
Exploring the Gap Between Treedepth and
Vertex Cover Through Vertex Integrity?

Tatsuya Gima1, Tesshu Hanaka2, Masashi Kiyomi3, Yasuaki Kobayashi4, and
Yota Otachi1

1 Nagoya University, Nagoya, Japan
gima@nagoya-u.jp, otachi@nagoya-u.jp

2 Chuo University, Bunkyo-ku, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

3 Yokohama City University, Yokohama, Japan
masashi@yokohama-cu.ac.jp

4 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

Abstract. For intractable problems on graphs of bounded treewidth,
two graph parameters treedepth and vertex cover number have been
used to obtain fine-grained complexity results. Although the studies in
this direction are successful, we still need a systematic way for further
investigations because the graphs of bounded vertex cover number form
a rather small subclass of the graphs of bounded treedepth. To fill this
gap, we use vertex integrity, which is placed between the two parame-
ters mentioned above. For several graph problems, we generalize fixed-
parameter tractability results parameterized by vertex cover number to
the ones parameterized by vertex integrity. We also show some finer com-
plexity contrasts by showing hardness with respect to vertex integrity or
treedepth.

Keywords: vertex integrity, vertex cover number, treedepth.

1 Introduction

Treewidth, which measures how close a graph is to a tree, is arguably one of the
most powerful tools for designing efficient algorithms for graph problems. The
application of treewidth is quite wide and the general theory built there often
gives a very efficient algorithm (e.g., [10,2,17]). However, still many problems are
found to be intractable on graphs of bounded treewidth (e.g., [50]). To cope with
such problems, one may use pathwidth, which is always larger than or equal to
treewidth. Unfortunately, this approach did not quite work as no natural problem
was known to change its complexity with respect to treewidth and pathwidth,
until very recently [8]. Treedepth is a further restriction of pathwidth. How-
ever, still most of the problems do not change their complexity, except for some

? Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168,
JP18K11169, JP19K21537, JP20K19742, JP20H05793.

ar
X

iv
:2

10
1.

09
41

4v
2

 [
cs

.D
S]

 3
1

M
ar

 2
02

3

2 Gima et al.

problems with hardness depending on the existence of long paths (e.g., [24,39]).
One successful approach in this direction is parameterization by the vertex cover
number, which is a strong restriction of treedepth. Many problems that are in-
tractable parameterized by treewidth have been shown to become tractable when
parameterized by vertex cover number [27,25,28,1,41,14].

One drawback of the vertex-cover parameterization is its limitation to a very
small class of graphs. To overcome the drawback, we propose a new approach for
parameterizing graph problems by vertex integrity [5]. The vertex integrity of a
graph G, denoted vi(G), is the minimum integer k satisfying that there is S ⊆
V (G) such that |S|+|V (C)| ≤ k for each component C of G−S. We call such S a
vi(k)-set of G. This parameter is bounded from above by vertex cover number +
1 and from below by treedepth. As a structural parameter in parameterized
algorithms, vertex integrity (and its close variants) was used only in a couple
of previous studies [23,33,12]. Our goal is to fill some gaps between treedepth
and vertex cover number by presenting finer algorithmic and complexity results
parameterized by vertex integrity. Note that the parameterization by vertex
integrity is equivalent to the one by `-component order connectivity + ` [22].

Short preliminaries. For the basic terms and concepts in the parameterized com-
plexity theory, we refer the readers to standard textbooks, e.g. [21,19].

For a graph G, we denote its treewidth by tw(G), pathwidth by pw(G),
treedepth by td(G), and vertex cover number by vc(G). (See Section A for defi-
nitions.) It is known that tw(G) ≤ pw(G) ≤ td(G) − 1 ≤ vi(G) − 1 ≤ vc(G) for
every graph G. We say informally that a problem is fixed-parameter tractable
“parameterized by vi”, which means “parameterized by the vertex integrity of
the input graphs.” We also say “graphs of vi = c (or vi ≤ c)”.

Our results. The main contribution of this paper is to generalize several known
FPT algorithms parameterized by vc to the ones by vi. We also show some
results considering parameterizations by vc, vi, or td to tighten the complexity
gaps between parameterizations by vc and by td. See Table 1 for the summary
of results. Due to the space limitation, we had to move most of the results into
the appendix. In the main text, we present full descriptions of selected results
only. (Even for the selected results, we still have to omit some proofs. They are
marked with F.)

Extending FPT results parameterized by vc. We show that Imbalance, Max-
imum Common (Induced) Subgraph, Capacitated Vertex Cover, Ca-
pacitated Dominating Set, Precoloring Extension, Equitable Col-
oring, and Equitable Connected Partition are fixed-parameter tractable
parameterized by vertex integrity. We present the algorithms for Imbalance as
a simple but still powerful example that generalizes known results (Section 2)
and for Maximum Common Subgraph as one of the most involved examples
(Section 3). See Section E for the other problems. A commonly used trick is to
reduce the problem instance to a number of instances of integer linear program-
ming, while each problem requires a nontrivially tailored reduction depending
on its structure. It was the same for parameterizations by vc, but the reductions
here are more involved because of the generality of vi. Finding the similarity

Treedepth, Vertex Cover, and Vertex Integrity 3

Table 1. Summary. The results stated without references are shown in this paper.

Problem Lower bounds Upper bounds

Imbalance NP-h [9]
FPT by tw +∆ [42]
FPT by vi

Max Common Subgraph NP-h for vi(G2) = 3
FPT by vi(G1) + vi(G2)

Max Common Ind. Subgraph NP-h for vc(G2) = 0

Capacitated Vertex Cover W[1]-h by td [20] FPT by vi

Capacitated Dominating Set W[1]-h by td + k [20] FPT by vi

Precoloring Extension W[1]-h by td [26] FPT by vi

Equitable Coloring W[1]-h by td [26] FPT by vi

Equitable Connected Part. W[1]-h by pw [25] FPT by vi

Bandwidth
W[1]-h by td FPT by vc [27]
NP-h for pw = 2 [46] P for pw ≤ 1 [4]

Graph Motif NP-h for vi = 4
FPT by vc [14]
P for vi ≤ 3

Steiner Forest NP-h for vi = 5 [35] XP by vc
Unweighted Steiner Forest NP-h for tw = 3 [35] FPT by vc

Unary Min Max Outdeg. Ori. W[1]-h by vc XP by tw [51]
Binary Min Max Outdeg. Ori. NP-h for vc = 3 P for vc ≤ 2

Metric Dimension W[1]-h by pw [13]
FPT by tw +∆ [6]
FPT by td

Directed (p, q)-Edge Dom. Set W[1]-h by pw [7]
FPT by tw + p+ q [7]
FPT by td

List Hamiltonian Path W[1]-h by pw [43] FPT by td

among the reductions and algorithms would be a good starting point to develop
a general way for handling problems parameterized by vi (or vc). Additionally,
we show that Bandwidth is W[1]-hard parameterized by td, while we were not
able to extend the algorithm parameterized by vc to the one by vi.

Filling some complexity gaps. We observe that Graph Motif and Steiner
Forest have different complexity with respect to vc and vi (Section F). In par-
ticular, we see that not all FPT algorithms parameterized by vc can be general-
ized to the ones by vi. Min Max Outdegree Orientation gives an example
that a known hardness for td can be strengthened to the one for vc (Section 4).
We additionally observe that some W[1]-hard problems parameterized by tw
become tractable parameterized by td. Such problems include Metric Dimen-
sion, Directed (p, q)-Edge Dominating Set, and List Hamiltonian Path
(Section G).

2 Imbalance

In this section, we show that Imbalance is fixed-parameter tractable param-
eterized by vi. Let G = (V,E) be a graph. Given a linear ordering σ on V ,
the imbalance imσ(v) of v ∈ V is the absolute difference of the numbers of the
neighbors of v that appear before v and after v in σ. The imbalance of G, de-

4 Gima et al.

noted im(G), is defined as minσ
∑
v∈V im(v), where the minimum is taken over

all linear orderings on V . Given a graph G and an integer b, Imbalance asks
whether im(G) ≤ b.

Fellows et al. [27] showed that Imbalance is fixed-parameter tractable pa-
rameterized by vc. Recently, Misra and Mittal [44] have extended the result by
showing that Imbalance is fixed-parameter tractable parameterized by the sum
of the twin-cover number and the maximum twin-class size. Although twin-cover
number is incomparable with vertex integrity, the combined parameter in [44]
is always larger than or equal to the vertex integrity of the same graph. On the
other hand, the combined parameter can be arbitrarily large for some graphs of
constant vertex integrity (e.g., disjoint unions of P3’s). Hence, our result here
properly extends the result in [44] as well.

Key concepts. Before proceeding to the algorithm, we need to introduce two
important concepts that are common in our algorithms parameterized by vi.

1. ILP parameterized by the number of variables. It is known that the fea-
sibility of an instance of integer linear programming (ILP) parameterized by
the number of variables is fixed-parameter tractable [40]. Using the algorithm
for the feasibility problem as a black box, one can show the same fact for the
optimization version as well. (See Section B for the detail.) This fact has been
used heavily for designing FPT algorithms parameterized by vc (see e.g. [27]).
We are going to see that some of these algorithms can be generalized for the
parameterization by vi, and Imbalance is the first such example.

2. Equivalence relation among components. For a vertex set S of G, we define
an equivalence relation ∼G,S among components of G−S by setting C1 ∼G,S C2

if and only if there is an isomorphism g from G[S ∪V (C1)] to G[S ∪V (C2)] that
fixes S; that is, g|S is the identity function. When C1 ∼G,S C2, we say that
C1 and C2 have the same (G,S)-type (or just the same type if G and S are
clear from the context). See Fig. 1. We say that a component C of G − S is of
(G,S)-type t (or just type t) by using a canonical form t of the members of the
(G,S)-type equivalence class of C. We can set the canonical form t in such a way
that it can be computed from S and C in time depending only on |S ∪ V (C)|.5
Observe that if S is a vi(k)-set of G, then the number of ∼G,S classes depends
only on k since |S ∪ V (C)| ≤ k for each component C of G− S. Hence, we can
compute for all types t the number of type-t components of G−S in O(f(k) ·n)
total running time, where n = |V | and f(k) is a computable function depending
only on k. Note that this information (the numbers of type-t components for all
t) completely characterizes the graph G up to isomorphism.

Theorem 2.1. Imbalance is fixed-parameter tractable parameterized by vi.

Proof. Let S be a vi(k)-set of G. Such a set can be found in O(kk+1n) time [22].
We first guess and fix the relative ordering of S in an optimal ordering. There

5 For example, by fixing the ordering of vertices in S as v1, . . . , v|S|, we can set
t to be the adjacency matrix of G[S ∪ V (C)] such that the ith row and col-
umn correspond to vi for 1 ≤ i ≤ |S| and under this condition the string
t[1, 1], . . . , t[1, s], t[2, 1], . . . , t[s, s] is lexicographically minimal, where s = |S∪V (C)|.

Treedepth, Vertex Cover, and Vertex Integrity 5

S

C1 C2 C3 C4

Fig. 1. The components C2 and C3 of G− S have the same (G,S)-type.

are only k! candidates for this guess. For each v ∈ S, let `(v) and r(v) be the
numbers of vertices in N(v) ∩ S that appear before v and after v, respectively,
in the guessed relative ordering of S.

Observe that the imbalance of a vertex v in a component C of G−S depends
only on the relative ordering of S ∪ V (C) since N(v) ⊆ S ∪ V (C). For each type
t and for each relative ordering p of S ∪V (C), where C is a type-t component of
G−S, we denote by im(t, p) the sum of imbalance of the vertices in C. Similarly,
the numbers of vertices in a type-t component C that appear before v ∈ S and
after v depend only on the relative ordering p of S ∪ V (C); we denote these
numbers by `(v, t, p) and r(v, t, p), respectively. The numbers im(t, p), `(v, t, p),
and r(v, t, p) can be computed from their arguments in time depending only on
k, and thus they are treated as constants in the following ILP.

We represent by a nonnegative variable xt,p the number of type-t components
that have relative ordering p with S. Note that the number of combinations of t
and p depends only on k. For each v ∈ S, we represent (an upper bound of) the
imbalance of v by an auxiliary variable yv. This can be done by the following
constraints:

yv ≥ (`(v) +
∑
t,p `(v, t, p) · xt,p)− (r(v) +

∑
t,p r(v, t, p) · xt,p),

yv ≥ (r(v) +
∑
t,p r(v, t, p) · xt,p)− (`(v) +

∑
t,p `(v, t, p) · xt,p).

Then the imbalance of the whole ordering, which is our objective function to
minimize, can be expressed as∑

v∈S yv +
∑
t,p im(t, p) · xt,p.

Now we need the following constraints to keep the total number of type-t com-
ponents right: ∑

p xt,p = ct for each type t,

where ct is the number of components of type t in G− S.
By finding an optimal solution to the ILP above for each guess of the relative

ordering of S, we can find an optimal ordering. Since the number of guesses and
the number of variables depend only on k, the theorem follows. ut

3 Maximum Common (Induced) Subgraph

In this section, we show that Maximum Common Subgraph (MCS) and Max-
imum Common Induced Subgraph (MCIS) are fixed-parameter tractable pa-

6 Gima et al.

rameterized by vi of both graphs. (See Section C for the proof for MCIS.) The
results extend known results and fill some complexity gaps as described below.

A graph Q is subgraph-isomorphic to G, denoted Q � G, if there is an
injection η from V (Q) to V (G) such that {η(u), η(v)} ∈ E(G) for every {u, v} ∈
E(Q). A graph Q is induced subgraph-isomorphic to G, denoted Q �I G, if
there is an injection η from V (Q) to V (G) such that {η(u), η(v)} ∈ E(G) if and
only if {u, v} ∈ E(Q). Given two graphs G and Q, Subgraph Isomorphism
(SI) asks whether Q � G, and Induced Subgraph Isomorphism (ISI) asks
whether Q �I G. The results of this section are on their generalizations. Given
two graphs G1 and G2, MCS asks to find a graph H with maximum |E(H)|
such that H � G1 and H � G2. Similarly, MCIS asks to find a graph H with
maximum |V (H)| such that H �I G1 and H �I G2.

If we restrict the structure of only one of the input graphs, then both problems
remain quite hard. Since Partition Into Triangles [34] is a special case of SI
where the graph Q is a disjoint union of triangles, MCS is NP-hard even if one of
the input graphs has vi = 3. Also, since Independent Set [34] is a special case
of ISI where Q is an edge-less graph, MCIS is NP-hard even if one of the input
graphs has vc = 0. Furthermore, since SI and ISI generalize Clique [21], MCS
and MCIS are W[1]-hard parameterized by the order of one of the input graphs.
When parameterized by vc of one graph, an XP algorithm for (a generalization
of) MCS is known [11].

For parameters restricting both input graphs, some partial results were known.
It is known that SI is fixed-parameter tractable parameterized by vi of both
graphs, while it is NP-complete when both graphs have td ≤ 3 [12]. The hard-
ness proof in [12] can be easily adapted to ISI without increasing td. It is known
that MCIS is fixed-parameter tractable parameterized by vc of both graphs [1].

Theorem 3.1. Maximum Common Subgraph is fixed-parameter tractable pa-
rameterized by vi of both input graphs.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2) be the input graphs of vertex
integrity at most k. We will find isomorphic subgraphs Γ1 = (U1, F1) of G1

and Γ2 = (U2, F2) of G2 with maximum number of edges, and an isomorphism
η : U1 → U2 from Γ1 to Γ2.

Step 1. Guessing matched vi(2k)-sets R1 and R2. Let S1 and S2 be vi(k)-sets of
G1 and G2, respectively. At this point, there is no guarantee that Si ⊆ Ui or
η(S1) = S2. To have such assumptions, we make some guesses about η and find
vi(2k)-sets R1 and R2 of the graphs such that η(R1) = R2.

Step 1-1. Guessing subsets Xi, Yi ⊆ Si for i ∈ {1, 2}. We guess disjoint
subsets X1 and Y1 of S1 such that X1 = S1 ∩ η−1(U2 ∩ S2) and Y1 = S1 ∩
η−1(U2 \ S2). We also guess disjoint subsets X2 and Y2 of S2 defined similarly as
X2 = S2 ∩ η(U1 ∩ S1) and Y2 = S2 ∩ η(U1 \ S1). Note that η(X1) = X2. There
are 3|S1| · 3|S2| ≤ 32k candidates for the combinations of X1, Y1, X2, and Y2.

Observe that the vertices in Si \(Xi∪Yi) do not contribute to the isomorphic
subgraphs and can be safely removed. We denote the resultant graphs by Hi.

Treedepth, Vertex Cover, and Vertex Integrity 7

Step 1-2. Guessing η on X1 ∪ Y1 and η−1 on X2 ∪ Y2. Given the guessed
subsets X1, Y1, X2, and Y2, we further guess how η maps these subsets. There are
|X1|! ≤ k! candidates for the bijection η|X1 (equivalently for η−1|X2 = (η|X1)−1).

Now we guess η|Y1 from at most 2k
3

non-isomorphic candidates as follows.
Recall that η(Y1) ⊆ V2 \ S2. Observe that each subset A ⊆ V2 \ S2 is completely
characterized up to isomorphism by the numbers of ways A intersects type-t

components for all (H2, S2)-types t. Since there are at most 2(k
2) types and each

component has order at most k, the total number of non-equivalent subsets of

components is at most 2(k
2) · 2k ≤ 2k

2

. Since η(Y1) is the union of at most
|Y1| such subsets, the number of non-isomorphic candidates of η(Y1) is at most

(2k
2

)|Y1| ≤ 2k
3

. In the analogous way, we can guess η−1|Y2
from at most 2k

3

non-isomorphic candidates.

Now we set Z1 = η−1(Y2) and Z2 = η(Y1). Let R1 = X1 ∪ Y1 ∪ Z1 and
R2 = X2 ∪ Y2 ∪ Z2. Observe that each component C of H1 − R1 satisfies that
|C| ≤ k − |S1| ≤ k and |C|+ |R1| ≤ (k − |S1|) + (|S1|+ |η−1(Y2)|) ≤ 2k. Hence,
R1 is a vi(2k)-set of H1. Similarly, we can see that R2 is a vi(2k)-set of H2.
Furthermore, we know that η(R1) = R2.

Step 2. Extending the guessed parts of η. Assuming that the guesses we made so
far are correct, we now find the entire η. Recall that we are seeking for isomorphic
subgraphs Γ1 = (U1, F1) of G1 and Γ2 = (U2, F2) of G2 with maximum number
of edges, and the isomorphism η : U1 → U2 from Γ1 to Γ2. Since we already know
the part η|R1 : R1 → R2, it suffices to find a bijective mapping from a subset of
V (H1 −R1) to a subset of V (H2 −R1) that maximizes the number of matched
edges where the connections to Ri are also taken into account.

As we describe below, the subproblem we consider here can be solved by
formulating it as an ILP instance with 2O(k3) variables. The trick here is that
instead of directly finding the mapping, we find which vertices and edges in
Hi −Ri are used in the common subgraph.

In the following, we are going to use a generalized version of types since the
vertex set of a component of Hi − Ri does not necessarily induce a connected
subgraph of Γi. It is defined in a similar way as (Hi, Ri)-types except that it is
defined for each pair (A,B) of a connected subgraph A of Hi −Ri and a subset
B of the edges between A and Ri. Let (A1, B1) and (A2, B2) be such pairs in
Hi − Ri. We say that (A1, B1) and (A2, B2) have the same g-(Hi, Ri)-type (or
just g-type) if there is an isomorphism from Hi(A1, B1) to Hi(A2, B2) that fixes
Ri, where Hi(Aj , Bj) is the subgraph of Hi formed by Bj and the edges in Aj .
See Fig. 2. We say that a pair (A,B) is of g-(Hi, Ri)-type t (or just g-type t)
by using a canonical form t of the g-(Hi, Ri)-type equivalence class of (A,B).
Observe that all possible canonical forms of g-types can be computed in time
depending only on k.

Step 2-1. Decomposing components of Hi−Ri into smaller pieces. We say that
an edge {u, v} in H1 is used by η if u, v ∈ U1 and H2 has the edge {η(u), η(v)}.
Similarly, an edge {u, v} in H2 is used by η if u, v ∈ U2 and H1 has the edge
{η−1(u), η−1(v)}.

8 Gima et al.

Ri

A1 A2

B1 B2

Fig. 2. The pairs (A1, B1) and (A2, B2) have the same g-(Hi, Ri)-type.

Let i ∈ {1, 2}, t be an (Hi, Ri)-type, and T be a multiset of g-(Hi, Ri)-types.
Let C be a type t component of Hi − Ri, C ′ the subgraph of C formed by the
edges used by η, and E′ the subset of the edges between C ′ and Ri used by η.
If T coincides with the multiset of g-types of the pairs (A,B) such that A is a
component of C ′ and B is the subset of E′ connecting A and Ri, then we say
that η decomposes the type-t component C into T .

We represent by a nonnegative variable x
(i)
t,T the number of type-t components

of Hi −Ri that are decomposed into T by η. We have the following constraint:∑
T x

(i)
t,T = c

(i)
t for each (Hi, Ri)-type t and i ∈ {1, 2},

where the sum is taken over all possible multisets T of g-(Hi, Ri)-types, and c
(i)
t

is the number of components of type t in Hi − Ri. Additionally, if there is no

way to decompose a type-t component into T , we add a constraint x
(i)
t,T = 0.

As each component of Hi − Ri has order at most k, T contains at most k

elements. Since there are at most 2(2k
2) g-types, there are at most (2(2k

2))k options

for choosing T . Thus the number of variables x
(i)
t,T is at most 2 ·2(2k

2) · (2(2k
2))k+1.

Now we introduce a nonnegative variable y
(i)
t that represents the number of

pairs (A,B) of g-type t obtained from the components of Hi−Ri by decomposing

them by η. The definition of y
(i)
t gives the following constraint:

y
(i)
t =

∑
t′, T µ(T, t) · x(i)t′,T for each g-(Hi, Ri)-type t and i ∈ {1, 2},

where µ(T, t) is the multiplicity of g-type t in T and the sum is taken over all
possible (Hi, Ri)-types t′ and multisets T of g-(Hi, Ri)-types. As in the previous
case, we can see that the number of variables yt depends only on k.

Step 2-2. Matching decomposed pieces. Observe that for each g-(H1, R1)-type
t1, there exists a unique g-(H2, R2)-type t2 such that there is an isomorphism
g from H1(A1, B1) to H2(A2, B2) with g|R1

= η|R1
, where (Ai, Bi) is a pair of

g-(Hi, Ri)-type ti for i ∈ {1, 2}. We say that such g-types t1 and t2 match. Since
η is an isomorphism from Γ1 to Γ2, η maps each g-(H1, R1)-type t1 pair to a

g-(H2, R2)-type t2 pair, where t1 and t2 match. This implies that y
(1)
t1 = y

(2)
t2 ,

which we add as a constraint. Now the total number of edges used by η can be

computed from y
(1)
t . Let mt be the number of edges in H1(A,B), where (A,B)

is a pair of g-(H1, R1)-type t. Let r be the number of matched edges in R1; that
is, r = |{{u, v} ∈ E(H1[R1]) | {η(u), η(v)} ∈ E(G2[R2])}|. Then, the number of

matched edges is r+
∑
tmt ·y(1)t . On the other hand, given an assignment to the

Treedepth, Vertex Cover, and Vertex Integrity 9

variables, it is easy to find isomorphic subgraphs with that many edges. Since r

is a constant here, we set
∑
tmt ·y(1)t to the objective function to be maximized.

Since the number of candidates in the guesses we made and the number of
variables in the ILP instances depend only on k, the theorem follows. ut

4 Min Max Outdegree Orientation

Given an undirected graph G = (V,E), an edge weight function w : E → Z+,
and a positive integer r, Min Max Outdegree Orientation (MMOO) asks
whether there exists an orientation Λ of G such that each vertex has outdegree at
most r under Λ, where the outdegree of a vertex is the sum of the weights of out-
going edges. If each edge weight is given in binary, we call the problem Binary
MMOO, and if it is given in unary, we call the problem Unary MMOO. Note
that in the binary version, the weight of an edge can be exponential in the input
size, whereas the unary version does not allow such weights.

Unary MMOO admits an nO(tw)-time algorithm [51], but it is W[1]-hard
parameterized by td [50].6 In this section, we show a stronger hardness param-
eterized by vc. Binary MMOO is known to be NP-complete for graphs of
vi = 4 [3]. In Section D, we show a stronger hardness result that the binary
version is NP-complete for graphs of vc = 3. This result is tight as we can show
that the binary version is polynomial-time solvable for graphs of vc ≤ 2.

Theorem 4.1. Unary MMOO is W[1]-hard parameterized by vc.

Proof. We give a parameterized reduction from Unary Bin Packing. Given
a positive integer t and n positive integers a1, a2, . . . , an in unary, Unary Bin
Packing asks the existence of a partition S1, . . . , St of {1, 2, . . . , n} such that∑
i∈Sj

ai = 1
t

∑
1≤i≤n ai for 1 ≤ j ≤ t. Unary Bin Packing is W[1]-hard

parameterized by t [37].
We assume that t ≥ 3 since otherwise the problem can be solved in poly-

nomial time as the integers ai are given in unary. Let B = 1
t

∑
1≤i≤n ai and

W = (t− 1)B =
∑

1≤i≤n ai − B. The assumption t ≥ 3 implies that B ≤ W/2.
Observe that if ai ≥ B for some i, then the instance is a trivial no instance
(when ai > B) or the element ai is irrelevant (when ai = B). Hence, we assume
that ai < B (and thus ai < W/2) for every i.

The reduction to Unary MMOO is depicted in Fig. 3. From the integers
a1, a2, . . . , an, we construct the graph obtained from a complete bipartite graph
on the vertex set {u, s1, s2, . . . , st}∪{v1, . . . , vn} by adding the edge {u, s1}. We
set w({vi, sj}) = ai for all i, j, w({vi, u}) = W−ai for all i, and w({u, s1}) = W .
The vertices s1, s2, . . . , st, u form a vertex cover of size t+ 1. We set the target
maximum outdegree r to W . We show that this instance of Unary MMOO is
a yes instance if and only if there exists a partition S1, . . . , St of {1, 2, . . . , n}
such that

∑
i∈Sj

ai = B for all j. Intuitively, we can translate the solutions of

6 In [50], W[1]-hardness was stated for tw but the proof shows it for td as well.

10 Gima et al.

s1
v1

v2

vn

u

a1

a2

an

...

W − a1

W − a2

W − an

...
s2

st

W

Fig. 3. Reduction from Unary Bin Packing to Unary MMOO.

the problems by picking ai into Sj if {vi, sj} is oriented from vi to sj , and vice
versa.

Assume that there exists a partition S1, . . . , St of {1, 2, . . . , n} such that∑
i∈Sj

ai = B for all j. We first orient the edge {u, s1} from u to s1 and each

edge {vi, u} from vi to u. (See the thick edges in Fig. 3.) Then, we orient {vi, sj}
from vi to sj if and only if i ∈ Sj . Under this orientation, all vertices have
outdegree exactly W : ai + (W − ai) for each vi and

∑
i/∈Sj

ai =
∑

1≤i≤n ai −B
for each sj .

Conversely, assume that there is an orientation such that each vertex has
outdegree at most W . Since the sum of the edge weights is (n + t + 1)W and
the graph has n+ t+ 1 vertices, the outdegree of each vertex has to be exactly
W . Since ai < W/2 for all i, each edge {vi, u} has weight larger than W/2.
Hence, for u, the only way to obtain outdegree exactly W is to orient {u, s1}
from u to s1 and {vi, u} from vi to u for all i. Furthermore, for each i, there
exists exactly one vertex sj such that {vi, sj} is oriented from vi to sj . Let
Sj ⊆ {1, 2, . . . , n} be the set of indices i such that {vi, sj} is oriented from vi
to sj . The discussion above implies that S1, . . . , St is a partition of {1, . . . , n}.
The outdegree of sj is

∑
i/∈Sj

ai, which is equal to W =
∑

1≤i≤n ai − B. Thus,∑
i∈Sj

ai =
∑

1≤i≤n ai −W = B. ut

5 Bandwidth

Let G = (V,E) be a graph. Given a linear ordering σ on V , the stretch of
{u, v} ∈ E, denoted strσ({u, v}), is |σ(u)− σ(v)|. The bandwidth of G, denoted
bw(G), is defined as minσ maxe∈E strσ(e), where the minimum is taken over all
linear orderings on V . Given a graph G and an integer w, Bandwidth asks
whether bw(G) ≤ w. Bandwidth is NP-complete on trees of pw = 3 [45] and
on graphs of pw = 2 [46]. Fellows et al. [27] presented an FPT algorithm for
Bandwidth parameterized by vc . Here we show that Bandwidth is W[1]-hard
parameterized by td on trees. The proof is inspired by the one by Muradian [46].

Theorem 5.1. Bandwidth is W[1]-hard parameterized by td on trees.

Treedepth, Vertex Cover, and Vertex Integrity 11

Proof. Let (a1, . . . , an; t) be an instance of Unary Bin Packing with t ≥ 2.
Let B = 1

t

∑
1≤i≤n ai be the target weight. We construct an equivalent instance

(T = (V,E), w) of Bandwidth as follows (see Fig. 4). We start with a path
(z0, x1, y1, z1, . . . , xt, yt, zt) of length 3t. For 1 ≤ i ≤ t − 1, we attach 12tnB
leaves to zi. To z0 and zt, we attach 12tnB + 4n + 1 leaves. For 1 ≤ i ≤ n,
we take a star with 6tn · ai − 1 leaves centered at vi. Finally, we connect each
vi to x1 with a path with 6t − 4 inner vertices. We set the target width w to
6tnB + 2n+ 1. Note that |V | = (3t+ 2)w + 1.

We can see an upper bound of td(T) as follows. We remove x1 and all the
leaves from T . This decreases treedepth by at most 2. The remaining graph is
a disjoint union of paths and a longest path has order 6t − 3. Since td(Pn) =
dlog2(n+ 1)e [47], we have td(T) ≤ 2 + dlog2(6t− 2)e ≤ log2 t+ 6.

Now we show that (T,w) is a yes instance of of Bandwidth if and only if
(a1, . . . , an; t) is a yes instance of Unary Bin Packing.

(=⇒) First assume that bw(T) ≤ w and that σ is a linear ordering on V
such that maxe∈E strσ(e) ≤ w. Since deg(z0) = 12tnB + 4n+ 2 = 2w, its closed
neighborhood N [z0] has to appear in σ consecutively, where z0 appears at the
middle of this subordering. Furthermore, no edge can connect a vertex appearing
before z0 in σ and a vertex appearing after z0 as such an edge has stretch
larger than w. Since the edges not incident to z0 form a connected subgraph,
we can conclude that the vertices in V − N [z0] appear either all before N [z0]
or all after N [z0] in σ. By symmetry, we can assume that those vertices appear
after N [z0] in σ. This implies that σ(z0) = w + 1. By the same argument,
we can show that all vertices in N [zt] appear consecutively in the end of σ
and σ(zt) = |V | − w = (3t + 1)w + 1. Since σ(zt) − σ(z0) = 3tw and the
path (z0, x1, y1, z1, . . . , xt, yt, zt) has length 3t, each edge in this path has stretch
exactly w in σ. Namely, σ(xi) = (3i − 1)w + 1, σ(yi) = 3iw + 1, and σ(zi) =
(3i+ 1)w + 1.

For each leaf ` attached to zi (1 ≤ i ≤ t− 1), σ(yi) < σ(`) < σ(xi+1) holds.
Other than these leaves, there are 2(w−1)−12tnB = 4n vertices placed between
yi and xi+1. Let Vi be the set consisting of vi and the leaves attached to it. For
j ∈ {1, . . . , t}, let Ij be the set of indices i such that vi is put between zj−1 and

· · ·
6tn · a1 − 1

· · ·
6tn · an − 1

· · ·

· · ·
12tnB

· · ·
12tnB

· · ·
12tnB

· · ·
12tnB + 4n+ 1

· · ·
12tnB + 4n+ 1

· · ·
6t− 4

︸︷︷
︸x1 y1

z1

x2 y2

z2

xt yt

zt−1 ztz0

target width w = 6tnB + 2n+ 1
v1 vnV1 Vn

Fig. 4. Reductions from Unary Bin Packing to Bandwidth.

12 Gima et al.

x1 y1 z1 x2 y2 z2 x3 y3

vi

Fig. 5. Embedding the path from x1 to vi. The gray boxes are the occupied position
and the white points are the vacant positions. (n = 2, j = 2, t = 3.)

zj . If i ∈ Ij , then all 6tn · ai vertices in Vi are put between yj−1 and xj+1. (We
set y0 := z0.)

If
∑
i∈Ij ai ≥ B + 1, then |

⋃
i∈Ij Vi| ≥ 6tn(B + 1) > w + 8n − 1 as t ≥ 2.

This number of vertices cannot be put between yj−1 and xj+1 after putting the
leaves attached to zj−1 and zj : we can put at most 4n vertices between yj−1 and
xj , at most 4n vertices between yj and xj+1, and at most w−1 vertices between
xj and yj . Since I1, . . . , It form a partition of {1, . . . , n} and

∑
1≤i≤n ai = tB,

we can conclude that
∑
i∈Ij ai = B for 1 ≤ j ≤ t.

(⇐=) Next assume that there exists a partition S1, . . . , St of {1, 2, . . . , n}
such that

∑
i∈Sj

ai = B for all 1 ≤ j ≤ t.
We put N [z0] at the beginning of σ and N [zt] at the end. We set σ(xi) =

(3i− 1)w + 1, σ(yi) = 3iw + 1, and σ(zi) = (3i+ 1)w + 1. For 1 ≤ i ≤ t− 1, we
put the leaves attached to zi so that a half of them have the first 6tnB positions
between yi and zi and the other half have the first 6tnB positions between zi
and xi+1. For each Sj , we put the vertices in

⋃
i∈Sj

Vi so that they take the first
6tnB positions between xj and yj .

Now we have 2n vacant positions at the end of each interval between xi and
yi for 1 ≤ i ≤ t, between yi and zi for 1 ≤ i ≤ t− 1, and between zi and xi+1 for
1 ≤ i ≤ t− 1. To these positions, we need to put the inner vertices of the paths
connecting x1 and v1, . . . , vn. Let Pi be the inner part of x1–vi path. The path
Pi uses the (2i− 1)st and (2i)th vacant positions in each interval as follows (see
Fig. 5).

Let i ∈ Sj . Starting from x1, Pi proceeds from left to right and visits the
two positions in each interval consecutively until it arrives the interval between
xj and yj . At the interval between xj and yj , Pi switches to the phase where
it only visits the (2i)th vacant position in each interval and still proceeds from
left to right until it reaches the interval between xt and yt. Then Pi changes the
direction and switches to the phase where it visits the (2i− 1)st vacant position
only in each interval until it reaches the interval between xj and yj .

Now all the vertices are put at distinct positions and it is easy to see that no
edge has stretch more than w. This completes the proof. ut

6 Conclusion

Using vertex integrity as a structural graph parameter, we presented finer anal-
yses of the parameterized complexity of well-studied problems. Although we
needed a case-by-case analysis depending on individual problems, the results in

Treedepth, Vertex Cover, and Vertex Integrity 13

this paper would be useful for obtaining a general method to deal with vertex
integrity.

Although we succeeded to extend many fixed-parameter algorithms param-
eterized by vc to the ones parameterized by vi, we were not so successful on
graph layout problems. Fellows et al. [27] showed that Imbalance, Bandwidth,
Cutwidth, and Distortion are fixed-parameter tractable parameterized by
vc. Lokshtanov [41] showed that Optimal Linear Arrangement is fixed-
parameter tractable parameterized by vc. Are these problems fixed-parameter
tractable parameterized by vi? We answered only for Imbalance in this paper.

References

1. Faisal N. Abu-Khzam. Maximum common induced subgraph parameterized by
vertex cover. Inf. Process. Lett., 114(3):99–103, 2014. doi:10.1016/j.ipl.2013.

11.007.
2. Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-

decomposable graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/

0196-6774(91)90006-K.
3. Yuichi Asahiro, Eiji Miyano, and Hirotaka Ono. Graph classes and the complexity

of the graph orientation minimizing the maximum weighted outdegree. Discret.
Appl. Math., 159(7):498–508, 2011. doi:10.1016/j.dam.2010.11.003.

4. S. F. Assmann, G. W. Peck, M. M. Sys lo, and J. Zak. The bandwidth of caterpil-
lars with hairs of length 1 and 2. SIAM Journal on Algebraic Discrete Methods,
2(4):387–393, 1981. doi:10.1137/0602041.

5. Curtis A. Barefoot, Roger C. Entringer, and Henda C. Swart. Vulnerability in
graphs — a comparative survey. J. Combin. Math. Combin. Comput., 1:13–22,
1987.

6. Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach, and M. S. Ramanujan. Metric
dimension of bounded tree-length graphs. SIAM J. Discret. Math., 31(2):1217–
1243, 2017. doi:10.1137/16M1057383.

7. Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Eun Jung Kim, and Michael
Lampis. New results on directed edge dominating set. In MFCS 2018, volume 117
of LIPIcs, pages 67:1–67:16, 2018. doi:10.4230/LIPIcs.MFCS.2018.67.

8. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi.
Grundy distinguishes treewidth from pathwidth. In ESA 2020, volume 173 of
LIPIcs, pages 14:1–14:19, 2020. doi:10.4230/LIPIcs.ESA.2020.14.

9. Therese C. Biedl, Timothy M. Chan, Yashar Ganjali, Mohammad Taghi Haji-
aghayi, and David R. Wood. Balanced vertex-orderings of graphs. Discret. Appl.
Math., 148(1):27–48, 2005. doi:10.1016/j.dam.2004.12.001.

10. Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth.
In ICALP 1988, volume 317 of Lecture Notes in Computer Science, pages 105–118,
1988. doi:10.1007/3-540-19488-6_110.

11. Hans L. Bodlaender, Tesshu Hanaka, Lars Jaffke, Hirotaka Ono, Yota Otachi, and
Tom C. van der Zanden. Hedonic seat arrangement problems (extended abstract).
In AAMAS 2020, pages 1777–1779, 2020. URL: https://dl.acm.org/doi/abs/
10.5555/3398761.3398979.

12. Hans L. Bodlaender, Tesshu Hanaka, Yoshio Okamoto, Yota Otachi, and Tom C.
van der Zanden. Subgraph isomorphism on graph classes that exclude a substruc-
ture. In CIAC 2019, volume 11485 of Lecture Notes in Computer Science, pages
87–98, 2019. doi:10.1007/978-3-030-17402-6_8.

https://doi.org/10.1016/j.ipl.2013.11.007
https://doi.org/10.1016/j.ipl.2013.11.007
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/j.dam.2010.11.003
https://doi.org/10.1137/0602041
https://doi.org/10.1137/16M1057383
https://doi.org/10.4230/LIPIcs.MFCS.2018.67
https://doi.org/10.4230/LIPIcs.ESA.2020.14
https://doi.org/10.1016/j.dam.2004.12.001
https://doi.org/10.1007/3-540-19488-6_110
https://dl.acm.org/doi/abs/10.5555/3398761.3398979
https://dl.acm.org/doi/abs/10.5555/3398761.3398979
https://doi.org/10.1007/978-3-030-17402-6_8

14 Gima et al.

13. Édouard Bonnet and Nidhi Purohit. Metric dimension parameterized by treewidth.
In IPEC 2019, volume 148 of LIPIcs, pages 5:1–5:15, 2019. doi:10.4230/LIPIcs.
IPEC.2019.5.

14. Édouard Bonnet and Florian Sikora. The graph motif problem parameterized by
the structure of the input graph. Discret. Appl. Math., 231:78–94, 2017. doi:

10.1016/j.dam.2016.11.016.
15. Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover.

Theor. Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.tcs.2010.06.

026.
16. Derek G. Corneil and Udi Rotics. On the relationship between clique-

width and treewidth. SIAM J. Comput., 34(4):825–847, 2005. doi:10.1137/

S0097539701385351.
17. Bruno Courcelle. The monadic second-order logic of graphs III: tree-

decompositions, minor and complexity issues. RAIRO Theor. Informatics Appl.,
26:257–286, 1992. doi:10.1051/ita/1992260302571.

18. Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125–150, 2000. doi:10.1007/s002249910009.

19. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. doi:10.1007/978-3-319-21275-3.

20. Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Ca-
pacitated domination and covering: A parameterized perspective. In IWPEC
2008, volume 5018 of Lecture Notes in Computer Science, pages 78–90, 2008.
doi:10.1007/978-3-540-79723-4_9.

21. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer,
1999. doi:10.1007/978-1-4612-0515-9.

22. P̊al Grøn̊as Drange, Markus S. Dregi, and Pim van ’t Hof. On the computational
complexity of vertex integrity and component order connectivity. Algorithmica,
76(4):1181–1202, 2016. doi:10.1007/s00453-016-0127-x.

23. Pavel Dvořák, Eduard Eiben, Robert Ganian, Dušan Knop, and Sebastian Ordy-
niak. Solving integer linear programs with a small number of global variables and
constraints. In IJCAI 2017, pages 607–613, 2017. doi:10.24963/ijcai.2017/85.

24. Pavel Dvořák and Dušan Knop. Parameterized complexity of length-bounded
cuts and multicuts. Algorithmica, 80(12):3597–3617, 2018. doi:10.1007/

s00453-018-0408-7.
25. Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A. Rosamond,

and Ondrej Suchý. What makes equitable connected partition easy. In IWPEC
2009, volume 5917 of Lecture Notes in Computer Science, pages 122–133, 2009.
doi:10.1007/978-3-642-11269-0_10.

26. Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond,
Saket Saurabh, Stefan Szeider, and Carsten Thomassen. On the complexity of some
colorful problems parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011.
doi:10.1016/j.ic.2010.11.026.

27. Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond,
and Saket Saurabh. Graph layout problems parameterized by vertex cover. In
ISAAC 2008, volume 5369 of Lecture Notes in Computer Science, pages 294–305,
2008. doi:10.1007/978-3-540-92182-0_28.

28. Jǐŕı Fiala, Petr A. Golovach, and Jan Kratochv́ıl. Parameterized complexity of col-
oring problems: Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–
2523, 2011. doi:10.1016/j.tcs.2010.10.043.

https://doi.org/10.4230/LIPIcs.IPEC.2019.5
https://doi.org/10.4230/LIPIcs.IPEC.2019.5
https://doi.org/10.1016/j.dam.2016.11.016
https://doi.org/10.1016/j.dam.2016.11.016
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/s00453-016-0127-x
https://doi.org/10.24963/ijcai.2017/85
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1007/978-3-642-11269-0_10
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1016/j.tcs.2010.10.043

Treedepth, Vertex Cover, and Vertex Integrity 15

29. András Frank and Éva Tardos. An application of simultaneous diophantine ap-
proximation in combinatorial optimization. Combinatorica, 7:49–65, 1987. doi:

10.1007/BF02579200.
30. Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph

and bidirected network flow problems. In STOC 1983, pages 448–456, 1983. doi:

10.1145/800061.808776.
31. Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics.

In IPEC 2011, volume 7112 of Lecture Notes in Computer Science, pages 259–271,
2011. doi:10.1007/978-3-642-28050-4_21.

32. Robert Ganian. Using neighborhood diversity to solve hard problems. CoRR,
abs/1201.3091, 2012. arXiv:1201.3091.

33. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parame-
terizations of the bounded-degree vertex deletion problem. Algorithmica, 2020.
doi:10.1007/s00453-020-00758-8.

34. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

35. Elisabeth Gassner. The steiner forest problem revisited. J. Discrete Algorithms,
8(2):154–163, 2010. doi:10.1016/j.jda.2009.05.002.

36. Petr Hlinený, Sang-il Oum, Detlef Seese, and Georg Gottlob. Width parameters
beyond tree-width and their applications. Comput. J., 51(3):326–362, 2008. doi:

10.1093/comjnl/bxm052.
37. Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing

with fixed number of bins revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013.
doi:10.1016/j.jcss.2012.04.004.

38. Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math.
Oper. Res., 12:415–440, 1987. doi:10.1287/moor.12.3.415.

39. Leon Kellerhals and Tomohiro Koana. Parameterized complexity of geodetic set. In
IPEC 2020, volume 180 of LIPIcs, pages 20:1–20:14, 2020. doi:10.4230/LIPIcs.

IPEC.2020.20.
40. Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables.

Math. Oper. Res., 8:538–548, 1983. doi:10.1287/moor.8.4.538.
41. Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and

coefficients. CoRR, abs/1511.00310, 2015. arXiv:1511.00310.
42. Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Imbalance is fixed pa-

rameter tractable. Inf. Process. Lett., 113(19-21):714–718, 2013. doi:10.1016/j.

ipl.2013.06.010.
43. Kitty Meeks and Alexander Scott. The parameterised complexity of list problems

on graphs of bounded treewidth. Inf. Comput., 251:91–103, 2016. doi:10.1016/

j.ic.2016.08.001.
44. Neeldhara Misra and Harshil Mittal. Imbalance parameterized by twin cover re-

visited. In COCOON 2020, volume 12273 of Lecture Notes in Computer Science,
pages 162–173, 2020. doi:10.1007/978-3-030-58150-3_13.

45. Burkhard Monien. The bandwidth minimization problem for caterpillars with hair
length 3 is NP-complete. SIAM J. Algebraic and Discrete Methods, 7(4):505–512,
1986. doi:10.1137/0607057.

46. David Muradian. The bandwidth minimization problem for cyclic caterpillars with
hair length 1 is NP-complete. Theor. Comput. Sci., 307(3):567–572, 2003. doi:

10.1016/S0304-3975(03)00238-X.
47. Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures,

and Algorithms. Algorithms and combinatorics. Springer, 2012. doi:10.1007/

978-3-642-27875-4.

https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/BF02579200
https://doi.org/10.1145/800061.808776
https://doi.org/10.1145/800061.808776
https://doi.org/10.1007/978-3-642-28050-4_21
http://arxiv.org/abs/1201.3091
https://doi.org/10.1007/s00453-020-00758-8
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1016/j.jcss.2012.04.004
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.4230/LIPIcs.IPEC.2020.20
https://doi.org/10.4230/LIPIcs.IPEC.2020.20
https://doi.org/10.1287/moor.8.4.538
http://arxiv.org/abs/1511.00310
https://doi.org/10.1016/j.ipl.2013.06.010
https://doi.org/10.1016/j.ipl.2013.06.010
https://doi.org/10.1016/j.ic.2016.08.001
https://doi.org/10.1016/j.ic.2016.08.001
https://doi.org/10.1007/978-3-030-58150-3_13
https://doi.org/10.1137/0607057
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1016/S0304-3975(03)00238-X
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

16 Gima et al.

48. Sang-il Oum. Approximating rank-width and clique-width quickly. ACM Trans.
Algorithms, 5(1):10:1–10:20, 2008. doi:10.1145/1435375.1435385.

49. Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sik-
dar. A faster parameterized algorithm for treedepth. In ICALP 2014, vol-
ume 8572 of Lecture Notes in Computer Science, pages 931–942. doi:10.1007/

978-3-662-43948-7_77.
50. Stefan Szeider. Not so easy problems for tree decomposable graphs. Ramanujan

Mathematical Society, Lecture Notes Series, No. 13:179–190, 2010. arXiv:1107.

1177.
51. Stefan Szeider. Monadic second order logic on graphs with local cardinality

constraints. ACM Trans. Comput. Log., 12(2):12:1–12:21, 2011. doi:10.1145/

1877714.1877718.

A Graph parameters

We give formal definitions of vc(G), td(G), and vi(G) only. See [36] for the
definitions of pw(G), tw(G), and clique-width cw(G).

A.1 Vertex cover

Let G = (V,E) be a graph. A set S ⊆ V is a vertex cover of G if each component
of G− S has exactly one vertex. The vertex cover number of G, denoted vc(G),
is the size of a minimum vertex cover of G. It is known that a vertex cover of
size k (if exists) can be found in time O(2k · n) [19], where n = |V | (see [15]
for the currently fastest algorithm). Thus we can assume that a vertex cover of
minimum size is given when designing an algorithm parameterized by vc.

A.2 Treedepth

The treedepth of a graph G = (V,E), denoted td(G), is defined recursively as
follows:

td(G) =


1 |V | = 1,

max1≤i≤c td(Ci) G has c ≥ 2 components C1, . . . , Cc,

1 + minv∈V td(G− v) otherwise.

In other words, a graph G = (V,E) has treedepth at most d if there is a rooted
forest F of height at most d on the same vertex set V such that two vertices
are adjacent in G only if one is an ancestor of the other in F . It is known that
such F , if exists, can be found in time 2O(d2) · n [49], where n = |V |. So we
assume that such a rooted forest of depth td(G) is given together with G when
the parameter is td.

From the rooted forest F , one can easily construct a path decomposition of
G with maximum bag size at most d: use leaves as bags and put all ancestors of a
leaf into the bag corresponding to the leaf. This implies that pw(G) + 1 ≤ td(G)
for every graph G. On the other hand, td cannot be bounded by any function of

https://doi.org/10.1145/1435375.1435385
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1007/978-3-662-43948-7_77
http://arxiv.org/abs/1107.1177
http://arxiv.org/abs/1107.1177
https://doi.org/10.1145/1877714.1877718
https://doi.org/10.1145/1877714.1877718

Treedepth, Vertex Cover, and Vertex Integrity 17

pw in general. For example, pw(Pn) = 1 and td(Pn) = dlog2(n+ 1)e [47], where
Pn is the path of order n.

In general, we have the following upper bound of the length of paths.

Proposition A.1 ([47]). The length of a longest path in G is less than 2td(G).

A.3 Vertex integrity

The vertex integrity [5] of a graph G, denoted vi(G), is the minimum integer k
satisfying that there is a vertex set S ⊆ V (G) such that |S| + |V (C)| ≤ k for
each component C of G − S. We call such S a vi(k)-set of G. For an n-vertex
graph of vertex integrity at most k, we can find a vi(k)-set in O(kk+1n) time [22].
Hence, without loss of generality, we can assume that a vi(k)-set is given as a
part of input when designing an FPT algorithm parameterized by vi. Observe
that td(G) ≤ vi(G) since we can first remove the k′ ≤ k vertices in a vi(k)-set
and then each component has order at most k − k′ and thus treedepth at most
k − k′. Also, since a vertex cover of size k is a vi(k + 1)-set, vi(G) ≤ vc(G) + 1
holds.

Dvořák et al. [23] showed that Integer Linear Programming (ILP) is
fixed-parameter tractable parameterized by the fracture number of the incidence,
which is basically equivalent to the vertex integrity. Ganian et al. [33] showed
that Bounded Degree Deletion is W[1]-hard parameterized by treedepth
but fixed-parameter tractable parameterized by core fracture number, which
can be seen as a generalization of vertex integrity. Bodlaender et al. [12] showed
that Subgraph Isomorphism is fixed-parameter tractable parameterized by the
vertex integrity of both graphs, while the problem is NP-complete for graphs of
treedepth 3.

B ILP parameterized by the number of variables

Lenstra [40] showed that the feasibility of an integer linear programming (ILP)
formula can be decided in FPT time when parameterized by the number of
variables. The time and space complexity was later improved by Kannan [38]
and by Frank and Tardos [29]. Their algorithms can be used also for the following
ILP optimization problem (see e.g., [27]).

p-Opt-ILP
Input: A matrix A ∈ Zm×p, vectors b ∈ Zm and c ∈ Zp.
Task: Find a vector x ∈ Zp that minimizes c>x and satisfies that Ax ≥ b.

Proposition B.1 ([40,38,29]). p-Opt-ILP can be solved using O(p2.5p+o(p) ·
L · log(MN)) arithmetic operations and space polynomial in L, where L is the
number of bits in the input, N is the maximum absolute value any variable can
take, and M is an upper bound on the absolute value of the minimum taken by
the objective function.

18 Gima et al.

C Omitted proofs in Section 3

Theorem C.1. Maximum Common Induced Subgraph is fixed-parameter
tractable parameterized by the sum of the vertex integrity of input graphs.

Proof. Since the proof is almost the same with the one for Theorem 3.1, here we
only describe the differences for handling induced subgraphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be the input graphs of vertex integrity
at most k. We will find U1 ⊆ V1 and U2 ⊆ V2 with maximum size |U1| = |U2|
such that there is an isomorphism η from G1[U1] to G2[U2].

Step 1. Guessing matched vi(2k)-sets R1 and R2. In the same way as before,
we guess vi(2k)-sets R1 and R2 of G1 and G2, respectively, and a bijection
η|R1 : R1 → R2. The only difference here is that we reject the current guess if
η|R1 is not an isomorphism from G1[R1] to G2[R2].

Step 2. Extending the guessed parts of η. To handle induced subgraphs, we need
to modify the definition of “to decompose” as follows: for a type-t component
C of Hi − Ri and a multiset T of g-(Hi, Ri)-types, we say that η : U1 → U2

decomposes C into T if T coincides with the multiset of g-(Hi, Ri)-types of the
pairs (A,B) such that A is a component of Hi[V (C)∩Ui] and B is the set of all
edges connecting A and Ri. Everything else works as before. ut

D Omitted proofs in Section 4

Theorem D.1. Binary MMOO is NP-complete for graphs of vc = 3.

Proof. Since the problem clearly belongs to NP, we show the NP-hardness by
presenting a reduction from Partition, which is NP-complete [34]. Given an
even number of positive integers a1, a2, . . . , an in binary, Partition asks the ex-
istence of a partition {S1, S2} of {1, 2, . . . , n} such that

∑
i∈Sj

ai = 1
2

∑
1≤i≤n ai

for j ∈ {1, 2}. This problem remains NP-hard with an additional condition
|S1| = |S2| = n/2 [34]. We assume that n ≥ 10 since otherwise the problem can
be solved in polynomial time. Let B = W = 1

2

∑
1≤i≤n ai.

The proof is almost the same with the one of Theorem 4.1 except that t = 2.
Observe that we assumed there that t ≥ 3 only to guarantee that ai < W/2 for
all i. To have this assumption here, we start with an instance a1, a2, . . . , an of
Partition with the restriction |S1| = |S2| = n/2. Let a′i = ai+B for each i, and
B′ = W ′ = 1

2

∑
1≤i≤n a

′
i = (n/2 + 1)B. Clearly, this is an equivalent instance as

we added the same value to each number. Also, a′i < W ′/2 holds for all i since
n ≥ 10 and ai < 2B imply that a′i = ai+B < 3B ≤ (n/2 + 1)B/2 = W ′/2. Now
we observe that the restriction |S1| = |S2| = n/2 is not a restriction anymore.
That is, if

∑
i∈S a

′
i = B′ for some S ⊆ {1, . . . , n}, then |S| = n/2 holds. Suppose

to the contrary that S 6= n/2. By swapping S and {1, . . . , n} \S if necessary, we
can assume that S ≤ n/2− 1. This gives (n/2 + 1)B =

∑
i∈S a

′
i ≤ (n/2− 1)B +∑

i∈S ai, which implies
∑
i∈S ai ≥ 2B =

∑
1≤i≤n ai, a contradiction.

Treedepth, Vertex Cover, and Vertex Integrity 19

We construct an instance of Binary MMOO as exactly we did in the proof
of Theorem 4.1 by setting t = 2 and using a′i, B

′, and W ′ instead of ai, B, and
W . The equivalence of the instances can be shown in the same way. ut

Theorem D.2. Binary MMOO can be solved in polynomial time for graphs
of vc ≤ 2.

Proof. Let G = (V,E), w : E → Z+, r ∈ Z+ be an instance of Binary MMOO.
We assume that w(e) ≤ r for each e ∈ E since otherwise the problem is trivial.
If there is a vertex of degree at most 1, we can safely remove it from the graph
since we can always orient the edge incident to the vertex (if exists) from the
vertex to the other endpoint. Hence, we assume that G has minimum degree at
least 2.

Let {p, q} ⊆ V be a vertex cover of G. By the assumption on the minimum
degree, every vertex v ∈ V \ {p, q} is adjacent to both p and q. If w({v, p}) +
w({v, q}) ≤ r, then we can safely orient the edges from v to p and q. Thus we
remove such vertices from the graph. Now it holds that w({v, p})+w({v, q}) > r
for all v ∈ V \ {p, q}. In particular, max{w({v, p}), w({v, q})} > r/2 for all
v ∈ V \ {p, q}.

Observe that for each vertex, at most one edge of weight more than r/2 can
be oriented from the vertex to one of its neighbors. For p and q, we guess such
edges. That is, we guess one edge of weight more than r/2 incident to p (q,
resp.) and orient it from p (q, resp.) to the other endpoint; or guess that there
is no such edge. These guesses determine almost a complete orientation. For a
non-guessed edge {v, p} with w({v, p}) > r/2, we orient it from v to p. Since
w({v, p}) + w({v, q}) > r, we then have to orient {v, q} from q to v. The other
case of w({v, q}) > r/2 is symmetric. Now the only edge with undetermined
orientation is {p, q} (if they are adjacent). We just try both directions of {p, q}
and check if the whole orientation is of maximum outdegree at most r. ut

E Extending algorithms known for vc parameterizations

E.1 Capacitated problems

Let G = (V,E) be a graph with a capacity function c : V → Z+ such that
c(v) ≤ deg(v) for each v ∈ V . A set C ⊆ V is a capacitated vertex cover if
there exists a mapping f : E → C such that f(e) is an endpoint of e for each
e ∈ E and |{e ∈ E | f(e) = v}| ≤ c(v) for each v ∈ C. A set D ⊆ V is a
capacitated dominating set if there exists a mapping f : V \ D → D such that
f(v) ∈ N(v) ∩ D for each v ∈ V \ D and |{v ∈ V \ D | f(v) = u}| ≤ c(u) for
each u ∈ D. Now the problems studied in this section are defined as follows.

Capacitated Vertex Cover
Input: A graph G, a capacity function c : V → Z+, a positive integer k.
Question: Is there a capacitated vertex cover X of G with |X| ≤ k?

20 Gima et al.

Capacitated Dominating Set
Input: A graph G, a capacity function c : V → Z+, a positive integer k.
Question: Is there a capacitated dominating set D of G with |D| ≤ k?

It is known that Capacitated Vertex Cover is W[1]-hard parameterized
by td, and Capacitated Dominating Set is W[1]-hard parameterized by td+
k [20].7

For a vertex set S of G, we say that components C1 and C2 of G − S have
the same c-type if C1 and C2 have the same (G,S)-type and furthermore there
is an isomorphism g from G[S ∪ V (C1)] to G[S ∪ V (C2)] such that g|S is the
identity and c(v) = c(g(v)) for each v ∈ S ∪V (C1). We say that a component C
of G− S is of c-type t by using a canonical form t of the members of the c-type
equivalence class of C. If S is a vi(k)-set of G, then every vertex in G − S has
degree less than k in G, and thus its capacity is also less than k. This implies
that the number of different c-types depends only on k.

Theorem E.1. Capacitated Vertex Cover is fixed-parameter tractable pa-
rameterized by vi.

Proof. We are going to find a minimum capacitated vertex coverX ofG. Let S be
a vi(k)-set of the input graph G = (V,E). We first guess the subset XS = X ∩S
and the partial mapping fS : E(G[S])→ XS with fS(e) ∈ e for each e ∈ E(G[S]).
The numbers of candidates for XS and fS depend only on k. For each v ∈ XS ,
we set c′(v) = c(v) − |{e ∈ E(G[S]) | fS(e) = v}|. Each v ∈ XS can cover c′(v)
edges between S and V − S.

Let C be a c-type t component of G − S. We say that a pair (W, f) of a
subset W ⊆ V (C) and a mapping f : E(C)∪E(V (C), S)→W ∪XS is feasible if
|{e | f(e) = v}| ≤ c(v) for each v ∈W and f(e) ∈ e for each e ∈ E(C)∪E(C, S).8

The number of feasible pairs depends only on k. A feasible pair gives a cover of
all edges in C and some edges between V (C) and S, and it asks XS to cover
the remaining edges between V (C) and S in a certain way. Now it suffices to
find an assignment of feasible pairs to components of G− S that minimizes the
number of vertices used by the feasible pairs and does not exceed the capacity
of any vertex in XS .

We represent by a nonnegative variable xt,W,f the number of c-type t com-
ponents C of G− S such that V (C)∩X = W and (W, f) is a feasible pair. The
number of such variables depends only on k. Let dt be the number of components
of c-type t in G−S. Since each component of G−S has to be assigned a feasible
pair, we have the following constraints:∑

W, f xt,W,f = dt for each c-type t.

The capacity constraints for XS can be expressed as follows:∑
t, W, f #(f, v) · xt,W,f ≤ c′(v) for each v ∈ XS ,

7 The W[1]-hardness results are stated only for tw and tw + k but the proofs actually
show them for td and td + k, respectively.

8 For vertex sets A and B, E(A,B) denotes the set of edges between A and B.

Treedepth, Vertex Cover, and Vertex Integrity 21

where #(f, v) is the number of edges that f maps to v. Finally, our objective
function to minimize is |XS |+

∑
t, W, f |W | · xt,W,f .

By finding an optimal solution to the ILP above for each guess of XS and
fS , we can find the minimum capacitated vertex cover of G. Since the number
of guesses and the number of variables depend only on k, the theorem follows
by Proposition B.1. ut

Theorem E.2. Capacitated Dominating Set is fixed-parameter tractable
parameterized by vi

Proof. We are going to find a minimum capacitated dominating set D of G. Let
S be a vi(k)-set of the input graph G = (V,E).

We first guess the partition (DS , AS , BS) of S such that DS = D ∩ S, AS is
the set of vertices dominated by DS , and BS is the set of vertices dominated by
D\S. Next we guess the partial mapping fS : AS → DS with fS(v) ∈ N(v)∩DS

for each v ∈ AS . The numbers of candidates for (DS , AS , BS) and fS depend
only on k. For each v ∈ DS , we set c′(v) = c(v)− |{u ∈ AS | fS(u) = v}|. Each
v ∈ DS can dominate c′(v) vertices in V − S.

Let C be a c-type t component of G − S. Let (DC , AC , BC) be a parti-
tion of V (C), B′S ⊆ BS , f : AC ∪ B′S → DC , and g : BC → DS . We say that
(DC , AC , BC , B

′
S , f, g) is feasible if f(v) ∈ N(v) ∩ DC for each v ∈ AC ∪ B′S ,

g(v) ∈ N(v) ∩ DS for each v ∈ BC , and |{u ∈ AC ∪ B′S | f(u) = v}| ≤ c(v)
for each v ∈ DC . The number of feasible tuples depends only on k. A feasible
tuple gives a domination of all vertices in V (C) \BC and B′S , and it asks DS to
dominate BC in a certain way.

As before, it suffices to find an assignment of feasible tuples to components
of G− S that minimizes the number of vertices used by the feasible tuples and
does not exceed the capacity of any vertex in DS .

We represent by a nonnegative variable xt,DC ,AC ,BC ,B′
S ,f,g

the number of c-
type t components C ofG−S such that V (C)∩D = DC and (DC , AC , BC , B

′
S , f, g)

is a feasible tuple. The number of such variables depends only on k. Let dt be
the number of components of c-type t in G− S. Since each component of G− S
has to be assigned a feasible tuple, we have the following constraints:∑

DC , AC , BC , B′
S , f, g

xt,DC ,AC ,BC ,B′
S ,f,g

= dt for each c-type t.

The capacity constraints for DS can be expressed as follows:∑
DC , AC , BC , B′

S , f, g

#(g, v) · xt,DC ,AC ,BC ,B′
S ,f,g

≤ c′(v) for each v ∈ DS ,

where #(g, v) is the number of vertices that g maps to v. We also have to
guarantee that each vertex in BS is dominated by a vertex in V − S. This can
be done by the following constraints:∑

DC , AC , BC , B′
S3v, f, g

xt,DC ,AC ,BC ,B′
S ,f,g

≥ 1 for each v ∈ BS .

22 Gima et al.

Finally, our objective function to minimize is

|DS |+
∑

DC , AC , BC , B′
S , f, g

|DC | · xt,DC ,AC ,BC ,B′
S ,f,g

.

As before the discussion so far implies the theorem. ut

E.2 Coloring and partitioning problems

Precoloring Extension, Equitable Coloring, and Equitable Connected
Partition form a first set of problems studied under the “treewidth versus
vertex cover” perspective [25,26,28]. Equitable Coloring and Precolor-
ing Extension are fixed-parameter tractable parameterized by vc [28] and
W[1]-hard parameterized by td [26].9 Equitable Connected Partition is
fixed-parameter tractable parameterized by vc and W[1]-hard parameterized by
pw [25].

In this section, we show that all the three problems are fixed-parameter
tractable parameterized by vi.

Precoloring Extension Given a graph G = (V,E), a precoloring cU : U →
{1, . . . , r} for some U ⊆ V , and a positive integer r, Precoloring Extension
asks whether G admits a proper r-coloring c such that c(v) = cU (v) for every
v ∈ U .

Theorem E.3. Precoloring Extension is fixed-parameter tractable param-
eterized by vi.

Proof. Let (G = (V,E), cU , r) be an instance of Precoloring Extension. Let
S be a vi(k)-set of G. For each v ∈ V , let L(v) be the following set (the list of
allowed colors):

L(v) =


{cU (v)} v ∈ U,
{1, . . . , r} \ {cU (u) | u ∈ N(v) ∩ U} v ∈ S \ U,
{1, . . . ,min{r, k}} \ {cU (u) | u ∈ N(v) ∩ U} v ∈ V \ (S ∪ U).

Observe that there exists a proper r-coloring c of G with c(v) = cU (v) for all
v ∈ U if and only if there is a proper coloring c′ of G with c′(v) ∈ L(v). This
is almost trivial except for the case of v ∈ V \ (S ∪ U), where we restrict the
domain to {1, . . . , k} when k < r. This can be justified by considering the degree
of v. Since S is a vi(k)-set and v /∈ S, we have deg(v) < k. Thus, after coloring
G− v, v can always be colored with a color not used in its neighborhood.

Now in the list coloring setting, we can remove the vertices in U unless the
instance is a trivial no instance with {u, v} ∈ E such that cU (u) = cU (v). In

9 The W[1]-hardness results are stated only for tw but the proofs actually show them
for td.

Treedepth, Vertex Cover, and Vertex Integrity 23

the following, we consider the graph where U is removed and still use the same
symbols G and S.

Let v be a vertex with |L(v)| ≥ 2k. By the definition of L, v ∈ S. Such a
vertex can be safely removed: the vertices in V \ S use colors only in {1, . . . , k};
and the vertices in S − v use at most k − 1 colors in L(v). We now assume that
L(u) < 2k for all vertices in the graph.

Now we guess the coloring of S and then check independently for each com-
ponent C of G−S whether G[S∪V (C)] has a coloring consistent with L and the
guessed coloring of S. The number of possible colorings of S is at most (2k)k.
Since |S∪V (C)| ≤ k, checking the existence of a consistent coloring can be done
in time depending only on k. ut

Equitable Coloring Given an n-vertex graph G = (V,E) and a positive integer
r, Equitable Coloring asks whether G admits a proper r-coloring c such that
|{v ∈ V | c(v) = i}| ∈ {bn/rc, dn/re} for each i ∈ {1, . . . , r}. We call such a
coloring an equitable r-coloring.

Theorem E.4. Equitable Coloring is fixed-parameter tractable parameter-
ized by vi.

Proof. Let (G = (V,E), r) be an instance of Equitable Coloring, and S be a
vi(k)-set of G. We split the proof into two cases: r ≤ 2k and r > 2k. We reduce
both cases to the feasibility test of the ILP defined as follows. By Proposition B.1,
the theorem will follow.

Case 1: r ≤ 2k. We guess a partition S1, . . . , Sr of S such that each of them is
an independent set and some of them may be empty. Since |S| ≤ k and r ≤ 2k,
the number of such partitions depends only on k. We interpret this partition as
a coloring of G[S] and try to extend this to the whole graph.

For a (G,S)-type t, a coloring µ : V (C) → {1, . . . , r} of a type-t component
C of G − S is feasible if Si ∪ {v ∈ V (C) | µ(v) = i} is an independent set for
each i. We set µi = |{v ∈ V (C) | µ(v) = i}|.

We represent by a nonnegative variable xt,µ the number of type-t components
colored with a feasible µ. Since each component of G− S has to be colored, we
have the following constraints:∑

µ xt,µ = dt for each (G,S)-type t,

where dt is the number of type-t components in G−S. The equitable constraints
can be expressed as follows:∑

t,µ µi · xt,µ = dn/re − |Si| for each i ∈ {1, . . . , b},∑
t,µ µi · xt,µ = bn/rc − |Si| for each i ∈ {b+ 1, . . . , r},

where b is the remainder of n/r.

24 Gima et al.

Case 2: r > 2k. In this case, we do not have an upper bound of r. The first trick
is that we can still guess the coloring of S since we use at most k colors there.
The second trick is that after checking the extendability of the k colors, the rest
of the problem becomes trivial.

We guess a partition S1, . . . , Sk of S and an integer a such that: each Si
is a possibly-empty independent set; and there are disjoint independent sets
W1, . . . ,Wk such that Si ⊆ Wi for all i, |Wi| = dn/re for 1 ≤ i ≤ a, and
|Wi| = bn/rc for a + 1 ≤ i ≤ k. Then, G′ := G −

⋃
1≤i≤kWi has an equitable

r− k coloring if and only if G has an equitable r coloring having W1, . . . ,Wk as
color classes.

We can show that actually G′ always has an equitable r−k coloring. Observe
that each component in G′ has order at most k < r − k as G′ is a subgraph of
G−S. We now linearly order the vertices of G′ in such a way that the vertices of
a component appear consecutively. Then we color the first vertex in this ordering
with color 1, the second one with color 2, and so on. Formally, we color the ith
vertex in this ordering with color (i mod (r− k)) + 1. Since each component has
order less than r − k, we never repeat a color in a component. Thus, this is an
equitable r−k coloring of G′. Therefore, it suffices to decide whether there exists
the super sets W1, . . . ,Wk.

Since we are searching for a partial coloring, we use a special character ∗
to indicate “not colored.” We need to change the definition of feasibility. For a
(G,S)-type t, a coloring µ : V (C) → {∗} ∪ {1, . . . , k} of a type-t component C
of G− S is feasible, if Si ∪ {v ∈ V (C) | µ(v) = i} is an independent set for each
i 6= ∗. We set µi = |{v ∈ V (C) | µ(v) = i}|. Now the rest of the proof is exactly
the same as before.

We represent by a nonnegative variable xt,µ the number of type-t components
colored with a feasible µ. Since each component of G − S has to be colored,
we have the following constraints:

∑
µ xt,µ = dt for each (G,S)-type t, where

dt is the number of type-t components in G − S. The equitable constraints
can be expressed as follows:

∑
t,µ µi · xt,µ = dn/re − |Si| for 1 ≤ i ≤ a, and∑

t,µ µi · xt,µ = bn/rc − |Si| for a+ 1 ≤ i ≤ k. ut

Equitable Connected Partition Given an n-vertex graph G = (V,E) and a
positive integer r, Equitable Connected Partition asks whether there is a
partition of V1, . . . , Vr of V such thatG[Vi] is connected and |Vi| ∈ {bn/rc, dn/re}
for all i. We call such a partition an equitable connected r-partition.

Theorem E.5. Equitable Connected Partition is fixed-parameter tractable
parameterized by vi.

Proof. Let (G = (V,E), r) be an instance of Equitable Connected Par-
tition, and S be a vi(k)-set of G. Observe that at most k of V1, . . . , Vr can
intersect S. We split the proof into two cases r ≤ k and r > k.

Case 1: r ≤ k. If additionally bn/rc ≤ k holds in this case, then n ∈ O(k2).
Thus we assume that bn/rc > k. This implies that every Vi intersects S. We
first guess the partition S1, . . . , Sr of S.

Treedepth, Vertex Cover, and Vertex Integrity 25

Let C1 and C2 be components of G−S with the same type, and µj : V (Cj)→
{1, . . . , r} for each j ∈ {1, 2}. Then, we say that (C1, µ1) and (C2, µ2) are equiv-
alent if there is an isomorphism η from G[S∪C1] and G[S∪C2] such that η fixes
S and µ1(v) = µ2(η(v)) for all v ∈ V (C1). A set M = {(C1, µ1), . . . , (Cp, µp)}
is feasible if Cj is a component of G− S for each j, µj : V (Cj)→ {1, . . . , r} for
each j, and the subgraph of G induced by Si ∪

⋃
1≤j≤p{v ∈ V (Cj) | µj(v) = i}

is connected for all 1 ≤ i ≤ r. Let M′ = {(C ′1, µ′1), . . . , (C ′q, µ
′
q)} be a subset of

M obtained by removing all but one of each equivalent class. It is easy to see
that M′ is feasible if and only if so is M. Let t′j be the (G,S)-type of C ′j . We
call the set {(t′1, µ′1), . . . , (t′q, µ

′
q)} a type-color representation of M.

Now we guess the type-color representation T = {(t1, µ1), . . . , (tq, µq)} of a
solution. That is, we find a partition such that at least one component of type
t1 is partitioned by µ1, and no component is partitioned in a way not included
in T . The number of candidates depends only on k, and the feasibility of each
candidate can be checked in polynomial time.

By a nonnegative variable xt,µ for (t, µ) ∈ T , we represent the number of
type-t components that we partition by µ or an equivalent mapping. Since we
take at least one such partition of type-t components, we set the constraint
xt,µ ≥ 1 for each (t, µ) ∈ T . Now the connectivity has been handled, and we only
need to force the equitable partition. Since each component has to be partitioned,
we need the following constraints:∑

(t,µ)∈T xt,µ = dt for each type t,

where dt is the number of type-t components in G−S. The equitable constraints
can be expressed as follows:∑

(t,µ)∈T µ
(i) · xt,µ = dn/re − |Si| for each i ∈ {1, . . . , a},∑

(t,µ)∈T µ
(i) · xt,µ = bn/rc − |Si| for each i ∈ {a+ 1, . . . , r},

where a is the remainder of n/r and µ(i) is the number of vertices µ maps to i.
Since the number of variables depends only on k, Proposition B.1 implies

that the feasibility test of the ILP defined above is fixed-parameter tractable
parameterized by k.

Case 2: r > k. In this case, some Vi does not intersect S, and thus it is contained
in a component of G−S. This implies that bn/rc ≤ k, and thus maxi |Vi| ≤ k+1.
We first guess the number k′ < k of the Vi’s intersecting S and the number a ≤ k′
of size dn/re sets among them. Now we guess V1: guess at most k + 1 types of
G−S; guess the number of components we take from the chosen types, which is
at most k+ 1; and for each component, guess the subset of the vertices taken to
V1. The number of candidates depends only on k. In general, when we guess Vi,
2 ≤ i ≤ k′, we first remove the vertices chosen for

⋃
1≤j≤i−1 Vj and recompute

and redefine the types. Then, we can guess Vi in exactly the same way as the
case of i = 1. The number of candidates for all V1, . . . , Vk′ depends only on k.
We reject the guess if some G[Vi] is disconnected.

26 Gima et al.

Let W =
⋃

1≤j≤k′ Vj . Now it suffices to decide whether G−W has an equi-
table connected (r−k′)-partition. For each component C of G−W , we enumerate
all the possible pairs (p, q) of nonnegative integers such that C admits an equi-
table connected (p + q)-partition such that p parts have size dn/re and q parts
have size bn/rc. This can be done in FPT time parameterized by k in total,
since each component has at most k vertices and the number of components in
G−W is at most |V |. We now check whether by picking one pair (p, q) for each
component, it is possible to make the total number of components r − k′. This
can be done in polynomial time by a standard dynamic programming algorithm
since the number of components and r − k′ are at most |V |. ut

F Hard problems parameterized by vi

F.1 Graph Motif

Given a graph G = (V,E), a vertex coloring c : V → C, and a multiset M of
colors in C, the problem Graph Motif is to decide if there is a set S ⊆ V
such that G[S] is connected and c(S) = M , where c(S) is the multiset of colors
appearing in S. If the motifM is a set (i.e., no element inM has multiplicity more
than 1), then the restricted problem is called Colorful Graph Motif. It is
known that Graph Motif is fixed-parameter tractable parameterized by vc [14]
(actually by more general parameters neighborhood diversity [32] and twin-cover
number [31]). The proof of Theorem 20 in [14] implies that Colorful Graph
Motif is NP-complete for graphs of vi = 6. By a similar proof, we will show
that Colorful Graph Motif is NP-complete for graphs of vi = 4. We then
complement this by showing that Graph Motif is polynomial-time solvable for
graphs of vi ≤ 3.

Theorem F.1. Colorful Graph Motif is NP-complete on trees of vertex
integrity 4.

Proof. The problem is clearly in NP. We present a reduction from an NP-
complete problem 3-Dimensional Matching [34]. The input of 3-Dimensional
Matching consists of three disjoint sets X = {x1, . . . , xn}, Y = {y1, . . . , yn},
Z = {z1, . . . , zn}, and a set of triples T ⊆ X × Y × Z. The task is to decide
whether there is a subset S of T such that |S| = n and each element of X∪Y ∪Z
appears in a triple included in S.

We construct a graph G with a coloring c as follows. The graph G contains a
special root vertex r with unique color c(r) = r. For each triple t = (xi, yj , zk) ∈
T , take three new vertices ti, tj , tk with c(ti) = xi, c(tj) = yj , and c(tk) = zk, and
add three new edges {r, ti}, {ti, tj}, and {tj , tk}. We set M = {r} ∪X ∪ Y ∪ Z.
This completes the construction. Note that G is a tree and {r} is a vi(4)-set of
G as each component of G− {r} is a path of order 3.

Assume that (X,Y, Z, T) is a yes instance of 3-Dimensional Matching
with S ⊆ T as a certificate. We set L = {r} ∪ {ti, tj , tk | t = (xi, yj , zk) ∈
S}. Clearly, c(L) = M . Since G[L] is connected, (G,M) is a yes instance of
Colorful Graph Motif.

Treedepth, Vertex Cover, and Vertex Integrity 27

To show the other direction, assume that a vertex subset L of G induces a
connected graph and c(L) = M . Observe that L has to include r. Since X ∪
Y ∪ Z = c(L) \ {r}, L includes exactly n vertices of distance i from r for each
i ∈ {1, 2, 3}. This fact and the connectivity of G[L] imply that for each t =
(xi, yj , zk) ∈ T , L contains either all vertices ti, tj , tk or none of them. Let
S ⊆ T be the set of triples such that L contains all three vertices corresponding
to each t ∈ S. By the discussion above, |S| = n and each element of X ∪ Y ∪ Z
appears in a triple included in S. ut

Theorem F.2. Graph Motif can be solved in polynomial time on graphs of
vertex integrity at most 3.

Proof. Let G = (V,E) be the input graph with a coloring c : V → C and M
be the input multiset of colors. Let R be a vi(3)-set of G. If |R| ≥ 2, then R
is a vertex cover of G with |R| ≤ 3, and thus we can apply an FPT algorithm
parameterized by the vertex cover number [31,14]. If R = ∅, then each connected
component of G is of order at most 3, and thus the problem is trivial. In the
following we assume that R = {r} for some r ∈ V . Furthermore, we assume that
r is included in the solution S as otherwise |S| ≤ 2. Let Di be the vertices of
distance i from r. Note that V = {r} ∪D1 ∪D2.

We construct an auxiliary bipartite multi-graph H as follows. For each color
x ∈ C, take new vertices x1 and x2. For each component C of G−r, if C has two
vertices u of color x and v of color y, where only u is adjacent to r, then add
one edge between x1 and y2. For each color x ∈ C, we define degree constraints
of x1 and x2 in H as follows: the degree constraint of x1 is “at most M(x)”,
and the degree constraint of x2 is “exactly max{M(x)− q(x), 0}”, where M(x)
is the multiplicity of x in M \ {c(r)} and q(x) is the number of color-x vertices
in D1. We will show that H has a subgraph F satisfying the degree constraints
if and only if there is a set S ⊆ V such that G[S] is connected and c(S) = M .
Since finding a subgraph of such degree constraints can be done in polynomial
time [30], this equivalence implies the theorem.

First assume that there is a set S ⊆ V such that G[S] is connected and
c(S) = M . We choose S among such sets so that |S ∩ D1| is maximized. This
implies in particular that if there is a vertex v ∈ D1 \ S of color x, then no
vertex of color x in D2 belongs to S. For each edge {u, v} in G[S− r], if u ∈ D1,
v ∈ D2, c(u) = x, and c(v) = y, then add one edge between x1 and y2 into
F . Now for each color x, the degree of x1 in F is at most M(x). Since S takes
color-x vertices in D2 only when it is necessary after including all color-x vertices
in D1, the degree of x2 in F is exactly max{M(x)− q(x), 0}.

Next assume that H has a subgraph F that satisfies the degree constraints.
For each edge between x1 and y2 in F , we add into S the endpoints of an
arbitrary edge {u, v} in G − r such that c(u) = x, u ∈ D1, c(v) = y, and
v ∈ D2. Let S = c(S), the multiset of colors appear in S. From the construction
of S, it holds for each color x that S(x) = degF (x1) + degF (x2) = degF (x1) +
max{M(x)− q(x), 0}. If M(x) ≤ q(x), then S(x) = degF (x1) ≤M(x). We add,
into S, arbitrary M(x) − S(x) of color-x vertices in D1 \ S. This is possible

28 Gima et al.

since the number of color-x vertices in D1 \ S is q(x) − S(x) ≥ M(x) − S(x).
If M(x) > q(x), then S(x) = degF (x1) + M(x) − q(x). In this case, we add all
color-x vertices in D1 into S, and then the multiplicity of x in the resultant set
becomes q(x) +M(x)− q(x) = M(x). ut

F.2 Steiner Forest

Steiner Forest is a generalization of Steiner Tree and defined as follows:
Given a graph G = (V,E) with edge weighting w : E → Z+, a positive integer k,
and disjoint terminal sets T1, . . . , Tt ⊆ V with |Ti| ≥ 2 for all i, decide whether
there is a subgraph F of G with

∑
e∈F w(e) ≤ k such that each Ti is contained

in some connected component of F . Note that we can assume that F is a forest.
It is known that Steiner Forest is strongly NP-complete (that is, NP-

complete even if the weights are given in unary) on graphs of vertex integrity
5 [35]. We show that for graphs of small vertex cover number, the problem
becomes easier.

Let G = (V,E) be a graph, F a subgraph of G, and S a vertex cover of G. We
assume without loss of generality that F is a forest. The following observations
follow from this assumption and the fact that V − S is an independent set.

Observation F.3 At most |S| − 1 vertices in V − S have degree 2 or more in
F .

Observation F.4 F has at most |S| connected components.

Theorem F.5. Steiner Forest can be solved in time nO(vc), on n-vertex
graphs of vertex cover number at most vc.

Proof. Let G = (V,E) be a graph and S ⊆ V be a vertex cover of G. We
first guess the set D ⊆ V − S of vertices that have degree at least 2 in F . By
Observation F.3, we know that |D| ≤ |S| − 1. The vertices in V − (S ∪D) have
degree at most 1 in F : if such a vertex appears in some Ti, then it has degree 1
in F ; otherwise, it has degree 0 in F , and thus can be safely removed from the
graph. We then guess the edges in F [S ∪D]. The number of candidates for D is
at most n|S|, and the number of candidates for the edge set is at most |S|2|S|.

We reject the guess F [S ∪D] if there are two components of F [S ∪D] that
contain elements of Ti for some i. Now for each i, there is at most one component
Ci of F [S∪D] such that C ∩Ti 6= ∅. If there is no such component, we guess one
component of F [S∪D] from O(|S|) candidates and call it Ci. Note that Ci and Cj
may be the same for i 6= j. Now for each i and for each vertex u ∈ Ti \ (S ∪D),
we find an edge {u, v} of the minimum weight such that v ∈ V (Ci) and add
{u, v} into F . We output a minimum weight forest obtained in this way. ut

We denote by Unweighted Steiner Forest the special case of Steiner
Forest such that each edge has weight 1. By subdividing the edges in the proof
in [35], we can show that Unweighted Steiner Forest is NP-complete for
graphs of tw = 3.

Treedepth, Vertex Cover, and Vertex Integrity 29

Theorem F.6. Unweighted Steiner Forest is fixed-parameter tractable
parameterized by vc.

Proof. Let G = (V,E) be the input graph and S be a vertex cover of G. Let
s = |S|. We reduce the instance by applying the following reduction rules ex-
haustively.

1. If Ti contains s or more vertices v in V −S that have the same neighborhood
N(v), then remove one of them from Ti and decrease k by 1.

2. Let Ti(1), . . . Ti(s+1) be s + 1 distinct terminal sets such that Ti(j) ∩ S = ∅
for all j and for each X ⊆ S and j 6= j′, it holds that |{v ∈ Ti(j) | N(v) =
X}| = |{v ∈ Ti(j′) | N(v) = X}|. Then replace Ti(1) and Ti(2) with their
union Ti(1) ∪ Ti(2).

3. If there are two non-terminal vertices of the same neighborhood, then remove
one of them from the graph.

The first rule is safe by Observation F.3. At least one of the s vertices of the
same neighborhood is a leaf. Since there are other vertices of the same neighbor-
hood in Ti, this leaf can be joined to the component containing the other vertices
of Ti with an edge. The safeness of the second rule follows by Observation F.4,
as at least two of them belong to the same connected component. The third rule
is safe because at most one of them is used in an optimal solution.

We can see that if no reduction rule above applies, then the numbers of
vertices and of terminal sets depend only on s. By the first rule, each terminal
set Ti contains at most s · 2s vertices. By the first and second rules, there are
at most s · s2s + s terminal sets. By Reduction rule 3, there are at most 2s + s
non-terminal vertices. ut

G Easy problems parameterized by td

Here we show the following.

Observation G.1 List Hamiltonian Path, Directed (p, q)-Edge Domi-
nating Set, and Metric Dimension are fixed-parameter tractable parameter-
ized by td.

List Hamiltonian Path is a generalization of Hamiltonian Path such
that each vertex has a set of permitted positions where it can be put in a Hamil-
tonian path. This problem is W[1]-hard parameterized by pw [43]. By Proposi-
tion A.1, this problem parameterized by td admits a trivial FPT algorithm: if a
graph G has at least 2td(G) vertices, then G does not have a Hamiltonian path;
otherwise, we can try all n! ≤ (2td(G))! permutations of vertices.

For integers p, q ≥ 0, the edges (p, q)-dominated by an arc e = (u, v) are e
itself and all arcs that are on a directed path of length at most p to u or on a
directed path of length at most q from v. Then, Directed (p, q)-Edge Domi-
nating Set asks whether there exists a set K of arcs with |K| ≤ k such that
every arc is (p, q)-dominated by K. This problem is W[1]-hard parameterized by

30 Gima et al.

pw but fixed-parameter tractable parameterized by tw + p+ q [7]. Since we can
assume that p and q are smaller than the longest path length, we can also assume
that they are bounded by a function of td. Thus the fixed-parameter tractability
with tw + p + q implies the fixed-parameter tractability solely with td. (Here
the parameters are defined on the undirected graph obtained by ignoring the
directions of arcs.)

The argument for Metric Dimension is slightly more involved. In Metric
Dimension, we are given a graph G = (V,E) and an integer k and asked whether
there exists S ⊆ V such that |S| ≤ k and for each pair u, v ∈ V there exists w ∈ S
with dist(u,w) 6= dist(v, w), where dist(·, ·) is the distance between two vertices
in G. We call such a set S a resolving set. Recently, this problem is shown to
be W[1]-hard parameterized by pw [13]. Observe that there is an MSO1 formula
ϕ(S) such that its length depends only on the diameter of the underlying graph
and it is evaluated to be true if and only if the vertex set S is a resolving set of the
underlying graph. It is known that finding a minimum vertex set S satisfying
ϕ(S) is fixed-parameter tractable parameterized by clique-width + |ϕ| [18,48].
Therefore, Metric Dimension is fixed-parameter tractable parameterized by
clique-width+the diameter. Since the clique-width and the diameter are bounded
from above by functions of its treedepth, Metric Dimension is fixed-parameter
tractable parameterized by td. (See [16] for an upper bound of clique-width.)

	Exploring the Gap Between Treedepth and Vertex Cover Through Vertex Integrity
	1 Introduction
	2 Imbalance
	3 Maximum Common (Induced) Subgraph
	4 Min Max Outdegree Orientation
	5 Bandwidth
	6 Conclusion
	A Graph parameters
	A.1 Vertex cover
	A.2 Treedepth
	A.3 Vertex integrity

	B ILP parameterized by the number of variables
	C Omitted proofs in Section 3
	D Omitted proofs in Section 4
	E Extending algorithms known for vc parameterizations
	E.1 Capacitated problems
	E.2 Coloring and partitioning problems

	F Hard problems parameterized by vi
	F.1 Graph Motif
	F.2 Steiner Forest

	G Easy problems parameterized by td

