε)-PoE even in the
simplest case U = ∅ because there is a simple reduction from Min ISDS (also
known as minimum maximal independent set [11, 13]) to Min Ext-NSIS when
U = ∅ by adding to the original graph G = (V,E) two new vertices `0, `1 and
edges `0`1 together with `1v for v ∈ V (so, `1 is an universal vertex); `1 never
belongs to a NSIS (or equivalently `0 is a part of all maximal NSIS) because
otherwise `0 will become isolated. For general graphs, the price of extension
associated to Max Ext-CVC is one of the hardest problems to approximate.

Theorem 6. (∗) For any constant ε > 0 and any ρ ∈ Ω
(

1
∆1−ε

)
and ρ ∈

Ω
(

1
n1−ε

)
, Max Ext-CVC does not admit a polynomial ρ-PoE for general graphs

of n vertices and maximum degree ∆, unless P = NP.

Although Proposition 2 preserves bipartiteness, we cannot immediately con-
clude the same kind of results since in [9] it is proved that Max Ext-VC admits
a polynomial 1

2 -PoE for bipartite graphs.

Theorem 7. (∗) For any constant ε > 0 and any ρ ∈ Ω
(

1
n1/2−ε

)
, Max Ext-

CVC does not admit a polynomial ρ-PoE for bipartite graphs of n vertices, unless
P = NP.

We next present a positive result, showing that the price of extension is equal
to 1 in chordal graphs.

Proposition 8. (∗) Max Ext-CVC is polynomial-time solvable in chordal graphs.

4 Approximability of Upper CVC

Upper CVC is a special case of Max Ext-CVC where U = V . Regarding the
approximability of Upper CVC, we first show that an adaptation of Theorem
7 allows us to derive:

Corollary 9. (∗) For any constant ε > 0, unless NP = P, Upper CVC is not
Ω( 1

n1/3−ε )-approximable in polynomial time for bipartite graphs on n vertices.

On the positive side, we show that any minimal CVC is a 2
∆(G) approximation

for Upper CVC. To do this, we first give a structural property that holds for
any minimal connected vertex cover. For a given connected graph G = (V,E) let
S? be an optimal solution of Upper CVC and S be a minimal connected vertex
cover of G. Denote by A? = S? \ S and A = S \ S? the proper parts of S? and
S respectively, while B = S ∩ S? is the common part. Finally, R = V \ (S? ∪ S)
denotes the rest of vertices. Also, for X = A? or X = A, we set Xc = {v ∈
X : NG(v) ⊆ B} which is exactly the vertices of X not having a neighbor in
(S ∪ S?) \X. Actually, (S ∪ S?) \X is either S or S?.
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Lemma 10. (∗) The following properties hold:

(i) For X = A? or X = A, X ∪ R is an independent set of G, G[X ∪ B] is
connected and Xc is a subset of cut-set of G[X ∪B].

(ii) Set B is a dominating set of G.

The following theorem describes an interesting graph theoretic property. It
relates the size of an arbitrary minimal connected vertex cover of a (connected)
graph to the size of the largest minimal connected vertex cover.

Theorem 11. Any minimal CVC of a connected graph G is a
2

∆(G)
-approximation

for Upper CVC.

Proof. Let G = (V,E) be a connected graph. Let S and S? be a minimal CVC
and an optimal one for Upper CVC, respectively, and w.l.o.g., assume |S| <
|S?|. We prove the following inequalities:

|A?| 6 (∆(G)− 1)|B| and |A?| 6 (∆(G)− 1)|A| (2)

Let us prove the first part |A?| 6 (∆(G)−1)|B| of inequality (2). Consider v1 ∈ B
maximizing its number of neighbors in A?, i.e. v1 = arg max{|NA?(v)| : v ∈ B}.
Since S is a minimal CVC with |S| < |S?|, we have ∆(G) > |NA?(v1)|+1 from (i)
of Lemma 10 (otherwise B = {v1} with dG(v1) = ∆(G)). In addition, from (ii) of
Lemma 10 we have NA?(B) = A? and then

∑
v∈B |NA?(v)| > |NA?(B)| = |A?|.

Putting together these inequalities we get |A?| 6 |B|(∆(G)− 1).

Let us prove the second part |A?| 6 (∆(G) − 1)|A| of inequality (2) using the
following Claim:

Claim. (∗) There are at least |A?c |+ |A| edges between A and B in G[S].

Each vertex in A? \ A?c has by definition at least one neighbor in A, so we
deduce:

∑
v∈A |N(v)| > |A? \ A?c | + |A| + |A?c | = |A| + |A?|. Now, by setting

a1 = arg max{|NG(v)| : v ∈ A}, we obviously get |A||N(a1)| >
∑
v∈A |N(v)|.

Putting together these inequalities, we obtain: |A|∆(G) > |A||N(a1)| > |A?|+|A|
which leads to |A?| 6 (∆(G) − 1)|A|. The inequality |S| > 2

∆(G)
follows by

considering the two cases |A| > |B| and |A| < |B|. ut

A tight example of Theorem 11 for any ∆(G) > 3 is illus-
trated to the right. The optimal solution for Upper CVC
contains ∆(G) vertices {a} ∪ {v1, . . . , v∆(G)−1} while {a, b}
is a minimal connected vertex cover of size 2.

. . .

a b

v1 v2 v3 v∆(G)−1
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22. Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, Lhouari Nourine,
and Takeaki Uno. A polynomial delay algorithm for enumerating minimal domi-
nating sets in chordal graphs. In Ernst W. Mayr, editor, International Workshop
on Graph-Theoretic Concepts in Computer Science, WG 2015, volume 9224 of lncs,
pages 138–153. Springer, 2016.

23. Lukasz Kowalik and Marcin Mucha. A 9k kernel for nonseparating independent
set in planar graphs. Theor. Comput. Sci., 516:86–95, 2014.

24. R. Krithika, Diptapriyo Majumdar, and Venkatesh Raman. Revisiting connected
vertex cover: FPT algorithms and lossy kernels. Theory Comput. Syst., 62(8):1690–
1714, 2018.

25. David F Manlove. On the algorithmic complexity of twelve covering and inde-
pendence parameters of graphs. Discrete Applied Mathematics, 91(1-3):155–175,
1999.

26. PK Priyadarsini and T Hemalatha. Connected vertex cover in 2-connected planar
graph with maximum degree 4 is NP-complete. International Journal of Mathe-
matical, Physical and Engineering Sciences, 2(1):51–54, 2008.

27. Carla Savage. Depth-first search and the vertex cover problem. Information Pro-
cessing Letters, 14(5):233–235, 1982.

28. Ewald Speckenmeyer. On feedback vertex sets and nonseparating independent sets
in cubic graphs. Journal of Graph Theory, 12(3):405–412, 1988.

29. Ryuhei Uehara. Tractable and intractable problems on generalized chordal graphs.
Technical report, Technical Report COMP98-83, IEICE, 1999.

30. Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent
set problem and feedback set problem for graphs with no vertex degree exceeding
three. Discrete Mathematics, 72(1-3):355–360, 1988.

12


