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Abstract

For a pair of positive parametersD,χ, a partitionP of the vertex setV of ann-vertex graphG =
(V,E) into disjoint clusters of diameter at mostD each is called a(D,χ) network decomposition, if
the supergraphG(P), obtained by contracting each of the clusters ofP , can be properlyχ-colored. The
decompositionP is said to bestrong(resp.,weak) if each of the clusters has strong (resp., weak) diameter
at mostD, i.e., if for every clusterC ∈ P and every two verticesu, v ∈ C, the distance between them
in the induced graphG(C) of C (resp., inG) is at mostD.

Network decomposition is a powerful construct, very usefulin distributed computing and beyond. It
was introduced by Awerbuchet. al. [AGLP89] in the end of the eighties. These authors showed that
strong(2O(

√

logn log logn), 2O(
√

logn log log n)) network decompositions can be computed in2O(
√

logn log logn)

distributed time. Their result was improved at the beginning of nineties by Panconesi and Srinivasan
[PS92], who showed that2O(

√

logn log log n) in all the three expressions can be replaced by2O(
√

logn).
Around the same time Linial and Saks [LS93] devised an ingenious randomized algorithm that con-
structsweak(O(log n), O(log n)) network decompositions inO(log2 n) time. It was however open till
now if strongnetwork decompositions with both parameters2o(

√

logn) can be constructed in distributed
2o(

√

logn) time.
In this paper we answer this long-standing open question in the affirmative, and show that strong

(O(log n), O(log n)) network decompositions can be computed inO(log2 n) time. We also present a
tradeoff between parameters of our network decomposition.Our work is inspired by and relies on the
“shifted shortest path approach”, due to Blellochet. al. [BGK+14], and Miller et. al. [MPX13]. These
authors developed this approach for PRAM algorithms for padded partitions. We adapt their approach
to network decompositions in the distributed model of computation.

http://arxiv.org/abs/1602.05437v1


1 Introduction

1.1 Definitions and Motivation

Consider an unweighted undirectedn-vertex graphG = (V,E), and suppose that it models a communica-
tion network. Each vertex hosts a processor with a distinct identity number from the range{1, . . . , n}, and
these processors communicate with one another via the edgesof G in synchronous rounds. The running
time of an algorithm in this model is the number of rounds of distributed communication.

In the coloring problem one wishes to compute a proper coloring ϕ of G that employs a small number
of colors. A coloringϕ is said to beproper if for every edge(u, v) ∈ E, we haveϕ(u) 6= ϕ(v). In a seminal
paper [AGLP89], Awerbuchet. al. introduced a generalization of vertex coloring, in which one can cluster
vertices ofG into clusters of small diameter. A partitionP of G into disjoint clusters induces a supergraph
G(P) = (P, E), where

E = {(C,C ′) | C,C ′ ∈ P, C 6= C ′,∃(v, v′) ∈ E ∩ (C ×C ′)} .

A partition P is called astrong (respectively,weak) network decompositionof G with parametersD and
χ, or shortly,(D,χ) network decomposition, if all clusters ofP have strong (resp., weak) diameter at most
D, and the supergraphG(P) can be properly colored with at mostχ colors. Note that an ordinary proper
χ-coloring can be viewed as a(0, χ) network decomposition.

Thestrong(respectively,weak) diameterof a clusterC is defined byDiam(C) = maxv,v′∈C dG(C)(v, v
′)

(resp.,WeakDiam(C) = maxv,v′∈C dG(v, v
′)). The notationdG (respectively,dG(C)) denotes the distance

function inG (resp., in the induced subgraphG(C) of C). The strong (resp., weak) diameter of a partition
P is the maximum strong (resp., weak) diameter of its clusters.

Network decomposition is a very powerful construct in distributed computing. The original motivation
of [AGLP89] was symmetry breaking problems, such as maximal independent set, maximal matching and
(∆ + 1)-vertex-coloring, where∆ is the maximum degree of the input graph. Given a(D,χ) network
decompositionP along with aχ-coloring of the induced supergraphG(P), each of these problems can be
solved withinO(D ·χ) time. This is done by solving them in parallel on each of the clusters of color class 1,
then extending the solution to each of the clusters of color class 2, etc. Since clusters within each color class
are at least 2 apart one from another, computations within the same color class can be conducted in parallel.
Moreover, since the maximum clusters’ diameter is bounded by D, one can perform each of theseχ phases
within O(D) time by a naive algorithm. (The naive algorithm collects theentire cluster’s topology into a
central vertex, solves the problem locally, and disseminates the solution to all vertices of the given cluster.)

Later additional applications of network decompositions were discovered. Dubhashiet. al. [DMP+05]
used network decompositions for computing sparse spannersand linear-size skeletons. Barenboimet. al.
[Bar12, BEG15] devised distributed approximation algorithm for the graph coloring and minimum domi-
nating set problems, which employ network decompositions.Network decompositions are also closely re-
lated toneighborhood covers, which are used extensively for routing [AP92] and synchronization [Awe85,
APPS92]. The relationship between neighborhood covers and network decompositions was explored in
[ABCP92]. Barenboimet. al. [BEG15] have also showed that network decompositions can be used tobuild
low-intersecting partitions, which are, in turn, used for computing universal Steiner trees [BDR+12].

To summarize, network decompositions have numerous applications in distributed computing and be-
yond. They also constitute a very appealing combinatorial construct, well worth studying on its own right.
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1.2 Previous and Our Results

Awerbuchet. al. [AGLP89] devised a deterministic algorithm with running time2O(
√
logn log logn), that

computes a strong(2O(
√
logn log logn), 2O(

√
logn log logn)) network decomposition. This result was improved

by Panconesi and Srinivasan [PS92], whose algorithm has running time2O(
√
logn), and both parameters of

the decomposition of [PS92] are2O(
√
logn) as well. In another seminal work, titled “Low Diameter Graph

Decompositions”, Linial and Saks [LS93] conducted a systematic investigation of network decompositions.
They showed that for anyk ≤ log n, everyn-vertex graph admits a strong(2k − 2, 2n1/k log n) network
decomposition, and for anyλ ≤ log n, it admits a strong(2n1/λ log n, λ) network decomposition, and that
these bounds are nearly tight. They have also devised a randomized distributed algorithm for computing
weaknetwork decompositions in expected timeO(k ·n1/k · log n), with essentially the same parameters. In
particular, and most notably, fork = log n, their algorithm produces aweak(O(log n), O(log n)) network
decomposition inO(log2 n) time.

Remarkably, quarter a century after the SODA’91 publication of Linial and Saks’ paper, their algorithm
is still the only algorithm whose running time is at most polylogarithmic inn, and which produces a network
decomposition with both parameters being at most polylogarithmic in n. Moreover, so far it was not known
if such a result can be achieved forstrong network decompositions. Linial and Saks [LS93] themselves
posed this as an open problem. Specifically, near the end of the introduction of [LS93] they wrote:

“We note that we do not know how to make a similar guarantee on the strong diameter.”

In this paper we resolve this long-standing open question inthe affirmative. We devise a randomized
algorithm with running timeO(log2 n) that computes astrong (O(log n), O(log n)) network decomposi-
tion. Moreover, similarly to Linial and Saks [LS93], we can also trade between the parameters. Specifi-
cally, for anyk ≤ log n, our randomized algorithm has running timeO(n1/k · k2) and computes astrong
(2k−2, O(k·n1/k)) network decomposition. In the other regime, for anyλ ≤ log n, in timeO(λ·n1/λ·log n)
we compute a strong(O(n1/λ log n), λ) network decomposition. Note that the number of colors and run-
ning time are slightly better than those of [LS93] in the first regime. As in [LS93], all messages sent in our
algorithm consist ofO(1) words.

The main technique that made our result possible is the “shifted shortest path approach”, due to Blelloch
et. al. [BGK+14], and Miller et. al. [MPX13]. These authors developed this approach for computing
padded partitions in the PRAM model. Specifically, Milleret. al. [MPX13] devised a PRAM algorithm
for computing astrong padded partition, i.e., a partition with strong diameter at mostO(log n)/β, for a
parameterβ ≤ 1/2, and such that the fraction of edges that cross between different clusters of the partition
is at mostβ.

It is known that padded partitions are related to network decompositions. This relationship was exploited
by Bartal [Bar96], who showed that the approach of Linial and Saks [LS93] for constructing network de-
compositions can be used to build padded partitions. In thiswork we exploit this relationship in the opposite
direction, and show that Miller’set. al. [MPX13] approach for constructing padded partitions can be used
for building network decompositions. Our algorithm is similar in spirit to the algorithm of [LS93], in which
every vertexv samples a radiusrv from a geometric (or exponential, in our case) distribution, and broad-
casts this to itsrv-neighborhood. The main difference is in determining the clusters: While in [LS93] a
vertexx decides to join a cluster centered atv if v has the minimal ID among broadcasts that reachedx, and
furthermorerv is strictly larger than the distanced(x, v) (this is the distance in the current graph). In our
algorithm, we do not use IDs, we letx compare the shifted random variablesrv − d(x, v) for all vertices
v whose broadcast reached it, and decide according to the difference between the largest and the second
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largest values. This idea is inspired by [MPX13], who use a similar comparison in theanalysisof their
algorithm for padded partitions. However, the fact that this algorithm yields a strong diameter is somewhat
more involved in our setting.

1.3 Related Work

Barenboimet. al. [BEG15] devised a randomized constant time algorithm for constructing strong(O(1), nǫ)
network decompositions, for an arbitrarily small constantǫ > 0. Kutten et. al. [KNPR14] extended the
algorithm of Linial and Saks [LS93] for constructing network decompositions to hypergraphs.A long line
of research developed network decompositions for graphs ofbounded growth, see, e.g., [GV07, KMW05,
SW08].

2 Distributed Algorithm for Strong Diameter Network Decomposition

Here we prove our main result. For a more accessible presentation, we first show a simpler version, and
improve the number of colors inSection 2.1.

Theorem 1. For any unweighted graphG = (V,E) onn vertices, and parameters1 ≤ k ≤ lnn, 3 < c,
our randomized distributed algorithm computes, with probability at least1−3/c, astrong(2k−2, (cn)1/k ·
ln(cn)) network decomposition ofG. The number of rounds required isk(cn)1/k · ln(cn), and each message
consists ofO(1) words.

Note that takingc = 2k does not affect the number of blocks and rounds by more than a constant factor.
Following [LS93], we form the partition by carving blocks. AblockW ⊆ V is set of vertices, and the
connected components ofG(W ) are clusters. Clearly, these clusters form an independent set inG(P), and
thus can be colored with a single color. So the chromatic number of G(P) is bounded by the number of
blocks our algorithm generates.

Construction. The algorithm is a subtle modification of the [LS93] algorithm, inspired by the recent
methods of [MPX13]. Let β = ln(cn)/k. The algorithm consists of phasest = 1, 2, . . . , λ, for λ =
(cn)1/k · ln(cn). Let G1 = G. In each phaset we carve a blockWt out of the current graphGt, and let
Gt+1 = Gt \Wt.

To implement thet-th phase, every vertexv ∈ V (Gt) chooses independently in parallel a valuer
(t)
v (we

shall omit the superscript whenever it is clear from context), by sampling from the exponential distribution
with parameterβ, denotedEXP(β), which has density

f(x) =

{

β · e−βx x ≥ 0
0 otherwise.

For v ∈ V , let Ev be the event that at some phaset, r(t)v ≥ k + 1. We will later prove the following
lemma.

Lemma 1. With probability at least1− 2/c, none of the eventsEv hold.

Every vertexv will broadcast the valuerv to every vertex ofGt within distanceRv := ⌊rv⌋ from it.
Note that assumingLemma 1, Rv ≤ k. Each vertexy in Gt records the values ofrv for verticesv whose
broadcast reachedy, and also the distances inGt to these vertices. Theny orders these verticesv1, . . . , vs
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in non-increasing order according tomi = rvi − dGt(y, vi). We declare thaty joinsWt iff m1 −m2 > 1.
Observe that allmi are nonnegative, sincey will hear the broadcast ofvi only if dGt(y, vi) ≤ Rvi , the latter
is at mostrvi . If s = 1, i.e. there is no second broadcast that reachedy, definem2 = 0 (observem1 is well
defined asy also broadcasts). If indeedy joinsWt, then we say thaty chosethe centerv1.

We begin by analyzing the strong diameter of the blocks.

Observation 2. If y chosev1 as a center at phaset, thendGt(v1, y) < rv1 − 1.

Proof. If dGt(v1, y) ≥ rv1 − 1, thenm1 ≤ 1, which implies thatm1 −m2 ≤ 1, contradicting the fact that
y joinsWt.

Claim 3. If a vertexy ∈ V (Gt) chosev at phaset, then every vertexx on the shortest-path fromv to y in
Gt must have chosenv at phaset as well.

Proof. SincedGt(v, x) ≤ dGt(v, y), the broadcast ofv at phaset must have reachedx as well, sox records
the valuem = rv − dGt(x, v). Seeking contradiction, assumex did not choosev, then there existsv′ for
whichx records the valuem′ = rv′ − dGt(x, v

′) with m′ ≥ m− 1 (if there is no suchv′, thenx would have
joinedWt with v as center). In particular,

dGt(x, v
′) ≤ rv′ − rv + dGt(x, v) + 1 . (1)

It follows that

dGt(y, v
′) ≤ dGt(y, x) + dGt(x, v

′)
(1)
≤ dGt(y, x) + rv′ − rv + dGt(x, v) + 1

= (dGt(y, v) − rv + 1) + rv′ (2)

< rv′ (3)

where the last inequality usesObservation 2. ThusdGt(y, v
′) ≤ Rv′ , so the broadcast ofv′ will reachy, and

y will record a corresponding value of

rv′ − dGt(y, v
′)

(2)
≥ rv − dGt(y, v)− 1 ,

that is, it is within 1 of the valuey stored forv, which contradicts the fact thaty chosev.

Lemma 4. For every1 ≤ t ≤ λ, the blockWt has strong diameter at most2k − 2.

Proof. Fix any clusterC which is a connected component ofG(Wt). We first argue that if all vertices inC
chose the same centerv, then its strong diameter is at most2k−2. To see this, note that byObservation 2all
verticesy ∈ C are withinrv−1 distance fromv, since the graph is unweighted, this is at mostRv−1 ≤ k−1
(assuming the event ofLemma 1holds). ByClaim 3, every vertex on the shortest-path fromv to y (in Gt)
is also included inC, so the strong diameter is at most2k − 2.

Consider now the case that there are two verticesy, z ∈ C that chose different centersv, u. We will
show that this assumption must lead to a contradiction. Notewe may assume thaty, z are adjacent, since
for any two non-adjacenty′, z′ who chose different centers, we can simply walk on the path inC (which is
connected) fromy′ to z′ until we find adjacent vertices with a center change occurring. W.l.o.g assumey is
the vertex which recorded the larger value, that is,

rv − dGt(y, v) ≥ ru − dGt(z, u) . (4)
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By the triangle inequality andObservation 2we see thatdGt(z, v) ≤ dGt(y, v) + 1 < rv, which implies
dGt(z, v) ≤ Rv, so that the broadcast ofv will reachz. The valuez obtains fromv is

rv − dGt(z, v) ≥ rv − (dGt(y, v) + 1)
(4)
≥ ru − dGt(z, u)− 1 ,

which contradicts the assumption thatz choseu.

We next show thatλ phases suffice to exhaust the graph, which gives this bound onthe number of
blocks. To this end, we use the following result from [MPX13, Lemma 4.4] on the order statistics of shifted
exponential random variables.

Lemma 5 ([MPX13]). Let d1 ≤ . . . ≤ dq be arbitrary values and letδ1, . . . , δq be independent random
variables picked fromEXP(β). Then the probability that the largest and the second largest values ofδj−dj
are within 1 of each other is at most1− e−β. 1

We use this result to prove the following:

Claim 6. For anyy ∈ V , and1 ≤ t′ ≤ λ,

Pr[y ∈ Gt′+1] ≤ (1− (cn)−1/k)t
′

.

Proof. Fix any1 ≤ t ≤ t′, and any possible graphGt such thaty ∈ V (Gt). Letv1, . . . , vq be the vertices of
Gt that are in the same connected component ofGt with y. Let dj = dGt(vj , y), andδj = rvj (where each
rvj is sampled independently fromEXP(β)). Recall thaty ∈ Wt iff the maximum value amongδj − dj
is larger than the second largest by more than 1 (additively). Applying Lemma 5, we conclude that the
probability a vertexy ∈ V (Gt) joins Wt is at leaste−β = (cn)−1/k (this holds even in the event that no
other broadcast reachedy, by definition ofEXP(β)). Since this bound holds regardless of the outcome of
previous phases,

Pr[y ∈ Gt′+1] = Pr

[

t′
⋂

t=1

{y /∈ Wt}

]

=
t′
∏

t=1

Pr[y /∈ Wt | y /∈ W1, . . . , y /∈ Wt−1] ≤ (1− (cn)−1/k)t
′

Corollary 7. With probability at least1− 1/c, Gλ+1 is empty.

Proof. UsingClaim 6with t′ = λ = (cn)1/k · ln(cn), we see that the probability a vertexy did not join any
block is at most(1 − (cn)−1/k)λ ≤ 1/(cn). Applying the union bound on then vertices, we get that with
probability1− 1/c, within λ phases the graph is indeed exhausted.

We are now ready to proveLemma 1.

Proof ofLemma 1. Fix anyv ∈ V . Since eachrv is sampled independently fromEXP(β), we have for any

1 ≤ t ≤ λ, Pr[r(t)v ≥ k+1] = e−β(k+1). By usingClaim 6with t′ = i · (cn)1/k (for some0 ≤ i ≤ ln(cn)),

1We state here a special case of their result. The assertion in[MPX13] gives the boundO(β), but their proof in fact yields the
stronger bound given here.
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we obtainPr[v ∈ Gt′+1] ≤ e−i. Now,

Pr[Ev] ≤

λ
∑

t=1

Pr[r(t)v ≥ k + 1 | v ∈ Gt] · Pr[v ∈ Gt]

≤

ln(cn)
∑

i=0

(cn)1/k
∑

t=1

Pr[r(i·(cn)
1/k+t)

v ≥ k + 1 | v ∈ Gi·(cn)1/k+t] · Pr[v ∈ Gi·(cn)1/k+1]

≤

ln(cn)
∑

i=0

e−i ·

(cn)1/k
∑

t=1

e−β(k+1)

≤

ln(cn)
∑

i=0

e−i · (cn)1/k · (cn)−1−1/k

≤ 2/(cn) .

The lemma follows from a union bound over then vertices.

We conclude by analyzing the running time and messages size.Note that there areλ = (cn)1/k · ln(cn)
phases, and each phase requiresk rounds (assumingLemma 1), so the total number of rounds is as promised.
We claim that our algorithm can in fact be implemented efficiently also in the CONGEST model, where
messages must be of size at mostO(log n) bits. This follows since at every round, every vertex can sort the
valuesmi it has so far, and send to its neighbors only the top two from its list. This is because the values
⌊mi⌋ determine the remaining range the message ofvi needs to be forwarded to, and clustering decisions
are based only on the largest two values, so the third and onward values inv’s list will not be used by any
other vertex.

2.1 Improved Number of Blocks

Here we show how to improve the bound on the number of colors toO(k · n1/k), and prove the following.

Theorem 2. For any unweighted graphG = (V,E) onn vertices, and parameters1 ≤ k ≤ lnn, 5 < c, our
randomized distributed algorithm computes, with probability at least1− 5/c, a strong(2k − 2, 4k(cn)1/k)
network decomposition ofG. The number of rounds required isO(k2(cn)1/k), and each message consists
ofO(1) words.

The main difference from the previous construction of is that the parameterβ of the exponential dis-
tribution will change at certain points. There will belnn stages, each stage consists of a certain number
of phases in which we use the same value ofβ. The first stage lastss0 = 2(cn)1/k phases in which we
useβ0 = ln(cn)/k. The next stage lastss1 = 2(cn/e)1/k phases, in which we useβ1 = ln(cn/e)/k. In
general, thei-th stage lastssi = 2(cn/ei)1/k phases, and we useβi = ln(cn/ei)/k in these phases. For
0 ≤ i ≤ lnn, denote byJi the set of phases in thei-th stage, that is,Ji = {

∑i−1
j=0(sj) + 1, . . . ,

∑i
j=0 sj}.

The total number of phases, which bounds the number of colorsneeded, is thus

lnn
∑

i=0

si = 2

lnn
∑

i=0

(cn/ei)1/k ≤ 2(cn)1/k
∞
∑

i=0

e−i/k ≤ 4k(cn)1/k .

The strong diameter bound ofLemma 4holds regardless of whichβ we use, as long as an analogue of
Lemma 1holds. Decreasing the parameterβ of the exponential distribution increases the probabilitythat
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a vertex joins a block (so we need less blocks). However, the radius of blocks tend to increase asβ gets
smaller. The following claim implies that the graph is exhausted with high probability.

Claim 8. For any vertexy ∈ V , 0 ≤ i ≤ lnn, andt ∈ Ji,

Pr[y ∈ Gt] ≤ e−2i . (5)

Proof. In order to be included inGt, y must not be selected to a block in any phase of any of the stages
0, 1, . . . , i − 1. By Lemma 5, the probability thaty did not join a block in a certain phase of stagej is at
most(1 − e−βj) (even conditioning on anything that happened in previous phases), thus the probability it
survived until stagei is at most

i−1
∏

j=0

(1− e−βj )sj =

i−1
∏

j=0

(

1−
(cn

ej

)−1/k
)2(cn/ej)1/k

≤

i−1
∏

j=0

e−2 = e−2i .

The claim implies (by the union bound), that with probability at least1 − 1/n, there are no remaining
vertices after stagelnn. It remains to prove an analogue ofLemma 1, and argue that with probability at
least1− 4/c, none of the eventsEv took place. We calculate,

Pr[Ev] ≤

lnn
∑

i=0

∑

t∈Ji

Pr[r(t)v ≥ k + 1 | v ∈ Gt] · Pr[v ∈ Gt]

≤
lnn
∑

i=0

∑

t∈Ji

e−βi(k+1) · e−2i

=
lnn
∑

i=0

2
(cn

ei

)1/k
·

(

ei

cn

)1+1/k

· e−2i

=
1

n

lnn
∑

i=0

2

c · ei

≤
4

cn
.

So by the union bound, with probability at least1− 4/c, none of eventsEv occurred, as desired.

2.2 High Radius Regime

Note that inTheorem 1andTheorem 2the number of blocks isΩ(log n) for any choice ofk. In the regime
thatk, the parameter governing the radius, is larger thanlnn, we can get fewer thanlnn blocks. Concretely,
by Claim 6 we have that the probability that a vertexy is not in any of the firstλ blocks is at most(1 −
(cn)−1/k)λ ≤ (ln(cn)/k)λ (here we use the estimate1 − e−x ≤ x, which is useful whenx is small). We
would like this probability to be at most1/cn, so that the graph will be empty afterλ phases with probability
at least1− 1/c. To this end, we need

λ =
ln(cn)

ln(k/ ln(cn))
.

In other words, if the number of blocks we want isλ, then we need to takek = (cn)1/λ · ln(cn), exactly the
inverse tradeoff ofTheorem 1.
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Theorem 3. For any unweighted graphG = (V,E) onn vertices, and parameters1 ≤ λ ≤ lnn, c > 3, our
randomized distributed algorithm computes, with probability at least1−3/c, a strong(2(cn)1/λ · ln(cn), λ)
network decomposition ofG. The number of rounds required isλ(cn)1/λ ·ln(cn), and each message consists
ofO(1) words.
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