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Abstract

For a pair of positive parameter3, y, a partition? of the vertex set” of ann-vertex graphz =
(V, E) into disjoint clusters of diameter at moBt each is called &D, x) network decompositignif
the supergrapt(P), obtained by contracting each of the cluster®otan be properly-colored. The
decompositiorP is said to bestrong(resp. weak if each of the clusters has strong (resp., weak) diameter
at mostD, i.e., if for every clustel”’ € P and every two vertices, v € C, the distance between them
in the induced grapty(C) of C (resp., inG) is at mostD.

Network decomposition is a powerful construct, very usefuistributed computing and beyond. It
was introduced by Awerbucht. al. [AGLP89 in the end of the eighties. These authors showed that
strong(20(Viegnloglogn) 9O(vIognloglogn)) network decompositions can be computegftvos #loglog )
distributed time. Their result was improved at the begignih nineties by Panconesi and Srinivasan
[PS92, who showed thap@(vieenloglozn) jn gJ| the three expressions can be replace@By1oe ™).
Around the same time Linial and Saks§93 devised an ingenious randomized algorithm that con-
structsweak(O(logn), O(log n)) network decompositions i@ (log® n) time. It was however open till
now if strongnetwork decompositions with both parametets’™s™) can be constructed in distributed
20(vIog ™) time,

In this paper we answer this long-standing open questioheraffirmative, and show that strong
(O(logn), O(log n)) network decompositions can be computedifiog® n) time. We also present a
tradeoff between parameters of our network decompositiur. work is inspired by and relies on the
“shifted shortest path approach”, due to Blellagth al. [BGK™14], and Miller et. al. [MPX13]. These
authors developed this approach for PRAM algorithms fordealdpartitions. We adapt their approach
to network decompositions in the distributed model of cotapan.
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1 Introduction

1.1 Definitions and Motivation

Consider an unweighted undirecteevertex graphG = (V, E), and suppose that it models a communica-
tion network. Each vertex hosts a processor with a distofentity number from the rangd, ..., n}, and
these processors communicate with one another via the edd@esn synchronous rounds. The running
time of an algorithm in this model is the number of rounds sftritbuted communication.

In the coloring problem one wishes to compute a proper agdopi of G that employs a small number
of colors. A coloringy is said to beproperif for every edge(u, v) € E, we havep(u) # ¢(v). In a seminal
paper AGLP89, Awerbuchet. al. introduced a generalization of vertex coloring, in whicle@an cluster
vertices ofG into clusters of small diameter. A partition of G into disjoint clusters induces a supergraph
G(P) = (P,€&), where

£={(C.C"Y|C,C"eP,C£C Iv)eEN(C xC)}.

A partition P is called astrong (respectivelyweal network decompositioof G with parametersD and

X, or shortly,(D, x) network decompositignf all clusters ofP have strong (resp., weak) diameter at most
D, and the supergrapfi(P) can be properly colored with at mogtcolors. Note that an ordinary proper
x-coloring can be viewed as(8, x) network decomposition.

Thestrong(respectivelyweak diameterof a clusterC is defined byDiam (C') = max,, v cc dg(cy(v, ')
(resp., WeakDiam(C) = max, ,rec da(v,v")). The notationds (respectivelydq ) denotes the distance
function inG (resp., in the induced subgragh C') of C'). The strong (resp., weak) diameter of a partition
P is the maximum strong (resp., weak) diameter of its clusters

Network decomposition is a very powerful construct in distted computing. The original motivation
of [AGLP89 was symmetry breaking problems, such as maximal indeparsig, maximal matching and
(A + 1)-vertex-coloring, where\ is the maximum degree of the input graph. Givef\a x) network
decompositior? along with ax-coloring of the induced supergraghP), each of these problems can be
solved withinO(D - x) time. This is done by solving them in parallel on each of thestrs of color class 1,
then extending the solution to each of the clusters of cdamsc2, etc. Since clusters within each color class
are at least 2 apart one from another, computations witleiséime color class can be conducted in parallel.
Moreover, since the maximum clusters’ diameter is boundef® bone can perform each of thegephases
within O(D) time by a naive algorithm. (The naive algorithm collects éméire cluster’s topology into a
central vertex, solves the problem locally, and disserem#ie solution to all vertices of the given cluster.)

Later additional applications of network decompositiorerevdiscovered. Dubhaseéi. al. [DMPT05]
used network decompositions for computing sparse spamnersinear-size skeletons. Barenboén al.
[Barl2 BEG13 devised distributed approximation algorithm for the dramloring and minimum domi-
nating set problems, which employ network decompositidfstwork decompositions are also closely re-
lated toneighborhood coversvhich are used extensively for routingP92 and synchronizationAwe85,
APPS92. The relationship between neighborhood covers and n&hdecompositions was explored in
[ABCP93. Barenboimet. al.[BEG1H have also showed that network decompositions can be udrdltb
low-intersecting partitions, which are, in turn, used fomputing universal Steiner treeBIPR™12].

To summarize, network decompaositions have numerous apiplis in distributed computing and be-
yond. They also constitute a very appealing combinatodabktruct, well worth studying on its own right.



1.2 Previous and Our Results

Awerbuchet. al. [AGLP89 devised a deterministic algorithm with running tirg@(vlesnloglogn) - that
computes a stron(pC(Vlcenloglogn) 90(vilognloglogn)) network decomposition. This result was improved
by Panconesi and SrinivasaR$92, whose algorithm has running tin#¢(v1esm) and both parameters of
the decomposition offS93 are 20(VIeen) as well. In another seminal work, titled “Low Diameter Graph
Decompositions”, Linial and SakE$93 conducted a systematic investigation of network decoritipos.
They showed that for an < log n, everyn-vertex graph admits a stror@k — 2, 2n'/* log n) network
decomposition, and for any < log n, it admits a stronq2nl/A log n, A) network decomposition, and that
these bounds are nearly tight. They have also devised amdpeld distributed algorithm for computing
weaknetwork decompositions in expected tiQ¢k - n'/% . log n), with essentially the same parameters. In
particular, and most notably, fér = log n, their algorithm produceswaeak(O(logn), O(logn)) network
decomposition irO(log? n) time.

Remarkably, quarter a century after the SODA91 publicatibLinial and Saks’ paper, their algorithm
is still the only algorithm whose running time is at most gogjarithmic inn, and which produces a network
decomposition with both parameters being at most polyltgaic in n. Moreover, so far it was not known
if such a result can be achieved fetrong network decompositions. Linial and SaksSP3 themselves
posed this as an open problem. Specifically, near the encaftifoduction of LS93 they wrote:

“We note that we do not know how to make a similar guaranteéherstrong diameter.”

In this paper we resolve this long-standing open questiothénaffirmative. We devise a randomized
algorithm with running timeOD (log? n) that computes atrong (O(log n), O(log n)) network decomposi-
tion. Moreover, similarly to Linial and Sak$.$93, we can also trade between the parameters. Specifi-
cally, for anyk < log n, our randomized algorithm has running tireén'/* . k2) and computes atrong
(2k—2, O(k-n'/*)) network decomposition. In the other regime, for any. log n, in ime O(A\-n'/*-log n)

we compute a stron@O(n'/* logn), A) network decomposition. Note that the number of colors amd ru
ning time are slightly better than those @493 in the first regime. As inl[S93, all messages sent in our
algorithm consist 0O (1) words.

The main technique that made our result possible is theteshghortest path approach”, due to Blelloch
et. al. [BGK™14], and Miller et. al. [MPX13]. These authors developed this approach for computing
padded partitions in the PRAM model. Specifically, Milletr al. [MPX13] devised a PRAM algorithm
for computing astrong padded partitioni.e., a partition with strong diameter at mastlogn)/3, for a
parameters < 1/2, and such that the fraction of edges that cross betweendiffelusters of the partition
is at mosts.

It is known that padded partitions are related to networlodgmositions. This relationship was exploited
by Bartal Bar9q, who showed that the approach of Linial and SakS93 for constructing network de-
compositions can be used to build padded partitions. Intbi& we exploit this relationship in the opposite
direction, and show that Miller'st. al. [MPX13] approach for constructing padded partitions can be used
for building network decompositions. Our algorithm is damin spirit to the algorithm ofl{S93, in which
every vertexv samples a radius, from a geometric (or exponential, in our case) distributiand broad-
casts this to its-,-neighborhood. The main difference is in determining thestdrs: While in [S93 a
vertexz decides to join a cluster centeredvaf v has the minimal ID among broadcasts that reacheahd
furthermorer, is strictly larger than the distanc&x, v) (this is the distance in the current graph). In our
algorithm, we do not use IDs, we letcompare the shifted random variables— d(x, v) for all vertices
v whose broadcast reached it, and decide according to therefitfe between the largest and the second



largest values. This idea is inspired BMPX13], who use a similar comparison in tlanalysisof their
algorithm for padded partitions. However, the fact thas tgorithm yields a strong diameter is somewhat
more involved in our setting.

1.3 Related Work

Barenboimet. al.[BEG1H devised a randomized constant time algorithm for consitigestrong(O(1), n)
network decompositions, for an arbitrarily small constant 0. Kuttenet. al. [KNPR14 extended the
algorithm of Linial and SakslUS93 for constructing network decompositions to hypergraphsong line
of research developed network decompositions for graplmwofided growth, see, e.gGY07, KMWOS5,
SWO043.

2 Distributed Algorithm for Strong Diameter Network Decomp osition

Here we prove our main result. For a more accessible pragentave first show a simpler version, and
improve the number of colors iBection 2.1

Theorem 1. For any unweighted graptiy = (V, E') onn vertices, and parameters < k£ < lnn, 3 < ¢,
our randomized distributed algorithm computes, with piuibty at leastl — 3/c, astrong(2k — 2, (cn)'/* -
In(cn)) network decomposition @f. The number of rounds requiredfgcn)/* -In(cn), and each message
consists of)(1) words.

Note that taking: = 2* does not affect the number of blocks and rounds by more thanstant factor.
Following [LS93, we form the partition by carving blocks. Block W C V is set of vertices, and the
connected components 6f(1W) are clusters. Clearly, these clusters form an independgim §(7), and
thus can be colored with a single color. So the chromatic rurobG(P) is bounded by the number of
blocks our algorithm generates.

Construction. The algorithm is a subtle modification of the§93 algorithm, inspired by the recent
methods of MPX13]. Let 5 = In(cn)/k. The algorithm consists of phases= 1,2,..., ), for A =
(en)'/* -In(cn). Let Gy = G. In each phase we carve a blockV; out of the current grapli';, and let
Gt+1 == Gt \ Wt.

To implement the-th phase, every vertexe V(G;) chooses independently in parallel avadﬁté (we
shall omit the superscript whenever it is clear from contdxy sampling from the exponential distribution
with parameteys, denotedS XP(3), which has density

| B e~ P x>0
flz) = { 0 otherwise.

Forv € V, let &, be the event that at some pha‘s@ff) > k + 1. We will later prove the following
lemma.

Lemma 1. With probability at least — 2/¢, none of the events, hold.

Every vertexv will broadcast the value, to every vertex of&; within distanceR, := |r,] from it.
Note that assumingemma 1 R, < k. Each vertexy in G; records the values af, for verticesv whose
broadcast reacheg and also the distances @, to these vertices. Theporders these vertices, .. ., v,

3



in non-increasing order according te; = r,, — dg, (v, v;). We declare thay joins W; iff m; — mg > 1.
Observe that alin; are nonnegative, singewill hear the broadcast af; only if dg, (v, v;) < R,,, the latter
is at mostr,,. If s = 1, i.e. there is no second broadcast that reachettfinem, = 0 (observem; is well
defined ag/ also broadcasts). If indegdoins 1W;, then we say thaj chosethe centemw; .

We begin by analyzing the strong diameter of the blocks.

Observation 2. If y chosev; as a center at phase thendg, (v1,y) < 7y, — 1.

Proof. If dg, (vi,y) >y, — 1, thenmy < 1, which implies thatn; — my < 1, contradicting the fact that
y joins Wi. O

Claim 3. If a vertexy € V(Gy) chosev at phasef, then every vertex on the shortest-path fromto y in
G must have chosenat phaset as well.

Proof. Sincedg, (v, x) < dg,(v,y), the broadcast aof at phase must have reachedas well, sar records
the valuem = r, — dg,(x,v). Seeking contradiction, assumedid not choose», then there exists’ for

which z records the value:' = r,, — dg, (z,v") with m’ > m — 1 (if there is no such’, thenz would have
joined W; with v as center). In particular,

dg,(z,v") < ry —ry +dg, (z,0) +1. (1)
It follows that
da,(y,v) < dg,(y,x) +dg,(z,v)

th(yal') + 1y — Ty + th(l‘,U) +1
= (th (y7 U) — Ty + 1) + Ty (2)
< Ty (3)

where the last inequality us&@bservation 2Thusdg, (y,v") < R,s, so the broadcast of will reachy, and
y will record a corresponding value of

()]
Ty — th (y,"l),) > Ty — th (y,’l)) -1 )

that is, it is within 1 of the valug stored forv, which contradicts the fact thatchosev. O
Lemma 4. For everyl < t < ), the blockiV; has strong diameter at mo2k — 2.

Proof. Fix any clusterC' which is a connected component@f1V;). We first argue that if all vertices i@
chose the same centerthen its strong diameter is at m@it— 2. To see this, note that kybservation all
verticesy € C are withinr, — 1 distance fronv, since the graph is unweighted, thisisatmst-1 < k—1
(assuming the event dfemma 1holds). ByClaim 3, every vertex on the shortest-path frento y (in Gy)
is also included inC, so the strong diameter is at m@st — 2.

Consider now the case that there are two vertices € C' that chose different centersu. We will
show that this assumption must lead to a contradiction. M&tenay assume that > are adjacent, since
for any two non-adjaceny’, z’ who chose different centers, we can simply walk on the pathi (which is
connected) fromy’ to 2z’ until we find adjacent vertices with a center change occgrii.l.o.g assumg is
the vertex which recorded the larger value, that is,

Ty — th (yav) 2 Ty — th (z,u) . (4)
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By the triangle inequality an@®bservation 2ve see thatl;, (z,v) < dg,(y,v) + 1 < r,, which implies
dg,(z,v) < R, so that the broadcast ofwill reach z. The valuez obtains fromwv is

4
ry — dag, (2,0) > 1y — (dg, (y,v) + 1) > ry —dg,(z,u) — 1,

which contradicts the assumption thathoseu. O

We next show that phases suffice to exhaust the graph, which gives this bouritieonumber of
blocks. To this end, we use the following result fromiFX13, Lemma 4.4] on the order statistics of shifted
exponential random variables.

Lemma 5 ([MPX13)). Letd; < ... < d, be arbitrary values and ledy, ..., d, be independent random
variables picked fror€ X'P(3). Then the probability that the largest and the second largakies ob; —d;
are within 1 of each other is at most— ¢=#. 1

We use this result to prove the following:

Claim 6. Foranyy € V,and1 <t < ),
Prly € Gyi1) < (1— (en)"VE)

Proof. Fixanyl <t < ¢/, and any possible gragh; such thaty € V(G;). Letvy, ..., v, be the vertices of

G that are in the same connected componert ofvith y. Letd; = dg, (v;,y), andd; = r,, (where each

7y, IS sampled independently fro&éP(3)). Recall thaty € W; iff the maximum value among; — d;

is larger than the second largest by more than 1 (additive®\pplying Lemma 5 we conclude that the
probability a vertex; € V(G;) joins W, is at leaste—? = (cn)~'/* (this holds even in the event that no
other broadcast reacheqd by definition of EAXP(3)). Since this bound holds regardless of the outcome of
previous phases,

t/

Prly € Gura] = Pr [ﬂ{y ¢ Wt}] =IPrly ¢ Wely ¢ Wi,y & Wira] < (1= (en)™ /)"
t=1 t=1

Corollary 7. With probability at leastt — 1 /¢, Gy is empty.

Proof. UsingClaim 6with ¢ = A\ = (cn)"/* - In(cn), we see that the probability a vertgxdid not join any
block is at mos{(1 — (cn)~Y/*)* < 1/(cn). Applying the union bound on the vertices, we get that with
probability 1 — 1/¢, within A phases the graph is indeed exhausted. O

We are now ready to prodeemma 1

Proof ofLemma 1 Fix anywv € V. Since each, is sampled independently frofP(3), we have for any
1<t <\ Prfrl? > k+1] = e A%+ By usingClaim 6with ¢’ = i - (cn)'/* (for some0 < i < In(cn)),

"We state here a special case of their result. The assertidARiX13] gives the boundD (), but their proof in fact yields the
stronger bound given here.



we obtainPr[v € Gy 1] < e~ Now,

Prig,] < ) Prfrl! > k+1]veGy PrlveG

In(cn) (en)'/*

PI‘[T’z()i'(Cn)l/k-i—t) > k+1[veEG uympd Prlv€ G pymi]

(]

i=0 t=1
In(cn) (en)t/k

< Z el o~ Bk+1)
i=0 t=1
In(en)

< e—i . (Cn)l/k . (Cn)—l—l/k
=0

< 2/(en).

The lemma follows from a union bound over thevertices. O

We conclude by analyzing the running time and messagesisite.that there arg = (cn)'/* - In(cn)
phases, and each phase requiresunds (assumingjemma 1, so the total number of rounds is as promised.
We claim that our algorithm can in fact be implemented effitiealso in the CONGEST model, where
messages must be of size at mOstog n) bits. This follows since at every round, every vertex car s
valuesm; it has so far, and send to its neighbors only the top two frentist. This is because the values
|m;| determine the remaining range the message okeds to be forwarded to, and clustering decisions
are based only on the largest two values, so the third andrdnvedues inv’s list will not be used by any
other vertex.

2.1 Improved Number of Blocks
Here we show how to improve the bound on the number of colog(to- n'/*), and prove the following.

Theorem 2. For any unweighted grapty' = (V, E') onn vertices, and parameteis< k < Inn, 5 < ¢, our
randomized distributed algorithm computes, with probiapit leastl — 5 /¢, a strong(2k — 2, 4k(cn)'/*)
network decomposition @¥. The number of rounds required @(k>(cn)'/*), and each message consists
of O(1) words.

The main difference from the previous construction of i the parametep of the exponential dis-
tribution will change at certain points. There will ben stages, each stage consists of a certain number
of phases in which we use the same valuggofThe first stage lastsy = 2(cn)1/"C phases in which we
usefy = In(cn)/k. The next stage lasts = 2(cn/e)'/* phases, in which we us& = In(cn/e)/k. In
general, the-th stage lasts; = 2(cn/e?)!/* phases, and we usg = In(cn/e’)/k in these phases. For
0 < i < Inn, denote byJ; the set of phases in theth stage, that is7; = {3-/_((s;) + 1,..., > 5o s;}-

The total number of phases, which bounds the number of cokeded, is thus

Inn Inn 00
Y osi=2) (enfe)F < 2en) RNy e R < dk(en) !k
i=0 i=0 i=0

The strong diameter bound bémma 4holds regardless of which we use, as long as an analogue of
Lemma lholds. Decreasing the parameteof the exponential distribution increases the probabilitgt
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a vertex joins a block (so we need less blocks). However,ddeus of blocks tend to increase agets
smaller. The following claim implies that the graph is ex$taa with high probability.

Claim 8. For any vertexy € V,0 < ¢ < Inn, andt € J;,
Prly € Gi] < e 2. (5)

Proof. In order to be included id;, y must not be selected to a block in any phase of any of the stages
0,1,...,7— 1. By Lemma 5 the probability that; did not join a block in a certain phase of stages at
most(1 — e~%) (even conditioning on anything that happened in previousses), thus the probability it
survived until stage is at most

i—1 i—1 _ 2(cn/ej)1/k i—1
Birs. cn\ —1/k _ iy
H(l_eﬁj)sJ:H<1_<g> ) <[[e2=c?%.
=0 =0 =0
O

The claim implies (by the union bound), that with probabittt leastl — 1/n, there are no remaining
vertices after stagin. It remains to prove an analogue lofmma 1 and argue that with probability at
leastl — 4/¢, none of the events, took place. We calculate,

Inn

Prig,] < YD Pl > k+1|ve Gy Prlve Gy
=0 teJ;

Inn

Z Z e—ﬁi(k-i-l) L2

=0 teJ;

Inn i\ 1+1/k
= Zz(ﬂ)”’“(e_) e
e’ cn

=0

IN

1% 9
= = =
i:(]ce

4
< —.
cn

So by the union bound, with probability at ledst 4/¢, none of events, occurred, as desired.

2.2 High Radius Regime

Note that inTheorem landTheorem Zhe number of blocks i€ (log n) for any choice of. In the regime
thatk, the parameter governing the radius, is larger finan we can get fewer thalm n blocks. Concretely,
by Claim 6 we have that the probability that a vertgxs not in any of the first\ blocks is at most1 —
(en)~ M)A < (In(en)/k)* (here we use the estimate- e=® < z, which is useful when: is small). We
would like this probability to be at most/cn, so that the graph will be empty aft&iphases with probability
at leastl — 1/c. To this end, we need

In(cn)

" In(k/In(cn))

In other words, if the number of blocks we wantisthen we need to takle = (cn)'/* - In(cn), exactly the
inverse tradeoff ofheorem 1

A



Theorem 3. For any unweighted grap& = (V, E)) onn vertices, and parameteiis< A < Inn, ¢ > 3, our
randomized distributed algorithm computes, with prokigbit leastl — 3/c, a strong(2(cn)*/* -In(cn), A)
network decomposition @f. The number of rounds requiredigcn)'/*-In(cn), and each message consists
of O(1) words.
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