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REWRITING SYSTEMS, PLAIN GROUPS, AND GEODETIC GRAPHS

MURRAY ELDER AND ADAM PIGGOTT

Abstract. We prove that a group is presented by finite convergent length-reducing rewriting systems

where each rule has left-hand side of length 3 if and only if the group is plain. Our proof goes via a

new result concerning properties of embedded circuits in geodetic graphs, which may be of independent

interest in graph theory.

1. Introduction

The study of rewriting systems connects abstract algebra and theoretical computer science in deep
and useful ways. A program of research initiated in the 1980s seeks to characterise algebraically the
families of groups that may be presented by various families of rewriting systems (see [13] for a broad
introduction). An important part of this program is to characterise the groups that may be presented
by length-reducing rewriting systems. Early progress was swift. Diekert [4] (see also [12]) proved that
that the family of groups admitting presentation by finite convergent length-reducing rewriting systems
is properly contained within the family of virtually-free groups; Avenhaus, Madlener and Otto [1] proved
that the family of groups admitting presentation by finite convergent length-reducing rewriting systems
in which each rule has a left-hand-side of length two is exactly the family of plain groups (a group is plain
if it isomorphic to a free product of finitely-many factors, with each factor a finite group or an infinite
cyclic group); an explicit construction (described in Section 2.1) shows that any plain group admits
presentation by a finite convergent length-reducing rewriting system. From such results the plain groups
emerged as the likely family of groups presented by finite convergent length-reducing rewriting systems.
In 1987, Madlener and Otto [11] summarised the state of knowledge by highlighting the following two
conjectures, the resolution of which would “give a complete algebraic characterisation of groups presented
by length-reducing systems”.

Conjecture 1 (Gilman [8]). Let G be a group. Then G admits presentation by a finite convergent length-
reducing rewriting system (Σ, T ) in which the right-hand side of every rule has length at most one if and
only if G is plain.

Conjecture 2 (Madlener and Otto [11]). Let G be a group. Then G admits presentation by a finite
convergent length-reducing rewriting system (Σ, T ) if and only if G is plain.

Although a special case of Conjecture 2, Gilman’s Conjecture was important enough to consider
separately because it seemed more tractable and its resolution may provide clues to the more general
problem. The recent positive solution to Gilman’s Conjecture by Eisenberg and the second author [5]
motivates the present work. Our main result proves Conjecture 2 in a special case not implied by [5].

Theorem 3. Let G be a group. Then G admits presentation by a finite convergent length-reducing
rewriting system (Σ, T ) such that Σ = Σ−1 and the left-hand side of every rule has length at most three
if and only if G is plain.

Our proof is essentially graph theoretic, and exploits the fact that if G and (Σ, T ) are as in the theorem,
then the undirected Cayley graph Γ = Γ(G,Σ) is geodetic. A simple undirected graph Γ is geodetic if
between any pair of vertices there exists a unique shortest path. In [14, Problem 3, p.105], Ore posed the
problem of giving a general classification of all finite geodetic graphs, but that has proven very difficult.
Although planar geodetic graphs have been characterised [20], various structural aspects of geodetic
graphs of diameter two and three are understood [18, 15, 16], the geodetic graphs homeomorphic to
complete graphs are known [19], and a number of clever procedures have been developed for constructing
new geodetic graphs from existing ones (see, for example, [7]), a general classification of geodetic graphs
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is not close. We prove the following, which is new and may be of independent interest simply because
the task of classifying geodetic graphs has proven to be so difficult.

Theorem 4. If Γ is an undirected simple geodetic graph in which isometrically embedded circuits have
length at most five, then all embedded circuits have diameter at most two.

While Theorem 3 falls well short of resolving Conjecture 2, and Theorem 4 is an incremental contribu-
tion to our understanding of geodetic graphs, we think our proof offers insight into the difficulties to be
overcome by any argument that takes a primarily graph-theoretic approach to a significant open problem
that has defied the efforts of many authors for more than three decades.

2. Definitions

2.1. Rewriting systems. A rewriting system is a pair (Σ, T ) that formalises the idea of working with
products from a set of allowable symbols, using a set of simplifying rules. The set Σ is a nonempty set,
called an alphabet; its elements are called letters. We write Σ∗ for the set of all finite words, including
the empty word λ, that can be made using letters from the alphabet. For any w ∈ Σ∗, we write |w|
for the length of w; λ is the unique word of length 0. The second element T is a possibly empty subset
of Σ∗ × Σ∗, called a set of rewriting rules. The set of rewriting rules determines a relation → (read
“immediately reduces to”) on the set Σ∗ by the following rule: a → b if a = uℓv, b = urv and (ℓ, r) ∈ T .

The reflexive and transitive closure of → is denoted
∗

→ (read “reduces to”). Thus the rewriting rules

specify allowable factor replacements, and u
∗

→ v if v can be obtained from u by a sequence of allowable
factor replacements. A word u ∈ Σ∗ is irreducible if no factor of u is the left-hand side of any rewriting

rule, and hence u
∗

→ v implies that u = v.

The reflexive, transitive and symmetric closure of → is called “equivalence”, and denoted
∗

↔. The

operation of concatenation of representatives is well defined on the set of
∗

↔-equivalence classes, and
hence defines a quotient monoid M = M(Σ, T ). We say that M is the monoid presented by (Σ, T ).
When the equivalence class of every letter (and hence also the equivalence class of every word) has an
inverse, the monoid M is a group and we say it is the group presented by (Σ, T ).

Example 5. Let Σ = {a,A} and let T = {(aA, λ), (Aa, λ)} . Then (Σ, T ) presents a group isomorphic
to Z, the infinite cyclic group.

Example 6. Let G be a finite group, let Σ = G \ {eG} and let

T =
{

(gh, k) | g, h, k ∈ Σ and gh =G k} ∪ {(gh, λ) | g, h ∈ Σ and g =G h−1
}

.

Then (Σ, T ) presents a group isomorphic to G.

A rewriting system (Σ, T ) is finite if Σ and T are finite sets, terminating (or noetherian) if there are
no infinite sequences of allowable factor replacements, and length-reducing if for all (ℓ, r) ∈ T we have
that |ℓ|> |r|. It is clear that length-reducing rewriting systems are terminating. A rewriting system is

called confluent if for all w, x, y ∈ Σ∗, if w
∗

→ x and w
∗

→ y then there exists z ∈ Σ∗ such that x
∗

→ z and

y
∗

→ z. A rewriting system is called convergent if it is terminating and confluent. The following lemma
(see, for example, [2, Theorem 1.13, p.13]) illustrates the utility of convergent rewriting systems.

Lemma 7. In a convergent rewriting system, rewriting any word in Σ∗ until you can rewrite no more is
an algorithm for producing the unique irreducible word (the normal form) representing the same element.

The following simple lemma is provided without proof. The corollary is easily proved by applying the
lemma to the rewriting systems exhibited in Examples 5 and 6.

Lemma 8 (Combining rewriting system to present free products). Suppose that (Σ1, T1), . . . , (Σn, Tn)
are rewriting systems presenting groups G1, . . . , Gn respectively and such that the alphabets Σ1, . . . ,Σn are
pairwise disjoint. The combined rewriting system (∪n

i=1Σi,∪
n
i=1Ti) presents the free product G1 ∗ · · ·∗Gn.

Corollary 9. If G is a plain group, then G admits presentation by a finite convergent length-reducing
rewriting system (Σ, T ) where Σ = Σ−1 and the left-hand side of every rule has length equal to two.

2.2. Graph theory. A simple undirected graph ∆ is a pair comprising a nonempty set V (∆), the set of
vertices, and a set of two-element subsets E(∆), the set of edges. The vertices that form an edge are said
to be adjacent. All graphs considered in this paper will be simple and undirected. For the remainder of
this section, fix a simple undirected graph ∆.

A path of length n in ∆ from a vertex u to a vertex v is a sequence of vertices u = u0, u1, . . . , un = v

with the property that ui−1 and ui are adjacent for i = 1, . . . , n. A path from u and v is called a geodesic
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if there is no shorter path in ∆ from u to v. If for each pair (u, v) of distinct vertices in ∆ there is at
least one path in ∆ from u to v, we say that ∆ is connected; if for each pair (u, v) of distinct vertices
in ∆ there exists a unique geodesic from u to v, we say that ∆ is geodetic. If ∆ is connected, there is a
natural metric d on the vertex set of ∆ such that d(u, v) is the length of a shortest path in ∆ from u to
v.

A circuit is a path u0, u1, . . . , un where u0 = un. A sub-path of a circuit u0, u1, . . . , un is either a path
ui, . . . uj where 0 ≤ i ≤ j ≤ n or a path ui, . . . , un, u1, . . . , uj where 1 ≤ j ≤ i ≤ n. A circuit u0, u1, . . . , un

is embedded if the vertices u0, . . . , un−1 are distinct. An embedded circuit in ∆ is isometrically embedded
if the subgraph comprising the vertices in the circuit and the edges between consecutive vertices is convex
in ∆; that is, d(ui, uj) = min{j − i, n + i − j} for all 0 ≤ i < j < n. We will use the acronym IEC for
isometrically embedded circuit. We note that if u, v are adjacent vertices in ∆, then the path u, v, u is an
isometrically embedded circuit of length two. We also note that in a geodetic graph, the unique geodesic
joining two vertices of an IEC is a subpath of the IEC.

A vertex v in ∆ is a cut vertex if ∆ is connected, but the graph obtained from ∆ by removing v and the
edges incident to v is disconnected. A graph is two-connected if it is connected and has no cut vertices.
The maximal two-connected subgraphs of a graph ∆ are called blocks. It follows immediately from the
maximality of blocks that any block B in ∆ is the subgraph of ∆ induced by the vertex set of B. In a
connected graph having at least two vertices, each block has at least two vertices. The following well-
known characterisation of blocks (see, for example, [14, Theorem 5.4.3, p. 87]) will be useful throughout
our argument.

Lemma 10. Let ∆ be a simple undirected graph. Two vertices u, v of ∆ lie in the same block if and only
if there exists an embedded circuit in ∆ that visits both.

Given a connected graph ∆, the block-cut tree T = T (∆) is a well-known construction which encodes
the block structure of ∆. The graph T has one vertex vx (of type I) for each vertex x of ∆, and one
vertex vB (of type II) for each block B of ∆; a type I vertex vx is adjacent in T to a type II vertex vB if
x is a vertex in the block B. For any connected graph ∆, the block-cut tree T (∆) is a tree (a connected
graph in which every embedded circuit has length at most two). See for example Figure 1.

Figure 1. Example of a graph and its block-cut tree. Type II vertices are solid black.

2.3. Key lemma and broomlike graphs. The following lemma and its proof are paraphrased from
[6, Proposition 6.3].

Lemma 11. Let Γ be a geodetic graph, and let u0, u1, . . . , un and u0, u
′

1, . . . , u
′

n be equal length geodesics
in Γ such that u1 6= u′

1 and d(un, u
′

n) = 1. Then

u0, u1, . . . , un, u
′

n, . . . , u
′

1, u0

is an IEC.

u0 = v0

v1
v2 vn−1

vn = un

v2n
v2n−1

vn+2

vn+1 = u′

n

Figure 2. Geodesics in Lemma 11, relabeled as in the proof.
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Proof. Since Γ is geodetic and u1 6= u′

1, the sets {u1, . . . , un} and {u′

1, . . . , u
′

n} are disjoint. It is convenient
to relabel the vertices v0, . . . , v2n so that

v0 = u0, . . . vn = un, vn+1 = u′

n, . . . , v2n = u′

1.

In what follows we shall consider the index i of a vertex vi modulo 2n+ 1.
Using induction, we shall prove the following statement S(i) for all i: The paths

vi, vi+1, . . . , vi+n and vi, vi−1, . . . , vi−n

are geodesics. The result follows immediately.
That S(0) holds is immediate from the hypotheses. Suppose that S(i) holds for some index i. It

follows that vi+1, . . . , vi+n is the unique geodesic from vi+1 to vi+n, because it is a subpath of the
geodesic vi, vi+1, . . . , vi+n. It follows immediately that d(vi+1, vi+n) = n− 1.

If d(vi+1, vi+n+1) < n, then there is a path of length at most n from vi to vi+n+1 = vi−n through vi+1.
This contradicts the fact that vi, vi−1, . . . , vi−n is the unique geodesic from vi to vi−n. It follows that
d(vi+1, vi+n+1) ≥ n, from which it follows that vi+1, vi+2, . . . , vi+n+1 is the unique geodesic from vi+1 to
vi+n+1.

If d(vi+1, vi+1−n) < n, then there is a path of length at most n from vi+1 to vi−n = vi+n+1 through
vi+1−n. This contradicts the fact, just shown, that vi+1, vi+2, . . . , vi+n+1 is the unique geodesic from vi+1

to vi+n+1. It follows that d(vi+1, vi+1−n) ≥ n, from which it follows that and vi+1, vi+1−1, . . . , vi+1−n is
the unique geodesic from vi+1 to vi+1−n. �

We make the following definition. Our vocabulary borrows from [3].

Definition 12 (s-broomlike). Let ∆ be a geodetic graph and s a positive integer. We say that ∆ is
s-broomlike if whenever a0, . . . , an−1, an, b is a path comprising distinct vertices such that a0, . . . , an is
a geodesic but a0, . . . , an, b is not, then the geodesic from a0 to b is a0, . . . , an−p, bn−p+1, . . . , bn = b for
p ≤ s and bn−p+1 6= an−p+1.

a0

a1

an−p

bn−p+1

an−p+1 an−1

bn−1

an

b

Figure 3. Illustrating the s-broomlike property (Definition 12).

Lemma 13. Let ∆ be a geodetic graph and s a positive integer. If every IEC in ∆ has length at most
2s+ 1, then ∆ is s-broomlike.

Proof. Let a0, . . . , an−1, an, b be a path comprising distinct vertices such that α = a0, . . . , an is a geodesic
but a0, . . . , an, b is not. Let β be the geodesic from a0 to b, and let τ = a0, . . . , an−p be the longest prefix
shared by α and β, where 0 < p ≤ n. Then α = τα′ and β = τβ′ with α′ = an−p, an−p+1 . . . , an and
β′ = an−p, bn−p+1, . . . , b both geodesics, and an−p+1 6= bn−p+1 for if not we could have made τ longer.

Since ∆ is geodetic, |α′|= |β′|, so bn = b. Then α′, β′ satisfy the hypothesis of Lemma 11, which means

an−p, an−p+1 . . . , an, b = bn, bn−1, . . . , bn−p+1, an−p

is an IEC, so its length is bounded by 2s+ 1, which means |β′|= |α′|= p ≤ s. �

2.4. Cayley graphs. An important and much studied connection between graph theory and group
theory is via the Cayley graph. In this article, we consider the undirected Cayley graph corresponding
to a group and a choice of finite generating set. For any group G let eG denote the identity element.

For a group G and a generating set Σ, the undirected Cayley graph of G with respect to Σ is the simple
undirected graph Γ = Γ(G,Σ) with vertex set G and in which distinct vertices g, h ∈ G are adjacent if
and only if g−1h ∈ Σ ∪ Σ−1. See for example Figure 4. If Σ is finite then Γ is locally finite. Each path
u0, u1, . . . , un in Γ is labeled by a word a1 . . . an ∈ (Σ∪Σ−1)∗ where ai =G u−1

i−1ui. A geodesic path in Γ

from eG to g is a shortest word in (Σ ∪ Σ−1)∗ spelling the group element g.
Note that by definition if x ∈ Σ and x =G eG then x will not appear as the label of any edge in

Γ(G,Σ). Also if x, y ∈ Σ and x =G y then the unique edge joining adjacent vertices g to gx in Γ(G,Σ)
may be labeled by either x or y.
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a

ab

ab2

eG

b

b2

aba

abab

abab2

ab2a

ab2ab

ab2ab2
ba

bab

bab2

b2a

b2ab

b2ab2

baba

bab2a

b2aba

b2ab2a abab2a

ababa

ab2aba

ab2ab2a

Figure 4. Part of the undirected Cayley graph Γ(G, {a, b}) for G = C2 ∗ C3 with
presentation 〈a, b | a2 = 1, b3 = 1〉.

Remark 14. Note that the undirected Cayley graph for the group G = C2 ∗ C3 shown in Figure 4 is
geodetic, and isometrically embedded circuits have length at most 3. If we consider G2n+1 = C2 ∗C2n+1

with presentation 〈a, b | a2 = 1, b2n+1 = 1〉 for arbitrarily n ∈ N, the undirected Cayley graph is geodetic
and has isometrically embedded circuits of length at most 2n + 1. This family of examples shows that
geodetic Cayley graphs may contain isometrically embedded circuits of any (odd) length. By Corollary 9
such groups are presented by finite convergent length-reducing rewriting systems.

3. Embedded circuits in geodetic graphs

In this section we prove Theorem 4. We start with the following lemma.

Lemma 15. Let Γ be a simple geodetic graph. If ρ is an embedded circuit of diameter exceeding two and
that has minimal length among all such embedded circuits in Γ, then ρ contains a geodesic sub-path of
length three.

Proof. Let ρ be an embedded circuit of diameter exceeding two and that has minimal length among all
embedded circuits of diameter exceeding two in Γ. Since ρ has diameter at least three, there exist vertices
1 and x visited by ρ such that d(1, x) = 3. We choose a basepoint (the vertex 1), an orientation of ρ, and
label the vertices visited by ρ in order

1, u1, u2, . . . , um = x = vn, vn−1, . . . , v1, 1.

For each vertex w ∈ Γ, we say that w is in level d(w, 1).
Note that m,n ≥ 3 since ρ has diameter at least three.

Claim 1: u2, v2 are in level 2.
First we note that, since ρ is an embedded circuit, the vertices 1, . . . um−1, v1, . . . , vn−1, x are distinct.
Since 1 and u1 are distinct, u1 is in level 1. Suppose that u2 is not in level 2. Then it is either in level 0
or 1, but u2 6= 1 so it must be in level 1. This implies that u2 is adjacent to 1, and omitting u1 from ρ

yields a shorter embedded circuit of diameter exceeding two. This contradicts the choice of ρ, and hence
proves that u2 is in level 2.

A symmetric argument shows that v2 is in level 2.
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1

u1

u2 um−1

x = um = vn

v1
v2

vn−1

Figure 5. The embedded circuit ρ in Lemma 15.

Since Γ is geodetic, u1 is the unique level-1 vertex adjacent to u2. It follows that u3 is in level 2 or
level 3. Similarly, v3 is in level 2 or level 3. The result is proved if we can show that u3 and v3 cannot
both be in level 2.

Claim 2: At least one of u3, v3 is in level 3.
Suppose that u3 and v3 are both in level 2. Let u′

1 be the unique vertex in level 1 that is adjacent to
u3; let v

′

1 be the unique vertex in level 1 that is adjacent to v3. If ρ does not visit u′

1, then replacing the
subpath 1, u1, u2, u3 by the path 1, u′

1, u3 yields a shorter embedded circuit of diameter at least three,
contradicting our choice of ρ. Therefore ρ visits u′

1. If u
′

1 6= v1, then either 1, v1, . . . u
′

1, 1 or 1, u1, . . . , u
′

1, 1
is an embedded circuit of diameter at least 3, contradicting our choice of ρ. Thus u′

1 = v1. By a symmetric
argument, we also have v′1 = u1, and we are now in the situation shown in Figure 6.

1

u1

v1

u2

v2

v3

u3

Figure 6. Case u′

1 = v1 and v′1 = u1 in Lemma 15.

Let ρ′ be obtained from ρ by replacing 1, u1, u2, u3 by 1, v1, u3, and replacing v3, v2, v1, 1 by v3, u1, 1.
Since ρ′ visits only vertices visited by ρ, and 1 is the only vertex visited twice, we know that ρ′ is an
embedded circuit which is shorter than ρ. Since the only vertices from ρ omitted were in levels 1 and 2,
we know that ρ′ still visits a vertex in level 3, and hence it still has diameter at least 3, contradicting our
choice of ρ. �

We will make use of the following fact due to Stemple.

Lemma 16 ([18, Theorem 3.3]). If a geodetic graph contains an embedded circuit

w0, w1, w2, w3, w0

of length four, then the induced subgraph on these vertices is a complete graph.

Next we have the following technical result.

Lemma 17. Let Γ be a geodetic graph in which any IEC has at most five edges. Suppose that ρ is an
embedded circuit in Γ of diameter at least three, and ρ has minimal length among all such embedded
circuits. Without loss of generality (using Lemma 15), we may label the vertices of ρ such that one
traversal of ρ reads

1 = u0, u1, . . . , um = v3, v2, v1, 1

and 1, v1, v2, v3 is a geodesic subpath. Then m = 5, d(1, u1) = 1, d(1, u2) = d(1, u3) = 2, d(1, u4) = 3 and
d(u3, v1) = 1.

Proof. As before, we say that a vertex w is in level d(w, 1). Following the proof of Lemma 15, we have
that u1, v1 are in level 1, u2, v2 are in level 2, and u3, v3 are in level 2 or 3 but not both in level 2. We
assumed without loss of generality in the hypothesis of this lemma that v3 that is in level 3.

Claim 1: u3 is in level 2 and d(v1, u3) = 1.
Since 1, v1, v2, v3 is a geodesic and Γ is geodetic, we have m ≥ 4, and the path 1, u1, . . . , um is not a



REWRITING SYSTEMS, PLAIN GROUPS, AND GEODETIC GRAPHS 7

1

u1

u2

u3

u4

v1

v2

v3 = u5

Figure 7. Conclusion of Lemma 17.

geodesic. So, there exists a unique i ≤ m such that 1, u1, u2, . . . , ui−1 is geodesic and 1, u1, u2, . . . , ui is
not a geodesic. It follows that ui−1 and ui are both in level i− 1. Since u1 is in level 1 and u2 is in level
2, we know that i ≥ 3.

By Lemma 13, since 1, u1, . . . , ui−1 is geodesic and 1, u1, . . . , ui−1, ui is not geodesic then by the 2-
broomlike property there is either ui−2 to ui are adjacent, or there is a geodesic from ui−3 to ui of length
2. If ui−2 and ui are adjacent, we could omit the vertex ui−1 from the path ρ and still have an embedded
circuit that visits both 1 and um = v3 — a contradiction to our choice of ρ. Thus there is a geodesic from
ui−3 to ui of length 2. It follows that there is a vertex x 6= uj for 0 ≤ j ≤ i such that 1, . . . , ui−3, x, ui is
a geodesic. See Figure 8.

1

u1

ui−3

x ui

ui−2 ui−1

Figure 8. Using the 2-broomlike property in the proof of Claim 1 of Lemma 17.

Observe that replacing in ρ the subpath ui−3, ui−2, ui−1, ui with ui−3, x, ui yields a closed path ρ′ that
visits both 1 and um = v3. The minimality of the length of ρ implies that ρ′ is not an embedded circuit;
that is, x must be equal to one of the vertices of ρ′. If x = uj for some i+1 ≤ j ≤ m, then we can remove
a cycle from ρ′ and construct a shorter embedded circuit that visits both 1 and v3. It follows that either
x = v1 or x = v2. Suppose x = v2. Then x is in level 2 and so 1, u1, x is a geodesic, as is 1, v1, x, and
since u1 6= v1 we contradict that Γ is geodetic. Hence we have that x = v1. This means that i = 3 and
u3 is in level 2, and d(v1, u3) = 1, as required.

Claim 2: m ≥ 5.
We know that m ≥ 4. If m = 4 then v1, u3, u4 and v1, v2, v3 are two different geodesics between the same
endpoints, contradicting geodecity. Thus m ≥ 5.

Claim 3: u4 is in level 3.
Since Γ is geodetic, v1 is the only vertex in level 1 that is adjacent to u3. Since m ≥ 4 and u4 6= v1
(because ρ is an embedded circuit), we have that u4 is in level 2 or level 3. Suppose that u4 is in level 2,
and let p denote the unique vertex in level 1 that is adjacent to u4.

Now either p is a vertex of ρ, or not. If it does not lie on ρ then we can replace the subpath
1, u1, u2, u3, u4 by 1, p, u4 and obtain a shorter embedded circuit which visits 1 and v3, contradicting the
minimality of ρ.

Therefore p is a vertex of ρ.

Case 1: p = v1.
The path 1, u1, u2, u3, u4, v1, 1 is an embedded circuit of length 6. Call this path τ . Since u1, u4 are distinct
we have 1 ≤ d(u1, u4) ≤ 3. The paths u1, u2, u3, u4 and u1, 1, v1, u4 are both length 3, so d(u1, u4) 6= 3 or
the graph is not geodetic. If d(u1, u4) = 1 then we can replace in ρ the path u1, u2, u3, u4 by u1, u4 and
find a shorter embedded circuit of diameter exceeding 2. Thus d(u1, u4) = 2.
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1

u1

u2

u3

u4

v1

v2

v3

Figure 9. Claim 3 in the proof of Lemma 17: assume u4 is in level 2.

It follows that there must be a vertex t that is not visited by τ and is adjacent to both u1 and u4.
Since t does not lie on τ , t 6= v1, and since u4 is in level 2, t is in level 2 (if it were in level 1 we would
have two geodesics to u4 contradicting geodecity). Since t is adjacent to u1 and v1 6= u1, if t = v2 we
would have two geodesics to v2, thus t 6= v2. It follows that by replacing in ρ the subpath 1, u1, u2, u3, u4

by the path 1, u1, t, u4, and removing a subpath that is a cycle if necessary, we may construct a shorter
embedded circuit that visits both 1 and v3. This contradiction proves that this case is impossible.

Case 2: p = u1.
Omitting u2 and u3 from ρ would yield a shorter embedded circuit that still visits 1 and v3. This
contradiction proves that this case is impossible.

Case 3: u1 6= p 6= v1.
In this case p = uj for 5 ≤ j < m since v1, v2, v3 are all spoken for (only v1 is in level 1).

Then the path 1, p = uj , uj+1, . . . , um = v3, v2, v1, 1 is an embedded circuit passing 1 and v3 so has
diameter 3 and is shorter than ρ, a contradiction.

Since all cases are impossible, we conclude that u4 is not at level 2. Hence u4 is at level 3.

Claim 4: u5 is at level 3.
Since u3 is the unique vertex in level 2 adjacent to u4, and u5 6= u3, we have that u5 is not in level 2.

Suppose that u5 is in level 4, and so α = 1, v1, u3, u4, u5 is a geodesic. Since α is geodesic and
1, v1, u3, u4, u5, . . . , um is not a geodesic, there exists a unique integer i ≥ 5 so that 1, v1, u3, u4, u5, . . . , ui

is geodesic and 1, v1, u3, u4, u5, . . . , ui, ui+1 is not geodesic, and ui and ui+1 are both in level i− 1.
If ui−1, ui, ui+1 is not geodesic, omitting ui from ρ gives a shorter isometrically embedded circuit visit-

ing 1 and v3, contradiction. So ui−1, ui, ui+1 is geodesic. By Lemma 13, we must have ui−2, ui−1, ui, ui+1

is not geodesic and there is a geodesic path ui−2, z, ui+1 where ui−2 6= z 6= ui−1.
Note that by construction z is in level i− 2 ≥ 3, so z cannot equal v1, v2.
If z = v3 = um then 1, u1, . . . , ui−2, z, v2, v1, 1 is a shorter isometrically embedded circuit that visits 1

and v3, a contradiction. Also note that z 6= u6 since i ≥ 5 and ui+1 6= z.
It follows that if z = uj then 6 < j ≤ m − 1, and replacing the subpath ui−2, ui−1, ui, ui+1 by

ui−2, z, ui+1 and possibly removing a cycle, we get a shorter embedded circuit than ρ that visits 1 and
v3 = um.

This shows that z is not a vertex of ρ. Then replacing ui−2, ui−1, ui, ui+1 by ui−2, z, ui+1 again gives
a shorter embedded circuit than ρ that visits 1 and v3.

This contradiction proves that u5 is in level 3.

Claim 5: m = 5.
We note that u5 is not adjacent to u2 or u3, otherwise we could omit u3, u4 or u4 respectively from ρ

and have a shorter embedded circuit that visits both 1 and v3. Since u5 is in level 3, we have v1, u3, u4 is
a geodesic and v1, u3, u4, u5 is not geodesic, and u3, u5 is not an edge so Lemma 13 implies there exists
a vertex q adjacent to both v1 and u5 such that u2 6= q 6= u3. Therefore 1, u1, u2, u3, u4, u5, q, v1, 1 is an
embedded circuit visiting 1 and a vertex at level 3, so by the minimality of ρ we must have q = v2 and
u5 = v3. �

We can now prove Theorem 4.
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Proof of Theorem 4. Suppose that there exists in Γ an embedded circuit of diameter exceeding two. By
Lemma 17, there exists an embedded circuit ρ labeled

1, u1, u2, u3, u4, v3, v2, v1, 1

with u1 at level 1, u2, u3 at level 2, u4 at level 3 and d(u3, v1) = 1, and 1, v1, v2, v3 is geodesic, as
illustrated in Figure 7. Let ρ′ be the embedded circuit that begins at v3 and visits the same vertices as
ρ, but in reverse order. That is, ρ′ visits vertices in the following order

v3, u4, u3, u2, u1, 1, v1, v2, v3.

Now ρ′ is also a minimal length embedded circuit with diameter exceeding two, so Lemma 17 applies to
ρ′ as well (with u2 playing the role of u3 and v2 the role of v1), which gives that d(u2, v2) = 1.

1

u1

u2

v1

u3

u4

v2
v3

ρ′

Figure 10. The path ρ′ which starts at v3 and runs in the reverse direction to ρ in the
proof of Theorem 4.

It follows that u2, v2, v1, u3, u2 is an embedded circuit of length 4. By Lemma 16, we must have that
u2 and v1 are adjacent. This contradicts the fact that u1 is the unique level-1 vertex adjacent to u2. This
contradiction proves that there are no embedded circuits in Γ with diameter exceeding two. �

4. Plain groups, blocks and embedded circuits

Bass-Serre theory [10, 17] tells us that a group G is plain if and only if G acts on a locally-finite tree,
with a compact quotient, finite vertex stabilisers, trivial edges stabilisers and no edge inversions. See for
example [17, Theorem 13].

Another useful characterisation of plain groups then follows from the block-cut tree associated to the
graph, described in Section 2.2.

For a finite set of vertices S in a graph Γ, the diameter of S is the maximum distance in Γ between
any pair of vertices in S. Haring-Smith [9] proved the following result in 1983. We provide a short proof
that uses Bass-Serre theory and the block-cut tree.

Theorem 18 (A characterisation of plain groups). For a group G and a positive integer s, the following
are equivalent:

(1) G admits a finite generating set Σ such that, in the associated undirected Cayley graph Γ(G,Σ),
the diameter of any embedded circuit is at most s.

(2) G admits a finite generating set Σ such that, in the associated undirected Cayley graph Γ(G,Σ),
the diameter of any block is at most s.

(3) G is a plain group.

Proof. 1. ⇔ 2.: Follows immediately from Lemma 10.
3. ⇒ 2.: Suppose that G is a plain group. Then G is a free product of m finite groups G1, . . . , Gm

and n copies of the infinite cyclic group C1, . . . , Cn. Let Σ be a set comprising each nontrivial element
of each finite factor Gi, and one generator ai and its inverse Ai for each infinite cyclic factor Ci. In the
Cayley graph Γ = Γ(G,Σ), the only blocks containing the identity element eG are the subgraphs induced
by Γ(Gi, Gi \ {eGi

}) for 1 ≤ i ≤ m (and these are complete graphs), and subgraphs induced by (eG, ai)
for 1 ≤ i ≤ n. Thus all blocks containing eG have diameter 1. Since Γ is vertex-transitive, all blocks in
Γ have diameter one (and hence all blocks in Γ have diameter at most s).

2. ⇒ 3.: Suppose that G admits a finite generating set Σ such that in the associated Cayley graph
Γ = Γ(G,Σ) all blocks have diameter at most s. Let T denote the block-cut tree of Γ, as described in
Section 2.2. The natural left-action of G on Γ induces a left-action of G on T . Since the action of G on
Γ is vertex transitive, the action of G on T is transitive on the set of type I vertices and there are finitely
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many orbits of type II vertices. It follows that the action of G on T is cocompact. In the action of G
on Γ, vertices have trivial stabilisers. It follows that in the action of G on T , type I vertices have trivial
stabilisers, type II vertices have finite stabilisers (because blocks in Γ comprise finitely many vertices),
edges are not inverted (each edge includes a type I and type II vertex which cannot be interchanged) and
edge stabilisers are trivial. Since G acts on T , a locally-finite tree, with finite vertex stabilisers, trivial
edges stabilisers and no edge inversions, by [17, Theorem 13] G is a plain group. �

If a rewriting system (Σ, T ) presents a group G, then properties of the rewriting system determine
properties of the Cayley graph Γ = Γ(G,Σ).

Lemma 19. Let (Σ, T ) be a finite convergent length-reducing rewriting system such that Σ = Σ−1 and
(Σ, T ) presents a group G. Let Γ denote the undirected Cayley graph of Γ with respect to Σ. Then

(1) Γ is geodetic;
(2) If u0, u1, . . . , um−1, um = u0 is an IEC in Γ of length m > 2, then m = 2n+ 1 for some positive

integer n and (x1 . . . xn+1, x
−1
m . . . x−1

n+2) ∈ T where xi =G u−1
i−1ui ∈ Σ for 1 ≤ i ≤ m.

Proof. If u0, . . . , un and v0, . . . , vn are two geodesics in Γ(G,Σ) with u0 = v0, un = vn, then the words

u = (u−1
0 u1) . . . (u

−1
n−1un) ∈ Σ∗ and v = (v−1

0 v1) . . . (v
−1
n−1vn) ∈ Σ∗

are irreducible words representing the same group element. By Lemma 7, u = v, which establishes the
first claim.

If u0, u1, . . . , um−1, um = u0 is an IEC in Γ of length m > 2, set xi =G u−1
i−1ui ∈ Σ for 1 ≤ i ≤ m.

If m = 2n then u0, . . . , un and u0, um−1, . . . , un are two geodesics for the same element, and since the
circuit is embedded and m > 2, so n > 1, we have u1 6= um−1, so a, b are distinct words, which contradicts
the first claim. Thus m = 2n+ 1.

Now let a = x1 . . . xn+1 and b = x−1
m . . . x−1

n+2. Then a =G b. The word b is geodesic since it is a
subpath of length n of an IEC of length 2n + 1. The word a is not geodesic so some rewrite rule must
apply. We have a = uℓv with (ℓ, r) ∈ T , |r|< |ℓ| and a =G urv. If |u|+|v|> 0, then ℓ is geodesic since it
is a subpath of length at most n of an IEC of length 2n+ 1. Then ℓ 6=G r for any r ∈ Σ∗ with |r|< |ℓ|.
Hence u = v = λ and a = ℓ. But then r = b because b, being geodesic and shorter than a by one letter,
is the unique word r with |r|< |a| and r =G a.

�

We are now ready to prove the main theorem.

Proof of Theorem 3. Corollary 9 gives one direction.
Suppose that G admits presentation by a finite convergent length-reducing rewriting system (Σ, T )

such that Σ = Σ−1 and the left-hand side of every rule has length at most three. Let Γ be the undirected
Cayley graph of G with respect to Σ. By Lemma 19, Γ is geodetic and IECs have length at most five.
Since Γ satisfies the hypotheses of Theorem 4, all embedded circuits in Γ have diameter at most two. By
Theorem 18, G is plain. �
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