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Abstract

We consider weighted tree automata over strong bimonoids (for short:
wta). A wta A has the finite-image property if its recognized weighted
tree language [[A]] has finite image; moreover, A has the preimage prop-
erty if the preimage under [[A]] of each element of the underlying strong bi-
monoid is a recognizable tree language. For each wta A over a past-finite
monotonic strong bimonoid we prove the following results. In terms of
A’s structural properties, we characterize whether it has the finite-image
property. We characterize those past-finite monotonic strong bimonoids
such that for each wta A it is decidable whether A has the finite-image
property. In particular, the finite-image property is decidable for wta
over past-finite monotonic semirings. Moreover, we prove that A has the
preimage property. All our results also hold for weighted string automata.
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1 Introduction

Weighted string automata (wsa) were invented [Sch61] for the purpose of de-
scribing quantitative properties of recognizable languages, like degree of am-
biguity or costs of acceptance. Essentially each wsa is a nondeterminis-
tic finite-state automaton in which each transition carries a weight (quan-
tity). In order to calculate with weights, an algebraic structure is needed,
called weight algebra, and wsa have been investigated over several different
weight algebras: semirings [Sch61, Eil74, BR88, KS86, Sak09, DKV09], lattices
[Wec78, Rah09], strong bimonoids [DSV10, CDIV10, DV12], valuation monoids
[DGMM11, DM12], and multi-cost valuation structures [DP16]. The two op-
erations of these weight algebras, usually called addition and multiplication,
are used to calculate the weight of a run on a given input word (by means of
multiplication) and to sum up the weights of several runs on the given word
(by means of addition). In this way, a wsa A recognizes a weighted language
[[A]] (or: formal power series), i.e., a mapping from the set of input words
to the carrier set of the weight algebra. For the theory of wsa we refer to
[Sch61, Eil74, SS78, Wec78, BR82, KS86, Kui97, Sak09, DKV09].

In a similar way, finite-state tree automata have been extended to weighted
tree automata (wta) over various weight algebras, e.g., complete distributive
lattices [IF75, ÉL07], fields [BR82], commutative semirings [AB87], strong bi-
monoids [Rad10, DFKV20], multioperator monoids [Kui99, FMV09, FSV12],
and tree-valuation monoids [DHV15]. In any case, a wtaA recognizes a weighted
tree language [[A]] (or: formal tree series), i.e., a mapping from the set of in-
put trees to the carrier set of the weight algebra. We note that each wsa is a
particular wta (cf. [FV09, p. 324]). For surveys we refer to [ÉK03, FV09].

Very important weight algebras for wsa and wta are (a) the semiring of
natural numbers N, (b) the max-plus-semiring on N, (c) the min-plus-semiring
on N, (d) the semiring of finite formal languages [DK09, Sec. 2], and (e) the
semiring of matrices over the positive integers. Apart from (c), these algebras
are past-finite with a suitable order, i.e., each element has only finitely many
predecessors in this order. Moreover, the addition and multiplication of each of
these algebras are monotone with respect to this partial order. In [BFGM05]
wta over monotonic semirings were investigated.

Justified by these important examples of weight algebras, we want to ad-
vocate in this paper the class of past-finite monotonic strong bimonoids as a
general model for weight algebras. These weight algebras share many proper-
ties with the semiring of natural numbers: they have a partial order on its carrier
set (which is not necessarily total), they are zero-sum free and zero-divisor free,
their two operations are monotone, and a strong kind of well-foundedness (called
past-finiteness) holds. However, in general, distributivity is not required. We
will show that the natural numbers N with addition provide a natural example
for past-finite monotonic strong bimonoids which are not semirings.

We will generalize classical results from the theory of wsa and wta over the
mentioned specific semirings in this more general setting of weight algebras in
a uniform way. We note that classical results for wsa and their proofs crucially
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employ matrices and therefore need the distributivity of the underlying weight
algebras. Our development uses an analysis of the structure of the wta, but
also algebraic means like congruences and, ultimately, it is combined with a
reduction to the classical results for the semiring of natural numbers.

There are two natural questions associated with a wta A:
• Does A have the finite-image property? A wta A has the finite-image
property if the weighted tree language [[A]] has finite image.

• Does A have the preimage property? A wta A has the preimage prop-
erty if the preimage under [[A]] of each element of the weight algebra is
a recognizable tree language (cf., e.g., [Eng75, GS84] for the theory of
recognizable tree languages).

In the literature there are some answers to these questions. Each wsa over
a finite semiring and over the semiring of natural numbers has the preimage
property, and each wsa over a commutative ring which has the finite-image
property also has the preimage property [BR88, Ch. III]. This has also been
shown for wta [DV06, LB99]. Furthermore, for each wsa over any subsemiring of
the rational numbers, the finite-image property is decidable [MS77]. This latter
property is related to the classical Burnside property for semigroups [RR85].
Moreover, each wta over a locally finite semiring [DV06] and each wsa over
a bi-locally finite strong bimonoid [DSV10] has the finite-image property and
the preimage property. Thus, in particular, each wsa over a bounded (not
necessarily distributive) lattice has the two properties.

Weighted tree languages which are recognized by wta that have both, the
finite-image property and the preimage property, are called recognizable step
mappings [DG05, DV06]. The class of such mappings is characterized by crisp-
deterministic wta [FKV21] (cf. [DSV10] for the string case). Intuitively, such
a wta can be considered as a usual (unweighted) deterministic finite-state tree
automaton in which each final state carries a weight.

In this paper, we investigate the two mentioned questions for wta over past-
finite monotonic strong bimonoids. It is an extended version of [DFKV20] and
our main results are the following:

• For each wta A over some arbitrary strong bimonoid, we give a sufficient
criterion such that A has the finite-image property and the preimage prop-
erty (cf. Theorem 6.6).

• Each wta A over some past-finite monotonic strong bimonoid has the
preimage property (cf. Theorem 6.10).

• For each wta A over some past-finite monotonic strong bimonoid, we char-
acterize when A has the finite-image property, in terms of structural prop-
erties of A (cf. Theorem 7.1).

• We characterize the subclass C of those past-finite monotonic strong bi-
monoids for which the following holds: for each wta over some weight
algebra from C, it is decidable whether it has the finite-image property
(cf. Theorem 7.12). In particular, C contains all past-finite monotonic
semirings (cf. Theorem 7.14).
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• Given a wta A over a past-finite monotonic strong bimonoid and some
k ∈ N+, it is decidable whether the cardinality of the image of [[A]] is
bounded by k (cf. Theorem 8.2).

All the above results except Item 2 are new, i.e., do not appear in [DFKV20].
For our decidability results, we assume that the respective weight algebras are
given in a computable way.

Since wsa [Sch61, Eil74] over semirings are a special case of wta over semi-
rings (cf. [FV09, p. 324]), and this relationship also holds for wsa over strong
bimonoids, all our results also hold for wsa. We will explain this in more detail
in Section 10.

2 Preliminaries

2.1 General notions and notations

We denote by N the set of natural numbers {0, 1, 2, . . .} and by N+ the set
N \ {0}. For every m,n ∈ N, we denote the set {i ∈ N | m ≤ i ≤ n} by [m,n].
We abbreviate [1, n] by [n]. Hence, [0] = ∅.

Let A be a set. Then |A| denotes the cardinality of A, Pf(A) denotes the set
of finite subsets of A, A∗ denotes the set of all strings over A, and ε denotes
the empty string. For every v, w ∈ A∗, vw denotes the concatenation of v and
w, |v| denotes the length of v, and prefix(v) denotes the set {w ∈ A∗ | (∃u ∈
A∗) : v = wu}.

Let B be a set and R a binary relation on B. As usual, for every a, b ∈ B,
we write aRb instead of (a, b) ∈ R. We call R an equivalence relation if it is
reflexive, symmetric, and transitive. If R is an equivalence relation, then for
each b ∈ B we denote by [b]R the equivalence class {a ∈ B | aRb} and by B/R
the set {[b]R | b ∈ B}. We say that R is a partial ordering if it is reflexive,
antisymmetric, and transitive. For each b ∈ B, let past(b) = {a ∈ B | aRb}.
We call (B,R) past-finite if past(b) is finite for each b ∈ B.

Let f : A → B and g : B → C be mappings, where C is a further set. The
image of f is the set im(f) = {f(a) | a ∈ A}, and for each b ∈ B, the preimage
of b under f is the set f−1(b) = {a ∈ A | f(a) = b}. Moreover, the composition
of f and g is the mapping g ◦ f : A → C defined by (g ◦ f)(a) = g(f(a)) for
each a ∈ A.

2.2 Trees and contexts

We suppose that the reader is familiar with the fundamental concepts and re-
sults of the theory of finite-state tree automata and recognizable tree languages
[Eng75, GS84, CDG+08]. Here we only recall some basic definitions.

A ranked alphabet is a tuple (Σ, rk) which consists of an alphabet Σ and
mapping rk : Σ → N, called rank mapping, such that rk−1(0) 6= ∅. For each
k ∈ N, we define Σ(k) = {σ ∈ Σ | rk(σ) = k}. Sometimes we write σ(k) to
indicate that σ ∈ Σ(k). As usual, we abbreviate (Σ, rk) by Σ if rk is irrelevant

4



or it is clear from the context. If Σ = Σ(1) ∪ Σ(0) such that |Σ(1)| ≥ 1 and
|Σ(0)| = 1, then we call Σ a string ranked alphabet.

Let Σ be a ranked alphabet and H be a set disjoint from Σ. The set of Σ-
trees over H , denoted by TΣ(H), is the smallest set T such that (i) Σ(0)∪H ⊆ T
and (ii) if k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , then σ(ξ1, . . . , ξk) ∈ T . We
write TΣ for TΣ(∅). For every γ ∈ Σ(1) and α ∈ Σ(0), we abbreviate the tree
γ(. . . γ(α) . . .) with n occurrences of γ by γn(α) and write γ for γ1. Any subset
L of TΣ is called Σ-tree language.

We define the set of positions of trees as a mapping pos : TΣ(H) → Pf(N
∗
+)

such that (i) for each ξ ∈ (Σ(0) ∪ H) let pos(ξ) = {ε} and (ii) for every ξ =
σ(ξ1, . . . , ξk) with k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(H), let pos(ξ) =
{ε} ∪ {iv | i ∈ [k], v ∈ pos(ξi)}. The height and the size of a tree ξ ∈ TΣ are
height(ξ) = max{|v| | v ∈ pos(ξ)} and size(ξ) = | pos(ξ)|, respectively.

Let ξ, ζ ∈ TΣ(H) and v ∈ pos(ξ). Then the label of ξ at v, denoted by ξ(v),
the subtree of ξ at v, denoted by ξ|v, and the replacement of the subtree of ξ at
v by ζ, denoted by ξ[ζ]v, are defined as follows:
(i) if ξ ∈ (Σ(0) ∪H), then we let ξ(ε) = ξ, ξ|ε = ξ, and ξ[ζ]ε = ζ and
(ii) for every ξ = σ(ξ1, . . . , ξk) with k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ(H),

we define ξ(ε) = σ and ξ|ε = ξ, and ξ[ζ]ε = ζ, and for every i ∈ [k] and
v′ ∈ pos(ξi), we define

– ξ(iv′) = ξi(v
′),

– ξ|iv′ = ξi|v′ , and
– ξ[ζ]iv = σ(ξ1, . . . , ξi−1, ξi[ζ]v, ξi+1, . . . , ξk).

Let � be a symbol such that � 6∈ Σ. For each ζ ∈ TΣ({�}), we define
pos�(ζ) = {v ∈ pos(ζ) | ζ(v) = �}, and for each v ∈ pos(ζ) we abbreviate by
ζ|v the tree ζ[�]v. We denote by CΣ the set {ζ ∈ TΣ({�}) | | pos�(ζ)| = 1},
and we call its elements contexts over Σ (for short: Σ-contexts or contexts).
Thus a context is a tree over the ranked alphabet Σ and the set H = {�} in
which � occurs precisely once, as a leaf.

Let c ∈ CΣ with {v} = pos�(c) and ζ ∈ (TΣ ∪ CΣ). Then we abbreviate
c[ζ]v by c[ζ]. Hence c[ζ] is obtained from the context c by replacing the leaf �
by ζ. Obviously, if ζ ∈ CΣ, then also c[ζ] ∈ CΣ. Moreover, for each n ∈ N, we
define the nth power of c, denoted by cn, by induction as follows: c0 = � and
cn+1 = c[cn].

In the rest of this paper, Σ will denote an arbitrary ranked alphabet
if not specified otherwise. Moreover, if we write ‘ξ = σ(ξ1, . . . , ξk)’,
then we mean that there exist k ∈ N+, σ ∈ Σ(k), and ξ1, . . . , ξk ∈
TΣ(H) such that ξ = σ(ξ1, . . . , ξk).

2.3 Strong bimonoids

A strong bimonoid [DSV10, CDIV10, DV12] is an algebra (B,⊕,⊗, 0, 1) such
that (B,⊕, 0) is a commutative monoid, (B,⊗, 1) is a monoid, 0 6= 1, and
0 ⊗ b = b⊗ 0 = 0 for each b ∈ B.
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We say that B is
• commutative if ⊗ is commutative,
• left distributive (respectively, right distributive) if ⊗ is distributive over ⊕
from the left (respectively, the right), and

• a semiring if it is left and right distributive.
Moreover, we call B

• one-product free if a⊗ b = 1 implies a = 1 = b,
• zero-divisor free if a⊗ b = 0 implies a = 0 or b = 0,
• zero-sum free if a⊕ b = 0 implies a = 0 and b = 0, and
• (additively) idempotent if a⊕ a = a

for every a, b ∈ B.
In [BFGM05, Def. 12] the concept of monotonic semiring is defined. In the

spirit of this definition, we define monotonic strong bimonoids as follows.

Definition 2.1. Let (B,⊕,⊗, 0, 1) be a strong bimonoid and � a partial or-
der on B. We write a ≺ b to denote that a � b and a 6= b. We say that
(B,⊕,⊗, 0, 1,�) is monotonic if the following conditions hold:
(i) for every a, b ∈ B : a � a⊕ b, and
(ii) for every a, b, c ∈ B \ {0} with b 6= 1 we have: a⊗ c ≺ a⊗ b⊗ c.

We call (B,⊕,⊗, 0, 1,�) past-finite if (B,�) is past-finite.

If B is monotonic, then, as is easy to check, 0 ≺ 1 ≺ b for each b ∈ B \
{0, 1}; hence, clearly B is one-product free, zero-divisor free and zero-sum free.
Moreover, if B has at least 3 elements, then B is infinite. The only monotonic
strong bimonoid with 2 elements is the Boolean semiring (B, sup, inf, 0, 1) with
its natural order, where B = {0, 1}. Cf. [BFGM05, p. 122] for further results
on monotonic semirings.

Example 2.2. We give six examples of past-finite monotonic semirings (cf.
[BFGM05, p. 122]):
(i) the semiring of natural numbers (N,+, ·, 0, 1,≤);
(ii) the arctic semiring ASRN = (N−∞,max,+,−∞, 0,≤), where N−∞ = N ∪

{−∞};
(iii) the semiring Lcm = (N, lcm, ·, 0, 1,≤), where lcm(0, n) = n = lcm(n, 0)

for each n ∈ N and otherwise lcm is the usual least common multiple;
(iv) the semiring FSet(N) = (Pf(N),∪,+, ∅, {0},�) where the addition on N

is extended to sets as usual, and � is defined by N1 � N2 if there is an
injective mapping f : N1 → N2 such that n ≤ f(n) for each n ∈ N1;

(v) for each n ∈ N+, the semiring Matn(N+) = (Nn×n
+ ∪ {0, 1},+, ·, 0, 1,≤)

of square matrices over N+ with the common matrix addition and mul-
tiplication, where 0 is the n × n zero matrix and 1 is the n × n unit
matrix; the partial order ≤ is defined by M ≤ M ′ if Mij ≤ M ′

ij for each
(i, j) ∈ [n]× [n]; and

(vi) the semiring FLangΣ = (Pf(Σ
∗),∪, ·, ∅, {ε},�) over the alphabet Σ with

the operations of union and concatenation, and � is defined by L1 � L2

if there is an injective mapping f : L1 → L2 such that w is a subword of
f(w) for each w ∈ L1.
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The semirings in (i)-(iv) are commutative, and the semirings in (ii)-(iv) and (vi)
are idempotent.

Next we wish to give a natural example of a past-finite monotonic strong
bimonoid which is not a semiring.

Example 2.3. Take (N0,⊕,+, 0, 0), the natural numbers with plus and plus,
with a new zero 0 added. That is, we have N0 = N∪{0}, the bimonoid addition
on N is the usual one, denoted by ⊕, the bimonoid multiplication on N is also the
usual addition, denoted by +, in order to indicate that here the usual addition
serves as bimonoid multiplication. Moreover, 0 ⊕ x = x and 0 + x = 0 for each
x ∈ N0. Let ≤ be the usual order on N together with 0 < x for each x ∈ N.
Then (N0,⊕,+, 0, 0,≤) is a past-finite strong bimonoid which is not a semiring.
We might call this structure the plus-plus-strong bimonoid of natural numbers.

Now we give an example of an additively locally finite and past-finite mono-
tonic strong bimonoid which is not a semiring.

Example 2.4. The strong bimonoid (N,+′, ·, 0, 1,≤) with the operation +′

defined, for each a, b ∈ N, by

a+′ b =

{
min{a+ b, 100} if a, b ≤ 100

max{a, b} otherwise

is additively locally finite and past-finite monotonic. Moreover, it is neither left
distributive nor right distributive.

Next we show a general method for generating past-finite monotonic strong
bimonoids.

Example 2.5. Let (B,�) be a past-finite partially ordered set. Let (B,+) be
a commutative semigroup such that, for every a, b ∈ B, we have a � a + b.
Moreover, let (B,×) be a semigroup such that, for every a, b, c ∈ B, we have
a ≺ a× b, c ≺ b× c, and a× c ≺ a× b× c.

According to [DV12, Ex. 2.1(4)], we construct the strong bimonoid induced by
(B,+) and (B,×) to be the strong bimonoid (B′,⊕,⊗, 0, 1) defined as follows:

• B′ = B ∪ {0, 1} where 0, 1 6∈ B;
• we define the operation ⊕ : B′ × B′ → B′ such that ⊕|B×B = + and for
each b ∈ B′ we let 0⊕ b = b = b⊕ 0 and, if b 6= 0, then 1⊕ b = b = b⊕ 1;

• we define the operation ⊗ : B′ × B′ → B′ such that ⊗|B×B = × and for
each b ∈ B′ we let 0 ⊗ b = 0 = b⊗ 0, and 1 ⊗ b = b = b⊗ 1.

We define the partial ordering �′ on B′ such that 0 ≺′
1 ≺′ b for each b ∈ B

and �′ ∩(B ×B) =�. Then (B′,⊕,⊗, 0, 1,�′) is past-finite monotonic.
To verify this, we make the following observations. Clearly, (B′,�′) is past-

finite. By case analysis, it is easy to show that ⊕ and ⊗ satisfy properties (i) and
(ii) of the definition of monotonic strong bimonoid, respectively. In particular,
property (ii) can be seen as follows. Let a, b, c ∈ B′ \{0} and b 6= 1 (i.e., b ∈ B):
We claim that a⊗ c ≺′ a⊗ b⊗ c.

7



If a = c = 1, then a⊗ c = 1 ≺′ b = a⊗ b⊗ c.
If a 6= 1 and c = 1, then we have a ∈ B and a ≺ a× b by the assumption on

(B,×), and hence a ≺′ a× b by the definition of ≺′. Then a⊗ c = a ≺′ a× b =
a⊗ b = a⊗ b⊗ c.

If a = 1 and c 6= 1, then c ∈ B and c ≺ b× c by the assumption on (B,×).
Using the same arguments as in the previous case, we have a⊗ c = c ≺′ b× c =
b⊗ c = a⊗ b⊗ c.

Finally, if a 6= 1 and b 6= 1, then we have a, b, c ∈ B and therefore a × c ≺
a× b× c by the assumption on (B,×). Since ⊗ on B and ≺′ on B are equal to
× and ≺, respectively, we obtain a⊗ c ≺′ a⊗ b⊗ c.

Clearly, (B′,⊕,⊗, 0, 1) is additively locally finite if, for each finite A ⊆ B,
the subsemigroup of (B,+) generated by A is finite.

As an application of the general method, we let (B,�) = (N+,≤), (B,+) =
(N+,+) and (B,×) = (N+,+), both with the usual addition of natural numbers,
and 1 = 0. Then we obtain the plus-plus-strong bimonoid of natural numbers
given in Example 2.3. As another application, we can choose (B,�) = (N+,≤),
(B,+) = (N+,+) with the usual addition on natural numbers, and (B,×) =
(N+,×) where a× b = a+ b+ 2ab for every a, b ∈ N+. Then B′ is a past-finite
monotonic strong bimonoid. Moreover, B′ is neither left distributive nor right
distributive. As a third one, we can consider the semigroup (B,+) = (N+,max)
and the rest as above. Then B′ is an idempotent and past-finite monotonic
semiring.

For later use, we introduce the following notations and notions.
We extend ⊕ to every finite set I and family (bi | i ∈ I) of elements of

B as usual, and denote the extended operation by
⊕

. We always abbreviate⊕
(bi | i ∈ I) by

⊕
i∈I bi. Moreover, if I = [k] for some k ∈ N, then we write⊕k

i=1 bi. For each b ∈ B, we abbreviate
⊕k

i=1 b by kb.
We also extend the operation ⊗ to every k ∈ N and family (bi | i ∈ [k]) of

elements of B as usual, and denote the extended operation by
⊗

. We always

abbreviate
⊗

(bi | i ∈ [k]) by
⊗k

i=1 bi. For each b ∈ B, we abbreviate
⊗k

i=1 b by
bk. For each B1, B2 ⊆ B, we denote by B1⊗B2 the set {a⊗ b | a ∈ B1, b ∈ B2}.

For each A ⊆ B, we denote by 〈A〉⊕ the submonoid of (B,⊕, 0) generated
by A and we denote by 〈A〉⊗ the submonoid of (B,⊗, 1) generated by A. We
say that B is additively locally finite (respectively, multiplicatively locally finite)
if, for each finite A ⊆ B, the submonoid 〈A〉⊕ (respectively, 〈A〉⊗) is finite.
Observe that, if B is idempotent, then it is also additively locally finite. We say
that B is bi-locally finite if it is both additively locally finite and multiplicatively
locally finite. For each b ∈ B, we abbreviate 〈{b}〉⊕ by 〈b〉⊕ and if 〈b〉⊕ is finite,
then we say that b has finite additive order.

In the rest of the paper, (B,⊕,⊗, 0, 1) denotes an arbitrary strong
bimonoid if not specified otherwise.
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2.4 Weighted tree languages

A (Σ, B)-weighted tree language (for short: weighted tree language) is a mapping
r : TΣ → B. For every (Σ, B)-weighted tree language r, we denote by supp(r)
the set {ξ ∈ TΣ | r(ξ) 6= 0}.

Let L ⊆ TΣ be a Σ-tree language. The characteristic mapping of L with
respect to B is the mapping 1(B,L) : TΣ → B defined, for each ξ ∈ TΣ, by
1(B,L)(ξ) = 1 if ξ ∈ L and 0 otherwise.

Let r and r′ be (Σ, B)-weighted tree languages and b ∈ B. We define the
(Σ, B)-weighted tree languages r⊕r′ and b⊗r, for each ξ ∈ TΣ, by (r⊕r′)(ξ) =
r(ξ) ⊕ r′(ξ) and (b⊗ r)(ξ) = b⊗ r(ξ), respectively.

We say that r is a (Σ, B)-recognizable one-step mapping (or just: recognizable
one-step mapping) if there exist a recognizable Σ-tree language L ⊆ TΣ and a
b ∈ B such that r = b ⊗ 1(B,L). The tree language L is called step language.
Moreover, r is a (Σ, B)-recognizable step mapping (or just: recognizable step
mapping) if there exist n ∈ N+ and (Σ, B)-recognizable one-step mappings
r1, . . . , rn such that r =

⊕n
i=1 ri (where we extend the sum of two weighted tree

languages in a straightforward way to the sum of finitely many weighted tree
languages). Obviously, if r is a recognizable step-mapping, then im(r) is finite.
We note that, in [Bor04], recognizable one-step mappings were called weighted
tree languages which are constant on their supports.

For each b ∈ B, we define the weighted tree language b̃ by b̃(ξ) = b for each

ξ ∈ TΣ. We note that b̃ is the recognizable one-step mapping b⊗ 1(B,TΣ).

3 Weighted tree automata with run semantics

We recall the concept of weighted tree automata over strong bimonoids from
[Rad10] (also cf., e.g., [FV09, FKV21]). A weighted tree automaton (over Σ
and B) (for short: (Σ, B)-wta or wta) is a tuple A = (Q, δ, F ), where Q is
a finite nonempty set (states), δ = (δk | k ∈ N) is a family of mappings δk :
Qk×Σ(k)×Q → B (transition mappings), and F : Q → B (root weight mapping).

From now on, for every k ∈ N, (q1, . . . , qk) ∈ Qk, σ ∈ Σ(k), and
q ∈ Q, we abbreviate expressions of the form δk((q1, . . . , qk), σ, q) by
δk(q1 · · · qk, σ, q). Moreover, we write Fq instead of F (q) for each
q ∈ Q.

We say that A is deterministic (and crisp-deterministic) if, for every k ∈ N,
w ∈ Qk, and σ ∈ Σ(k) there exists at most one q ∈ Q such that δk(w, σ, q) 6= 0

(respectively, there exists a q ∈ Q such that δk(w, σ, q) = 1, and δk(w, σ, q
′) = 0

for each q′ ∈ Q \ {q}). Clearly, crisp-determinism implies determinism.
We define the run semantics for a (Σ, B)-wta as follows. Let A = (Q, δ, F )

be a (Σ, B)-wta, ζ ∈ TΣ({�}), and ρ : pos(ζ) → Q. We call ρ a run of A on ζ
if, for every v ∈ pos(ζ) with ζ(v) ∈ Σ, we have δk(ρ(v1) · · · ρ(vk), σ, ρ(v)) 6= 0

where σ = ζ(v) and k = rk(σ). If ρ(ε) = q for some q ∈ Q, then we say that
ρ is a q-run on ζ. We denote by RA(q, ζ) the set of all q-runs on ζ and we let
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RA(ζ) =
⋃

q∈Q RA(q, ζ). If A is deterministic, then |RA(ζ)| ≤ 1. Moreover, we

let RF 6=0

A (ζ) denote the set of all ρ ∈ RA(ζ) such that Fρ(ε) 6= 0. In particular,
for c ∈ CΣ with pos�(c) = {v}, we call each ρ ∈ RA(q, c) a (q, ρ(v))-run on
c and we denote the set of all (q, p)-runs on c by RA(q, c, p). We note that
RA(q, c) =

⋃
p∈Q RA(q, c, p). Each element of RA(q, c, q) is called loop.

Let ζ ∈ TΣ({�}), ρ ∈ RA(ζ), and v ∈ pos(ζ). We define the mapping
ρ|v : pos(ζ|v) → Q such that, for each v′ ∈ pos(ζ|v), we have ρ|v(v′) = ρ(vv′).
Clearly, ρ|v ∈ RA(ζ|v), and hence we call it the run induced by ρ at v.

We say that A is finitely ambiguous if there exists K ∈ N such that, for
each ξ ∈ TΣ, we have |RF 6=0

A (ξ)| ≤ K. Moreover, we call A unambiguous if
it is finitely ambiguous and K = 1. We note that each deterministic wta is
unambiguous, and there exist easy examples of unambiguous wta for which
there does not exist an equivalent deterministic wta [KLMP04].

Now we define the weight of a run ρ ∈ RA(ζ) to be the element wtA(ζ, ρ)
of B by induction as follows: (i) if ζ = �, then wtA(ζ, ρ) = 1 and (ii) if
ζ = σ(ζ1, . . . , ζk) then wtA(ζ, ρ) is defined by

wtA(ζ, ρ) =
( k⊗

i=1

wtA(ζi, ρ|i)
)
⊗ δk

(
ρ(1) · · · ρ(k), σ, ρ(ε)

)
. (1)

If there is no confusion, then we drop the index A from wtA and write just
wt(ζ, ρ) for the weight of ρ.

The run semantics of A is the (Σ, B)-weighted tree language [[A]] : TΣ → B
defined, for each ξ ∈ TΣ, by

[[A]](ξ) =
⊕

ρ∈RA(ξ)

wt(ξ, ρ)⊗ Fρ(ε) =
⊕

ρ∈RF 6=0

A (ξ)

wt(ξ)⊗ Fρ(ε) ,

where the second equality holds because wt(ξ, ρ) ⊗ Fρ(ε) = 0 for each ρ ∈

RA(ξ) \ RF 6=0

A (ξ). We will use the above equality without any reference. Let
A and B be (Σ, B)-wta. We say that A and B are equivalent if [[A]] = [[B]]. A
weighted tree language r : TΣ → B is run-recognizable if there exists a (Σ, B)-
wta A such that r = [[A]]. The class of all run-recognizable (Σ, B)-weighted tree
languages is denoted by Rec(Σ, B).

Example 3.1. For the weight structure of Example 2.3, the plus-plus-strong
bimonoid of natural numbers, the weighted tree automaton along a run would
sum up all weights (costs) of the transitions occurring in the run, but to deter-
mine the weight of a tree it would also execute all possible runs and sum up
their weights (costs). This might be considered as the total sum of the weights
of all transitions of all non-deterministic realizations (runs).

The following fact is well known and we will use it in the paper without
any further reference (cf. e.g. [FV09, Sect. 3.4]). A Σ-tree language L ⊆ TΣ

is recognizable, i.e., recognizable by a finite-state Σ-tree automaton if and only
if there exists a (Σ,B)-wta A such that L = supp([[A]]) (recall that B is the
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Boolean semiring). Moreover, for each (Σ,B)-wta A, we can construct a finite-
state Σ-tree automaton which recognizes supp([[A]]). Vice versa, for each finite-
state Σ-tree automaton which recognizes L, we can construct a (Σ,B)-wta A
such that L = supp([[A]]). Therefore, in order to avoid using several automata
models, we identify finite state Σ-tree automata with (Σ,B)-wta.

We note that also another semantics, called initial algebra semantics, can be
defined for A [Rad10, FV09, FKV21]. In general, the two kinds of semantics
are different [DSV10], however, if B is a semiring or A is deterministic, then
they coincide [Bor05, Lm. 4.1.13], [Rad10, Thm. 4.1], and [FKV21, Thm. 3.10].

Example 3.2. Let Σ = {γ(1), α(0)}. We consider the (Σ,ASRN)-wta A =
({q}, δ, F ) with δ0(ε, α, q) = Fq = 0 and δ1(q, γ, q) = 1. Clearly, A is deter-
ministic and not crisp-deterministic (because 1 is not one of the unit elements
of ASRN). Moreover, [[A]](γn(α)) = n for each n ∈ N. Hence, im([[A]]) is
infinite.

Next we recall three results which we will need in this paper. The first result
is a straightforward generalization of [BMŠ+06, Lm. 3] from semirings to strong
bimonoids, cf. also [FV09, Thm. 3.9].

Lemma 3.3. Let B and C be strong bimonoids, A be (Σ, B)-wta, and h : B →
C a strong bimonoid homomorphism. We can construct a (Σ, C)-wta h(A) such
that [[h(A)]] = h ◦ [[A]].

Proof. Let A = (Q, δ, F ) be a (Σ, B)-wta. We introduce the (Σ, C)-wta h(A) =
(Q, δ′, F ′) by defining δ′ = (δ′k | k ∈ N) with δ′k = h ◦ δk for each k ∈ N and
F ′ = h ◦ F . Then it is easy to show that [[h(A)]] = h ◦ [[A]].

The second result characterizes the class of weighted tree languages which
can be run-recognized by crisp-deterministic wta.

Lemma 3.4. cf. [FKV21, Lm. 5.3] Let A be a (Σ, B)-wta. Then the following
statements are equivalent.
(i) There exists a crisp-deterministic (Σ, B)-wta B such that [[A]] = [[B]].
(ii) [[A]] is a (Σ, B)-recognizable step mapping.
(iii) A has the finite-image property and the preimage property.

We remark that if B = (Q, δ, F ) is a crisp-deterministic (Σ, B)-wta, then for
each b ∈ B we can construct effectively a finite-state Σ-tree automaton which
recognizes [[B]]−1(b). Indeed, if b 6∈ im(F ), then [[B]]−1(b) = ∅. Therefore let
now b ∈ im(F ). From B we immediately obtain a crisp-deterministic (Σ,B)-wta
Bb with the same state set and same transitions with non-zero weight such that
the states of Bb have final weight 1 ∈ B iff they have final weight b in B. Then
Bb recognizes the tree language [[B]]−1(b). This proves our remark.

The third result shows that each (Σ, B)-wta is crisp-determinizable if B is
bi-locally finite. Formally, a (Σ, B)-wta A is crisp-determinizable (with respect
to the run semantics) if there exists a crisp-deterministic (Σ, B)-wta C such
that [[A]] = [[C]]. Thus, A is crisp-determinizable if A satisfies the conditions of
Lemma 3.4.
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A: ρσ q1

γ q2 β q4

α q3

S ⇒l q1

⇒l σ(q2, q4)

⇒l σ
(
γ(q3), q4

)

⇒l σ
(
γ(α), q4

)

⇒l σ
(
γ(α), β

)

G(A) :

Figure 1: A run ρ ∈ RA(q1, ξ), where Fq1 6= 0 and ξ = σ(γ(α), β) and the
leftmost derivation of G(A) for ξ which corresponds to ρ.

Lemma 3.5. [FKV21, Cor. 7.5] Let A be a (Σ, B)-wta. If B is bi-locally finite,
then A is crisp-determinizable.

In the rest of this paper, we let A = (Q, δ, F ) be an arbitrary (Σ, B)-
wta.

4 Trim wta

In this section we define the concept of trim wta. Moreover, we show that, for
each wta which satisfies certain simple properties, an equivalent trim wta can be
constructed effectively. For this, to each (Σ, B)-wta A, we associate a context-
free grammar G(A) and show that A is trim if and only if G(A) is reduced.
Then we exploit the fact that for each context-free grammar one can construct
effectively an equivalent reduced context-free grammar [Har78, Thm. 3.2.3].

A state p ∈ Q is useful (in A) if there exist ξ ∈ TΣ and ρ ∈ RA(ξ) such that
Fρ(ε) 6= 0 and p ∈ im(ρ). The (Σ, B)-wta A is trim if each of its states is useful.

Let G = (N,∆, P, S) be a context-free grammar [Har78, HMU07], with
nonterminal setN , terminal set ∆, set P of rules, and initial nonterminal S ∈ N .
We denote by L(G) the language generated by G. A nonterminal A ∈ N is useful
(in G) if there exist α, β ∈ (N ∪∆)∗ and w ∈ ∆∗ such that S ⇒∗ αAβ ⇒∗ w.
Then G is reduced if each of its nonterminals is useful [Har78, p. 78].

To each (Σ, B)-wta A, we associate the context-free grammar G(A) =
(N,∆, P, S) where S is a new symbol, N = Q∪ {S}, ∆ = Σ ∪ Ξ and Ξ consists
of the two parentheses ( and ) and the comma, and P is defined as follows:

• for each q ∈ Q, if Fq 6= 0, then S → q is in P and
• for every k ∈ N, σ ∈ Σ(k), q1, . . . , qk, q ∈ Q: if δk(q1 · · · qk, σ, q) 6= 0, then
q → σ(q1, . . . , qk) is in P .

Then it can be shown that, for each ξ ∈ TΣ, there exists a bijection between
the set of runs ρ ∈ RA(ξ) with Fρ(ε) 6= 0 and the set of leftmost derivations of
G(A) for ξ, cf. Figure 1. Hence a state p ∈ Q is useful in A if and only if it is
useful in G(A). This implies that A is trim if and only if G(A) is reduced.

We say that the strong bimonoid B has an effective test for 0 if for each
b ∈ B we can decide whether b = 0.
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Theorem 4.1. [DFKV20, Lm. 5] Let B have an effective test for 0 and A
be a (Σ, B)-wta. If A is given effectively and has a useful state, then we can
construct effectively a (Σ, B)-wta A′ such that A′ is trim and [[A′]] = [[A]]. If A
is finitely ambiguous, then A′ is so.

Proof. Using the effective test for 0, we can construct effectively the context-
free grammar G(A) = (N,∆, P, S) (recall that N = Q ∪ {S}). Due to our
assumption on A we have L(G(A)) 6= ∅. Thus, by [Har78, Thm. 3.2.3], a
context-free grammar G′ = (N ′,∆, P ′, S) can be constructed effectively such
that G′ is reduced and L(G′) = L(G(A)). By the proof of that theorem, we
know that N ′ = Q′ ∪ {S}, where Q′ is the set of all useful nonterminals in Q.
Hence Q′ is the set of all useful states of A. Moreover, Q′ 6= ∅ by our assumption
on A.

Now let A′ = (Q′, δ′, F ′) be the (Σ, B)-wta such that, for each k ∈ N,
δ′k = δk|(Q′)k×Σ(k)×Q′ , and F ′ = F |Q′ . It is obvious that A′ is trim and A′ is
finitely ambiguous if A is so.

Lastly we prove that [[A]] = [[A′]]. Let ξ ∈ TΣ. Obviously, RA′(ξ) ⊆ RA(ξ)
and for each ρ ∈ RA′(ξ) we have wtA′(ξ, ρ) = wtA(ξ, ρ). If ρ ∈ RA(ξ) \RA′(ξ),
then there exist p ∈ im(ρ) such that p is not useful. Then Fρ(ε) = 0 and hence
wtA(ξ, ρ)⊗ Fρ(ε) = 0. Thus we can compute

[[A]](ξ) =
⊕

ρ∈RA(ξ)

wtA(ξ, ρ)⊗ Fρ(ε) =
⊕

ρ∈RA′ (ξ)

wtA′(ξ, ρ)⊗ F ′
ρ(ε) = [[A′]](ξ).

5 Pumping lemma

In this section, we wish to prove a pumping lemma for runs of weighted tree
automata. Pumping lemmas are used in order to achieve structural implications
on small or particular large trees (cf. [GS84, Lm. 2.10.1] and [Bor04, Lm. 5.5]).
Essentially, we follow the classical approach for unweighted tree automata com-
bined with an analysis of Equality (1). Assume we are given a wta A with state
set Q, a tree ξ ∈ TΣ with height greater than |Q| and a run κ of A on ξ. As
for unweighted tree automata, choose a path, i.e., a linearly ordered subset of
positions, in ξ whose length equals height(ξ). Clearly, there are two positions
u, v in this path with κ(u) = κ(v) in Q; say, u is above v, i.e., there exists
w ∈ N

∗
+ such that v = uw (cf. Figure 2). Now we consider the subtrees ξ|u

(respectively, ξ|v) comprising all positions of ξ which are equal to or below u
(respectively, v). Clearly, we can cut out the context (ξ|u)|w, thus replacing the
subtree ξ|u by ξ|v and obtaining a smaller tree for which a restriction of the run
κ leads to the same state as κ. But, we can also substitute a copy of the context
(ξ|u)|w at position v. We obtain a tree ξ′, and we can copy the corresponding
part of the mapping κ to obtain a run κ′ on ξ′ leading again to the same final
state as κ.
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ξ

ξ|u

ξ|v

u

v = uw

Figure 2: Illustration of the tree ξ, the positions u and v, and the subtrees ξ|u
and ξ|v. Moreover, the context (ξ|u)|w is shaded.

Now when we calculate the weight of κ′ on ξ′ according to Equality (1), a
careful analysis shows that after an insertion process two factors of the product
of weights originating from transitions at positions of the context (ξ|u)|

w get
repeated. Hence, if we repeat the insertion process, then the two factors are
replaced by their powers.

To make this outline formally exact, we show that the product of weights
of the run κ on the context (ξ|u)|w splits into two factors, a ’left one’ and
’right one’ (see Observation 5.1). This product of weights with the insertion
process performed once is analyzed in Lemma 5.2; it turns out that splitting
described before leads to an additional ’left factor’ and an additional ’right
factor’. The consequence of the cutting respectively replacing process in general
for the product of weights is described in Lemma 5.3; the multiple insertion
process leads to an additional ’left power’ and an additional ’right power’. The
whole pumping lemma is given in Theorem 5.4.

The question may arise why we present another pumping lemma and do
not use an existing one (cf. [Bor04, Lm. 5.5]). To answer this we note that
Borchardt’s setting deals with deterministic wta over semirings and employs
initial algebra semantics, whereas in Theorem 5.4 we deal with (arbitrary) wta
over strong bimonoids and employ run semantics. Nevertheless, if we consider
the class of all deterministic wta over semirings, then the two settings coincide.

Now we introduce some notations.
Let c ∈ CΣ, ζ ∈ TΣ, {v} = pos�(c), q

′, q ∈ Q, ρ ∈ RA(q
′, c, q), and θ ∈

RA(q, ζ). The combination of ρ and θ, denoted by ρ[θ], is the mapping ρ[θ] :
pos(c[ζ]) → Q defined for every u ∈ pos(c[ζ]) as follows: if u = vw for some
w, then we define ρ[θ](u) = θ(w), otherwise we define ρ[θ](u) = ρ(u). Clearly,
ρ[θ] ∈ RA(q

′, c[ζ]). For every ξ ∈ TΣ, ρ ∈ RA(ξ), and v ∈ pos(ξ), we define the
run ρ|v on the context ξ|v such that for every w ∈ pos(ξ|v) we set ρ|v(w) = ρ(w).
If ρ ∈ RA(�) with ρ(ε) = q for some q ∈ Q, then sometimes we write q̃ for ρ.

Let c ∈ CΣ, {v} = pos�(c), and ρ ∈ RA(c). We define two mappings
lc,ρ : prefix(v) → B and rc,ρ : prefix(v) → B inductively on the length of their
arguments (cf. [Bor04, p. 526] for deterministic wta). Intuitively, the product
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(1), which yields the element wt(c, ρ) ∈ B, can be split into a left subproduct
lc,ρ(ε) and a right subproduct rc,ρ(ε), where the border is given by the factor
1 coming from the weight of �. Figure 3 shows the illustration of mappings
lc,ρ and rc,ρ. Formally, let w ∈ prefix(v). Then, assuming that c(w) = σ and
rk(σ) = k, we let

lc,ρ(w) =

{
1 if w = v⊗i−1

j=1 wt(c|wj , ρ|wj)⊗ lc,ρ(wi) if wi ∈ prefix(v) for some i ∈ N+

rc,ρ(w) =





1 if w = v

rc,ρ(wi)⊗
⊗k

j=i+1 wt(c|wj , ρ|wj)⊗ δk(ρ(w1) · · · ρ(wk), σ, ρ(w))

if wi ∈ prefix(v) for some i ∈ N+ .

In the sequel, we abbreviate lc,ρ(ε) and rc,ρ(ε) by lc,ρ and rc,ρ, respectively.

Observation 5.1. Let c ∈ CΣ and ρ ∈ RA(c). Then wt(c, ρ) = lc,ρ ⊗ rc,ρ.

The next lemma can be proved by an easy and straightforward induction
on c.

Lemma 5.2. (cf. [Bor04, Lm. 5.1]) Let c ∈ CΣ, ζ ∈ TΣ, q′, q ∈ Q, ρ ∈
RA(q

′, c, q), and θ ∈ RA(q, ζ). Then wt(c[ζ], ρ[θ]) = lc,ρ ⊗ wt(ζ, θ) ⊗ rc,ρ.

Let c ∈ CΣ, q ∈ Q, and ρ ∈ RA(q, c, q) be a loop. For each n ∈ N, the
nth power of ρ, denoted by ρn, is the run on cn defined by induction as follows:
ρ0 = q̃ (note that c0 = �) and ρn+1 = ρ[ρn]. Next we apply the previous results
to the weights of powers of loops.

Lemma 5.3. (cf. [Bor04, Lm. 5.3]) Let c′, c ∈ CΣ and ζ ∈ TΣ, q′, q ∈ Q,
ρ′ ∈ RA(q

′, c′, q), ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ). Then, for each n ∈ N,

wt(c′
[
cn[ζ]

]
, ρ′

[
ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)

n ⊗ wt(ζ, θ) ⊗ (rc,ρ)
n ⊗ rc′,ρ′ .

Proof. We can prove easily by induction on n that

wt(cn[ζ], ρn[θ]) = (lc,ρ)
n ⊗ wt(ζ, θ) ⊗ (rc,ρ)

n for each n ∈ N . (2)

Then for each n ∈ N we have

wt(c′
[
cn[ζ]

]
, ρ′

[
ρn[θ]

]
) = lc′,ρ′ ⊗ wt(cn[ζ], ρn[θ])⊗ rc′,ρ′ (by Lemma 5.2)

= lc′,ρ′ ⊗ (lc,ρ)
n ⊗ wt(ζ, θ) ⊗ (rc,ρ)

n ⊗ rc′,ρ′ (by (2))

Finally, we recall from [Bor04] the pumping lemma for runs of A on trees in
TΣ which are large enough. We note that B need not be commutative.
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wt(c|w1, ρ|w1)

c|w1

⊗ . . .⊗ wt(c|w(i−1), ρ|w(i−1))

c|w(i−1)

⊗ lc,ρ(wi)

c|wi

v
�

⊗rc,ρ(wi) wt(c|w(i+1), ρ|w(i+1))

c|w(i+1)

⊗ . . .⊗ wt(c|wk, ρ|wk)

c|wk

⊗

σlc,ρ(w) rc,ρ(w)

1 i− 1 i i+ 1 k

· · · · · ·

δk(ρ(w1) · · · ρ(wk), σ, ρ(w))

w
c ∈ CΣ ρ ∈ RA(c)

Figure 3: Illustration of mappings lc,ρ and rc,ρ

1
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Theorem 5.4. (pumping lemma, cf. [Bor04, Lm. 5.5]) Let ξ ∈ TΣ, q
′ ∈ Q,

κ ∈ RA(q
′, ξ). If height(ξ) ≥ |Q|, then there exist c′, c ∈ CΣ, ζ ∈ TΣ, q ∈ Q,

ρ′ ∈ RA(q
′, c′, q), ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ) such that ξ = c′

[
c[ζ]

]
,

κ = ρ′
[
ρ[θ]

]
, height(c) > 0, height

(
c[ζ]

)
< |Q|, and, for each n ∈ N,

wt(c′
[
cn[ζ]

]
, ρ′

[
ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)

n ⊗ wt(ζ, θ)⊗ (rc,ρ)
n ⊗ rc′,ρ′ .

Proof. Since height(ξ) ≥ |Q| there exist u,w ∈ N
∗
+ such that uw ∈ pos(ξ),

|w| > 0, height(ξ|u) < |Q|, and κ(u) = κ(uw). Then we let c′ = ξ|u, c = (ξ|u)|w,
ζ = ξ|uw. Clearly, ξ = c′

[
c[ζ]

]
. Moreover, we set ρ′ = κ|u, ρ = (κ|u)|w and

θ = κ|uw. Then the statement follows from Lemma 5.3.

We say that small loops of A have weight 1 if, for every q ∈ Q, c ∈ CΣ, and
loop ρ ∈ RA(q, c, q), if height(c) < |Q|, then wt(c, ρ) = 1.

Lemma 5.5. Let B be commutative or one-product free. If small loops of A
have weight 1, then, for every ξ ∈ TΣ, q

′ ∈ Q, and κ ∈ RA(q
′, ξ), there exist

ξ′ ∈ TΣ and κ′ ∈ RA(q
′, ξ′) such that height(ξ′) < |Q| and wt(ξ, κ) = wt(ξ′, κ′).

Proof. Let ξ ∈ TΣ, q
′ ∈ Q, and κ ∈ RA(q

′, ξ). We may assume that height(ξ) ≥
|Q|. Applying Theorem 5.4 (for n = 1 and n = 0), there exist c, c′ ∈ CΣ,
ζ ∈ TΣ, q ∈ Q, ρ′ ∈ RA(q

′, c′, q), ρ ∈ RA(q, c, q), and θ ∈ RA(q, ζ) such that
ξ = c′

[
c[ζ]

]
, κ = ρ′

[
ρ[θ]

]
, height(c) > 0, height

(
c[ζ]

)
< |Q|, and

wt(ξ, κ) =wt(c′
[
c[ζ]

]
, ρ′

[
ρ[θ]

]
) = lc′,ρ′ ⊗ lc,ρ ⊗ wt(ζ, θ)⊗ rc,ρ ⊗ rc′,ρ′ ,

wt(c′[ζ], ρ′[θ]) = lc′,ρ′ ⊗ wt(ζ, θ) ⊗ rc′,ρ′ .

By our assumption wt(c, ρ) = 1, and by Observation 5.1 we have wt(c, ρ) =
lc,ρ ⊗ rc,ρ. If B is commutative, then wt(ξ, κ) = wt(c′[ζ], ρ′[θ]) ⊗ lc,ρ ⊗ rc,ρ.
If B is one-product free, then lc,ρ = rc,ρ = 1. Hence in both cases we have
wt(ξ, κ) = wt(c′[ζ], ρ′[θ]).

Note that ρ′[θ] ∈ RA(q
′, c′[ζ]) and size(c′[ζ]) < size(ξ). If height(c′[ζ]) < |Q|,

then we are ready. Otherwise we continue with c′[ζ], q′, and ρ′[θ] as before. After
finitely many steps, we obtain ξ′ ∈ TΣ and κ′ ∈ RA(q

′, ξ′) with height(ξ′) < |Q|
as required.

6 The preimage property and a sufficient condi-

tion for a wta to be crisp-determinizable

An important result for recognizable weighted string languages r over the se-
miring N is that, for each n ∈ N, the string language r−1(n) is recognizable
(preimage property, [BR88, III. Cor. 2.5]). In this section we show some vari-
ants of the preimage property. Then, as a main result of this section, we give
a sufficient condition for a wta A over an arbitrary strong bimonoid B which
guarantees that [[A]] is a recognizable step mapping (cf. Theorem 6.6) and thus,
in particular, [[A]] satisfies the preimage property and A is crisp-determinizable

17



by Lemma 3.4. We also show that if the strong bimonoid is computable and
A is given effectively, then the crisp-deterministic wta equivalent to A can be
constructed effectively. Finally, as an application of Theorem 6.6, we extend
the mentioned preimage property [BR88, III. Cor. 2.5] to wta over past-finite
monotonic strong bimonoids (cf. Theorem 6.10).

We say that (B,⊕,⊗, 0, 1) is computable if B is a recursively enumerable set
with tests for equality and the operations ⊕ and ⊗ are computable (e.g., by a
Turing machine).

Subsequently, we will need the following concepts. We define the sets

H(A) = {wt(ξ, ρ) | ξ ∈ TΣ and ρ ∈ RA(ξ)} and

C(A) = {wt(ξ, ρ)⊗ Fρ(ε) | ξ ∈ TΣ, ρ ∈ RA(ξ)} .

We call elements of C(A) complete run weights of A. Observe that if H(A) is a
finite set, then C(A) is also finite because C(A) ⊆ H(A)⊗ im(F ). The following
notions will be needed for our main result of this section.

Let b ∈ B. If b has finite additive order, then there exists a least number
i ∈ N+ such that ib = (i+ k)b for some k ∈ N+, and there exists a least number
p ∈ N+ such that ib = (i + p)b. We call i the index (of b) and p the period (of
b), and denote them by i(b) and p(b), respectively. Moreover, we call i+ p− 1,
i.e., the number of elements of 〈b〉⊕, the order of b.

Then for each b ∈ C(A), we define the mapping fA,b : TΣ → N, called the
complete run number mapping of b, by

fA,b(ξ) = |{ρ ∈ RA(ξ) | wt(ξ, ρ)⊗ Fρ(ε) = b}|

for each ξ ∈ TΣ. The mapping fA,b is bounded, if there exists K ∈ N such that
fA,b(ξ) ≤ K for each ξ ∈ TΣ. Clearly, if A is finitely ambiguous, then there

exists K ∈ N such that, for each ξ ∈ TΣ, we have |RF 6=0

A (ξ)| ≤ K, and thus,
fA,b is bounded by K for each b ∈ C(A) \ {0}.

Theorem 6.1. Let A = (Q, δ, F ) be a (Σ, B)-wta such that H(A) is finite. If,
for each b ∈ C(A), the mapping fA,b is bounded or b has finite additive order,
then [[A]] has the finite-image property.

Proof. We note that C(A) is finite because H(A) is finite. Then for each ξ ∈ TΣ,
we have

[[A]](ξ) =
⊕

b∈C(A)

(
fA,b(ξ)

)
b . (3)

Let b ∈ C(A). If the mapping fA,b is bounded by K for some K ∈ N, then(
fA,b(ξ)

)
b ∈ {jb | j ∈ [0,K]}. Otherwise b has finite additive order. Thus we

have
(
fA,b(ξ)

)
b ∈ {0, b, 2b, . . . , (i(b) + p(b)− 1)b}.

Next, we wish to show that under the assumptions of Theorem 6.1, A also
has the preimage property. For the main result of this section, we will need the
following preparation.
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Lemma 6.2. Let B be a finite semiring and A be a (Σ, B)-wta. Then the
following statements hold.

1. A has the preimage property.
2. If B is computable and A is given effectively, then, for each b ∈ B, we

can construct effectively a finite-state Σ-tree automaton which recognizes
[[A]]−1(b).

Proof. If, in addition, B is commutative, then Statement 1 immediately follows
from [DV06, Lm. 6.1] and Statement 2 is also clear by the proof of that lemma.
However, we can drop the condition that B is commutative because of the
following. In [DV06], for each ξ ∈ TΣ, the weight of a run ρ ∈ RA(ξ) is
defined as the product of the weight of the transitions determined by the run:
wt(ξ, ρ) =

⊗
w∈pos(ξ) δk(ρ(w1) · · · ρ(wk), ξ(w), ρ(w)), where ξ(w) ∈ Σ(k) and the

factors are multiplied in an arbitrary order. However, in the proof of [DV06,
Lm. 6.1], we observe that the order of the factors in such products does not
change. Hence that proof is also valid for an arbitrary, fixed order of elements
in the products. In particular, it is valid for the depth-first left-to-right order
with which we have defined wt(ξ, ρ) (cf. (1)). Hence the proof of [DV06, Lm. 6.1]
is also valid for our setting.

Lemma 6.3. Let A be a (Σ,N)-wta. Then the following statements hold.
1. A has the preimage property.
2. If A is given effectively, then, for each n ∈ N, we can construct effectively

a finite-state Σ-tree automaton which recognizes [[A]]−1(n).

Proof. Statement 1 was proved in [DV06, Lm. 6.3(2)]. Now we prove State-
ment 2. It was stated already in [DV06], but we include the proof for the sake
of completeness. Let n ∈ N and M = {k ∈ N | n < k}. Moreover, let ∼ be the
equivalence relation on the set N defined such that its classes are the singleton
sets {k} for each k ∈ [0, n] and the set M . As is well known, ∼ is a congruence,
which can be seen as follows. Let k, k′ ∈ M and m ∈ N. Obviously, k ≤ k +m,
and hence k + m ∈ M and similarly k′ + m ∈ M . Moreover, if m 6= 0, then
we have k · m ∈ M and k′ · m ∈ M . Thus M is a congruence class and the
relation ∼ is a congruence on N. Then the quotient semiring N/∼ is finite. Let
h : N → N/∼ be the canonical semiring homomorphism. Clearly, we can give
effectively the congruence classes of ∼, i.e., the elements of N/∼, by choosing
only one representative for each congruence class. Due to this fact and that N is
computable, the semiring N/∼ is computable. By Lemma 3.3, we can construct
effectively the (Σ,N/∼)-wta h(A) such that [[h(A)]] = h ◦ [[A]]. Since N/∼ is
finite and computable, by Lemma 6.2(2), we can construct effectively a finite-
state Σ-tree automaton which recognizes (h ◦ [[A]])−1({n}) = [[A]]−1(n).

For every m ∈ N and n ∈ N+, we define m+ n ·N = {m+n · j | j ∈ N}. Let
us denote by N/nN the semiring of nonnegative integers modulo n. Moreover,
for m ∈ N, we let m = m+ nN, the residue class of m modulo n.

Lemma 6.4. (cf. [BR88, III. Cor. 2.4]) Let A be a (Σ,N)-wta. Then the
following statements hold.
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1. For every m ∈ N and n ∈ N+, the Σ-tree language [[A]]−1(m + n · N) is
recognizable.

2. If A is given effectively, then, for every m ∈ N and n ∈ N+, we can
construct effectively a finite-state Σ-tree automaton which recognizes
[[A]]−1(m+ n · N).

Proof. Let us abbreviate [[A]] by r.
Proof of 1: Let m ∈ N. If m < n, then, by Lemma 3.3, (h ◦ r) ∈

Rec(Σ,N/nN), where h : N → N/nN is the canonical semiring homomorphism.
Moreover, r−1(m+n ·N) = r−1

(
h−1(m)

)
= (h◦r)−1(m). Since N/nN is a finite

semiring, by Lemma 6.2(1), the Σ-tree language (h ◦ r)−1(m) is recognizable.
Now assume that m ≥ n. Then there exist m′ ∈ [0, n− 1] and k ∈ N+ such that
m = m′ + n · k. Then

r−1(m+ n · N) = r−1(m′ + n · N) \
k−1⋃

j=0

r−1(m′ + n · j) .

As we saw, the Σ-tree language r−1(m′ + n · N) is recognizable because m′ <
n. Moreover, by Lemma 6.3(1), for each j ∈ [0, k − 1], the Σ-tree language
r−1(m′ + n · j) is also recognizable. Finally, Σ-tree languages are closed under
union and subtraction. Thus, also in this case, r−1(m+ n · N) is recognizable.

Proof of 2: We follow the proof of Statement 1. Let m ∈ N. Assume that
m < n. Obviously, we can give effectively the residue classes modulo n, i.e., the
elements of N/nN, by choosing only one representative for each residue class.
Because of this fact and that N is computable, the semiring N/nN is also com-
putable. Since A is given effectively, by Lemma 3.3, we can construct effectively
the (Σ,N/nN)-wta h(A) such that [[h(A)]] = h ◦ r. Since N/nN is a computable
finite semiring, by Lemma 6.2(2), we can construct effectively a finite-state Σ-
tree automaton which recognizes (h◦r)−1(m) = r−1(m+n·N). Now assume that
m ≥ n. Since m′ < n, by the above, we can construct effectively a finite-state
Σ-tree automaton which recognizes r−1(m′+n·N). Moreover, by Lemma 6.3(2),
for each j ∈ [0, k − 1], we can also construct effectively a finite-state Σ-tree au-
tomaton which recognizes r−1(m′ + n · j). Lastly, Σ-tree languages are closed
effectively under union and subtraction, and thus, we can construct effectively
a finite-state Σ-tree automaton which recognizes r−1(m+ n · N).

Lemma 6.5. Let B be computable. If a (Σ, B)-wta A = (Q, δ, F ) is given
effectively and H(A) is finite, then we can compute the sets H(A) and C(A).

Proof. First we prove that the set H(A) can be computed. For every i ∈ N and
q ∈ Q let

Hi,q = {wt(ξ, ρ) | ξ ∈ TΣ, height(ξ) ≤ i, ρ ∈ RA(q, ξ)} .

Clearly, we have H0,q ⊆ H1,q ⊆ . . . ⊆ H(A) for each q ∈ Q. We claim that, for
each i ∈ N,

if ∀q ∈ Q: Hi,q = Hi+1,q, then ∀q ∈ Q: Hi+1,q = Hi+2,q.
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To show this, let i ∈ N, q ∈ Q, and b ∈ Hi+2,q. There exist ξ ∈ TΣ and
ρ ∈ RA(q, ξ) such that height(ξ) ≤ i + 2 and wt(ξ, ρ) = b. We may assume
that height(ξ) = i+ 2. Hence ξ = σ(ξ1, . . . , ξk) such that height(ξj) ≤ i+ 1 for
each j ∈ [k]. Clearly, for each j ∈ [k], we have wt(ξj , ρ|j) ∈ Hi+1,ρ(j), so by our

assumption there exist ζj ∈ TΣ with height(ζj) ≤ i and run θj ∈ RA

(
ρ(j), ζj

)

such that wt(ξj , ρ|j) = wt(ζj , θj).
Now let ζ = σ(ζ1, . . . , ζk). Obviously, height(ζ) ≤ i + 1. Moreover, let

θ ∈ RA(q, ζ) such that θ|j = θj for each j ∈ [k]. Clearly, wt(ζ, θ) ∈ Hi+1,q, and
we calculate

wt(ζ, θ) =
( k⊗

j=1

wt(ζj , θ|j)
)
⊗ δk

(
θ(1) · · · θ(j), σ, q

)

=
( k⊗

j=1

wt(ξj , ρ|j)
)
⊗ δk

(
ρ(1) · · · ρ(j), σ, q

)
= wt(ξ, ρ) = b .

This shows that b ∈ Hi+1,q, proving our claim.
We recall that H0,q ⊆ H1,q ⊆ . . . ⊆ H(A) for each q ∈ Q. Since B is

computable, we can compute Hi,q for every i ∈ N and q ∈ Q. Then, since H(A)
is finite, by computing H0,q for each q ∈ Q, H1,q for each q ∈ Q, and so on, we
can find the least number im ∈ N such that Him,q = Him+1,q for each q ∈ Q and
thus by the implication shown above Him,q = Hj,q for every q ∈ Q and j ∈ N

with j ≥ im. We show that H(A) =
⋃

q∈Q Him,q. For this, let b ∈ H(A), i.e.,
b = wt(ξ, ρ) for some ξ ∈ TΣ with height(ξ) = j, q ∈ Q and ρ ∈ RA(q, ξ). Then
b ∈ Hj,q = Him,q. The other inclusion is obvious. Since we can compute the set⋃

q∈Q Him,q, the set H(A) can be computed.
Now we prove that the set C(A) can be computed. Let im be the number

as before. It suffices to show that

C(A) = {wt(ξ, ρ)⊗ Fρ(ε) | ξ ∈ TΣ, height(ξ) ≤ im, ρ ∈ RA(ξ)} ,

because we can compute the set on the right-hand side of the above equality.
Let us denote this set by C. It is obvious that C ⊆ C(A). For the proof of the
other inclusion, let b ∈ C(A), i.e., b = wt(ξ, ρ)⊗Fq for some ξ ∈ TΣ, q ∈ Q, and
ρ ∈ RA(q, ξ). Since wt(ξ, ρ) ∈ H(A), by the proof of computing the set H(A),
we have wt(ξ, ρ) ∈ Him,q, i.e., there exist ξ′ ∈ TΣ with height(ξ′) ≤ im, and
ρ′ ∈ RA(q, ξ

′) such that wt(ξ, ρ) = wt(ξ′, ρ′). Hence b ∈ C.

Next we present the main result of this section. It gives a structural condi-
tion on a (Σ, B)-wta A, for arbitrary strong bimonoid B, which is sufficient to
imply that A has the finite-image property. Our result generalizes [DGMM11,
Thm. 6.2(a)] and [DSV10, Thm. 11] from bi-locally finite strong bimonoids to
arbitrary strong bimonoids, in case of [DSV10, Thm. 11] even from strings to
trees.

Theorem 6.6. Let A = (Q, δ, F ) be a (Σ, B)-wta such that H(A) is finite. If,
for each b ∈ C(A), the mapping fA,b is bounded or b has finite additive order,
then the following statements hold.
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1. A has the finite-image property and the preimage property.
2. If B is computable and A is given effectively, then we can construct effec-

tively a crisp-deterministic (Σ, B)-wta B such that [[B]] = [[A]].

Proof. Proof of 1: We note that C(A) is finite because H(A) is finite. For each
b ∈ C(A) we define the (Σ,N)-wta A′

b = (Q′, δ′, F ′
b) as follows: Q

′ = Q ×H(A)
and for every k ∈ N, σ ∈ Σ(k) and (q1, y1), . . . , (qk, yk), (q, y) ∈ Q′, let

δ′k
(
(q1, y1) · · · (qk, yk), σ, (q, y)

)
=

{
1 if

(⊗k
i=1 yi

)
⊗ δk(q1 · · · qk, σ, q) = y

0 otherwise,

and let

(F ′
b)(q,y) =

{
1 if y ⊗ Fq = b

0 otherwise.

Let ξ ∈ TΣ and b ∈ C(A). We observe that there exists a bijection between the
two sets

{ρ ∈ RA(ξ) | wtA(ξ, ρ)⊗Fρ(ε) = b} and {ρ′ ∈ RA′
b
(ξ)

)
| wtA′

b
(ξ, ρ′)·(F ′

b)ρ′(ε) = 1}.

It follows that [[A′
b]](ξ) = fA,b(ξ), and thus, by Equality (3), we have

[[A]](ξ) =
⊕

b∈C(A)

(
[[A′

b]](ξ)
)
b.

Let us define the mapping rb : TΣ → B by rb(ξ) =
(
[[A′

b]](ξ)
)
b for each ξ ∈ TΣ.

Then [[A]] =
⊕

b∈C(A) rb and it suffices to show that rb is a recognizable step

mapping for each b ∈ C(A) because, obviously, recognizable step mappings are
closed under the operation ⊕.

To prove this latter, let b ∈ C(A). We distinguish the following two cases.
Case 1: The mapping fA,b is bounded, i.e., there exists K ∈ N such that

fA,b(ξ) ≤ K for each ξ ∈ TΣ. Clearly, im(rb) ⊆ {jb | j ∈ [0,K]}. For each
j ∈ [0,K], let Lb,j = [[A′

b]]
−1(j). By Lemma 6.3(1), Lb,j is a recognizable Σ-

tree language. By our assumption, we have
⋃

j∈[0,K] Lb,j = TΣ. Hence rb =⊕
j∈[0,K](jb)⊗ 1(B,Lb,j), i.e., it is a recognizable step mapping.

Case 2: b has finite additive order. Then we have 〈b〉⊕ = {0, b, 2b, . . . , (i(b)+
p(b)− 1)b}. So

(∀n ∈ N)(∃ exactly one j ∈ [0, i(b) + p(b)− 1]) : nb = jb.

Now let Lb,j = {ξ ∈ TΣ |
(
[[A′

b]](ξ)
)
b = jb } for each j ∈ [0, i(b) + p(b) − 1].

Observe that L0,0 = TΣ. We claim that Lb,j is recognizable. We have

• Lb,j = [[A′
b]]

−1(j) if 0 ≤ j < i(b), and

• Lb,j = [[A′
b]]

−1(j + p(b) · N) if i(b) ≤ j ≤ i(b) + p(b)− 1.
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Then Lb,j is recognizable in both cases, by Lemmas 6.3(1) and 6.4(1), respec-
tively.

Let ξ ∈ TΣ. By the above, there exists a unique number j ∈ [0, i(b)+p(b)−1]
such that rb(ξ) =

(
[[A′

b]](ξ)
)
b = jb, and so ξ ∈ Lb,j.

Hence,

rb =
⊕

0≤j≤i(b)+p(b)−1

(jb)⊗ 1(B,Lb,j).

i.e., it is a recognizable step mapping.
Proof of 2: By Lemma 6.5, we can compute the set H(A), and thus the set

C(A). Moreover, for each b ∈ C(A), we can construct effectively the (Σ,N)-
wta A′

b.
Next we decide, for each b ∈ C(A), whether the mapping fA,b is bounded

or b has finite additive order. Note that one of these conditions holds by our
assumption.

For this, we run the following two algorithms in parallel for i = 0, 1, 2, . . .. In
the first algorithm, we construct effectively the finite Σ-tree automaton which
recognizes the Σ-tree language Lb,i = [[A′

b]]
−1(i) (cf. Lemma 6.3(2)) and check

whether
⋃

j∈[0,i] Lb,j = TΣ (cf. [GS84, Thm. 2.10.3]). If this is the case, then it
means that fA,b is bounded by i. We let Kb = i and stop.

In the second algorithm, we compute the sum ib and check whether ib = jb
for some j < i. If this is the case, then 〈b〉⊕ = {0, b, 2b, . . . , (i − 1)b} is a finite
set. We let Kb = i− 1 and stop.

By our note above, the decision algorithm will stop for some i ∈ N.
If the first algorithm stops, then we can describe rb as in Case 1 of Statement

1. If the second algorithm stops, then we can compute i(b) and p(b) and can
describe rb as in Case 2 of Statement 1. By Lemmas 6.3(2) and 6.4(2), we can
construct effectively a finite Σ-tree automaton which recognizes Lb,j . If both
algorithms stop, then we can proceed in either way.

Now we have

[[A]] =
⊕

b∈C(A)

⊕

0≤j≤Kb

(jb)⊗ 1(B,Lb,j) .

By applying the direct product construction in the proof of (iv)⇒ (i) of [FKV21,
Lm. 5.3] we can construct effectively the crisp-deterministic (Σ, B)-wta B such
that [[B]] = [[A]].

Now we can give a simple condition on the strong bimonoid B and a struc-
tural condition on the wta A ensuring that A has the finite image property and
the preimage property.

Corollary 6.7. Let B be commutative or one-product free and let small loops
of A have weight 1.

1. Then H(A) is finite.
2. If, in addition, for each b ∈ C(A), the mapping fA,b is bounded or b

has finite additive order, then A has the finite-image property and the
preimage property.
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Proof. First we prove Statement 1. If small loops of A have weight 1, then by
Lemma 5.5 we have

H(A) = {wt(ξ, ρ) | ξ ∈ TΣ, height(ξ) < |Q| and ρ ∈ RA(ξ)} .

Hence H(A) is finite. Then Statement 2 follows from Theorem 6.6(1).

Next, we compare Theorem 6.6 and [FKV21, Thm. 7.3]. This makes sense
because both results show sufficient conditions for a wta A such that [[A]] is a
recognizable step mapping. Let A = (Q, δ, F ) be a (Σ, B)-wta. Theorem 7.3
of [FKV21] requires that A has finite order property, i.e., (a) the set 〈im(δ)〉⊗
is finite and (b) each element b ∈ 〈im(δ)〉⊗ ⊗ im(F ) has finite additive order.
Condition (a) implies that H(A) is finite. And Condition (b) implies that each
element b ∈ C(A) has finite additive order. Hence Theorem 6.6 is at least as
strong as [FKV21, Thm. 7.3]. The next example shows a scenario in which
Theorem 6.6 is applicable but not [FKV21, Thm. 7.3].

Example 6.8. We consider the ranked alphabet Σ = {γ(1), ν(1), α(0)} and the
arctic semiring ASRN = (N−∞,max,+,−∞, 0). Moreover, we let A = (Q, δ, F )
be the trim (Σ,ASRN)-wta where Q = {q1, q2}, δ0(ε, α, q1) = δ1(q1, γ, q1) = 0,
and δ1(q1, ν, q2) = 1; and F (q1) = F (q2) = 0.

Since 〈im(δ)〉+ = 〈{0, 1}〉+ = N is infinite, we cannot apply [FKV21,
Thm. 7.3]. Moreover, since ASRN is one-product free, small loops of A have
weight 0 and each n ∈ C(A) has finite additive order, by Corollary 6.7(2) we
obtain that [[A]] is a recognizable step mapping.

As a consequence of Theorem 6.6, we can extend Lemma 6.2 from finite
semirings to finite strong bimonoids.

Corollary 6.9. Let B be finite and A be a (Σ, B)-wta. Then the following
statements hold.

1. A has the preimage property.
2. If B is computable and A is given effectively, then, for each b ∈ B, we

can construct effectively a finite-state Σ-tree automaton which recognizes
[[A]]−1(b).

Proof. Let A = (Q, δ, F ) and we abbreviate [[A]] by r. Since B is finite, so is
the set H(A). Moreover, b has finite additive order for each b ∈ C(A). Then
Statement 1 follows from Theorem 6.6(1).

Now we prove Statement 2. By Theorem 6.6(2), we can construct effectively
a crisp-deterministic (Σ, B)-wta B = (Q′, δ′, F ′) such that [[B]] = [[A]]. Note that
im([[A]]) ⊆ im(F ′) because B is crisp-deterministic. Then Statement 2 follows
from the remark after Lemma 3.4.

Finally, as an application of Corollary 6.9, we show that for arbitrary past-
finite monotonic strong bimonoid B, every (Σ, B)-wta has the finite-image prop-
erty. This generalizes the preimage property [BR88, III. Cor. 2.5] from strings
to trees and from the semiring N to past-finite monotonic strong bimonoids.
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Theorem 6.10. Let B be past-finite monotonic and A = (Q, δ, F ) be a (Σ, B)-
wta. Then the following statements hold.

1. A has the preimage property.
2. If B is computable, A is given effectively, and b ∈ B such that the set

past(b) is computable, then we can construct effectively a finite-state Σ-
tree automaton which recognizes [[A]]−1(b).

Proof. Proof of 1: Let b ∈ B and put C = B \ past(b) = {a ∈ B | a � b}.
Moreover, let ∼ be the equivalence relation on the set B defined such that its
classes are the singleton sets {a} for each a ∈ past(b) and the set C. We claim
that ∼ is a congruence. To show that C is a congruence class, let c, c′ ∈ C
and d ∈ B. Since B is monotonic, we have c � c ⊕ d, hence c ⊕ d ∈ C and
similarly c′ ⊕ d ∈ C. Also, if d 6= 0, again we obtain c � c ⊗ d and c � d ⊗ c,
showing c⊗d, d⊗c ∈ C and similarly c′⊗d, d⊗c′ ∈ C. Hence C is a congruence
class and the relation ∼ is a congruence on the strong bimonoid B. Then the
quotient strong bimonoid B/∼ is finite. Let h : B → B/∼ be the canonical
strong bimonoid homomorphism. Let us abbreviate [[A]] by r. Then, by Lemma
3.3, (h ◦ r) ∈ Rec(Σ, B/∼). Moreover r−1(b) = (h ◦ r)−1({b}). Since B/∼ is
finite, by Corollary 6.9(1), the Σ-tree language (h ◦ r)−1({b}) is recognizable.

Proof of 2: Let ∼ be the congruence defined as in the proof of Statement
1 and h : B → B/∼ be the canonical strong bimonoid homomorphism. Since
B is computable and also past(b) is computable, we can give effectively the
congruence classes of ∼, i.e., the elements of B/∼, by choosing only one repre-
sentative for each congruence class. By Lemma 3.3, we can construct effectively
the (Σ, B/∼)-wta h(A) such that [[h(A)]] = h ◦ r. Since B/∼ is computable and
finite, and A is given effectively, by Corollary 6.9(2), we can construct effectively
a finite-state Σ-tree automaton which recognizes (h ◦ r)−1({b}).

Corollary 6.11. Let B be past-finite monotonic and A = (Q, δ, F ) be a (Σ, B)-
wta. Then supp([[A]]) is a recognizable Σ-tree language.

Proof. By Theorem 6.10, the Σ-tree language [[A]]−1(0) is recognizable. Since
the class of recognizable Σ-tree languages is closed under complement and
supp([[A]]) = TΣ \ [[A]]−1(0), we obtain the statement of the corollary.

7 Characterization and decidability of the

finite-image property

In most of this section, B will be a past-finite strong bimonoid. Our main results
of this section will describe when a (Σ, B)-wta A has the finite-image property
and when it can decided whether A has the finite-image property. First we
characterize when an arbitrary (Σ, B)-wta A has the finite-image property by
structural properties of the wta A.

Theorem 7.1. Let B be a past-finite monotonic strong bimonoid and A be a
trim (Σ, B)-wta. Then the following statements are equivalent.
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1. A has the finite-image property.
2. Small loops of A have weight 1 and, for each b ∈ C(A), the mapping fA,b

is bounded or b has finite additive order.

Proof. (1) ⇒ (2): First we show that small loops ofA have weight 1. We proceed
by contraposition. Suppose there exist q ∈ Q, c ∈ CΣ, and ρ ∈ RA(q, c, q) such
that height(c) < |Q| and 1 ≺ wt(c, ρ). Since A is trim, the state q is useful and
thus there exist ξ ∈ TΣ, θ ∈ RA(q, ξ) and c′ ∈ CΣ, q

′ ∈ Q with Fq′ 6= 0, and
ρ′ ∈ RA(q

′, c′, q). By Lemma 5.3, for each n ∈ N, we have

wt(c′
[
cn[ξ]

]
, ρ′

[
ρn[θ]

]
) = lc′,ρ′ ⊗ (lc,ρ)

n ⊗ wt(ξ, θ)⊗ (rc,ρ)
n ⊗ rc′,ρ′ .

Since 1 ≺ wt(c, ρ) = lc,ρ ⊗ rc,ρ , we have 1 ≺ lc,ρ or 1 ≺ rc,ρ and thus by
monotonicity we obtain

wt(c′
[
c0[ξ]

]
, ρ′

[
ρ0[θ]

]
) ≺ wt(c′

[
c1[ξ]

]
, ρ′

[
ρ1[θ]

]
) ≺ . . . . (4)

We define a sequence ξ1, ξ2, ξ3, . . . of trees in TΣ such that the elements
[[A]](ξ1), [[A]](ξ2), [[A]](ξ3), . . . are pairwise different as follows. We let ξ1 =
c′
[
c[ξ]

]
. Then P1 = past([[A]](ξ1)) is finite. By (4) we choose n2 such that

wt(c′
[
cn2 [ξ]

]
, ρ′

[
ρn2 [θ]

]
) 6∈ P1 and let ξ2 = c′

[
cn2 [ξ]

]
. Since ρ′

[
ρn2 [θ]

]
∈

RA(q
′, ξ2) and B is monotonic, we have

wt(ξ2, ρ
′
[
ρn2 [θ]

]
) � wt(ξ2, ρ

′
[
ρn2 [θ]

]
)⊗ Fq′ � [[A]](ξ2).

(Note that Fq′ may be 1.) Hence [[A]](ξ2) /∈ P1. Put P2 = past([[A]](ξ2)).
Then we choose n3 ∈ N such that wt(c′

[
cn3 [ξ]

]
, ρ′

[
ρn3 [θ]

]
) 6∈ P1 ∪ P2 and let

ξ3 = c′
[
cn3 [ξ]

]
. As before, we have [[A]](ξ3) /∈ P1 ∪ P2. Continuing this process,

we obtain the desired sequence of trees. It means that A does not have the
finite-image property.

Now let b ∈ C(A). If the mapping fA,b is not bounded, then there exists an
infinite sequence ξ1, ξ2, . . . of trees in TΣ such that fA,b(ξ1) < fA,b(ξ2) < . . .. By
Equality (3), we have

(
fA,b(ξi)

)
b � [[A]](ξi) for each i ∈ N. Thus

(
fA,b(ξi)

)
b ∈

P , where P =
⋃

a∈im([[A]]) past(a). Since im([[A]]) is finite and B is past-finite,

the set P is also finite. Hence
(
fA,b(ξi)

)
b =

(
fA,b(ξj)

)
b for some i, j ∈ N with

i < j, which implies that b has finite additive order.
(2) ⇒ (1): It follows from Corollary 6.7(2).

The following example shows that in Theorem 7.1 even for commutative
semirings we cannot replace the assumption that B is past-finite by being idem-
potent. The wta A given below can actually be considered as a weighted string
automaton (cf. Section 10).

Example 7.2. In this example we give an idempotent and monotonic semiring
B which is not past-finite, and a (Σ, B)-wta A such that A has the finite-image
property.

For this, let B = N+ ∪ N
′
+ ∪ {0, 1} where N

′
+ is an isomorphic copy of N+,

and furthermore, 0 and 1 are new elements such that {0, 1} ∩ (N+ ∪ N
′
+) = ∅.
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Figure 4: The Hasse diagram of the ordering (B,≤B) in Example 7.2.

For each C ∈ {N+,N
′
+} we denote by ≤C the usual linear order of C and +C

the usual binary addition operation on C.
We define a partial ordering ≤B on B such that ≤B extends each of the

linear orders of N+ and N
′
+ (i.e., ≤B ∩(C × C) =≤C for each C ∈ {N+,N

′
+})

and such that 0 <B 1 <B a <B b′ for every a ∈ N+ and b′ ∈ N
′
+. Note that

(B,≤B) is a partial order. Figure 4 shows the Hasse diagram of the ordering
(B,≤B). Moreover, letting ∨ be the usual binary supremum operation, (B,∨)
is a join-semilattice. Note that we have a∨ b′ = b′ for each a ∈ N+ and b′ ∈ N

′
+.

Now we define a commutative multiplication ⊗ on B as follows. For each
C ∈ {N+,N

′
+} we let ⊗|C×C = +C . Furthermore, for every a ∈ N+ and b′ ∈ N

′
+

we let a⊗b′ = a′+N′
+
b′. Finally, let 0⊗b = 0 and 1⊗b = b for each b ∈ B. Then

(B,∨,⊗, 0, 1) is a monotonic strong bimonoid. Clearly, B is not past-finite, e.g.,
past(1′) = ({0, 1} ∪ N+), which is infinite. However, B is idempotent because
it is a join-semilattice. Obviously, B is monotonic.

Let Σ = {γ(1), e(0)}. Next we consider the (Σ, B)-wta A = ({p, q}, δ, F ) with
δ0(ε, e, p) = 1, δ0(ε, e, q) = 1′ (in N

′
+), δ1(p, γ, p) = 1 (in N+), δ1(q, γ, q) = 1,

δ1(p, γ, q) = 0 = δ1(q, γ, p), and Fp = 1 = Fq. Let n ∈ N and ξ = γn(e) ∈ TΣ.
Clearly, there exist two runs on ξ: Let us denote them by ρξ,p and ρξ,q. Obvi-
ously, wt(ξ, ρξ,p) = n if n ≥ 1, and otherwise wt(ξ, ρξ,p) = 1, and furthermore,
wt(ξ, ρξ,q) = 1′. Thus, we have [[A]](ξ) = wt(ξ, ρξ,p) ∨ wt(ξ, ρξ,q) = 1′. Hence,
A has the finite-image property.

Observe that A has two small loops with weight 1 (in N+) respectively 1.

We say that the strong bimonoid B has effective tests for 0 and 1 if for each
b ∈ B we can decide whether b = 0 and whether b = 1.

Theorem 7.3. [DFKV20, Cor. 14] Let B be past-finite monotonic and have
effective tests for 0 and 1. Moreover, let A be given effectively. If B is additively
locally finite or A is finitely ambiguous, then it is decidable whether A has the
finite-image property.
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Proof. By Theorem 4.1, we may assume that A is trim. By Theorem 7.1, A
has the finite-image property if and only if small loops of A have weight 1. The
latter property is decidable because (a) there exist only finitely many c ∈ CΣ

such that height(c) < |Q|, and (b) since B is monotonic, for all c ∈ CΣ, q ∈ Q,
and ρ ∈ RA(q, c, q) we have wt(c, ρ) = 1 if and only if for each v ∈ pos(c) we
have δk(ρ(v1) · · · ρ(vk), σ, ρ(v)) = 1 where σ = c(v) and k = rk(σ), and (c) this
is decidable because B has an effective test for 1.

The decidability problem addressed in Theorem 7.3 is meaningful, because
in Example 3.2 we considered the additively locally finite and past-finite mono-
tonic semiring ASRN and a deterministic (Σ,ASRN)-wta A for which im([[A]])
is infinite.

As an immediate consequence of Theorems 6.10(1) and 7.3 and Lemma 3.4,
under the assumptions of Theorem 7.3, it is decidable whether A is crisp-
determinizable.

Next, we compare Theorem 6.1 with Theorem 7.3 in the following sense: we
show an example of a wta A such that (a) by applying Theorem 6.1 we know
that A has the finite-image property and (b) we cannot apply Theorem 7.3 to
decide whether A has the finite-image property.

Example 7.4. We consider the ranked alphabet Σ = {γ(1), ν(1), α(0)} and the
tropical semiring TSRN = (N∞,min,+,∞, 0). Moreover, we let A = (Q, δ, F )
be the trim (Σ,TSRN)-wta (as in Example 6.8) whereQ = {q1, q2}, δ0(ε, α, q1) =
δ1(q1, γ, q1) = 0, and δ1(q1, ν, q2) = 1; and Fq1 = Fq2 = 0.

Then A satisfies the assumptions of Theorem 6.1. In fact, im([[A]]) = {0, 1}.
The tropical semiring TSRN cannot be extended into a past-finite monotonic

semiring (N∞,min,+,∞, 0,�). To see this, assume that � is a monotonic
partial order. Then a � min{a, b} for every a, b ∈ N∞ (by Condition (i) of
monotonicity). Thus a ≥ b (i.e., b = min{a, b}) implies a � b. However, ≥ is
not past-finite. Hence, we cannot use Theorem 7.3 to decide whether A has the
finite-image property.

Theorem 7.5. Let B be monotonic and have effective tests for 0 and 1. It is
decidable, for arbitrary unambiguous (Σ, B)-wta A, whether A has the finite-
image property.

Proof. By Theorem 4.1, we may assume that A is trim. Then, by the proof of
Theorem 7.3, we can decide whether small loops of A have weight 1.

If this is not the case, then we follow the proof (1 ⇒ 2) of Theorem 7.1 up
to (4), and as there, we can produce an infinite set of weights of runs on trees.
Due to unambiguity, these are also the weights of the corresponding trees. Thus,
im([[A]]) is infinite, i.e., A does not have the finite-image property.

Otherwise, by Corollary 6.7, A has the finite-image property.

As a side-result, we show that the well-known decidability of finiteness of
context-free languages [Har78, Thm. 8.2.2] can be formally derived from Theo-
rem 7.3.

28



Corollary 7.6. The finiteness of context-free languages is decidable.

Proof. Let G = (N,∆, P, S) be a context-free grammar. By [Har78, Thm. 3.2.3]
we may assume that G is reduced. Then we have

for each set U ⊆ ∆∗: U is finite if and only if {|w| | w ∈ U} is finite. (5)

We construct effectively the ranked alphabet (P, rk) such that if p ∈ P has
the form

A → w0A1w1 · · ·Akwk

for some k ∈ N, w0, w1, . . . , wk ∈ ∆∗, and A,A1, . . . , Ak ∈ N , then rk(p) = k.
Finally, we consider the arctic semiring ASRN = (N−∞,max,+,−∞, 0) and

construct effectively the (P,ASRN)-wta A(G) = (N, δ, F ) by FS = 0 and FA =
−∞ for each A ∈ N \ {S} and if p ∈ P has the form as above, then

δk(A1 · · ·Ak, p, A) = |w0w1 · · ·wk| .

Using (5), it is easy to see that

im([[A(G)]]) is finite if and only if L(G) is finite. (6)

Since ASRN is past-finite monotonic and idempotent, and A(G) is unam-
biguous and trim, we obtain from (6) and Theorem 7.3 that it is decidable
whether L(G) is finite or not.

To prove that we can decide whether an arbitrary (Σ,N)-wta has the finite-
image property (cf. Theorem 7.11), we need the following preparation.

To each (Σ, B)-wta A = (Q, δ, F ) we associate the (Σ,B)-wta fta(A) =
(Q, δB, FB) defined as follows:

• for every k ∈ N, w ∈ Qk, σ ∈ Σ(k), and q ∈ Q, let (δB)k(w, σ, q) = 1 if and
only if δk(w, σ, q) 6= 0, and

• for each q ∈ Q, let (FB)q = 1 if and only if Fq 6= 0.

Observation 7.7. For each ξ ∈ TΣ, we have |RF 6=0

A (ξ)| = |RFB 6=0

fta(A)(ξ)| .

Lemma 7.8. Let A be a trim (Σ,N)-wta such that all small loops of A have
weight 1. Then A has the finite-image property if and only if fta(A) is finitely
ambiguous.

Proof. By Corollary 6.7(1), the set H(A) is finite, and thus C(A) is also finite.
Let C = max{b | b ∈ C(A)}, i.e., C is the maximum of all possible complete

run weights of A.
First assume that fta(A) is finitely ambiguous under the uniform bound

K ∈ N and let ξ ∈ TΣ. Then, by Observation 7.7, |RF 6=0

A (ξ)| ≤ K, and thus, we
have

[[A]](ξ) =
∑

ρ∈RF 6=0

A (ξ)

wt(ξ) · Fρ(ε) ≤
∑

ρ∈RF 6=0

A (ξ)

C ≤ K · C.

Hence, A has the finite-image property.
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Now we prove the other direction. For this, assume that A has the finite-
image property. Let K = max{[[A]](ξ) | ξ ∈ TΣ}. Moreover, let ξ ∈ TΣ. Then

K ≥ [[A]](ξ) =
∑

ρ∈RF 6=0

A (ξ)

wt(ξ) · Fρ(ε) ≥
∑

ρ∈RF 6=0

A (ξ)

1 = |RF 6=0
A (ξ)| ,

and Observation 7.7 shows that fta(A) is finitely ambiguous.

Lemma 7.9. Let B have an effective test for 0. It is decidable, for arbitrary
(Σ, B)-wta A = (Q, δ, F ) given effectively, whether A has a useful state.

Proof. In fact, A has a useful state if and only if there exists a state q ∈ Q with
Fq 6= 0 for which there exist a tree ξ ∈ TΣ and a run ρ ∈ RA(q, ξ). By standard
pumping arguments, the latter is the case if and only if there exist a tree ξ′ with
height(ξ′) < |Q| and run ρ′ ∈ RA(q, ξ

′). This property is easily decidable.

The following result will be crucial for Theorem 7.11.

Theorem 7.10. [Sei89, Thm 2.5(2)] Let A be a (Σ,B)-wta. We can decide
whether A is finitely ambiguous.

Theorem 7.11. It is decidable, for arbitrary (Σ,N)-wta A, whether A has the
finite-image property.

Proof. First, by Lemma 7.9, we decide whether A has a useful state. If A does
not have a useful state, then [[A]] = 0̃ and thus [[A]] has the finite-image property.
Otherwise, by Theorem 4.1 we may assume that A is trim.

By the proof of Theorem 7.3 we can decide whether small loops of A have
weight 1. If the answer is no, thenA has a loop ρ on a context c with 1 < wt(c, ρ).
Then, by Theorem 7.1, im([[A]]) is infinite, i.e., A does not have the finite-image
property. (Note that N is past-finite monotonic.)

Otherwise, all small loops of A have weight 1. Then by Lemma 7.8, A has
the finite-image property if and only if fta(A) is finitely ambiguous. Finally,
by Theorem 7.10, we can decide whether fta(A) is finitely ambiguous. This
completes the proof.

Next we can characterize those past-finite monotonic computable strong bi-
monoids B for which for each (Σ, B)-wta A it is decidable whether A has the
finite-image property.

Theorem 7.12. Let B be past-finite monotonic and computable. Then the
following statements are equivalent:

1. It is decidable, for each ranked alphabet Σ, whether an arbitrary (Σ, B)-wta
given effectively has the finite-image property.

2. It is decidable, for each b ∈ B, whether b has finite additive order.

Proof. (1 ⇒ 2). Let b ∈ B. We construct the ({γ(1), α(0)}, B)-wta A =
({p, q}, δ, F ) such that

• δ1(p, γ, q) = b, δ0(ε, α, p) = δ1(p, γ, p) = δ1(q, γ, q) = Fq = 1, and
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• δ0(ε, α, q) = δ1(q, γ, p) = Fp = 0.
Clearly, for each n ∈ N, we have [[A]](γnα) = nb and thus we have im([[A]]) =
〈b〉⊕.

Therefore A has the finite-image property if and only if b has finite additive
order. By Statement 1, the former is decidable. Hence, it is decidable whether
b has finite additive order.

(2 ⇒ 1). Let A be an arbitrary (Σ, B)-wta given effectively. By Theorem
4.1, we may assume that A is trim. By the proof of Theorem 7.3 we can
decide whether small loops of A have weight 1. If the answer is no, then by
Theorem 7.1, im([[A]]) is infinite, i.e., A does not have the finite-image property.
Otherwise, all small loops of A have weight 1. Then, by Corollary 6.7(1), the
set H(A) is finite, which implies that the set C(A) is also finite. In addition, by
Lemma 6.5 and the fact that B is computable, we can compute the set C(A).
Due to our assumption on small loops of A and by Theorem 7.1, A has the
finite-image property if and only if, for each b ∈ C(A), the mapping fA,b is
bounded or b has finite additive order. Since B is computable, by the proof of
Theorem 6.6, we can construct effectively, for each b ∈ C(A), the (Σ,N)-wta A′

b

described in the proof of Theorem 6.6. By Theorem 7.11, it is decidable, for
each b ∈ C(A), whether [[A′

b]] has finite image. Moreover, by Statement 2, it is
decidable, for each b ∈ C(A), whether b has finite additive order. Therefore, it
is decidable, whether A has the finite-image property.

Lemma 7.13. Let B be a monotonic strong bimonoid such that it is left or
right distributive. Then either B is idempotent or else each b ∈ B \ {0} has
infinite additive order.

Proof. We may assume that B is left distributive. Clearly, if 1 = 1⊕ 1, then B
is idempotent. Therefore, assume that 1 6= 1⊕ 1, and thus, 1 ≺ 1⊕ 1. Since B
is monotonic and left distributive, for each b ∈ B\{0}, we have b ≺ b⊗(1⊕1) =
b ⊕ b. Consequently, b ⊕ b ≺ (b ⊕ b)⊕ (b ⊕ b) = 4b. Thus, for each n ∈ N+, we
have b ≺ b⊕ b ≺ ... ≺ (2n)b. Hence, 〈b〉⊕ is infinite. (Observe that the proof is
similar if we assume right distributivity instead of left distributivity.)

Theorem 7.14. Let B be a past-finite monotonic strong bimonoid and com-
putable such that it is left or right distributive. Then it is decidable, for each
(Σ, B)-wta A given effectively, whether A has the finite-image property. In par-
ticular, this is decidable if B is a past-finite monotonic and computable semiring.

Proof. Let A be an arbitrary (Σ, B)-wta given effectively. We first check
whether 1 = 1 ⊕ 1. If this is the case, then B is idempotent, and thus, by
Theorem 7.12, it is decidable whether A has the finite-image property. Other-
wise, by Lemma 7.13, each b ∈ B \ {0} has infinite additive order. Again, by
Theorem 7.12, it is decidable whether A has the finite-image property.

We give examples illustrating applications of Theorem 7.12.
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Example 7.15.

1. Let B be an additively locally finite strong bimonoid. In this case The-
orem 7.12(2) is satisfied. This is the situation of Theorem 7.3. Note,
however, Theorem 7.3 does not require B to be computable.

2. Let B be a strong bimonoid such that, for each b ∈ (B \ {0}), the set 〈b〉⊕
is not finite, e.g., the semiring N of natural numbers. In this case Theo-
rem 7.12(2) is also satisfied. This situation can be viewed as orthogonal
to the situation of Theorem 7.3.

3. Each semiring B belongs to either Item 1 or Item 2, because by
Lemma 7.13, it suffices to decide whether 1 = 1 ⊕ 1.

4. The following strong bimonoid combines features of Items 1 and 2, i.e.,
it contains elements both which have, respectively, which do not have
finite additive order, but this is decidable for each element. Let B =
(N,⊕, ·, 0, 1,≤), where, for each x, y ∈ N, we let

x⊕ y =

{
max{x, y} if x ∈ {0, 1, 2} or y ∈ {0, 1, 2}

x+ y otherwise ;

in addition, · is the usual multiplication, and ≤ is the usual order on N.
Then, for each b ∈ B, we can test whether b ∈ {0, 1, 2} to decide whether
b has finite additive order. Thus, Theorem 7.12(2) is satisfied.

8 Further decidability results for wta over past-

finite monotonic strong bimonoids

In all of this section, B will be a past-finite monotonic and computable strong
bimonoid. We recall that, by Theorem 6.10(1), a (Σ, B)-wta A always has the
preimage property. Hence, by Lemma 3.4, the (Σ, B)-wta A has the finite-image
property iff [[A]] is a recognizable step mapping iff A is crisp-determinizable.
Hence, the question arises whether in case A has the finite image property,
and thus, is crisp-determinizable, we can actually construct an equivalent crisp-
deterministic wta. This will be shown to be true in the following result. Note
that then, from the equivalent crisp-deterministic wta, we also know the ele-
ments of the finite set im([[A]]) as well as tree automata for the recognizable tree
languages [[A]]−1(b) (for all b ∈ im([[A]])).

Theorem 8.1. Let B be past-finite monotonic and computable. Moreover, let
A = (Q, δ, F ) be a (Σ, B)-wta given effectively. If A has the finite-image prop-
erty, then we can construct effectively a crisp-deterministic (Σ, B)-wta B such
that [[B]] = [[A]].

Proof. By Lemma 7.9, it is decidable whether A has a useful state. If A does not
have a useful state, then [[A]] = 0̃ and we can construct effectively the desired
crisp-deterministic (Σ, B)-wta B in an easy way.

Otherwise, by Theorem 4.1 we may assume that A is trim. Then, by Theo-
rem 7.1 and Corollary 6.7(1), A satisfies the assumption of Theorem 6.6. Thus
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we can use Theorem 6.6(2) to construct effectively a crisp-deterministic (Σ, B)-
wta B such that [[B]] = [[A]].

In the rest of this section we will show that if B is past-finite monotonic
and computable, then we can decide, for every wta A given effectively and
positive integer k, whether the cardinality of the image of [[A]] is bounded by k,
and in this case we can construct effectively a crisp-deterministic wta which is
equivalent to A.

Theorem 8.2. Let B be past-finite monotonic and computable. It is decid-
able, for every (Σ, B)-wta A given effectively and k ∈ N+, whether we have
| im([[A]])| ≤ k. Moreover, in this case we can construct effectively a crisp-
deterministic (Σ, B)-wta B such that [[B]] = [[A]].

Proof. First, by the proof of Lemma 7.9, we check whether A has a useful state.
If A has no useful state, we have [[A]] = 0̃, hence our statement holds obviously.
Therefore we may assume that A has a useful state. By Theorem 4.1, we may
assume that A is trim.

Next we check whether all small loops of A have weight 1 (cf. proof of
Theorem 7.3). If this is not the case, then by Theorem 7.1, im([[A]]) is infinite
and hence A is not crisp-determinizable. Otherwise, H(A) is finite by Corol-
lary 6.7(1) and thus C(A) is also finite. (We recall that each monotonic strong
bimonoid is one-product free.) Using Lemma 6.5, we compute C(A).

We choose an effective enumeration ξ0, ξ1, . . . of TΣ. Then we run the fol-
lowing Algorithms A and B in parallel.

Algorithm A: Compute [[A]](ξ0), [[A]](ξ1), . . .. We let this algorithm terminate
if we have obtained more than k different values.

Algorithm B: For each b ∈ C(A), we run the following subalgorithm Alg(b).
Alg(b): We compute the (Σ,N)-wta A′

b as in the proof of Theorem 6.6. Now we
proceed as in the algorithm described in the proof of Theorem 6.6(2). Succes-
sively for i = 0, 1, . . .,
(a) we compute and store a finite-state Σ-tree automaton for the language

Lb,i = [[A′
b]]

−1(i) (cf. Lemma 6.3(2)), and
(b) we compute and store the element ib.

We let Alg(b) terminate, if for some i ∈ N, we have
⋃

j∈[0,i] Lb,j = TΣ or
ib = jb for some j < i. Clearly, both equalities just given are decidable. We let
Algorithm B terminate if, for each b ∈ C(A), the algorithm Alg(b) terminates.

Next we show that this decision procedure terminates and thus we can
decide whether | im([[A]])| ≤ k. Clearly, if Algorithm A terminates, we have
k < | im([[A]])|.

Therefore let us assume that Algorithm A does not terminate. In this case,
we have | im([[A]])| ≤ k, and we have to show that Algorithm B terminates.
By Theorem 7.1, for each b ∈ C(A), the mapping fA,b is bounded or b has
finite additive order. Hence, the assumptions of Theorem 6.6 are satisfied. As

33



shown in the proof of Theorem 6.6(2), for each b ∈ C(A), the algorithm Alg(b)
terminates. Hence, Algorithm B terminates.

It follows Algorithm A or Algorithm B terminates. If Algorithm A termi-
nates while Algorithm B is running, we know that k < | im([[A]])|. Now assume
Algorithm B terminates while Algorithm A is still running. Then by the proof of
Theorem 6.6(2), we can compute effectively a crisp-deterministic wta B equiv-
alent to A. Then we decide whether | im([[B]])| ≤ k.

Besides the proof of Theorem 8.2 we also show Algorithm 1 which imple-
ments the decision procedure in that proof as a pseudo code. We explain the
implementation details as follows.

We assume that we have an enumeration ξ0, ξ1, . . . of TΣ.
As first step (lines 5–8), Algorithm 1 tests whether A has a useful state

as in the proof of Lemma 7.9. If the answer is no, then we have [[A]] = 0̃.
Hence Algorithm 1 constructs effectively a crisp-deterministic (Σ, B)-wta B with
[[B]] = 0̃ and terminates with output “yes”. Otherwise, Algorithm 1 trims A
according to Theorem 4.1.

As second step (lines 10–12), Algorithm 1 tests whether every small loop of
A has weight 1. This can be done by the same argument as in the proof of
Theorem 7.3). If this is not true, then im([[A]]) is infinite (by Theorem 7.1) and
Algorithm 1 terminates with output “no”. Otherwise, Algorithm 1 continues
and, by Corollary 6.7(1), the set H(A) is finite, and hence also C(A) is finite.

As third step (lines 13–17), Algorithm 1 computes the set C(A) ⊆ B; by
Lemma 6.5 this is possible. Moreover, for each b ∈ C(A), a Boolean value
flag(b), a set Sb ⊆ B, and a set Ub ⊆ TΣ are initialized. The intuition for flag,
Sb, and Ub are as follows.

flag(b) =

{
true if fA,b is bounded or 〈b〉⊕ is finite

false otherwise

In the set Sb, Algorithm 1 collects multiples of b, i.e., Sb ⊆ {ib | i ∈ N}.
Moreover, in the set Ub, Algorithm 1 collects all those trees ξ for which the
multiplicity fA,b(ξ) is i for some i ∈ N, i.e.,

Ub ⊆
⋃

i∈N

Lb,i where Lb,i = {ξ ∈ TΣ | fA,b(ξ) = i} .

We note that Algorithm 1 does not compute the set Ub itself, but a finite
representation of Ub in the form of a finite-state Σ-tree automaton (cf. the
proof of Theorem 6.6).

As fourth step (18–41), Algorithm 1 runs the following two algorithms in
parallel. Here, however, we explain these two algorithms separately.

• Algorithm A: Algorithm A computes [[A]](ξ0), [[A]](ξ1), . . . and collects
these values into a set W (line 21). To compute these values, Algorithm
A uses the given enumeration ξ0, ξ1, . . . of TΣ. Algorithm A terminates if
more than k different values were obtained (line 22). Then the answer to
the decision problem is “no”.
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• Algorithm B: For each b ∈ C(A), Algorithm B computes simultaneously
the sequences Lb,0, Lb,1, . . . (line 25) and 0b, 1b, . . . (line 32). Algorithm B
terminates, if flag(b) = true for each b ∈ C(A) (lines 27 and 30), i.e., for
each b ∈ C(A) there exists an i ∈ N such that

⋃
j∈[0,i] Lb,j = TΣ or ib = jb

for some j < i. Clearly, both tests (Ub = TΣ and ib ∈ Sb) are decidable.

The parallel running of Algorithms A and B terminates, and after termina-
tion the assumptions of Theorem 6.6 are satisfied (cf. the proof of Theorem
8.2). Then, by Theorem 6.6(2), Algorithm 1 can compute effectively a crisp-
deterministic wta B equivalent to A and it decides whether | im([[B]])| ≤ k. This
finished the explanation of Algorithm 1.

To draw conclusions from Theorem 8.2, we need the following notions.
Let r be a (Σ, B)-weighted tree language, E ⊆ B be a finite set, and b ∈ B.

We say that r is a (Σ, B,E)-recognizable step mapping (for short: E-recognizable
step mapping) if r is a recognizable step mapping and im(r) = E. Moreover,

we say that r is constant if r = b̃ for some b ∈ B.
Now we show that, for arbitrary past-finite monotonic and computable

strong bimonoid B, (Σ, B)-wta A given effectively, finite subset E ⊆ B, and
b ∈ B, it is decidable whether [[A]] is an E-recognizable step mapping, and

whether [[A]] = b̃ (for the definition of b̃, see Section 2.4). Moreover, we revisit
the decidability results of Borchardt ([Bor04, Sect. 6]) concerning the constant
problem and the constant-on-its-support problem and prove them for a larger
class of algebras.

Corollary 8.3. Let B be past-finite monotonic and computable. Then, for
each (Σ, B)-wta A given effectively, the following questions are decidable:
(a) Given a finite subset E ⊆ B, is the weighted tree language [[A]] an E-

recognizable step mapping?
(b) Given b ∈ B, is [[A]] = b̃?
(c) Is [[A]] constant?
(d) Is [[A]] a recognizable one-step mapping?

Proof. First, for each case (a)-(d), we define a number k. In case (a), let k = |E|.
In cases (b) and (c), we put k = 1. In case (d), we set k = 2. Let us decide
whether | im([[A]])| ≤ k (cf. Theorem 8.2). If this is not the case, the answer to
the respective question is ”no”. Otherwise, a crisp-deterministic (Σ, B)-wta B
is given such that [[B]] = [[A]]. Now for this B we can decide the questions of (a)
– (d).

9 A comparison of the concepts cost-finiteness

and having the finite-image property

Let B be a strong bimonoid. A (Σ, B)-wta A is called cost-finite if the set

H(A)F 6=0 = {wt(ξ, ρ) | ξ ∈ TΣ, ρ ∈ RA(ξ), and Fρ(ε) 6= 0} ,
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Algorithm 1: Deciding whether im([[A]]) ≤ k

Input: a (Σ, B)-wta A = (Q, δ, F ) given effectively,
an effective enumeration ξ0, ξ1, . . . of TΣ, and k ∈ N+

Output: ”yes” if | im([[A]])| ≤ k and ”no” otherwise

1 Variables i ∈ N, b ∈ B, W ⊆ B, ξ ∈ TΣ

2 flag : C(A)→ {true, false}
3 family

(

Ub ⊆ TΣ | b ∈ C(A)
)

4 family
(

Sb ⊆ B | b ∈ C(A)
)

5 if ¬(A has a useful state) then % cf. proof of Lemma 7.9
6 construct effectively a crisp-deterministic (Σ, B)-wta B such that [[B]] = 0

7 return ”yes”

8 end

9 trim A % cf. Theorem 4.1
10 if ¬(all small loops of A have weight 1) then % cf. proof of Theorem 7.3
11 return ”no” % im([[A]]) is infinite, cf. Theorem 7.1
12 end

% H(A) is finite, cf. Corollary 6.7(1)
13 compute C(A) % cf. Lemma 6.5
14 foreach b ∈ C(A) do
15 flag(b)← false, Ub ← ∅, and Sb ← ∅
16 construct effectively the (Σ,N)-wta A′

b % cf. proof of Theorem 6.6(2)

17 end

18 i← 0 and W ← ∅
19 while true do

20 ξ ← ξi % query the next tree
21 W ←W ∪ {[[A]](ξ)}
22 if |W | > k then return ”no”
23 if flag−1(false) 6= ∅ then
24 foreach b ∈ flag−1(false) do
25 Ub ← Ub ∪ [[A′

b]]
−1(i) % cf. Lemma 6.3(2)

26 if Ub = TΣ then % check whether fA,b is bounded
27 flag(b)← true
28 else

29 if ib ∈ Sb then % check whether b has finite additive order
30 flag(b)← true
31 else

32 Sb ← Sb ∪ {ib}
33 end

34 end

35 end

36 i← i+ 1

37 else % conditions of Theorem 6.6(2) hold
38 construct effectively the crisp-deterministic (Σ, B)-wta B such that

[[B]] = [[A]]
39 if | im([[B]])| ≤ k then return ”yes” else return ”no”

40 end

41 end
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is finite (cf. [BFGM05]). We note that in [BFGM05] H(A)F 6=0 is denoted by
c(A).

In [BFGM05, Thm. 44], a characterization of cost-finiteness of trim wta was
given for finitely factorizing monotonic semirings. In this section, we wish to
give such a characterization for monotonic strong bimonoids. As a corollary, we
obtain that cost-finiteness is decidable for wta over monotonic strong bimonoids
with effective tests for 0 and 1. Note however, that the weights of transitions
of wta in [BFGM05] have a more general structure than the weights considered
here (they are polynomials instead of monomials). Therefore, Lemma 9.1 and
Corollary 9.2 cannot be considered as a generalization of the corresponding
results [BFGM05, Thm. 44, 46]. Finally, we compare the concept of cost-
finiteness [BFGM05] and the concept of having the finite-image property (cf.
Corollary 9.3).

Lemma 9.1. Let B be a monotonic strong bimonoid, and let A be trim. Then
A is cost-finite if and only if small loops of A have weight 1.

Proof. If small loops of A have weight 1, then A is cost-finite by Corollary
6.7(1).

Now assume A has a loop ρ on a context c with 1 ≺ wt(c, ρ). Then as in (4)
of the proof of Theorem 7.1, we can produce an infinite set of weights of runs
on trees. Hence H(A)F 6=0 is infinite.

As a consequence, we obtain that cost-finiteness of wta is decidable.

Corollary 9.2. Let B be monotonic and have effective tests for 0 and 1. Then
it is decidable whether an arbitrary (Σ, B)-wta is cost-finite.

Proof. Let A = (Q, δ, F ) be an arbitrary (Σ, B)-wta. We first check whether A
has a useful state as in the proof of Lemma 7.9. If A has no useful state, then
H(A)F 6=0 = ∅, and thus, A is obviously cost-finite. Otherwise, by Theorem 4.1,
we may assume that A is trim. Moreover, by Lemma 9.1, A is cost-finite if and
only if small loops of A have weight 1. The latter property is decidable by the
proof of Theorem 7.3.

Lastly, we remark that cost-finiteness and having the finite-image property
coincide for wta over additively locally finite and past-finite monotonic strong
bimonoids.

Corollary 9.3. Let B be monotonic and A = (Q, δ, F ) be a (Σ, B)-wta.
1. If B is additively locally finite and A is cost-finite, then A has the finite-

image property.
2. If B is past-finite and A has the finite-image property, then A is cost-finite.

Proof. We first prove Statement 1. Since A is cost-finite, the set C(A) is finite.
Moreover, we note that im([[A]]) is contained in 〈C(A)〉⊕. By the assumption of
Statement 1, the latter set is finite.
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We prove Statement 2: Since B is monotonic, for every ξ ∈ TΣ, q ∈ Q with
Fq 6= 0, and ρ ∈ RA(q, ξ), we have wt(ξ, ρ) � wt(ξ, ρ)⊗ Fq � [[A]](ξ). Hence,

H(A)F 6=0 ⊆
⋃

b∈im([[A]])

past(b),

and the set on the right hand side of the inclusion is finite becauseB is past-finite
and A has the finite-image property. Thus A is cost-finite.

We note that, in general, the implication of Corollary 9.3(2) does not hold
if the condition past-finite is dropped. In fact, the wta A in Example 7.2 has
the finite-image property, but it is not cost-finite.

In the following example we show that past-finiteness of B and A being cost-
finite do not imply that A has the finite-image property. In fact, we can give
a (Σ,N)-wta A such that A is cost-finite but A does not have the finite-image
property as follows. (Note that N is a past-finite monotonic.)

Example 9.4. Let Σ = {γ(1), e(0)}. We consider the (Σ,N)-wta A =
({p, q, r}, δ, F ) with δ0(ε, e, p) = δ1(p, γ, q) = δ1(q, γ, p) = δ1(p, γ, r) =
δ1(r, γ, p) = Fp = 1, all other transitions have weight 0, and Fq = Fr = 0.

Clearly, H(A)F 6=0 = {1}, i.e., A is cost-finite. Moreover, for every n ∈ N

and γ2n(e) ∈ TΣ, we have [[A]]
(
γ2n(e)

)
= 2n. Since {2n | n ∈ N} ⊆ im([[A]]),

the wta A does not have the finite-image property.
We remark that, though N is commutative and one-product-free, small loops

of A have weight 1, the conditions of Corollary 6.7(2) do not hold. In fact,
C(A) = {0, 1} and neither fA,1 is bounded nor 1 has finite additive order.

10 Results for weighted string automata

Let ∆ be an alphabet. A weighted string automaton (over ∆ and B) (for short:
(∆, B)-wsa) [Sch61, Eil74] is a tuple A = (Q, I, δ, F ), where Q is a finite set
of states, I : Q → B is the initial weight mapping, δ : Q ×∆ × Q → B is the
transition mapping, and F : Q → B is the final weight mapping. For each q ∈ Q,
we abbreviate I(q) and F (q) by Iq and Fq, respectively.

We define the run semantics for A as follows. Let w = a1 · · · an be a string
in ∆∗ with n ∈ N and ai ∈ ∆ for each i ∈ [n]. A run of A on w is a string
ρ = q0 · · · qn in Qn+1. The weight of ρ for w, denoted by wt(w, ρ), is the element
of B defined by

wt(w, ρ) = Iq0 ⊗ δ(q0, a1, q1)⊗ . . .⊗ δ(qn−1, an, qn)⊗ Fqn .

Then the run semantics of A is the weighted language [[A]] : ∆∗ → B defined
by

[[A]](w) =
⊕

ρ∈Q|w|+1

wt(w, ρ)

for every w ∈ ∆∗. In particular, [[A]](ε) =
⊕

q∈Q Iq ⊗ Fq. A weighted language
r : ∆∗ → B is run-recognizable if there exists a (∆, B)-wsa A such that r = [[A]].
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In [FV09, p. 324] it is shown that, for each semiring B, the concept of
(∆, B)-wsa and the concept of (Σ, B)-wta where Σ is a string ranked alphabet
are essentially the same. A string ranked alphabet is a ranked alphabet Σ for
which Σ = Σ(0)∪Σ(1) and |Σ(0)| = 1. In fact, for each (∆, B)-wsa A there exists
a string ranked alphabet Σ, a bijection tree : ∆∗ → TΣ, and a (Σ, B)-wta B
such that [[A]](w) = [[B]](tree(w)) for each w ∈ ∆∗. The inverse of this statement
also holds, and the proof of both directions also works if B is a strong bimonoid.

Since each string ranked alphabet is a particular ranked alphabet, each of
our results for wta also holds for wsa with run semantics. Moreover, the wta
in Examples 3.2, 9.4, and 7.2 are examples for wsa with run semantics because
in each of these examples, the ranked alphabet of the wta is a string ranked
alphabet.

Acknowledgments. The authors had obtained Theorem 7.14 for semi-
rings. They are thankful to Uli Fahrenberg for a question which prompted the
extension of this semiring-result to left or right distributive strong bimonoids.
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