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Abstract

A word w is said to be closed if it has a proper factor x which occurs exactly twice

in w, as a prefix and as a suffix of w. Based on the concept of Ziv-Lempel factorization,

we define the closed z-factorization of finite and infinite words. Then we find the closed

z-factorization of the infinite m-bonacci words for all m ≥ 2. We also classify closed

prefixes of the infinite m-bonacci words.
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1 Introduction

Factorization of words is an important topic in combinatorics on words, which roughly con-

sists in breaking a given word into concatenation of other words, called factors. Some specific

factorizations require that those factors satisfy some special properties. Some various types

of factorizations studied in the literature are the Ziv-Lempel factorization, the Crochemore

factorization, the Lyndon factorization and the grammar-based factorization [6, 21, 22, 23].

The Ziv-Lempel factorization, or z-factorization for short, was introduced by Ziv and Lem-

pel for finite words [19] and then was extended to infinite words [4]. This factorization

has several applications in data compression [26] and text processing [18]. Ghareghani et

al. [12] determined z-factorizations for standard episturmian words. We introduced the

palindromic z-factorizations by requiring each factor to be a palindrome and computed this

factorization for the m-bonacci words [13]. In this work, based on the notion of closed words,

which appeared in [5], we introduce the closed z-factorization and apply it to the infinite

Fibonacci word and then to all m-bonacci words, for m > 2. We also characterize closed

prefixes of the m-bonacci word hω and obtain the binary word x = oc(hω) associated with

closed prefixes of hω (defined by xn = 1 if the prefix of length n of hω is closed; otherwise,

xn = 0). The connection of this word with the sequence of m-bonacci numbers then appears

as a consequence.

The paper is organized as follows. In Section 2, we present some notation and definitions

needed in the rest of the paper. In Section 3, we study the closed z-factorization of the

Fibonacci word. In Section 4 we study the closed z-factorization of the m-bonacci words

and consider numerous properties of this factorization. Section 5 is devoted to the link

between the closed and palindromic z-factorizations of the m-bonacci words. In Section 6,

we characterize closed prefixes of the m-bonacci words and we give the oc-sequence of the

m-bonacci words. Finally in Section 7 we mention some open problems.

2 Preliminaries

Let A be a finite alphabet. The elements of A∗ are called (finite) words over A. We denote

the empty word by ε and we let A+ = A∗ \ {ε}. For every finite word w, we let |w| denote its

length. A word z is a factor of w ∈ A∗, and we write z ≺ w, if w = uzv for some u,v ∈ A∗. The

factor z is said to be proper if u,v 6= ε. We say that z is a prefix (resp., suffix) of w, and we

denote this by z ⊳ w (resp., z ⊲ w ), if u = ε (resp., v = ε). The set of factors of a word w is

denoted by F(w). For a factor z of a word w, we let |w|z denote the number of occurrences

of z in w. We say that z is a right special factor of w if za and zb are factors of w for some

distinct letters a, b ∈ A.

Let w = w1 w2 · · · wn with wi ∈ A for all i ∈ {1, . . ., n}. We let wR denote the reverse of w,

that is, wR = wn · · · w2 w1. If w = wR , w is called a palindrome or a palindromic word. We

let (w)+ denote the palindromic closure of w, that is, the shortest palindrome having w as

a prefix. For example, (race)+ = racecar. If v is the longest palindromic suffix of w, say

w = uv, then (w)+ = uvuR. For each word u ∈ A∗, we use the notation u−1 as below. If w =

uv, then we let u−1w = v and wv−1 = u. This simply yields (uv)−1 = v−1u−1, consequently,
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w−1 = w−1
n · · ·w−1

2 w−1
1 .

Let t be an infinite word and let w be a factor of t. The word v is said to be a return word

of w if v begins with an occurrence of w and ends exactly just before the next occurrence of

w in t. If v is a return word of w, then vw is said to be a complete return word of w. The

notion of return words was introduced to study primitive substitutive sequences [9]. In [15],

Justin and Vuillon presented a new characterization of Sturmian words using return words.

They also characterized the return words of factors of standard episturmian words.

A non-empty word x is called a border of w if x is both a prefix and a suffix of w. A word

w is said to be closed if it is a single letter or has a border x such that it does not have any

other occurrence in w, in other words, |w|x = 2. In this case, we call w the frontier of x. As an

example, the word w = mamma is closed, because ma appears only as a prefix and a suffix

of w. The notion of closed words appeared in the study of trapezoidal words [5]. If w is not

closed then it is said to be open.

In [11], Fici et al. studied words with the smallest number of closed factors. In [3],

Badkobeh et al. showed that a length-n word contains at least n+1 distinct closed factors

and characterized those words having exactly n+1 closed factors. Badkobeh et al. described

an efficient solution to the shortest and longest closed factorizations [2]. The shortest (resp.,

longest) closed factorization of a string is obtained by factorizing it into shortest (resp.,

longest) closed factors. In [7], A. De Luca et al. studied closed prefixes of Sturmian words

and introduced the oc-sequence of a word w, as oc(w), which is the binary sequence whose

n-th term is 1 if the length-n prefix of w is closed, or 0 if it is open. They showed that this

sequence is deeply related to the combinatorial and periodic structure of a word. In [5],

Bucci et al. studied closed prefixes of Fibonacci words and investigated the oc-sequence of

the Fibonacci word, oc(F). Note that, for a given infinite word t and a nonempty factor w of

t, every complete return word of w is closed because it contains the factor w exactly twice,

once as a prefix and once as a suffix.

Let A be a finite alphabet. A mapping ψ : A∗ → B∗ is called a morphism if ψ(uv) =

ψ(u)ψ(v) for all u,v ∈ A∗. A morphism ψ is said to be prolongable if there exists a letter a ∈ A

and a word x ∈ A∗ such that ψ(a)= ax and ψi(x) 6= ε for all i ≥ 0. In this case, the word ψn(a)

is a proper prefix of ψn+1(a) for all n ≥ 0. Therefore, the infinite word ψω(a)= limn→∞ψn(a)

is a fixed point of ψ. For every morphism ψ : A∗ → B∗ and each word u ∈ A∗, we define

ψ(u−1)= (ψ(u))−1. This is justified by applying ψ on uu−1 = u−1u = ε.

A factorization of a word consists in decomposing it into consecutive factors, which satisfy

some special properties. Given an infinite word w, the Ziv-Lempel factorization or the z-

factorization of w is z(w)= (z1 , z2, . . .) where zi is the shortest prefix of zi zi+1 · · · that occurs

exactly once in z1 z2 · · · zi. We introduce the closed z-factorization cz(w)= (z1 , z2, . . .) of w by

requiring that each factor zi is closed.

3 Closed z-factorization of the Fibonacci word

Recall that the sequence of finite Fibonacci words is given by f−1 = 1, f0 = 0 and fn =

fn−1 fn−2 for all n ≥ 1. Furthermore, for all n ≥ 0, fn is the n-th iteration of the morphism

σ : A∗ → A∗ on the letter 0 defined by σ(0) = 01, σ(1) = 0, that is, fn = σn(0). The first few

Fibonacci words are given in Table 1. The infinite Fibonacci word fω is given by fω = lim
n→∞

fn.

3



Equivalently we have, fω =σω(0).

n -1 0 1 2 3 4 5

fn 1 0 01 010 01001 01001010 0100101001001

Table 1: The first few Fibonacci words ( fn)n≥−1.

The sequence of Fibonacci numbers is given by the recurrence relation Fn = Fn−1 +Fn−2

for all n ≥ 1 where F−1 = 1, F0 = 1. The sequence of Fibonacci words is related to the latter

sequence of numbers since Fn = | fn| for all n ≥−1.

We note that the infinite Fibonacci word belongs to the class of Sturmian words, that

is, infinite aperiodic binary words with minimal factor complexity. These words were pre-

sented in [20] and are widely studied in the literature because they have several equivalent

definitions and many various optimal properties, see for instance [17, Chapter 2].

In [25], Wen and Wen defined the n-th singular word wn of fω by w−2 = ε , w−1 = 0,

w0 = 1 and for n ≥ 1, wn = a fn b−1, where ab ∈ {01,10} is the length-2 suffix of fn. It is easy

to see that |wn| = Fn for all n ≥ −1. The first few singular words of the Fibonacci word fω
are displayed in Table 2.

n -2 -1 0 1 2 3 4 5

wn ε 0 1 00 101 00100 10100101 0010010100100

Table 2: The first few singular words (wn)n≥−2 of the Fibonacci word fω.

The following lemma summarizes some properties of the singular words of the Fibonacci

word fω that are useful in the following.

Lemma 1. [25,Property2] The singular words (wn)n of the Fibonacci word have the follow-

ing properties.

1. For all n ≥−1, wn ⊀wn+1.

2. For all n ≥ 1, wn = wn−2 wn−3 wn−2.

3. For all n ≥−2, wn is a palindrome.

4. For all n ≥−1, wn ⊀
∏n−1

j=−1
w j.

It is known that the infinite Fibonacci word fω can be written as the concatenation of

the singular words (wn)n≥−1 [25], which turns out to be the z-factorization of fω [10].

Lemma 2. [10,Proposition8] The infinite Fibonacci word fω is the concatenation of the sin-

gular words, that is,

fω =
∏

n≥−1

wn.

Our main goal in this section is to prove Theorem 5, which gives the closed z-factorization

of the infinite Fibonacci word fω. We will make use of the following two lemmas.
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Lemma 3. [25,Lemma3] Let n ≥ 1 and write wnwn+1 = u1 u2 u3 (or wn+1wn = u1 u2 u3) with

0< |u1| < Fn and 0< |u3| < Fn+1. Then u2 is not a singular word.

Lemma 4. For all n ≥−1, wn is closed.

Proof. From Table 2, the assertion can be easily verified for the values −1 ≤ n ≤ 3. Assume

that n ≥ 4. It follows from Lemma 1 that wn = wn−2 wn−3 wn−2. So wn−2 is a border of wn. It

suffices to show that wn−2 is neither a proper factor of wn−2 wn−3 nor that of wn−3 wn−2 . We

proceed by contradiction and suppose that wn−2 is a proper factor of wn−2 wn−3 (the other

case is similar). There exist non-empty words u1 and u3 over {0,1} such that wn−2 wn−3 =

u1 wn−2 u3. Using the fact that |wn−2| = Fn−2 and |wn−3| = Fn−3, we have |u1u3| = Fn−3. So

0< |u1| < Fn−3 < Fn−2 and 0< |u3| < Fn−3. This contradicts Lemma 3.

Theorem 5. The closed z-factorization of the Fibonacci infinite word is

cz( fω)= (w−1 ,w0 , w1 , . . .).

Proof. Based on Lemma 2, z( fω)= (w−1 ,w0 , w1 , . . .). By Lemma 4, the factors wn are closed,

which shows that this factorization is also cz( fω).

4 Closed z-factorization of the m-bonacci word

The Tribonacci word is the most natural extension of the Fibonacci word to a three-letter

alphabet and has been studied in many papers, see for instance [1, 24]. To describe such

an extension to a finite alphabet of arbitrary size greater than 1, for every integer m ≥ 2,

we define the m-bonacci word as the fixed point of the morphism ϕm given in the following

definition.

Definition 6. For m≥ 2, let Am = {0,1, . . ., m−1} and let ϕm be the morphism defined by

ϕm : A∗
m → A∗

m, 0 7→ 01, . . ., (m−2) 7→ 0(m−1), (m−1) 7→ 0.

The sequence of finite m-bonacci words denoted as (h(m)
n )n≥0, or briefly as (hn)n≥0, is given by

hn =ϕn
m(0) for all n ≥ 0. The infinite m-bonacci word hω is the fixed point of the morphism

ϕm which starts with 0.

Example 7. Suppose that m = 2. Then A2 = {0,1} and ϕ2 : 0 7→ 01, 1 7→ 0. Also the infinite

2-bonacci word h(2)
ω is exactly the infinite Fibonacci word. Furthermore, for all n ≥ 0, fn = hn.

The first few finite m-bonacci words are given in Table 3 for some values of the parameter

m.

Remark 8. In addition to the morphism ϕm, we define several objects related to m in this

section, where the parameter m is deleted in the notation of most of them for the sake of

clarity. These objects are hn, un, µn, ψn, zn, n, n and n̂. This is justifiable firstly because

fixing the parameter m at the beginning of the statement of each of the upcoming results

removes the danger of confusion and secondly because deleting m from the notation proposes

a considerable simplicity and convenience in presenting formulas.
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n 0 1 2 3 4 5

h
(2)
n 0 01 010 01001 01001010 0100101001001

h(3)
n 0 01 0102 0102010 0102010010201 010201001020101020100102

h(4)
n 0 01 0102 01020103 010201030102010 01020103010201001020103010201

h
(5)
n 0 01 0102 01020103 0102010301020104 0102010301020104010201030102010

Table 3: The first few words of the sequence
(
h

(m)
n

)
n≥0 for m ∈ {2,3,4,5}.

Notation 9. For every integer n ≥ 0, let n := n mod m. Note that n ∈ {0,1, . . ., m−1}.

Remark 10. The words hn, represented in Definition 6, can be defined in a recursive way as

follows:

hn =





0, if n = 0;

hn−1 · · ·h0n, if 1≤ n ≤ m−1;

hn−1 · · ·hn−m, if n ≥ m.

(1)

Notation 11. Let m and n be integers. We use the notation m |n as m divides n and m ∤ n

as m does not divide n.

Lemma 12. Let n ≥ 1. The word hR
n starts with n0 if m ∤ n; 01 otherwise.

Proof. We proceed by induction on n ≥ 1. The result holds true for n = 1 as hR
1
= 10. Assume

that n ≥ 2. There are two cases to consider according to the value of n.

Case 1. Suppose that n ≤ m−1. Using Equation (1), we obtain hR
n = nhR

0
· · ·hR

n−1
. As

hR
0
= 0, we get the result.

Case 2. Suppose that n ≥ m. From Equation (1), we deduce that hR
n = hR

n−m · · ·hR
n−1

.

Using the induction hypothesis, hR
n−m starts with n−m0 = n0 if m ∤ n; 01 otherwise. This

ends the proof.

Similarly to the Fibonacci word which is a typical example of Sturmian words, m-bonacci

words are typical examples of episturmian words over Am. Episturmian words on finite al-

phabet naturally extend Sturmian words to larger alphabets. Their construction and prop-

erties can be found in [8, 14, 16] for instance. Inspired by the construction of standard

episturmian words presented in [16], we need a restricted version of that construction and

prior to this, some definitions are required as well.

Definition 13. For each letter a ∈ Am, we define the morphism ψ(m)
a : A∗

m → A∗
m, ψa for

short, by ψa(a)= a, and ψa(b)= ab for all b ∈ Am \{a}. Furthermore, we define the sequence

of morphisms µ(m)
n : A∗

m → A∗
m, µn for short, by µ0 = id and µn = ψ0 ◦ψ1 · · · ◦ψn−1 for n > 0,

where id : A∗
m → A∗

m is the identity morphism.

In Table 4, we compute the images of letters in A3 under the morphisms µ0, µ1, . . . , µ4.

Observe that h0 =µ0(0), h1 =µ1(1), h2 =µ2(2), h3 =µ3(0) and h4 =µ4(1).

Definition 14. We let
(
u(m)

n

)
n≥1

, or briefly (un)n≥1, denote the sequence of palindromic pre-

fixes of hω starting with u1 = ε and sorted by increasing length.
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a ∈ A3 0 1 2

µ(3)
0

(a)= id(a) 0 1 2

µ(3)
1

(a)=ψ0(a) 0 01 02

µ(3)
2

(a)=ψ0 ◦ψ1(a) 010 01 0102

µ(3)
3

(a)=ψ0 ◦ψ1 ◦ψ2(a) 0102010 010201 0102

µ(3)
4

(a)=ψ0 ◦ψ1 ◦ψ2 ◦ψ0(a) 0102010 0102010010201 01020100102

Table 4: The images of letters in A3 under morphisms µ(3)
i

, i ∈ {0, . . .,4}.

n 1 2 3 4 5 6

u
(2)
n ε 0 010 010010 01001010010 0100101001001010010

u(3)
n ε 0 010 0102010 01020100102010 010201001020101020100102010

u(4)
n ε 0 010 0102010 010201030102010 010201030102010010201030102010

u
(5)
n ε 0 010 0102010 010201030102010 0102010301020104010201030102010

Table 5: The first few words of the sequence
(
u

(m)
n

)
n≥1

for m ∈ {2,3,4,5}.

Notice that u
(m)
1

= ε and u
(m)
2

= 0 for all m≥ 2. It is clear that hω = limn→∞ un. In Table 5,

we show the first few elements of the sequence
(
u(m)

n

)
n≥1

for m ∈ {2,3,4,5}.

Lemma 15. [16,Section2.1] The following identities hold.

1. For all n ≥ 0, hn =µn(n).

2. For all n ≥ 1, un+1 = (un n−1)(+).

3. For all n ≥ 1, we have un+1 = hn−1un.

4. For all n ≥ 2, we have un = hR
0

hR
1
· · ·hR

n−2
.

5. For all n ≥ 1,

hn =

{
un+1 n, if 1≤ n ≤ m−1;

unu−1
n−m, if n ≥ m.

Definition 16. Let (xn)n≥0 be a sequence of words and let (νn)(n≥0) be a sequence of mor-

phisms, where xn ∈ A∗
m and νn : A∗

m → A∗
m for n ≥ 0. If a and b be integers where a≤ b, then

we let
b
◦

i=a
νi = νa ◦νa+1 ◦ · · · ◦νb. Moreover, if a> b, then we let

b
◦

i=a
νi = id and

∏b
i=a

xi = ε.

In the two following lemmas, we start counting the positions of letters at 1.

Lemma 17. Let m ≥ 2 and let k and k′ be distinct letters of Am. Suppose that the word x =

x1 · · · xn with x1, . . . , xn−1 ∈ Am\{k} contains exactly p occurrences of k′ that occur at positions

a1, . . . ,ap. Moreover, let y=ψk(x).

1. If xn = k, then |y| = 2n−1; otherwise |y| = 2n.
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2. The word y contains n occurrences of the letter k that appear in all odd positions and

p occurrences of the letter k′ that appear at positions 2a1, . . . ,2ap.

Proof. Let x = x1 · · · xn−1xn, where x1, . . . , xn−1 ∈ Am \ {k} and xn ∈ Am. Since y = ψk(x), we

obtain

y= kx1kx2 · · ·kxn−1kyn, (2)

where yn = ε if xn = k; yn = xn otherwise. Therefore, |y| equals either 2n−1 (when xn = k)

or 2n (when xn 6= k). Furthermore, by Equation (2), for each 1≤ j ≤ ⌊
y

2
⌋ the equation y2 j = x j

holds. This proves the second part of the lemma.

Lemma 18. Let n ≥ m. We have

( n−1
◦

i=n−m+1
ψi

)
(n−m+1)=

m∏

j=2

( n− j
◦

i=n−m+1
ψi

)
(n− j+1). (3)

Proof. First, observe that the length of the composition in the left-hand side of Equation (3)

is m−1. By applying Lemma 17 (m−1) times, both sides of Equation (3) equal the word y of

length 2m−1−1 that consists of letters n−1, n−2,. . ., n−m+1 and for each j ∈ {1, . . . , m−1},

the letter n− j appears exactly in positions (2t+ 1)2m− j−1 with t ∈ {0,1, . . .,2 j−1 − 1}. The

result now follows.

Lemma 19. The following identities hold.

1. For all n ≥ m, µn(n−m+1)= hn−1 hn−2 · · ·hn−m+1.

2. For all 1≤ n ≤ m−1, µn−1(n)= un n.

3. For all n ≥ 1, hR
n = 0−1ϕm(hR

n−1
)0.

4. For all n ≥ 2, un =ϕm(un−1)0.

Proof. 1. The result is obtained by applying
n−m
◦

i=0
ψi on both sides of Equation (3) and

using the identities h j =µ j( j)=ψ0◦ψ1◦· · ·◦ψ j−1( j) which hold for each j ∈ {n−1, . . ., n−

m+1} by Part (1) of Lemma 15.

2. By Part (1) of Lemma 15, considering 1 ≤ n ≤ m−1, we obtain hn−1 = µn−1(n−1) and

hn =µn(n). Now replacing µn by µn−1 ◦ψn−1 in the last equation easily yields

hn = hn−1 µn−1(n). (4)

On the other hand, by Parts (3) and (5) of Lemma 15, we get hn = hn−1un n. Comparing

this with Equality (4) yields the result.

3. We proceed by induction on n ≥ 1. The result holds true for the case n = 1 because

hR
1
= 10= 0−1ϕm(hR

0
)0 as hR

0
= 0. We divide the proof into three cases according to the

value of n.

Case 1. Suppose that n ≤ m−1. By (1), we have hR
n = nhR

0
· · ·hR

n−1
. Using the induction

hypothesis, we get hR
n = n00−1ϕm(hR

0
)0 · · ·0−1ϕm(hR

n−1
)0 = 0−1ϕm((n−1)hR

0
· · ·hR

n−2
)0 =

0−1ϕm(hR
n−1

)0.
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Case 2. Suppose that n = m−1. Using (1), we have hR
n = hR

0
· · ·hR

n−1
. By the induction

hypothesis, we find that hR
n = 00−1ϕm(hR

0
)0 · · ·0−1ϕm(hR

n−1
)0= 0−1ϕm((n−1)hR

0
· · ·hR

n−2
)0=

0−1ϕm(hR
n−1

)0.

Case 3. Suppose that n ≥ m. By (1), we deduce that hR
n = hR

n−m · · ·hR
n−1

. By the induc-

tion hypothesis, we get hR
n = 0−1ϕm(hR

n−m−1
)0 · · ·0−1ϕm(hR

n−1
)0= 0−1ϕm(hR

n−m−1
· · ·hR

n−2
)0=

0−1ϕm(hR
n−1

)0.

4. For n = 2, we have u2 = 0=ϕm(u1)0 since u1 = ε. Now suppose that n ≥ 3. Using Part

(4) of Lemma 15 and h0 = 0, we obtain un = 0 hR
1
· · ·hR

n−2
. Replacing the words hR

j
in

the right-hand side from Part (3) of Lemma 19 yields un =ϕm(hR
0

hR
1
· · ·hR

n−3
)0 whence

the result is obtained by Part (4) of Lemma 15.

We define a sequence of words (z
(m)
n )n≥0 in terms of (h

(m)
n )n≥0 that will be useful in the

sequel to obtain the closed z-factorization of the m-bonacci words.

Definition 20. We define the sequence (z(m)
n )n≥0, denoted briefly (zn)n≥0, by z0 = 0, z1 = 1,

z2 = 020 and

1. If m= 2, then for all n ≥ 3, zn = (n−3)−1 hR
n−3

hR
n−2

n−2.

2. If m≥ 3, then

zn =





(n−3)−1 hR
n−3

hR
n−2

n hR
0

hR
1
· · ·hR

n−3
(n−2), if 3≤ n ≤ m−1;

(n−3)−1 hR
n−3

hR
n−2

hR
n−m hR

n−m+1
hR

n−m+2
· · · hR

n−3
n−2, if n ≥ m.

The recursive equation satisfied by the sequence (|zn|)n is given in Part (1) of Lemma 25.

We show in Lemma 22 that for m = 2, the words zn are exactly the singular words of the

Fibonacci word. The case m= 3 is studied in the following example.

Example 21. The case m= 3 corresponds to the Tribonacci word. For all n ≥ 3, we have

z(3)
n = (n−3)−1 hR

n−3 hR
n−2 hR

n−3 n−2.

Table 6 shows the first few words of the sequence (z
(m)
n )n≥0 for 2≤ m≤ 5.

n 0 1 2 3 4 5

z
(2)
n 0 1 00 101 00100 10100101

z(3)
n 0 1 020 1001 02010102 010010201020100

z
(4)
n 0 1 020 10301 020100102 010301020101020103

z(5)
n 0 1 020 10301 0201040102 0103010201001020103

Table 6: The first few words of the sequence (z
(m)
n )n≥0 for m= 2,3,4,5.

Lemma 22. For all n ≥ 0, wn−1 = z(2)
n .
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Proof. The cases n ∈ {0,1,2} are easily handled using Tables 2 and 6. Assume that n ≥

3. By definition, we get wn−1 = a fn−1 b−1, where ab is the length-2 suffix of fn−1. It

can be verified by induction on n that for all n ≥ 1, fn ends with 01 (resp., 10) if n is

odd (resp., even). Therefore, we can write wn−1 = n−2 fn−1 (n−1)−1. Moreover, using

the recursive definition of fn−1, we get wn−1 = n−2 fn−2 fn−3 (n−1)−1. Using Part (3) of

Lemma 1, we have wn−1 = (n−1)−1 f R
n−3

f R
n−2

n−2. On the other hand, Definition 20 gives

z(2)
n = (n−3)−1 (h(2)

n−3
)R (h(2)

n−2
)R n−2. By Definition 6, we have h(2)

n = fn for all n, which com-

pletes the proof.

Definition 23. For every integer n ≥ 0, let

n=

{
ε, if m|n;

n, otherwise.
(5)

Moreover, let n̂ = (n)−1n. Consequently

n̂ =

{
0, if m|n;

ε, otherwise.

and n̂ = n(n)−1.

In Table 7, the first few values of n are displayed for m ∈ {2,3,4,5}.

0 1 2 3 4 5 6 7 8 9

m= 2 ε 1 ε 1 ε 1 ε 1 ε 1

m= 3 ε 1 2 ε 1 2 ε 1 2 ε

m= 4 ε 1 2 3 ε 1 2 3 ε 1

m= 5 ε 1 2 3 4 ε 1 2 3 4

Table 7: The first few values of n for m ∈ {2,3,4,5}.

Lemma 24. For all n ≥ 0, ϕm(n)= 0 n+1.

Proof. The proof follows immediately from the definition of the morphism ϕm and Defini-

tion 23.

In the first part of the following lemma, we study the length of the word zn and in the

second part, we find the first and the last letters of zn.

Lemma 25. 1. For all n ≥ m+1, |zn| = |zn−1| + |zn−2| + · · · + |zn−m|.

2. Let n ≥ 2. The word zn ends with n−2. Moreover, zn starts with 1 if m|n−3; 0 otherwise.

10



Proof. 1. The case m= 2 follows easily by induction on n and Definition 20. Suppose that

m≥ 3. We proceed by induction on n. Using Definition 20 and Equation 1, we get

|zn| =

{
|hn−3|+2|hn−2|, if 3≤ n ≤ m−1;

|hn−3|+ |hn−2|+ |hn−m|+ |hn−m+1|+ · · ·+ |hn−3|, if n ≥ m.
(6)

For the base case n = m+1 we have, |zm+1| = |hm−2|+ |hm−1|+ |h1|+ |h2|+ · · ·+ |hm−2|.

From Equation (1), we know that |hm−2| = |h0|+|h1|+· · ·+|hm−3|+1. So, we get |zm+1| =

|hm−1|+3|hm−2|−2 since |hR
0
| = 1. By using (6) several times, we obtain |zm|+ |zm−1|+

· · ·+ |z1| = |hm−1|+3|hm−2|−2 = |zm+1|, as desired.

Now, suppose that n ≥ m+2. By using (6) several times, we have

|zn−1|+ |zn−2|+ · · ·+ |zn−m| = |hn−3|+ |hn−2|+ |hn−m|+ |hn−m+1|+ · · ·+ |hn−3| = |zn|.

2. Using Definition 20, the result holds true for the case n = 2 as z2 = 010. Assume

that n ≥ 3. By Definition 20 again, zn starts with (n−3)−1hR
n−3

and ends with n−2.

If m|n − 3, then Lemma 12 says that hR
n−3

starts with 01 = n−31 which ends the

proof.

In the following remark, we rewrite the definition of the sequence zn in a slightly differ-

ent form. This helps us to prove Lemma 28 which gives a characterization of zn in terms of

the morphism ϕm and the word zn−1.

Remark 26. For all n ≥ 3, the word zn can be written as zn =αn hR
n−3

hR
n−2

βn z′nγn, where

z′n =

(n−3)∏

i=(n−m)∗

hR
i , ( j)∗ :=max{0, j}, (αn,βn,γn)=

{(
(n−3)−1, n, n−2

)
, if n ≤ m−1;

((n−3)−1,ε, n−2), if n ≥ m.

Lemma 27. For any sequence (i1, . . . , ik) of positive integers, we have

ϕm

( k∏

j=1

hR
i j

)
= 0

( k∏

j=1

hR
i j+1

)
0−1.

Consequently, for all n ≥ m+1,

ϕm

( n∏

i=n−m−1

hR
i

)
= 0

( n+1∏

i=n−m

hR
i

)
0−1.

Proof. To prove the first part, from Part (3) of Lemma 19, we find that

ϕm(hR
i1

hR
i2
· · ·hR

ik
)= 0hR

i1+1 0−1 0 hR
i2+1 0−1

· · · 0 hR
ik+1 0−1.

The second part is obtained from the first one.

Lemma 28. For all n ≥ 2, zn = ( �n−3)−1ϕm(zn−1) �n−2.

11



Proof. The proof is by induction on n. Assume that the result holds true up to n−1. If n = 2,

then z2 =ϕm(z1)0= (�2−3)−1ϕm(z1) �2−2. If n = 3, then z3 = 0−1ϕm(z2)= (�3−3)−1ϕm(z2) �3−2.

Now suppose that n ≥ 4. Let Bn = ( �n−3)−1ϕm(zn−1) �n−2. We divide the proof into two cases

according to the value of n.

Case 1. Suppose that n ≤ m. Using the induction hypothesis and Remark 26, we have

Bn = ( �n−3)−1ϕm

(
(n−4)−1hR

n−4hR
n−3(n−1)

n−4∏

i=0

hR
i (n−3)

) �n−2.

From Part (3) of Lemma 19 and Lemmas 24 and 27, we get

Bn = ( �n−3)−1(0(n−3))−10hR
n−3 hR

n−2 a
n−3∏

i=0

hR
i 0−10(n−2) �n−2,

where a= ε if n = m; a= n otherwise. As a consequence, we find that

Bn = (n−3)−1hR
n−3 hR

n−2 a
n−3∏

i=0

hR
i n−2.

The result can be easily deduced using Remark 26.

Case 2. Assume that n ≥ m+1. From the induction hypothesis and then Remark 26, we

get

Bn = ( �n−3)−1ϕm

(
(n−4)−1hR

n−4hR
n−3

n−4∏

i=n−m−1

hR
i (n−3)

) �n−2.

Part (3) of Lemma 19 and Lemmas 24 and 27 implies that

Bn = ( �n−3)−1(0(n−3))−1 0 hR
n−3 hR

n−2

n−3∏

i=n−m

hR
i 0−1 0(n−2) �n−2.

Using Definition 23, we obtain

Bn = (n−3)−1hR
n−3 hR

n−2

n−3∏

i=n−m

hR
i n−2.

Consequently, Remark 26 gives that Bn = zn.

Definition 29. For n ≥ 0, let Pn =
∏n−1

k=0
zk.

Lemma 30. We have P0 = ε, P1 = 0, P2 = 01 and for all n ≥ 3,

Pn =ϕm(Pn−1) �n−3.

Proof. The cases n ∈ {0,1,2,3} are trivially verified. Assume that n ≥ 4. By Lemma 28, we

get

Pn = z0 z1 · · · zn−1 = 0 ·1 · (−̂1)−1ϕm(z1)0̂ · (0̂)−1ϕm(z2)1̂ · · · · · ( �n−4)−1ϕm(zn−2) �n−3

=ϕm(z0 z1 · · · zn−2) �n−3=ϕm(Pn−1) �n−3.
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Lemma 31. We have the following factorization for the infinite m-bonacci word.

hω =
∏
n≥0

zn.

Proof. We need to prove the following two items.

1. For all n ≥ 1, |Pn| > |Pn−1|,

2. (Pn)n≥0 is a sequence of prefixes of hω.

To prove (1), note that |Pn| = |Pn−1|+ |zn−1| for all n ≥ 1. This yields |Pn| > |Pn−1| since

|zn−1| > 0. Let us prove (2). We proceed by induction on n. The m-bonacci word hω starts

with 01. Therefore, it is clear that Pn is a prefix of hω for n ∈ {0,1,2}. Now suppose that

n ≥ 3 and Pn−1 is a prefix of hω. Using Lemma 30, we have Pn =ϕm(Pn−1) �n−3. The proof is

divided into two cases according to whether m divides n−3 or not.

Case 1. Suppose that m|n−3. Thus, �n−3= 0 and then Pn =ϕm(Pn−1)0. By the induction

hypothesis, there exists a letter a ∈ Am and an infinite word z over Am such that hω =

Pn−1az. Since hω is the fixed point of ϕm, we know that hω =ϕm(hω) = ϕm(Pn−1 az). Since

ϕm(a) = 0b with b ∈ {ε,0,1, . . ., m−1}, we get hω = ϕm(Pn−1)0 bϕm(z) = Pn bϕm(z), showing

that Pn is also a prefix of hω.

Case 2. Suppose that m ∤ n−3. Therefore, �n−3 = ε and then, Pn = ϕm(Pn−1). Thus

ϕm(Pn−1)= Pn is a prefix of ϕm(hω)= hω, as required.

Justin and Vuillon [15] studied the return words of factors of standard episturmian

words and their occurrences. In order to prove the main theorem of this section, we need

to mention some useful lemmas. Recall from Definition 14 that un is the sequence of palin-

dromic prefixes of hω.

Lemma 32. [15,Corollary4.1] Let v ∈ A∗
m be any finite factor of hω. Let j(v) ≥ 1 be such that

u j(v) is the shortest palindromic prefix of hω which contains v as a factor, say u j(v) = f vg

with f , g ∈ A∗
m. Then, y is a return word of v if and only if f yf −1 is a return word of u j(v).

Moreover, the return words of the palindromic prefix u j(v)+1 are µ j(v)(i) for all i ∈ Am.

The following definition, which will be useful in this paper, is mentioned in [17].

Definition 33. Given an alphabet A, a set X ⊂ A+ of non-empty words is a code on A if

every word w ∈ A∗ has at most one factorization using words of X .

Lemma 34. [13,Lemma15] The set {0 i | 1 ≤ i ≤ m} = {01,02, . . .,0(m− 1),0} of non-empty

words is a code on the alphabet Am.

Lemma 35. [13,Lemma17] Let x, y ∈ A∗
m be two finite words.

1. If ϕm(x)0 is a factor of ϕm(y)0, then x is a factor of y.

2. If ϕm(x) is a factor of ϕm(y) and x does not end with the letter m−1, then x is a factor

of y.

Lemma 36. For n ≥ 3, (n−3)−1 hR
n−3

n−2 is not a factor of un−1.
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Proof. The proof is by induction on n. The statement can be readily verified for n = 3.

Now assume that n ≥ 4 and that the assertion holds for values less than n. We proceed by

contradiction. Suppose that (n−3)−1 hR
n−3

n−2 ≺ un−1. Using Parts (3) and (4) of Lemma 19,

we have (n−3)−1 0−1ϕm(hR
n−4

)0 n−2 ≺ ϕm(un−2)0. So we get

(n−3)−1 0−1ϕm

(
(n−4)(n−4)−1hR

n−4 (n−3)(n−3)−1
)
0 n−2 ≺ ϕm(un−2)0.

From Lemma 24 and then Definition 23, we find that

( �n−3)−1ϕm

(
(n−4)−1 hR

n−4 (n−3)
) �n−2 ≺ ϕm(un−2)0. (7)

We consider three cases according to whether m divides n−3 or n−2 or none of them.

Case 1. Suppose that m ∤ n−3 and m ∤ n−2. Replacing �n−3 = �n−2 = ε into (7), we

get ϕm

(
(n−4)−1hR

n−4
n−3

)
≺ ϕm(un−2)0. Since ϕm

(
(n−4)−1hR

n−4
n−3

)
ends with n−2 6= 0,

we find that ϕm

(
(n−4)−1hR

n−4
n−3

)
≺ ϕm(un−2) . Since (n−4)−1hR

n−4
n−3 ends with n−3 6=

m−1, we deduce from Part (2) of Lemma 35 that (n−4)−1 hR
n−4

n−3 ≺ un−2, contradicting

the induction hypothesis.

Case 2. Suppose that m | n−3 and m ∤ n−2. Substituting �n−3= 0 and �n−2= ε into (7),

we have 0−1ϕm

(
(n−4)−1hR

n−4
n−3

)
≺ ϕm(un−2)0. By Lemma 12, 0−1ϕm

(
(n−4)−1hR

n−4
n−3

)

starts with 1. From Lemma 12 and Part (4) of Lemma 15, ϕm(un−2) starts with 0. Hence,

ϕm

(
(n−4)−1hR

n−4
n−3

)
is a factor of ϕm(un−2)0. As in Case (1), we reach a contradiction

since n−2 6= 0 and n−3 6= m−1.

Case 3. Suppose that m ∤ n − 3 and m | n − 2. By replacing �n−3 = ε and �n−2 = 0

into (7), we find that ϕm

(
(n−4)−1hR

n−4
n−3

)
0 ≺ ϕm(un−2) 0. From Part (1) of Lemma 35,

(n−4)−1 hR
n−4

n−3 ≺ un−2, contradicting the induction hypothesis.

Lemma 37. For all n ≥ 0, zn is not a factor of zn+1.

Proof. If m = 2, then the result follows from Part (1) of Lemma 1 and Lemma 22. We

prove it for m ≥ 3. The result is obviously true for n ∈ {0,1,2}, see Table 6. Let n ≥ 3.

By induction on n, we assume that the result holds true up to n−1 and we show that it is

still true for n. By contradiction, suppose that zn ≺ zn+1 . We obtain from Lemma 28 that

( �n−3)−1ϕm(zn−1) �n−2 ≺ ( �n−2)−1 ϕm(zn) �n−1. So, we get

( �n−3)−1ϕm(zn−1) �n−2 ≺ ϕm(zn) �n−1. (8)

We divide the proof into two cases according to whether m divides n−3 or not.

Case 1. Suppose that m ∤ n−3. Substituting �n−3= ε into (8), we find that

ϕm(zn−1) �n−2 ≺ ϕm(zn) �n−1. (9)

Now we consider three cases according to whether m divides n−1 or n−2 or none of them.

Case 1-1. Assume that m ∤ n−1 and m ∤ n−2. Plugging �n−1= �n−2= ε into (9), we have

ϕm(zn−1) ≺ ϕm(zn). Part (2) of Lemma 25 implies that zn−1 ends with n−3. Since m ∤ n−2

implies n−2 6= m and thus n−3 6= m−1, using Part (2) of Lemma 35, zn−1 is a factor of zn,

contradicting the induction hypothesis.
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Case 1-2. Suppose that m|n−1 and m ∤ n−2. Replacing �n−1 = 0 and �n−2= ε into (9),

we find that ϕm(zn−1) ≺ ϕm(zn)0. Using Part (2) of Lemma 25, zn−1 ends with n−3. It

follows that ϕm(zn−1) ends with 0 n−2. In conclusion, ϕm(zn−1) ≺ ϕm(zn). As in Case (1-1),

we reach a contradiction.

Case 1-3. Suppose that m ∤ n−1 and m | n−2. Plugging �n−1= ε and �n−2 = 0 into (9),

we get ϕm(zn−1)0 ≺ ϕm(zn) . We then have, ϕm(zn−1) 0 ≺ ϕm(zn) 0. Part (1) of Lemma 35

gives, zn−1 ≺ zn which contradicts the induction hypothesis.

Case 2. Suppose that m|n−3. By replacing �n−3= 0 into (8), we get 0−1ϕm(zn−1) �n−2 ≺

ϕm(zn). We deduce from Part (2) of Lemma 25 that zn (resp., zn−1) starts with 1 (resp., 0).

So 0−1ϕm(zn−1) (resp., ϕm(zn)) starts with 1 (resp., 0). Since each occurrence of 1 in ϕm(zn)

is preceded by a 0, we conclude that ϕm(zn−1) �n−2 ≺ ϕm(zn). and thus, ϕm(zn−1) ≺ ϕm(zn).

As in Case (1-1), we reach a contradiction since n−3 6= m−1.

Lemma 38. Let n ≥ 1 and γn be the last letter of zn. The word zn is not a factor of zn−1 znγ
−1
n .

Proof. To prove the result, we proceed by induction on n. If n = 1, then z1 = 1 is not a factor

of z0z1γ
−1
1

= z0 = 0. If n = 2, then the word z1z2γ
−1
2

does not contain z2. Now assume that

n ≥ 3 and that the result is true for all values less than n. We proceed by contradiction and

suppose that zn ≺ zn−1 znγ
−1
n . By Part (2) of Lemma 25, γn = n−2. Lemma 28 implies that

( �n−3)−1ϕm(zn−1) �n−2 ≺ ( �n−4)−1ϕm(zn−2) �n−3 ( �n−3)−1ϕm(zn−1) �n−2 (n−2)−1.

So, we have ( �n−3)−1ϕm(zn−1) �n−2 ≺ ϕm(zn−2 zn−1) (n−2)−1. Therefore,

( �n−3)−1ϕm(zn−1) �n−2 ≺ ϕm(zn−2 zn−1(n−3)−1 n−3) (n−2)−1.

Using Definition 23, we find that

( �n−3)−1ϕm(zn−1) �n−2 ≺ ϕm(zn−2 zn−1 (n−3)−1) 0. (10)

We divide the proof into three cases according to whether m divides n−3 or n−2 or none of

them.

Case 1. Assume that m ∤ n−3 and m ∤ n−2. Plugging �n−3 = �n−2 = ε into (10), we

find that ϕm(zn−1) ≺ ϕm

(
zn−2 zn−1 (n−3)−1

)
0. From Part (2) of Lemma 25, zn−1 ends with

n−3. Thus, ϕm(zn−1) ends with 0 n−2. Using Definition 23, n−2 6= 0. It follows that

ϕm(zn−1) ≺ ϕm

(
zn−2 zn−1 (n−3)−1

)
. As zn−1 ends with n−3, Part (2) of Lemma 35 tells us

that zn−1 ≺ zn−2 zn−1 (n−3)−1, since m ∤ n−2 implies n−2 6= m and thus n−3 6= m−1. This

contradicts the induction hypothesis.

Case 2. Assume that m | n − 3 and m ∤ n − 2. By replacing �n−3 = 0 and �n−2 = ε

into (10), we have 0−1ϕm(zn−1) ≺ ϕm

(
zn−2 zn−1 (n−3)−1

)
0. By Part (2) of Lemma 25, zn−1

and zn−2zn−1 start with 1. So 0−1ϕm(zn−1) starts with 2 and ϕm(zn−2zn−1) starts with 0. We

conclude that ϕm(zn−1) ≺ ϕm

(
zn−2zn−1(n−3)−1

)
0. By Part (2) of Lemma 25, ϕm(zn−1) ends

with 01 since n−3 = 0. So, ϕm(zn−1) ≺ ϕm

(
zn−2 zn−1 (n−3)−1

)
. As in Case (1), we reach a

contradiction.

Case 3. Assume that m ∤ n−3 and m | n−2. Plugging �n−3 = ε and �n−2 = 0 into (10),

we have ϕm(zn−1) 0 ≺ ϕm

(
zn−2 zn−1 (n−3)−1

)
0. Part (1) of Lemma 35 implies that zn−1 ≺

zn−2 zn−1 (n−3)−1, contradicting the induction hypothesis.
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Lemma 39. For all n ≥ 1, zn is not a factor of Pn.

Proof. Using Part (4) of Lemma 1 and Lemma 22, the assertion is true for the case m= 2. Let

us suppose that m ≥ 3. The proof is by induction on n. It can be easily checked for n ∈ {1,2}

using Table 6. Now suppose that z j is not a factor of P j for all 3≤ j ≤ n−1. We show it is still

true for j = n. Arguing by contradiction, assume that zn ≺ Pn . From Lemmas 28 and 30,

( �n−3)−1ϕm(zn−1) �n−2 ≺ ϕm(Pn−1) �n−3. (11)

The proof is divided into three cases according to whether m divides n−3 or n−2 or none of

them.

Case 1. Assume that m ∤ n−3 and m ∤ n−2. Substituting �n−3 = �n−2 = ε into (11), we

get ϕm(zn−1) ≺ ϕm(Pn−1). Part (2) of Lemma 25 implies that zn−1 ends with n−3. Thus,

using Part (2) of Lemma 35, zn−1 is a factor of Pn−1, since m ∤ n−2 implies n−2 6= m and

thus n−3 6= m−1, which contradicts the induction hypothesis.

Case 2. Assume that m | n−3 and m ∤ n−2. Replacing �n−3 = 0 and �n−2 = ε into (11),

we find that 0−1ϕm(zn−1) ≺ ϕm(Pn−1)0. By Part (2) of Lemma 25, zn−1 begins and ends with

0 and Pn−1 begins with z0 = 0. Thus 0−1ϕm(zn−1) (resp., ϕm(Pn−1)0) begins and ends with

1 (resp., 0). It follows that ϕm(zn−1) is a factor of ϕm(Pn−1). As in Case (1), we reach a

contradiction since n−3 6= m−1.

Case 3. Assume that m ∤ n−3 and m | n−2. Plugging �n−3 = ε and �n−2 = 0 into (11),

we have ϕm(zn−1)0 ≺ ϕm(Pn−1). So, we have ϕm(zn−1)0 ≺ ϕm(Pn−1)0. From Part (1) of

Lemma 35, zn−1 ≺ Pn−1 contradicting the induction hypothesis.

Lemma 40. For all n ≥ 0, zn is closed.

Proof. The result follows from Lemma 4 for the case m= 2. Now suppose that m≥ 3. Using

Table 6, the result is clearly true for the cases n ∈ {0,1,2}. We assume that n ≥ 3. Let us

show, equivalently, that there exists a border v of zn which |zn|v = 2, that is, we prove that

zn is a complete return to v. Set v = (n−3)−1 hR
n−3

n−2. Clearly, v is a border of zn. There

are two cases to consider according to the value of n.

Case 1. Suppose that n ≤ m−1. Observe that using Remark 26,

zn = (n−3)−1 hR
n−3 hR

n−2 n
n−3∏

i=0

hR
i (n−2).

In order to show that zn is a complete return to v, it suffices to prove that y is a return word

of v, where

y= (n−3)−1 hR
n−3 hR

n−2 n
n−4∏

i=0

hR
i (n−3). (12)

For this purpose, we prove that f yf −1 is a return word of u j(v), where f and j(v) are those

of Lemma 32. First, we find the minimal integer j(v) such that the word v is a factor of

u j(v). We obtain from Lemma 36 that v does not occur in un−1. From Part (4) of Lemma 15,
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we have hR
n−3

hR
n−2

⊲un. Using Lemma 12, hR
n−3

(resp., hR
n−2

) starts with n−3 (resp., n−2).

Thus, (n−3)−1 hR
n−3

(n−2) ≺ un. We conclude that j(v)= n. Now, let

f =

n−4∏

i=0

hR
i (n−3). (13)

Plugging (13) and (12) into f yf −1 and then using Part (4) of Lemma 15, we obtain

f yf −1
=

n−2∏

i=0

hR
i n = un n.

Using Part (2) of Lemma 19, we know that f yf −1 = µn−1 (n). Then, by Lemma 32, y is a

return word of v. So, the desired conclusion is obtained in this case.

Case 2. Suppose that n ≥ m. The proof is obtained in the same manner as the first case.

By Remark 26, we find that

zn = (n−3)−1 hR
n−3 hR

n−2

n−3∏

i=(n−m)∗

hR
i n−2.

Now let

y= (n−3)−1 hR
n−3 hR

n−2

n−4∏

i=(n−m)∗

hR
i n−3. (14)

Similarly to the first case, the minimal integer j(v) such that v is a factor of u j(v) equals

j(v)= n. Substituting (13) and (14) into f yf −1, we get

f yf −1
=

n−4∏

i=0

hR
i hR

n−3 hR
n−2

n−4∏

i=(n−m)∗

hR
i (

n−4∏

i=0

hR
i )−1

=

n−2∏

i=0

hR
i (

n−m−1∏

i=0

hR
i )−1.

By Part (4) of Lemma 15, we have f yf −1 = un u−1
n−m+1

= hn−2 · · · hn−m. Now using Part (1)

of Lemma 19, we find that f yf −1 = µn−1(n−m). We conclude from Lemma 32 that y is a

return word of v. So, we obtain the desired conclusion in this case.

Lemma 41. For all n ≥ 4, the word (n−3)−1hR
n−3

is not a factor of un−3.

Proof. The proof is by induction on n. The case n = 4 can be easily checked by hand. Assume

that n ≥ 5 and that the claim holds true for all values less than n and consider the case n.

Suppose to the contrary that (n−3)−1 hR
n−3

≺ un−3. Using Parts (3) and (4) of Lemma 19,

(n−3)−1 0−1ϕm(hR
n−4)0 ≺ ϕm(un−4)0.

So, (n−3)−1 0−1ϕm

(
(n−4)(n−4)−1hR

n−4

)
0 ≺ ϕm(un−4)0. Using Lemma 24, we get

( �n−3)−1ϕm

(
(n−4)−1hR

n−4

)
0 ≺ ϕm(un−4)0. (15)

Now we divide the proof into two cases according to whether m divides n−3 or not.
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Case 1. Suppose that m ∤ (n−3). We obtain that ϕm( (n−4)−1hR
n−4

)0 ≺ ϕm(un−4)0 by

replacing �n−3= ε into (15). Part (1) of Lemma 35 implies that (n−4)−1 hR
n−4

≺ un−4 which

contradicts the induction hypothesis.

Case 2. Suppose that m | (n − 3). we find that 0−1ϕm

(
(n−4)−1hR

n−4

)
0 ≺ ϕm(un−4)0

by plugging �n−3 = 0 into (15). Using Lemma 12, 0−1ϕm

(
(n−4)−1hR

n−4

)
begins with 1.

Also, from Lemma 12 and Part (4) of Lemma 15, ϕm(un−4) begins with 0. Therefore,

ϕm

(
(n−4)−1hR

n−4

)
0 ≺ ϕm(un−4)0. As in Case (1), we reach a contradiction.

In the following theorem, we obtain the closed z-factorization of the m-bonacci word

based on the sequence of words zn.

Theorem 42. The closed z-factorization of the m-bonacci word is

cz(hω)= (z0 , z1 , z2 , z3 , . . .).

Proof. First note that using Theorem 5, the case m = 2 is covered. Suppose that m ≥ 3.

From Lemma 31, hω =
∏

n≥0 zn. So, the first few factors of hω are {z0, . . . z6}. It can be easily

checked that zi, 1 ≤ i ≤ 6, are closed z-factors of hω. Now assume that n ≥ 7. In order to

prove the statement, we need to show the following three claims.

1. The word zn is closed.

2. The word zn does not appear in Pn+1γ
−1
n where γn is the last letter of zn.

3. Every closed prefix of zn has already appeared in Pn.

Claim (1) is true by Lemma 40 and Claim (2) is true respectively by Lemmas 37, 38 and

39. To prove Claim (3), we find the largest closed prefix of zn and prove that this prefix has

already appeared in Pn. Lemma 40 implies that a frontier of zn is (n−3)−1 hR
n−3

n−4. Now

we set v = (n−3)−1 hR
n−3

and find the closed prefix of zn with border v. We divide the proof

into two cases according to the value of n.

Case 1. Assume that n ≤ m−1. In order to prove the statement, we prove that the word

y is a return word of v, where

y= (n−3)−1 hR
n−3 n−2. (16)

To show this, we need to prove that f yf −1 is a return word of u j(v) where f and j(v) are those

of Lemma 32. Using Part (5) of Lemma 15, un−2 = (n−3)−1 hR
n−3

. Therefore, the minimal

integer j(v) such that v is a factor of u j(v) equals j(v) = n−2 and thus, set f = ε. Replacing

f = ε and Equation (16) into f yf −1, we get f yf −1 = (n−3)−1 hR
n−3

(n − 2). By Part (5) of

Lemma 15 and then Part (2) of Lemma 19, we find that

f yf −1
= un−2(n−2)=µn−3(n−2).

Lemma 32 implies that y is a return word of v. So, (n−3)−1hR
n−3

(n−2)(n−3)−1 hR
n−3

is a

closed prefix of zn. Using Definition 20 and replacing zn−1, zn−2 and zn−3 into Pn, we find

that (n−3)−1hR
n−3

(n−2)(n−3)−1 hR
n−3

is a factor of Pn which ends the proof in this case.

Case 2. Suppose that n ≥ m. This case is similar to the first case. Set

y= (n−3)−1 hR
n−3 (hR

n−m−3)−1 n−3. (17)
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Lemma 41 tells us that v is not a factor of un−3. On the other hand, using Part (4) of

Lemma 15, we get

un−2 = hR
0 · · · hR

n−4 = hR
0 · · · hR

n−m−4 hR
n−3 = h0

R
· · · hR

n−m−4 n−3(n−3)−1 hR
n−3.

Therefore, the minimal integer j(v) such that v occurs in u j(v) equals j(v) = n−2. Now set

f = h0
R h1

R
· · · hR

n−m−4 n−3. (18)

Substituting Equations (17) and (18) into f yf −1, we find that

f yf −1
= hR

0 hR
1 · · · hR

n−4 (hR
0 hR

1 · · · hR
n−m−3)−1.

Using Part (4) of Lemma 15 and then Part (1) of Lemma 19, we have

f yf −1
= un−2 u−1

n−m−1 = hn−4 hn−5 · · · hn−m−2 =µn−3(n−m−2).

Lemma 32 implies that f yf −1 is a return word of un−2. Thus, y is a return word of v, that

is, the word (n−3)−1hR
n−3

(hR
n−m−3

)−1 hR
n−3

is a closed prefix of zn. The result is obtained by

using Definition 20 and substituting zn−1, zn−2 and zn−3 into Pn.

5 Relation between the palindromic and closed

z-factorizations of the m-bonacci words

In this section, we link two kinds of factorizations of the m-bonacci words, namely the palin-

dromic and closed z-factorizations. In [13], we introduced a variation of the z-factorization,

the palindromic z-factorization, in which each factor is palindromic. Also, we computed

this factorization for the Fibonacci word and more generally for the m-bonacci words. The

palindromic z-factorization of a word w is pz(w) = (p1 , p2 , . . .) such that pi is the shortest

palindromic prefix of pi pi+1 · · · which occurs exactly once in p1 p2 · · · pi.

In the following lemma, the length of the n-th palindromic z-factor of the m-bonacci word

is expressed by the previous m palindromic z-factors.

Lemma 43. [13,Corollary26] Let pz(hω) = (p1 , p2 , . . .) be the palindromic z-factorization of

the m-bonacci word. If m is even, then, for all n ≥ m−1, we have

|pn| = |pn−1|+ |pn−2|+ · · ·+ |pn−m|.

If m is odd, then, for all n ≥ m−1, we have

|pn| = |pn−1|+ |pn−2|+ · · ·+ |pn−m|+ (−1)n.

We compare these two types of factorizations in the following corollary.

Corollary 44. Let pz(hω) = (p1, p2, . . .) and cz(hω) = (z1, z2, . . .) be respectively the palin-

dromic z-factorization and the closed z-factorization of hω. If m = 2, then for all n ≥ m−1,

|zn| = |pn|. If m≥ 3, then for every even integer m and for all n ≥ m−1, |zn| = |pn|.

Proof. The case m = 2 follows from Theorem 5 and the case m ≥ 3 follows from Part (1) of

Lemma 25 and Lemma 43.
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6 The oc-sequence of the m-bonacci words

The notion of the oc-sequence of a word w is introduced in [7]. It is a binary sequence whose

n-th element is 1 if the length-n prefix of w is closed; otherwise, it is 0. In this section, our

aim is to show that the sequence of the lengths of the maximum consecutive 1’s in oc(h
(m)
ω )

is exactly the m-bonacci word.

In the following lemma, we prove that the palindromic prefixes of the m-bonacci words

are closed.

Lemma 45. For all n ≥ 2, un is closed.

Proof. To prove this statement, it suffices to find a border v of un such that |un|v = 2. Using

Lemma 15, we have un = hn−2 un−1. As un is a palindrome by its definition, we find that

un−1 is a border of un. We show that v = un−1 . We proceed by induction on n. The result is

clear for n ∈ {2,3} by Table 5. Now suppose that n ≥ 4 and the result holds true up to n−1.

We will show that it is still true for n. We proceed by contradiction and suppose that un−1 is

a proper factor of un. Therefore, there exist non-empty words s and t such that un = s un−1 t.

From Part (4) of Lemma 19, we obtain that ϕm(un−1)0 = sϕm(un−2)0t. From Lemma 34,

we deduce that ϕm(un−1) and ϕm(un−2) have a unique factorization using words of the set

C = {01,02, . . .,0(m−1),0}. Thus, we have ϕm(un−1)0= y1 · · · yk0 and ϕm(un−2)= x1 · · · xℓ, with

x1, . . . , xℓ, y1, . . . , yk ∈ C and ℓ, k ≥ 1. By uniqueness of the factorization, there exists 1≤ i ≤ k

such that for all 1 ≤ j ≤ l, we have x j = yi+ j−1. Also, s = y1 · · · yi−1 and 0t = yi+l · · · yk0. Thus,

there exist words s′, t′ ∈ A∗
m such that ϕm(s′)= s and ϕm(t′)= t. Finally, we deduce that

ϕm(un−1)0= sϕm(un−2)0t =ϕm(s′)ϕm(un−2)ϕm(t′)=ϕm(s′un−2t′).

By injectivity of ϕm, un−2 is a proper factor of un−1, contradicting the induction hypothesis.

Definition 46. Let n ≥ 2. We define tn by

tn =

{
(n−1)hR

0
· · ·hR

n−3
, if 2≤ n ≤ m−1;

hR
n−m−1

hR
n−m · · ·hR

n−3
, if n ≥ m.

Then we have, hR
n−1

= tnhR
n−2

. Hence, untnhR
n−2

= un+1.

Definition 47. Let w be a prefix of the m-bonacci word hω and let n(w) be the unique

positive integer satisfying |un(w)| < |w| ≤ |un(w)+1|. Then, w is a prefix of type-1 if it satisfies

|un(w)|+ |tn(w)| < |w| ≤ |un(w)+1| (19)

and of type-2 if it satisfies

|un(w)| < |w| ≤ |un(w)|+ |tn(w)|. (20)

Lemma 48. Let w be a prefix of the m-bonacci word hω satisfying |un(w)| < |w| ≤ |un(w)+1| for

some positive integer n(w) and let v = u−1
n(w)

w.
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1. If w is a prefix of type-1, then v = tn(w)x, where x is a non-empty prefix of hR
n(w)−2

.

2. If w is a prefix of type-2, then v is a non-empty prefix of tn(w) (possibly v = tn(w)).

Proof. The result directly follows from Inequalities (19) and (20) since un(w)+1 = un(w)tn(w)h
R
n(w)−2

and w = un(w)v.

In the following theorem, we characterize closed (and open) prefixes of the m-bonacci

word.

Theorem 49. We have the following properties.

1. The prefixes of type-1 of the m-bonacci word are closed.

2. The prefixes of type-2 of the m-bonacci word are open.

Proof. First observe that 0 = u2 is the type-1 prefix of hω. Now we examine the prefixes of

the m-bonacci word whose length is greater than 1. To prove the first item in the statement,

consider each prefix w of hω with w = un(w)v and v = tn(w)x such that ε 6= x⊳hR
n(w)−2

. In order

to prove the assertion, we need to find a frontier u′ of w. There are two cases to consider

according to the value of n(w).

Case 1. Assume that n(w)≤ m−1. Therefore, tn(w) = (n(w)−1)hR
0
· · ·hR

n(w)−3
. As n(w)−1

does not occur in un(w)−1, the longest border of w is hR
0

hR
1
· · ·hR

n(w)−3
x = un(w)−1x. Using the

proof of Lemma 45, un(w)−1 has no internal occurrence in un(w). Hence, un(w)−1x has no

internal occurrence in w and we are done.

Case 2. Assume that n(w) ≥ m. Thus, tn(w) = hR
n(w)−m−1

hR
n(w)−m

· · ·hR
n(w)−3

. Set u′ =

un(w)−mtn(w)x= un(w)−1x. It is obvious that u′ is a suffix of w. Also by Part (3) of Lemma 15,

u′ is a prefix of w. As in Case (1), un(w)−1x has no internal occurrence in w and we get

the result. To prove the second item in the statement, let w = un(w)v, where v⊳ tn(w). We

consider two cases according to the value of n(w).

Case 1. Suppose that n(w) ≤ m. Then, we have tn(w) = (n(w)−1)hR
0
· · ·hR

n(w)−3
. Since

n(w)− 1 does not occur in un(w), the longest border of w is (n(w)− 1)−1v which is also a

border of un(w). So, it appears three times in w. In other words, w is open.

Case 2. Suppose that n(w) ≥ m. We prove that the longest border of w is un(w)−m v.

Suppose that the word xv is a border of w. As w = un(w)v, x is a border of un(w). Since un(w)

is palindromic, x is a palindromic prefix of un(w). Thus it is of the form x = u i for some i.

As v is a prefix of tn(w) = hR
n(w)−m−1

hR
n(w)−m

· · ·hR
n(w)−3

, the longest u i, i ≥ 2, such that u iv is a

border of w is un(w)−m. On the other hand, un(w)−m v is a border of un(w). Therefore, it occurs

three times in w and thus w is open.

Corollary 50. The sequence of lengths of the maximum consecutive 1’s in the oc-sequence of

the m-bonacci word is exactly |h i|, for all i ≥ 0.

Proof. Using Inequality (19), we deduce that the number of consecutive closed prefixes of

the m-bonacci words hω is equal to |tn|+ |hR
n−2

| = |hR
n−1

| and we get the result.

Example 51. Let tn be the sequence of Tribonacci numbers where T−1 = 1, T0 = 1, T1 = 2

and for all n ≥ 2, Tn = Tn−1 + Tn−2 + Tn−3. Then, we have oc(h
(3)
ω ) = 10

∏
i≥0 1Ti 0Ti−1+Ti .

Table 8 shows the first few values of the oc-sequence for the infinite Tribonacci word.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

h
(3)
ω 0 1 0 2 0 1 0 0 1 0 2 0 1 0 1 0 2 0 1 0 0 1 0 2

oc(h(3)
ω ) 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1

Table 8: The first few values of the oc-sequence of the Tribonacci word

7 Open problems

It is interesting to find the closed z-factorization of other infinite words such as epistur-

mian words and automatic words. Another interesting problem is to obtain the closed c-

factorizations of infinite words and find a relation between the closed z-factorization and

the closed c-factorization of infinite words. We leave it as an open problem to characterize

the closed c-factorization of the m-bonacci word.

Problem 52. Let c(hω) = (c0, c1, c2, . . .) be the closed c-factorization of the m-bonacci word.

For all m≥ 3 and n ≥ 2m−1, we conjecture that |ci| = |hm
i−m+1

|.
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