The Weighted k-Center Problem in Trees for
Fixed k

Binay Bhattacharya
Simon Fraser University, Burnaby, Canada
binay@Qcs.sfu.ca

Sandip Das
Indian Statistical Institute, Kolkata, India
sandipdas@isical.ac.in

Subhadeep Ranjan Dev
Indian Statistical Institute, Kolkata, India
srdev_r@isical.ac.in

—— Abstract

We present a linear time algorithm for the weighted k-center problem on trees for fixed k. This
partially settles the long-standing question about the lower bound on the time complexity of the
problem. The current time complexity of the best-known algorithm for the problem with k as part
of the input is O(nlogn) by Wang et al. [15]. Whether an O(n) time algorithm exists for arbitrary
k is still open.

2012 ACM Subject Classification Theory of computation — Facility location and clustering; Theory
of computation — Network optimization

Keywords and phrases facility location, prune and search, parametric search, k-center problem,
conditional k-center problem, trees

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.27

1 Introduction

In this paper, we study a popular facility location problem on graphs called the weighted
k-center problem. The sites are the vertices of the graph and have positive weights associated
with them. The edges of the graph have positive lengths and the facilities can be placed
anywhere on them. The weighted distance between a facility and a site is the length of
the shortest path between them times the weight of the site. Our objective is to place k
facilities on the graph such that the maximum weighted distance of a site to its closest facility
is minimized.

Kariv and Hakimi [9] in 1979 showed that the weighted k-center problem on general
graphs is NP-hard. In fact, they proved a much stronger statement that finding the weighted
k-center is NP-hard for planar graphs with maximum vertex degree 3. On the other hand in
the same paper, they gave an O(n?logn) time algorithm for the problem if the underlying
graph is a tree with n vertices. Later improvements in time complexity were done by Jeger
and Kariv [8] to O(knlogn), and Megiddo and Tamir [12] to O(nlog?n) using Cole’s [6]
optimization. Very recently in 2016 Banik et. al. [1] gave an O(nlogn + klog® nlog(n/k))
time algorithm for the problem which was then improved to O(nlogn) by Wang and Zhang
[15] in 2018. Wang and Zang’s solution is the current state of the art for the weighted
k-center problem in trees for arbitrary value of k.

For k = 1 the problem had already been solved by Megiddo [11] in O(n) time in 1983.
In 2006 Ben-Moshe et al. [2] showed that the 2-center problem can also be computed in
O(n) time. In the same paper, they gave an O(nlogn) time algorithm for the weighted
k-center problem when k is 3 or 4. The problem has also been studied in the real line setting

© Binay Bhattacharya, Sandip Das, and Subhadeep Ranjan Dev;
37 licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).

Editors: Pinyan Lu and Guochuan Zhang; Article No. 27; pp. 27:1-27:11

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:binay@cs.sfu.ca
mailto:sandipdas@isical.ac.in
mailto:srdev_r@isical.ac.in
https://doi.org/10.4230/LIPIcs.ISAAC.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

The Weighted k-Center Problem in Trees for Fixed k

where the sites and facilities are constrained to be placed on a given line. In this setting
Bhattacharya et al. [5] gave an O(n) time solution for the weighted k-center problem for any
fixed k. For the unweighted case, the k-center problem on trees has been solved optimally by
Frederickson [7] in O(n) time. Karmakar et al. [10] studied some constrained version of this
problem in R? and gave algorithms which are near linear in n.

In this paper, we study the weighted k-center problem on trees for any constant k
and present an O(n) time solution for it. Our algorithm generalises the technique used in
Bhattacharya et al. [4] where they give a linear time algorithm for finding the k-step fitting
function of n points in R2. A different (unpublished) linear time solution to the weighted
k-center problem was also suggested in 2008 by Shi [14]. The algorithm presented in this
paper is simpler and is based on the fact that a generalization of Megiddo’s [11] approach
applies suitably to our problem. This enables us to prune vertices from a subgraph of the
tree which in turn produces a linear time algorithm.

The rest of the paper is organized as follows. In Section 2 we define the weighted
k-center problem and the conditional weighted k-center problem. We also briefly mention
the r-feasibility test. In Section 3 we introduce the notion of a big-component of a tree and
propose a linear time algorithm to find it. In Section 4 we show how to prune the vertices of
the big-component in order to reduce the size of the original tree. In Section 5 we present our
linear time algorithm for the conditional weighted k-center problem which is a generalisation
of the weighted k-center problem. We then conclude in Section 6.

2 Preliminaries

2.1 Problem Definition

Let T be a tree with vertex set V(T') and edge set E(T). Also, let the number of vertices in
T, denoted by |T'|, be n. Each vertex v € V(T) is associated with a positive weight w(v) and
each edge e € F(T) is associated with a positive length I(e). To define the notion of points
on an edge e, we assume e to be a line segment with length [(e). The distance between two
points z and y in e is proportional to the portion of e in between x and y with respect to
l(e). A(T) denotes the set of all points on all edges of T

The distance between any two points z,y € A(T), denoted by I(z,y), is the sum of
the lengths of the edges and the partial edges in the unique path between x and y in T.
The weighted distance between a vertex v € V(T) and a point € A(T) is defined as
d(z,v) = w(v) - l(x,v). We extend this definition to include the weighted distance between a
set of points X C A(T) and a set of vertices V' C V(T') which is given by the expression

’ .

d(X, V") = max{min{d(z, v)}}

The objective of the weighted k-center problem on T is to find a set of points X C A(T)
with | X| = k such that d(X, V(7)) is minimum. The points in X are called centers.

We solve the weighted k-center problem by solving a more general problem on trees which
is called the conditional weighted (p, S)-center problem or the (p, S)-center problem in short.
The problem was first introduced in Minieka [13]. Here, S C A(T) is the set of centers already
placed in T'. We call S the set of old centers. The objective of the (p, S)-center problem is to
find a set of points X C A(T) with |X| = p such that d(X U S, V(T)) is minimized. We call
X the set of new centers. Observe that the solution to the (p,.S)-center problem is also the
solution to the weighted k-center problem, when S = @ and p = k.

B. Bhattacharya, S. Das, and S. R. Dev

2.2 The r-feasibility test

Let X be an optimal solution to the (p, S)-center problem in T. The optimal radius r* is

defined as the maximum weighted distance of a vertex to its closest center in X U S i.e.

r*=d(X US,V(T)). A point z € A(T) is said to cover a vertex v € V(T') with radius r if
d(z,v) < r. Similarly, we say that a set of centers X’ covers a set of vertices V/ with radius
r if d(X’, V') <r. If no radius is mentioned, we assume r to be r*.

The r-feasibility test for the (p, S)-center problem on T takes as input a radius r and
returns (a) feasible if r > r* and, (b) infeasible if r < r*.

The algorithm was first presented by Kariv and Hakimi [9] in 1979 for the weighted
k-center problem. The feasibility test for the (p, S)-center problem follows the same principle
and is described in Shi [14]. The feasibility test takes O(n) time.

2.3 Our Approach

The solution to the (p,S)-center problem presented here is recursive in nature. We first
introduce the notion of a big-component of T. For a suitable constant ¢, a big-component
is a subtree T' of T' with at least vertices. Note that 7'\ 7" can be disconnected. It
has the additional property that for some optimal solution X to the (p, S)-center problem
the vertices of the big-component are “covered” by at most one new center from X. This
property enables us to use the prune and search technique introduced by Megiddo [11], and

generalized by Shi [14], to prune a constant fraction of the vertices of the big-component.
The pruning step leads to a new tree T’ with a fraction of the number of vertices in T.

We recursively perform the last two steps of finding a big-component and then pruning its
vertices on these new tree 7" and the trees that follow until the size of the tree falls below a
certain threshold. We then use any brute force technique to calculate the (p, S)-center in
this final tree. The pruning step guarantees that the (p, S)-center solution of this reduced
tree is also the (p, S)-center solution to the original tree T

3 Big-Component

In this section we define a big-component and provide linear time algorithm to find it. Let
V C V(T) be such that the subgraph of T induced by V is connected. We call this induced
subgraph an induced subtree of T. Let V,,(v) = {w € V(T) | the path from v to w passes

through u}; then T, (v) denotes the subtree induced by V,,(v) and rooted at u (see Figure 1).

Let N(v) denote the neighbouring vertices of v in T, and let N7/ (v) denotes the neighbouring
vertices of v in the subtree T" of T. For m € Z*, [m] denotes the sequence {1,2,...,m}.

Figure 1 T}, (v) is a subtree of T rooted at vertex uw and not containing v.

27:3

ISAAC 2019

27:4

The Weighted k-Center Problem in Trees for Fixed k

We now introduce the notion of a big-component of T' with respect to the (p, .S)-center
problem. Here, k = p + |5].

» Definition 1. Let B be a subtree of T with at least i vertices and let Sg C S be the old
centers contained in it. B is a big-component of T with respect to the (p,S)-center problem
if for some solution X to the problem all vertices of B are covered by either (a) Sg or (b) a
single new center x € X.

If B satisfies (a) we call B a type-a big-component and if it satisfies (b) we call it a type-b
big-component.

In order to find a big-component, we first find a sequence of “candidate subtrees” of
T. On of these candidate subtrees is a big-component of T. We search the subtrees in the
candidate sequence sequentially until one of them identifies as a big-component.

3.1 Candidate Sequence

» Definition 2. A subtree C of T is a candidate subtree of T if

1. <0<,
2. C is connected to the rest of T i.e. T\ C by a single vertex

The vertex through which C is connected to the rest of T is called the exit vertex of C
and is denoted by v(C).

Note that removing all vertices of C except v(C') from T still keeps the rest of T i.e.
T\ CU{v(C)} connected.

U2

CP)
Uy

U1

Cl \ us

Cs

Figure 2 C; with exit vertex v; is a candidate subtree of T" but C2 is not. Here n = 18 and
k=2.

Let Ty =T. For i =2,3,... we define T; to be the tree generated by removing all vertices
of C;_1 except v(C;_1) from T;_;. Here, C; is a candidate subtree of T;.

» Definition 3. Let (C;)7, = (C1,Cs,...,Cp,) be a sequence of m subtrees of T such that
C; is a candidate subtree of T;. We call this sequence a candidate sequence of T.

We now describe an algorithm to find a candidate sequence of T with respect to the
(p, S)-center problem. Here we assume k << n.

» Algorithm 1.
Input: Tree T.
Output: A candidate sequence of T

B. Bhattacharya, S. Das, and S. R. Dev

u u
v(C1) v(Ch)
C1
(a) 1. (b) T».

Figure 3 T is formed by deleting all vertices of C1 except v(Ch).

U
T

NE

\Ui
s |\

Ch

Cs

Figure 4 First () is reported as a candidate subtree, then C2 and then Cs.

Step 1: We consider 7" = T and assume it to be rooted at an arbitrary vertex u. We traverse
the vertices of T” by first visiting the leaf vertices of 7" and then visiting any vertex
whose all children have already been visited. For each vertex visited we perform
Step 2 until 77| < .

Step 2: a. Let v be the current vertex in our traversal. All vertices in 7 (u) have already
been visited. If [T} (u)| < 5 we mark v as visited and continue to the next vertex
in our traversal. Otherwise, if |1} (u)| > 53 we do the next step.

b. Let v1,v2,...,v, be the children of v and let ¢ be the smallest integer such
that the subtree C' = (J7_, T}, (v) has at least i vertices. Since for each child
vi, [T, (v)| < 55, we have that [C] < 7. We report C as a candidate subtree with
v(C) = v and update T" by deleting all vertices of C' except v(C). We repeat
Step 2b on v until [T} (u)| < 35

The sequence of candidate subtrees found by Algorithm 1 is a candidate sequence of T'.

For an example see Figure 4.

» Time Complexity. Since Algorithm 1 performs a single traversal of T, it takes O(n) time.

» Observation 1. The length of the candidate sequence generated by Algorithm 1 is at least
k and at most 2k.

27:5

ISAAC 2019

27:6

The Weighted k-Center Problem in Trees for Fixed k

Proof. The maximum size of a candidate subtree is [%]. Our algorithm stops only when
the size of T; falls below o+. Therefore, the length of the candidate sequence is at least

2k
k. Similarly, the minimum size of a candidate subtree is [5] and hence the length of the
candidate sequence is at most 2k. <

The next lemma justifies the need of finding a candidate sequence in order to find a
big-component of T.

» Lemma 4. Let (C;)", be a candidate sequence generated by Algorithm 1. Then there
exists a C; € (C;)72y which is a big-component of T.

Proof. Let X be any optimal solution to the (p,.S)-center problem. The covering of X U S
partitions 7" into k subtrees. These subtrees exclude exactly k — 1 edges of T' from it. Since,
m > k, there exists at least one candidate subtree C; which contains none of these k — 1
edges. Then, by definition, this C; is a big-component. |

3.2 The Big-Component Algorithm

We now present an algorithm to find a big-component B in 7. The algorithm sequentially
examines whether a subtree in the candidate sequence of T' is a big-component. The algorithm
is as follows.

» Algorithm 2.

Input: Tree T, integer p and old centers S.

Output: A big-component B of T' with respect to the (p, S)-center problem.

Step 1: Compute a candidate sequence (C;)™, of T using Algorithm 1. For each candidate
subtree C;, 1 =1,2,...,k — 1(k < m) we do Step 2 and Step 3.

Step 2: Let C; be the current candidate subtree. Let (C’ip>f,:1 be the longest subsequence of

(Ci)IZ] such that the subtree Cj = C; U (U;=1 C;,) is connected. Note that Cj can

be computed using a standard tree traversal. See Figure 5 for an example. Also let

§j be the old centers in C’j.

Step 3: We define p; to be the number of candidate subtrees in éj which do not contain any
old centers. We do the following;:

a. If p; < p, we compute the (p;, S'j)—center on C'j and set 7; to be its radius. We do
an r;-feasibility test on 7' with respect to the (p, S)-center problem. We declare
C; to be a big-component and stop if the feasibility test returns infeasible.

b. If p; > p, we compute the (0, S\ S;)-center in (T'\ C;) U {v(C;)} and set 7 to be
its radius. Do an r;-feasibility test on 7. We declare C; to be a big-component
and stop if the feasibility test returns feasible.

Step 4: If no subtree of (Ci>f;11 has been returned as a big-component in the above steps
then we return C} as a big-component of T. <

» Lemma 5. The candidate subtree returned by Algorithm 2 is a big component of T.

Proof. Consider a candidate subtree C'; and suppose it is not returned as a big-component.
Then for the case p; < p the r;-feasibility test returned feasible. Here, we assume r; > r*
since otherwise we have an optimal solution. This implies that in some optimal solution
to the (p,S)-center problem on T, p; new centers along with the old centers §j are not
enough to cover C;. For the case p; > p, the rj-feasibility test returned infeasible. Which
implies that in the optimal case the old centers S\ S’j have to cover more than the vertices

B. Bhattacharya, S. Das, and S. R. Dev

/ e

Cs

a |

Cq

Cs

Figure 5 <Ci>?:1 is a candidate sequence of T'. Cy=C4 U (C1 U C3). Note that we have already
tested C1,C2 and C3 for big-component.

in T\ C; U {v(C;)}. This in turn implies that p new centers along with S; are not sufficient
to cover C’j.

By a similar argument we can show that if C; is returned as a big-component then at most
min{p, p;} centers are enough to cover the vertices in éj. And since all previous candidate
subtrees C;,¢ € [j — 1] were not returned as big-components, it implies that C; is either

covered by the old centers in C; or exactly one new center (if C; contains no old centers).

Therefore C}, by definition is a big-component.

Now, if C} was returned as a big-component then, to cover all vertices in Ui-:ll C; at
least k — 1 centers (old and new) are necessary. This in turn implies that Cj, is completely
covered by just 1 center, which again by definition is a big-component. |

» Time Complexity. Step 1 takes O(n) time as shown in Section 3.1. Step 2 and step 3
iterates at most k — 1 times. On the j** iteration, the time taken to execute theses two steps
is Tyotat(p — 1,7 %) +O(n). Here, Tiosa1(p,n) is the time required to compute the (p, S)-center
problem on a tree with n vertices. Therefore the time taken by Algorithm 2 is given by the
following recurrence.

S8 Thotar(p — 1,5%) + O(kn) ,p>1

Tl = {om) =0

In this section we proposed an algorithm to find a big-component of 7. In the rest
of the paper, we present an algorithm to prune a constant fraction of vertices from the
big-component without affecting solution of the (p, S)-center in T'.

4 Vertex Pruning from a Big-Component

Pruning a vertex is analogous to deleting a vertex but with certain differences. While pruning
a vertex v we take actions based on the degree of v.

If v is a degree 1 vertex and its incident edge does not contain an old center from S, we
simply delete the vertex and its edge from 7. Otherwise, v is not deleted. If v is a degree 2
vertex with neighbours v; and v, joined by edges e; and es then, we delete v, e; and e; and

27:7

ISAAC 2019

27:8

The Weighted k-Center Problem in Trees for Fixed k

join v; and ve with a new edge e with I(e) = I(e1) + l(e2). If e; and es had old centers, we
place them on e at appropriate locations. If v is a vertex of degree 3 or more then we do
not immediately delete it; instead we flag it for later deletion. The flagged vertices do not
contribute to the size of the candidate subtree or the big-component. But, they do contribute
when considering the degree of other vertices to be pruned. When we delete a vertex v, we
also recursively delete any adjacent flagged vertex whose current degree has fallen below 3.

Let T’ be the tree generated after pruning some vertices from 7. T can contain vertices
of T' which have been pruned out but have not been deleted. We have the following lemma.

» Observation 2. The number of vertices in T’ is proportional to the number of unpruned
degree 1 and degree 2 vertices of T in T'.

Proof. Let n; be the number of degree 1 vertices, ns the number of degree 2 vertices and
ng the number of degree 3 or more vertices of T7”. If n is the total number of vertices in T’
then n = ny 4+ no + n3. Since, the number of leaf vertices in a tree is always greater than
the number of degree 3 or more vertices, n; > ng. Therefore n = ny + ny + n3 < 2nq + no.
Here, no does not count any pruned vertex of 7" which are still present in 7”. The number of
degree 1 vertices of T' which have been pruned and yet have not been deleted from T” and
which are counted in n; is at most k, a constant. Therefore, the claim holds. <

We are now ready to present an algorithm which prunes a constant fraction of the vertices
of a big-component B without affecting the optimal solution to the (p, S)-center problem.

» Algorithm 3.
Input: Tree T, integer p, old centers S and a big-component B.
Output: Prune a constant fraction of vertices of B.

Step 1: If B has old centers present in it then B is a type-a big-component. Let vgq, € V(B)
be a vertex such that d(Sp,vfar) = d(Sp,V(B)). We prune all vertices in V(B)
except Vg and stop.

Else B is a type-b big-component and we proceed to the next step.

Step 2: We find a centroid v, (a centroid is a vertex of tree whose removal splits the tree into
forest such that all trees in the forest have size at most half the original tree. Such a
vertex can be found out in time linear to the number of vertices) of B and compute
the (p — 1, S U {v.})-center in T. Let the set of new centers be X and let rp,, =
d(XUSU{v.}, V(T)). Let Vyqr be the set of vertices of T' at a weighted distance
T'fqr from their closest center i.e. Viqr = {v; € V(T) | d(X U S U{vc}, vi) = rfar}-

Step 3: If the vertices in V4, lie in more than one subtree T, (v.), v; € N(v.) then moving
the center placed at v, away from the vertex in any direction will only increase
the covering radius. Therefore, we can conclude that rfq, = r* and X U {v.} is an
optimal (p, S)-center solution of T. Let Viar € Viqr be any arbitrary vertex. We
prune all vertices in Viq, \ {vfqr} and stop.

Else Vjqr is a subset of the vertices in a single subtree (say) T,,(v.) for some
vg € N(v.), we go to the next step.

Step 4: Since Vj,, is a subset of the vertices of T, (v.), shifting the center from v, in the
direction of vy will reduce the covering radius. Therefore, the center which will cover
the vertices of B lies in the direction of vy from v.. Let V.5 be the set of vertices in
the union of the subtrees By, (v.), Yv; € Np(ve), v; # vg. All the vertices in V.4 are
covered by a facility in T, (v.), and therefore, are candidates for the pruning step.

B. Bhattacharya, S. Das, and S. R. Dev

Byq (ve)
X old centers |- === -=-=--- —
[
|
® vertices [airection A ‘
| of optimal |
| center Vo)
[
[Ve |
‘ [
| w
— b2 !
[
By, (ve) ! |
[
: By, (ve)
!
[
|
L L ___e_ |
‘ B

Figure 6 All vertices in Vy,, are inside Ty, (vc). Vrest are the vertices in By, (v.) and B, (vc)
together.

Step 5: Arbitrarily pair the vertices in V... Leave out the last vertex if it cannot be paired.

For each pair (a;,b;) with w(a;) > w(b;), we compute the value

w(b;) X (b, ve) —wla;) X I(a;,ve)

b= w(a:) — w(b;)

If ¢; is negative then the weighted distance from the center (that covers both a; and
b;) from a; is always greater than that from b;. Therefore we simply prune out b;,
as it cannot affect the value r*. For the rest of the vertex pairs (a;,b;) we define
r; = w(a;) X ({(a;,ve) +t;). Let rp, be the median value of all these r;’s. We do an
r-feasibility test on T with r = r,,.

Step 6: Consider the case when the feasibility test returns feasible. Then for each pair (a;, b;)
with r; > r,,, we prune out the vertex a;, since in any optimal solution, the distance
of the center to a; always dominates that to b;. Similarly, we can prune out vertex b;
from each pair (a;,b;) with 7; < r,, when the feasibility test returns infeasible. <«

» Time Complexity. Finding centroid v, takes O(n) time, where n is the size of T. Finding

the (p — 1,5 U {v.})-center takes Tiotai(p — 1,n) time. Rest of the steps takes O(n) time.

Therefore total time takes by the algorithm is

Ttotal<p - 17”) + O(n) Y Z 1

Tprune(p7 Tl) = {O(n) p= 0

» Lemma 6. Algorithm 3 does not change the solution to the (p,S)-center in T

Proof. If B is a type-a big-component then in some optimal solution all vertices in V(B)
are covered by Sp. Therefore removing all vertices in V(B) except vy, does not affect the
(p, S)-center radius.

Again, if B is a type-b big-component then the vertices in V.. are covered by a one new
center say x. In Step 6 we prune from each pair only those vertices which can never be the
farthest vertex from x. Therefore, deleting these vertices will not affect the position of x in
anyway. <

27:9

ISAAC 2019

27:10 The Weighted k-Center Problem in Trees for Fixed k

» Lemma 7. Algorithm 3 prunes at least 15 vertices from B.

Proof. Similar to the analysis in Megiddo [11] Algorithm 3 prunes %—fraction of the vertices
in B. Since B is a big-component, it has al least 57 vertices. Therefore, number of vertices

. 1n _ n
pruned is at least g5 = 15%- |

5 The (p, S)-center Algorithm

In this section, we present a recursive O(n) time algorithm for the (p, S)-center problem in
T where k = p+ |S| is a constant.

» Algorithm 4.
Input: Tree T, integer p and the set of centers S.
Output: An optimal solution X to the (p,S)-center problem in 7.

Step 1: Let ng be some suitable constant. We set 77 = T and if || > ng we do Step 2,
otherwise we jump to Step 3.

Step 2: Find a big-component B in T” using Algorithm 2. Next we prune the vertices of B
using Algorithm 3. The pruning step leads to a new tree 7" with lesser number of
vertices than T”. We set T’ = T" and repeat this step if |T7| > ng.

Step 3: We compute the (p, S)-center solution X in 7" using standard brute force technique.
From Lemma 6, X is also the solution to the (p, S)-center in the original tree . <«

» Time Complexity. The time taken by the Algorithm 4 is given by the following recursion

Tt . l(p n) _ Tbig(pa TL) + Tprune(pa ’fl) + Ttotal (p7n - Wnk) + O(n) , Z no
o 0(1) , otherwise
Now,
n
Ttotal(pa 77,) = Tiotal (pa n— ﬁ) + Tbig(pa Tl) + T;m‘une(pa Tl) + O(Tl)
k-1
16k — 1 n
< Thotal (]% 16/€n) + Tiotat(p — 1,m) + ; Tiotal(p — LJE) +O(kn)
16k — 1
S Eotal D, W” + Ttotal(p - 13’”’) + (k -]-)Ttotal(p - 1777’) + O(kn)
16k — 1
< Tiotal (I% 16k:n) + k- Tiotar(p — 1,m) + O(kn)
To show that Tiosai(p,n) < c2PFn (c is a constant such that O(kn) < ckn) it suffices to
show that
16k — 1
Total () 16kn> + k- Tiotar(p — 1,n) + O(kn) < 2PFnp
16k — 1
= 2Pk . 61771 + ck2®P=Vkp 4 ckn < 2Pkp
1
= — — + k2P 2Pk <0
16k + + <

By numerical computation we can show this to be true for £ > 13 and 1 < p < k. This
implies that the (p, S)-center problem can be solved in O(2P¥n) time. By similar computation
we can show that for 1 < k < 12, Tiprar(p,n) < O(n). Therefore the weighted k-center
problem can be solved in O(2¥°n) time. For fixed k this time is linear in n.

B. Bhattacharya, S. Das, and S. R. Dev

6 Conclusion

The most efficient algorithm for the weighted k-center problem in trees for arbitrary k takes
O(nlogn) time and is given by Wang et al. [15]. For k¥ = 1 and 2, Megiddo [11] and
Ben-Moshe et al. [2] give O(n) time solutions, respectively. It is not known whether a linear
time algorithm exists for this problem. We settle this problem partially by presenting a linear
time algorithm for any constant k. However, the question of whether an optimal linear time
algorithm exists for an arbitrary k still remains open.

For the weighted k-center problem in cactus Ben-Moshe [3] presented an O(n?) time
algorithm. In the same paper, they also showed that for £k = 1 and 2, the problem can be
solved in O(nlogn) and O(nlog®n) time respectively. No subquadratic time algorithm is
known for the weighted k-center problem for cactus when k& > 2.

—— References

1 Aritra Banik, Binay Bhattacharya, Sandip Das, Tsunehiko Kameda, and Zhao Song. The p-
Center Problem in Tree Networks Revisited. In 15th Scandinavian Symposium and Workshops
on Algorithm Theory, 2016.

2 Boaz Ben-Moshe, Binay Bhattacharya, and Qiaosheng Shi. An Optimal Algorithm for the
Continuous/Discrete Weighted 2-Center Problem in Trees. In José R. Correa, Alejandro
Hevia, and Marcos Kiwi, editors, LATIN 2006: Theoretical Informatics, pages 166-177, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

3 Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir. Efficient algorithms
for center problems in cactus networks. Theoretical Computer Science, 378(3):237-252, 2007.
Algorithms and Computation.

4 Binay Bhattacharya, Sandip Das, and Tsunehiko Kameda. Linear-time fitting of a k-step
function. Discrete Applied Mathematics, 2017. doi:10.1016/j.dam.2017.11.005.

5 Binay Bhattacharya and Qiaosheng Shi. Optimal Algorithms for the Weighted p-Center
Problems on the Real Line for Small p. In Frank Dehne, Jorg-Riidiger Sack, and Norbert Zeh,
editors, Algorithms and Data Structures, pages 529-540, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

6 Richard Cole. Slowing Down Sorting Networks To Obtain Faster Sorting Algorithm. In
Foundations of Computer Science, 1984. 25th Annual Symposium on, pages 255-260. IEEE,
1984.

7 Greg N. Frederickson. Parametric search and locating supply centers in trees. In Frank
Dehne, Jorg-Riidiger Sack, and Nicola Santoro, editors, Algorithms and Data Structures, pages
299-319, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

8 M Jeger and Oded Kariv. Algorithms for finding P-centers on a weighted tree (for relatively
small P). Networks, 15(3):381-389, 1985.

9 Oded Kariv and S Louis Hakimi. An algorithmic approach to network location problems. I:
The p-centers. SIAM Journal on Applied Mathematics, 37(3):513-538, 1979.

10 Arindam Karmakar, Sandip Das, Subhas C Nandy, and Binay K Bhattacharya. Some variations
on constrained minimum enclosing circle problem. Journal of Combinatorial Optimization,
25(2):176-190, 2013.

11 Nimrod Megiddo. Linear-time algorithms for linear programming in R? and related problems.
SIAM journal on computing, 12(4):759-776, 1983.

12 Nimrod Megiddo and Arie Tamir. New results on the complexity of p-centre problems. SIAM
Journal on Computing, 12(4):751-758, 1983.

13 Edward Minieka. Conditional centers and medians of a graph. Networks, 10(3):265-272, 1980.

14 Qiaosheng Shi. Efficient algorithms for network center/covering location optimization problems.
PhD thesis, School of Computing Science-Simon Fraser University, 2008.

15 Haitao Wang and Jingru Zhang. An O(n log n)-Time Algorithm for the k-Center Problem
in Trees. In Bettina Speckmann and Csaba D. Té6th, editors, 34th International Symposium
on Computational Geometry (SoCG 2018), volume 99 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 72:1-72:15, Dagstuhl, Germany, 2018.

27:11

ISAAC 2019

https://doi.org/10.1016/j.dam.2017.11.005

	Introduction
	Preliminaries
	Problem Definition
	The r-feasibility test
	Our Approach

	Big-Component
	Candidate Sequence
	The Big-Component Algorithm

	Vertex Pruning from a Big-Component
	The (p, S)-center Algorithm
	Conclusion

