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Abstract

We study the threshold between avoidable and unavoidable repetitions in infinite
balanced sequences over finite alphabets. The conjecture stated by Rampersad,
Shallit and Vandomme says that the minimal critical exponent of balanced
sequences over the alphabet of size d ≥ 5 equals d−2

d−3 . This conjecture is known
to hold for d ∈ {5, 6, 7, 8, 9, 10}. We refute this conjecture by showing that
the picture is different for bigger alphabets. We prove that critical exponents
of balanced sequences over an alphabet of size d ≥ 11 are lower bounded by
d−1
d−2 and this bound is attained for all even numbers d ≥ 12. According to this
result, we conjecture that the least critical exponent of a balanced sequence over
d letters is d−1

d−2 for all d ≥ 11.
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1. Introduction

The birth of combinatorics on words is linked to the study of repetitions
of factors in infinite words (or sequences) by a Norwegian mathematician Axel
Thue in 1906 [31]. He answered affirmatively the following two questions: Is
there a binary sequence without cubes? Is there a ternary sequence without
squares? In [32] he constructed the famous Thue–Morse sequence which is not
only cube-free, but even overlap-free. Squares, cubes and overlaps are particular
cases of fractional powers. A word w is a fractional power of a word u if an
infinite repetition uuu · · · begins with w. The ratio of lengths of w and the
shortest possible u is the exponent of w. The supremum of the exponents of all
non-empty factors occurring in a sequence u is the critical (or local) exponent
of u. The critical exponent of sequences and related questions of repetition
avoidance has become today a classic area of combinatorics on words.
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Obviously, the larger alphabet the smaller critical exponent can be found
among the sequences over the alphabet. In 1988, Carpi [5] showed that for
every real number α > 1 there exists d and a d-ary pure morphic sequence with
the critical exponent less than α. Krieger and Shallit [19] proved that every real
number greater than 1 is a critical exponent of some sequence.

The search for the minimal critical exponent of infinite sequences over an
alphabet of a fixed size resulted in a conjecture formulated by Dejean [11] in
1972. The conjecture states that the infimum of critical exponents of d-ary
sequences equals:

• 2 for d = 2;

• 7/4 for d = 3;

• 7/5 for d = 4;

• d
d−1 for d ≥ 5.

The conjecture had been proved step by step by many people [11, 24, 23, 21, 6,
10, 27].

The least critical exponent is also studied for particular families of sequences.
Carpi and de Luca [7] found out that the minimal critical exponent of a Stur-

mian sequence is 5+
√
5

2 , reached by the Fibonacci sequence. The least critical
exponent for binary rich sequences was determined recently by Curie, Mol and

Rampersad [9]. The minimal value 2 +
√
2
2 is reached by a complementary

symmetric Rote sequence. Shallit and Shur [29] proved a number of results
connecting factor complexity and critical exponent of sequences. For example,
they established that the Thue-Morse sequence and the twisted Thue-Morse
sequence have, respectively, the minimum and the maximum factor complexity
over all binary overlap-free sequences; the minimal critical exponent of a binary
sequence of factor complexity 2n is 5/2; the set of ternary square-free sequences
either has no sequence of minimum complexity, or the minimum is reached by
the ternary Thue sequence.

For some types of sequences, formulae for computation of the critical ex-
ponent are known. Blondin-Massé et al. [20] computed the critical exponent
for generalized Thue-Morse sequences. The critical exponent of complementary
symmetric Rote sequences is computed in [15]. Justin and Pirillo [17] gave a for-
mula for the critical exponent of standard episturmian sequences which are fixed
by a primitive morphism. Krieger [18] provided an algorithm to compute the
critical exponent for sequences that are fixed points of non-erasing morphisms.

In this paper we focus on the least critical exponent of balanced sequences.
Let us recall that a sequence over a finite alphabet is balanced if, for any two of
its factors u and v of the same length, the number of occurrences of each letter
in u and v differs by at most 1. Over a binary alphabet, aperiodic balanced se-
quences coincide with Sturmian sequences, as shown by Morse and Hedlund [22].
Hubert [16] provided a uniform construction of all d-ary aperiodic recurrent bal-
anced sequences from Sturmian sequences. Recently, Rampersad, Shallit and
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Vandomme [26] found balanced sequences with the least critical exponent over
alphabets of size 3 and 4 and also conjectured that the minimal critical ex-
ponent of balanced sequences over a d-ary alphabet with d ≥ 5 is d−2

d−3 . For
d ≤ 10, they defined the candidate sequences xd, obtained from Sturmian se-
quences with quadratic slope, to reach this minimum. In [12], an algorithm for
computing the critical exponent of balanced sequences of this type is deduced.
The conjecture of Rampersad, Shallit and Vandomme was confirmed for d ≤ 8
in [2, 3] and for d ∈ {9, 10} in [12].

In this paper, we first show that for balanced sequences over a d-ary alphabet
with d ≥ 11, the critical exponent is greater than or equal to d−1

d−2 . Then for
every even d ≥ 12, we find a d-ary balanced sequence xd having the critical
exponent d−1

d−2 . Again, each sequence xd is derived from a Sturmian sequence
with a quadratic slope. In particular, for d ≥ 14 this Sturmian sequence is the
Fibonacci sequence.

As d−1
d−2 <

d−2
d−3 , our result refutes the conjecture by Rampersad, Shallit and

Vandomme. We state as a new conjecture that the minimal critical exponent
of balanced sequences equals d−1

d−2 for d ≥ 11. Thus it remains to prove this
conjecture for sequences over alphabets of odd size.

2. Preliminaries

An alphabet A is a finite set of symbols called letters. A word over A of
length n is a string u = u0u1 · · ·un−1, where ui ∈ A for all i ∈ {0, 1, . . . , n− 1}.
The length of u is denoted by |u|. The set of all finite words over A together
with the operation of concatenation forms a monoid, denoted A∗. Its neutral
element is the empty word ε and we denote A+ = A∗ \ {ε}. If u = xyz for
some x, y, z ∈ A∗, then x is a prefix of u, z is a suffix of u and y is a factor of
u. To any word u over A with cardinality #A = d, we assign its Parikh vector
~V (u) ∈ Nd defined as (~V (u))a = |u|a for all a ∈ A, where |u|a is the number of
letters a occurring in u.

A sequence over A is an infinite string u = u0u1u2 · · · , where ui ∈ A for all
i ∈ N. The notation AN stands for the set of all sequences over A. We always
denote sequences by bold letters. The shift operator σ maps any sequence
u = u0u1u2 · · · to the sequence σ(u) = u1u2u3 · · · . The frequency of a letter a

in a sequence u is the limit ρa(u) = limn→∞
|u0···un−1|a

n if it exists.
A sequence u is eventually periodic if u = vwww · · · = v(w)ω for some

v ∈ A∗ and w ∈ A+. It is periodic if u = wω. In both cases, the number
|w| is a period of u. We write Per(u) for the minimal period of u. If u is not
eventually periodic, then it is aperiodic. A factor of u = u0u1u2 · · · is a word
y such that y = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N, i ≤ j. The number i is
called an occurrence of the factor y in u. In particular, if i = j, the factor y
is the empty word ε and any index i is its occurrence. If i = 0, the factor y
is a prefix of u. If each factor of u has infinitely many occurrences in u, the
sequence u is recurrent. Moreover, if for each factor the distances between its
consecutive occurrences are bounded, u is uniformly recurrent. In a uniformly
recurrent sequence all letters have frequencies.
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The language L(u) of a sequence u is the set of all its factors. A factor w of
u is right special if wa,wb are in L(u) for at least two distinct letters a, b ∈ A.
A left special factor is defined symmetrically. A factor is bispecial if it is both
left and right special. The factor complexity of a sequence u is the mapping
Cu : N→ N defined by Cu(n) = #{w ∈ L(u) : |w| = n}.

The factor complexity of an aperiodic sequence u satisfies Cu(n) ≥ n+ 1 for
all n ∈ N. The aperiodic sequences with the lowest possible factor complexity
Cu(n) = n + 1 are called Sturmian sequences. Clearly, all Sturmian sequences
are defined over a binary alphabet, e.g., {a, b}.

A sequence u ∈ AN is balanced if for every letter a ∈ A and every pair of
factors u, v ∈ L(u) with |u| = |v|, we have |u|a−|v|a ≤ 1. The class of Sturmian
sequences and the class of aperiodic balanced sequences coincide over a binary
alphabet (see [22]). Every recurrent balanced sequence is uniformly recurrent
(see [12]).

A morphism over A is a mapping ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v)
for all u, v ∈ A∗. Morphisms can be naturally extended to AN by setting
ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · . A fixed point of a morphism ψ is a
sequence u such that ψ(u) = u.

Consider a factor w of a recurrent sequence u = u0u1u2 · · · . Let i < j be
two consecutive occurrences of w in u. Then the word uiui+1 · · ·uj−1 is a return
word to w in u. The set of all return words to w in u is denoted by Ru(w). If
u is uniformly recurrent, the set Ru(w) is finite for each factor w. If k is the
first occurrence of a factor w in u, then the k-th shift of u can be written as a
concatenation σk(u) = rd0rd1rd2 · · · of return words to w. In particular, if w is
a prefix of u, then u = rd0rd1rd2 · · · . The sequence du(w) = d0d1d2 · · · over the
alphabet of cardinality #Ru(w) is called the derived sequence of u to w. The
concept of derived sequences was introduced by Durand [14].

For an arbitrary nonempty word z, let u be the shortest word such that z
is a prefix of the periodic sequence uω. The number |u| is the (minimal) period
of z, and the ratio e = |z|/|u| is the exponent of z, written as e = exp(z). The
critical exponent of an infinite sequence u is defined as

E(u) = sup{exp(z) : z is a non-empty factor of u} .

The critical exponent of a uniformly recurrent sequence1 can be computed from
its bispecial factors and their return words:

Theorem 1 ([13]). Let u be a uniformly recurrent aperiodic sequence. Let
(wn) be a sequence of all bispecial factors of u, ordered by their length. For
every n ∈ N, let vn be a shortest return word to wn in u. Then

E(u) = 1 + sup
n∈N

{
|wn|
|vn|

}
.

1In fact, the same result holds for all aperiodic recurrent sequences. As Theorem 1 is
sufficient for our purposes, we do not prove the more general result here.

4



2.1. Sturmian sequences

Sturmian sequences are a principal tool in the study of balanced sequences
over arbitrary alphabets. In this section we recall the necessary facts about
them.

We recall that Sturmian sequences can be considered as cutting sequences of
straight lines with irrational slopes [22]. The definition is as follows. Consider
the positive quadrant of the coordinate plane and a square grid on it, parallel to
the axes (the axes themselves do not belong to the grid). The intersection of a
straight line with the grid can be encoded as a binary sequence: symbol a (resp.,
b) encodes the intersection with the horizontal (resp., vertical) line of the grid.
Thus, each Sturmian sequence u has an irrational slope θ(u) which is the slope
of the straight line producing u as a cutting sequence. From the definition of the
cutting sequence it is clear that the letter frequencies in a Sturmian sequence
are irrational, and the slope of a Sturmian sequence equals the ratio of these
frequencies.

All Sturmian sequences with the same slope share the same language. Among
them, there is a unique standard sequence, which is the cutting sequence of a
line intersecting the origin. Equivalently, the standard sequence can be defined
by the condition that both sequences au and bu are Sturmian.

Example 2. The most famous standard sequence is the Fibonacci sequence

uf = babbababbabbababbababb · · · ,

defined as the fixed point of the morphism f : b 7→ ba, a 7→ b. Its slope is

ϕ =
√
5−1
2 ≈ 0.618 (the inverse of the golden ratio), the frequencies of a and b

are ϕ2 and ϕ respectively, and the critical exponent of uf is 3 +ϕ, which is the
minimum among Sturmian sequences.

We use the characterization of standard sequences by their directive se-
quences. To introduce them, we define the two morphisms

G =

{
a→ a

b→ ab
and D =

{
a→ ba

b→ b
.

Proposition 3 ([17]). For every standard sequence u there is a uniquely given
directive sequence ∆ = ∆0∆1∆2 · · · ∈ {G,D}N of morphisms and a sequence
(u(n)) of standard sequences such that

u = ∆0∆1 . . .∆n−1

(
u(n)

)
for every n ∈ N .

Both G and D occur in the sequence ∆ infinitely often.

If ∆0 = D, then by Proposition 3 u is the image of a standard sequence
under the morphism D and consequently, b is the most frequent letter in u.
Otherwise, a is the most frequent letter in u. We adopt the convention that
ρb(u) > ρa(u) and thus the directive sequence of u starts with D. Let us write
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this sequence in the run-length encoded form ∆ = Da1Ga2Da3Ga4 · · · , where
all integers an are positive. Then the number θ having the continued fraction

expansion θ = [0, a1, a2, a3, . . .] equals the ratio ρa(u)
ρb(u)

(see [4]) and thus θ = θ(u).

Knowing the coefficients of the continued fraction of the slope of u, one can
find prefixes of u. The more initial coefficients of θ(u) we have, the longer
prefixes of u we can reconstruct. In particular, if the directive sequences of u
starts with Da1 , then u = ba1a · · · .

Example 4. Consider the standard sequence u with the slope θ = [0, 1, 3, 2].
As any sequence of the form G2(w) starts with aab, the following word is a
prefix of u:

DG3D2(aab) = DG3(bbabbab) = D(a3ba3ba4ba3ba4b) =

= bababab bababab babababab bababab babababab.

The convergents to the continued fraction of θ, usually denoted pN
qN

, and their
secondary convergents have a close relation to the return words in a Sturmian
sequence. Recall that the sequences (pN ) and (qN ) both satisfy the recurrence
relation

XN+1 = aN+1XN +XN−1 (1)

with initial conditions p−1 = 1, p0 = 0 and q−1 = 0, q0 = 1. Two consecutive
convergents satisfy pNqN−1 − pN−1qN = (−1)N+1 for every N ∈ N.

Vuillon [33] showed that an infinite recurrent sequence u is Sturmian if and
only if each of its factors has exactly two return words. Moreover, the derived
sequence of a Sturmian sequence to any its factor is also Sturmian.

All bispecial factors of any standard sequence u are its prefixes. So, one of
the return words to a bispecial factor of u is a prefix of u.

Proposition 5 ([15]). Suppose that u is a standard sequence with the slope
θ = [0, a1, a2, a3, . . .] and z is a bispecial factor of u. Let r (resp., s) denote the
return word to z which is (resp., is not) a prefix of u. Then

1. there exists a unique pair (N,m) ∈ N2 with 0 ≤ m < aN+1 such that the
Parikh vectors of r, s, and z are respectively

~V (r) =

(
pN
qN

)
, ~V (s) =

(
mpN + pN−1
mqN + qN−1

)
, ~V (z) = ~V (r) + ~V (s)−

(
1
1

)
;

2. the slope of the derived sequence du(z) is

θ′ = [0, aN+1 −m, aN+2, aN+3, . . .].

Lemma 6 ([13]). Let u be a Sturmian sequence with the slope θ = ρa(u)
ρb(u)

< 1.

Then u contains a factor w such that |w|b = k and |w|a = ` if and only if

(k − 1)θ − 1 < ` < (k + 1)θ + 1 and k, ` ∈ N. (2)
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2.2. Balanced sequences

In 2000 Hubert [16] characterized balanced sequences over alphabets of car-
dinality bigger than 2 in terms of Sturmian sequences, colourings, and constant
gap sequences.

Definition 7. Let u be a sequence over {a, b}, y and y′ be arbitrary sequences.
The colouring2 of u by y and y′ is the sequence v = colour(u,y,y′) obtained
from u by replacing the subsequence of all a’s with y and the subsequence of
all b’s with y′.

Definition 8. A sequence y is a constant gap sequence if for each letter a
occurring in y there is a positive integer denoted by gapy(a) such that the
distance between any consecutive occurrences of a in y is gapy(a).

Obviously, every constant gap sequence y is periodic and Per(y) is the least
common multiple of all numbers gapy(a).

Example 9. The sequence y = (0102)ω is a constant gap sequence because
the distance between consecutive 0’s is always 2, while the distance between
consecutive 1’s (resp., 2’s) is always 4. Its minimal period is Per(y) = 4.

The sequence v = colour(uf , (AB)ω, (0102)ω), where uf is defined in Exam-
ple 2, looks as follows:

uf = babbababbabbababbababbabbababba · · ·
v = 0A10B2A01B02A0B10A2B01A02B0A10B · · ·

Theorem 10 ([16]). A recurrent aperiodic sequence v is balanced if and only if
v = colour(u,y,y′) for some Sturmian sequence u and constant gap sequences
y,y′ over two disjoint alphabets.

Corollary 11. A letter a from y (resp., b from y′) occurs in v = colour(u,y,y′)

with frequency ρa(v) = ρa(u)
gapy(a)

(resp., ρb(v) = ρb(u)
gapy(b)

). In particular, all

frequencies of letters in aperiodic balanced sequences are irrational.

Example 9 (continued). By Theorem 10, the sequence v is balanced. Knowing
the frequencies of letters in uf from Example 2, we can compute the frequencies
of letters in v by Corollary 11; e. g., ρ0(v) = ϕ/2.

Let A,B be two disjoint alphabets. The “discolouration map” π is defined
for any word or sequence over A ∪ B; it replaces all letters from A by a and
all letters from B by b. If v = colour(u,y,y′), where y ∈ AN, y′ ∈ BN, then
π(v) = u and π(v) ∈ L(u) for every v ∈ L(v).

2This operation is also known as shuffling of y and y′ with directive sequence u
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3. Lower Bounds on Critical Exponent

First we prove a simple but useful property.

Lemma 12. Let v be an aperiodic balanced sequence, a be a letter in v. The set
of distances between consecutive occurrences of a in v consists of two consecutive
integers.

Proof. Since the frequency of a in v is irrational by Corollary 11, there should
be at least two different distances between consecutive occurrences of a. Let k
be the minimal such distance. Then v has a factor of length k+1 with two a’s.
By the balance property, each factor of this length contains the letter a, so the
distance between consecutive a’s cannot exceed k+1. Hence the set of distances
is {k, k+1}, as required.

Now we state the main result of this section.

Theorem 13. For each d ≥ 11, there exists no d-ary balanced sequence v with
E(v) < d−1

d−2 .

Let us fix an arbitrary alphabet A with d ≥ 11 letters and introduce the
necessary tools3. Any sequence v ∈ AN with E(v) < d−1

d−2 satisfies the following
“local” properties:

(i) in each factor of v of length d− 1, all letters are distinct;

(ii) any two consecutive occurrences of the same letter in v are followed by
different letters.

Property (i) is obvious. If (ii) fails, then v has a factor abXab, where the word
X does not contain the letter a. Assume X contains b: X = Y bZ. By (i),
|bY b|, |bZab| ≥ d. Then |bX| ≥ 2d − 3, and bX contains only d − 1 distinct
letters. Again by (i), bX has the period d− 1 and thus exp(bX) ≥ 2d−3

d−1 , which
is impossible. Therefore X contains neither of the letters a, b. Then |X| ≤ d−2
by (i), implying

E(v) ≥ exp(abXab) =
|abXab|
|abX|

≥ d+ 2

d
>
d− 1

d− 2
, (3)

which is impossible. Thus, (ii) holds.
Following [30], we refer to the words and sequences satisfying (i) and (ii) as

Pansiot words/sequences. Note that (i) and (ii) imply that a factor of length
d + 1 should contain d distinct letters. As a result, Pansiot words/sequences
satisfy the property

(iii) any two consecutive occurrences of the same letter are at the distance
d− 1, d, or d+ 1.

3The argument below works for d ≥ 4, but since for d ≤ 10 a stronger lower bound is
known [26], only the case d ≥ 11 is of interest.
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A handy tool for studying Pansiot words and sequences is the cylindric
representation introduced in [30]. A Pansiot word/sequence can be viewed as
a rope with knots representing letters. This rope is wound around a cylinder
such that the knots at distance d are placed one under another. A part of a
projection of such a cylinder is drawn in Fig. 1, a. By (iii), the knots labeled by
two consecutive occurrences of the same letter appear on two consecutive winds
of the rope one under another or shifted by one knot (Fig. 1, b). Connecting
consecutive occurrences by line segments (“sticks”), we get three types of sticks:
vertical, left-slanted, and right-slanted (Fig. 1, b); these three types correspond
respectively to the distances d, d+ 1, and d− 1 between the occurrences. The
sticks form d broken lines, one per letter; we call these lines traces of letters.

(a) Word on a cylinder (d = 9)

a b c d e

b a c e d

b c a d e

(b) Sticks and traces (only visible)

Figure 1: Cylindric representation of a Pansiot word.

From (ii), we derive the following property:

(iv) any two subsequent sticks in the cylindric representation of a Pansiot word
(sequence) are distinct.

From (iii) and Lemma 12 we have:

(?) the trace of a letter in the cylindric representation of a balanced Pansiot
sequence contains either no left-slanted sticks or no right-slanted sticks.

(For example, if the cylindric representation of v contains a fragment shown in
Fig. 1, b, then v is not balanced.) We call a letter frequent (in v) if it has no
consecutive occurrences at distance d+1 and rare (in v) if it has no consecutive
occurrences at distance d−1. The following key lemma shows that the distance
d is possible only for one of these two classes of letters.

Lemma 14. In a balanced Pansiot sequence, either the traces of all frequent
letters consist only of right-slanted sticks or the traces of all rare letters consist
only of left-slanted sticks.
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Proof. Let us fix a balanced Pansiot sequence v = v0v1v2 · · · and assume that
the trace of some frequent letter a in v contains a vertical stick (otherwise, there
is nothing to prove). Consider a fragment of the cylindric representation of v
around a fixed vertical stick in the trace of a (Fig. 2, a–d). By (iv), this stick
(the blue one) is surrounded by pairs of crossed slanted sticks (Fig. 2, a). Note
that two vertical sticks cannot have a common knot: this contradicts (?) (Fig. 2,
b). Since a is frequent, two more crossed pairs should be added to the picture
(Fig. 2, c). Next, the traces of the letters c and d contain right-slanted sticks,
so these letters are frequent. Then the trace of c (resp., of d) extends up (resp.,
down) by a vertical stick (Fig. 2, d). Thus we proved the following fact: if, for
some i, vi = vi+d is a frequent letter, then vi−d−1 = vi−1 is a frequent letter
and vi+d+1 = vi+2d+1 is also a frequent letter (these three pairs of equal letters
correspond to three vertical sticks in Fig. 2, d). Thus

(†) there exists p ∈ {0, . . . , d} such that all positions equal to p modulo d+1
are occupied in v by frequent letters and correspond to vertical sticks.

a

(a)

a

(b)

c a d

(c)

c a d

(d)

b

(e)

e b f

(f)

e b f

(g)

Figure 2: Lemma 14: mutual location of vertical sticks in the traces of frequent and rare
letters.

Now assume that the trace of some rare letter b in v contains a vertical stick
(or there is nothing to prove). By the same argument as above, we reconstruct
a fragment of the cylindric representation of v (Fig. 2, e-g). As a result, we get
the following analog of (†):

(‡) there exists q ∈ {0, . . . , d−2} such that all positions equal to q modulo
d−1 are occupied in v by rare letters and correspond to vertical sticks.

It remains to note that (†) and (‡) cannot hold simultaneously. Indeed, if p and
q have the same parity, then some letter should be both frequent and rare in
v, which is impossible (see Fig. 2, b); if p and q are of different parity, then
the cylindric representation of v contains two consecutive vertical sticks, which
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contradicts (ii). But as (†) and (‡) does not hold simultaneously, at least one of
our assumptions about the existence of vertical sticks is false. The statement of
the lemma is immediate from this.

Proof of Theorem 13. Let us take a d-ary aperiodic balanced sequence v and
assume E(v) < d−1

d−2 . Then v is a Pansiot sequence. By Lemma 14, either each

frequent letter in v has frequency 1
d−1 or each rare letter in v has frequency 1

d+1 .
But these frequencies must be irrational by Corollary 11. This contradiction
proves our assumption false.

If the bound of Theorem 13 is tight, then the balanced sequences of minimal
critical exponent should satisfy the following property.

Proposition 15. Let v be a balanced sequence over d ≥ 11 letters such that
E(v) = d−1

d−2 . Then the maximum letter frequency ρ in v satisfies 1
d−1 < ρ <

1
d−2 .

Proof. Every factor of length d − 2 in v contains no repeating letters. Hence
the minimal distance between two occurrences of a letter is d − 2. Assume
that every factor of length d − 1 v contains no repeating letters. Then v is a
Pansiot sequence: it satisfies both (i) and (ii) (the negation of (ii) implies the
inequality (3), contradicting the condition E(v) = d−1

d−2 ). As was shown in the
proof of Theorem 13, there are no aperiodic balanced Pansiot sequences, so our
assumption is false. Therefore, v contains factors of length d − 1, having the
form aXa. By Lemma 12, the distances between consecutive a’s in v are d− 2
and d−1. As the frequency of a is irrational, the inequalities 1

d−1 < ρa(v) < 1
d−2

are strict.

4. Balanced Sequences Reaching the Lower Bound

In this section we show that the lower bound d−1
d−2 is attained for balanced

sequences over a d-ary alphabet with d = 2δ and δ ≥ 6. For each alphabet, the
considered sequence x2δ is the colouring by y = (12 · · · δ)ω and y′ = (1′2′ · · · δ′)ω
of a standard sequence with the slope θ that will be specified later. We treat
the cases δ ≥ 7 and δ = 6 separately, but we begin with the statements that
are common to both cases. By Theorem 1, to prove that E(x2δ) = d−1

d−2 it is
sufficient to show that every bispecial factor w ∈ L(x2δ) and its shortest return

word v satisfy |w||v| ≤
1

2δ−2 .

Let x2δ = colour(u,y,y′). There are only two distinct frequencies of letters

in x2δ, namely, ρa(u)
δ and ρb(u)

δ . By Proposition 15, 1
2δ−1 <

ρb(u)
δ < 1

2δ−2 . This

can be converted into the double inequality 1 − 2
δ < θ < 1 − 1

δ for the slope of

u (recall that θ = ρa(u)
ρb(u)

). Given this restriction, we define the slope to have the

form θ = [0, 1, bδ/2c, . . .]. Such a slope guarantees that x2δ contains no short
factors with the exponent greater than d−1

d−2 , as the following proposition shows.

11



Proposition 16. Suppose that x2δ = colour(u,y,y′), where y = (12 . . . δ)ω,
y′ = (1′2′ · · · δ′)ω, and the slope of the Sturmian sequence u has the form θ =
[0, 1, bδ/2c, . . .]. Then

1. the distance between occurrences of a letter in x2δ is at least 2δ − 2;

2. the distance between occurrences of a length-2 factor, both letters of which
are from y′, in x2δ, is greater than 4δ − 4.

Proof. The given prefix of the continued fraction expansion of θ allows us to
conclude that u is an infinite concatenation of the “blocks” (ba)bδ/2cb and
(ba)bδ/2c+1b (cf. Example 4).

Let us fix an arbitrary letter a and consider a factor in v of minimal length
containing two a’s: v = aXa. Let u = π(v); statement 1 is thus equivalent to
|u| ≥ 2δ − 1. The structure of the sequences y and y′ implies that u contains
δ + 1 occurrences of the letter π(a). Since u has no factor aa, π(a) = a implies
|u| ≥ 2δ+ 1. Now let π(a) = b. Note that the number of b’s in two consecutive
blocks is at least 2bδ/2c+ 2 ≥ δ + 1. Since |u|b = δ + 1, the factor u intersects
at most three blocks in u. In a factor of a block, the number of b’s exceeds
the number of a’s by at most 1. Hence, |u|b − |u|a ≤ 3, yielding |u| ≥ 2δ − 1.
Statement 1 is proved.

Now let v = abXab be a shortest factor in v with the property π(ab) = bb.
Let u = π(v). The structure of y and y′ implies |u|b = cδ+2 for some c ∈ N. The
location of the factors bb in u implies that u = bZb, where Z is a concatenation
of blocks. Statement 2 is equivalent to |Z| > 4δ − 4. We have |Z|b = cδ, while
each block contains either bδ/2c+ 1 or bδ/2c+ 2 b’s. Since δ ≥ 6, the number
of b’s in one block is less than δ while the number of b’s in two blocks is greater
than δ. Hence c ≥ 2. If c = 2, then Z consists of exactly three blocks, implying
|Z|a = |Z|b − 3 = 2δ − 3 and thus |Z| = 4δ − 3. If c > 2, |Z| > 4δ − 4 holds
trivially. Statement 2 is proved.

Let us recall that the length |v| of a return word equals the difference be-
tween two consecutive occurrences of w in x2δ. Furthermore, if an index i is
an occurrence of w in x2δ, then i is an occurrence of π(w) in u. Hence, π(v) is
a concatenation of return words to π(w) in u. Thus if r and s are the return
words to π(w) in u, then

there exist k, ` ∈ N, k + ` ≥ 1 such that |v| = |π(v)| = k|r|+ `|s| . (4)

In the sequel, if π(w) is bispecial, we always assume that r is the prefix return
word to π(w) and s is the non-prefix one.

Of course, not all pairs (k, `) correspond to a concatenation of r and s forming
π(v). The possible combinations are given by factors of the derived sequence of
u to π(w). Formally,(

`
k

)
is the Parikh vector of a factor in du(π(w)). (5)

The simple form of y and y′ implies some evident properties.

12



Lemma 17. Let v be a return word in x2δ to a non-empty factor w such that
π(w) contains both a and b.

1. Both |π(v)|a and |π(v)|b are divisible by δ.

2. If w is a bispecial factor of x2δ, then π(w) is a bispecial factor of u.

Item 2 of Lemma 17 enables us to exploit Proposition 5 on bispecial factors
and return words in Sturmian sequences.

Lemma 18. Let w be a bispecial factor of x2δ such that π(w) contains both
a and b and let θ′ be the slope of the derived sequence of du(π(w)). Then for
every return word v to w in x2δ, there exist k and ` such that

1. k, ` ∈ N, k + ` ≥ 1,

2. k = 0 mod δ, ` = 0 mod δ,

3. θ′(k − 1)− 1 < ` < θ′(k + 1) + 1

and |v| = k|r| + `|s|, where r is the prefix and s the non-prefix return word to
π(w) in u.

Proof. We need to show that k, ` in Equation (4) have also the properties de-
scribed in Items 2 and 3. Let us denote by A the matrix from N2×2 such that
~V (s) and ~V (r) are the first and the second column of A, respectively. Then

~V (π(v)) = A

(
`
k

)
. By Item 1 of Lemma 17, A

(
`
k

)
= δ

(
L
K

)
for some integers

L,K. By Proposition 5, detA = ±1, and thus the inverse matrix A−1 belongs

to Z2×2. Hence

(
`
k

)
= δA−1

(
L
K

)
and Item 2 follows.

Item 3 is a direct consequence of (5) and Lemma 6.

4.1. Balanced sequence over d letters with d ≥ 14, d even

Theorem 19. Let u be the standard sequence with the slope θ = [0, 1, bδ/2c, 1],
δ ≥ 7 be an integer, y = (12 · · · δ)ω, y′ = (1′2′ · · · δ′)ω. Then the balanced
sequence x2δ = colour(u,y,y′) over the alphabet of 2δ letters has the critical
exponent 2δ−1

2δ−2 .

The next proposition is crucial in proving Theorem 19.

Proposition 20. Let w be a bispecial factor of x2δ such that π(w) contains a

and b. Then |w||v| <
1

2δ−2 for every return word v to w in x2δ.

Proof. By Lemma 17, z := π(w) is a bispecial factor in u. As z contains both
a and b, it can be any bispecial factor of u except b. We use Proposition 5
to find the pair (N,m) with m < aN+1 corresponding to z and the slope θ′

of the derived sequence du(z). By the definition of convergents, the pair (1, 0)
corresponds to the factor b. So we need to analyse all pairs (N, 0) for N ≥ 2

and all pairs (1,m) for m ∈ {1, . . . , bδ/2c − 1}. Recall that ϕ =
√
5−1
2 is the

slope of the Fibonacci sequence.

13



• The pair (N, 0), N ≥ 2: By Proposition 5, θ′ = [0, 1] = ϕ.

Let k, ` satisfy Items 1–3 from Lemma 18. Then k = δk′ and ` = δ`′ for
some `′, k′ ∈ N, k′ + `′ ≥ 1. Dividing all parts of Item 3 by δ, we get

ϕk′ − ϕ+ 1

δ
< `′ < ϕk′ +

ϕ+ 1

δ
. (6)

As δ ≥ 7, the left inequality fails for `′ = 0, k′ > 0 and for `′ = 1,
k′ > 1; the right inequality does not hold for `′ = k′ = 1. Hence `′ ≥ 2
and k′ ≥ 3. Then |v| = δk′|r| + δ`′|s| ≥ 3δ|r| + 2δ|s|. By Proposition 5,
|w| = |π(w)| = |r|+ |s| − 2. Thus

|w|
|v|
≤ |r|+ |s| − 2

3δ|r|+ 2δ|s|
<

1

2δ
<

1

2δ − 2
. (7)

• The pair (1,m) with m ∈ {1, . . . , bδ/2c − 1}: Using (1) and Proposi-
tion 5, we get |r| = p1 + q1 = 2, |s| = m(p1 + q1) + p0 + q0 = 2m+ 1 and
θ′ = [0, bδ/2c −m, 1] = 1

bδ/2c−m+ϕ ≤
1

1+ϕ = ϕ.

Let k, ` satisfy Items 1–3 from Lemma 18. Then k = δk′ and ` = δ`′ for
some `′, k′ ∈ N, k′ + `′ ≥ 1. Similar to (6), we get

θ′k′ − θ′ + 1

δ
< `′ < θ′k′ +

θ′ + 1

δ
. (8)

As θ′ > 2
δ , the lefthand part is positive for k′ 6= 0, implying `′ > 0. As

θ′ ≤ ϕ, the right inequality holds only if `′ < k′. Thus if `′ ≥ 2, then

we bound the ratio |w||v| as in (7). It remains to study the case `′ = 1.

Substituting the values of `′ and θ′ into (8), we get the following double
inequality for k′:⌊δ

2

⌋
−m+ϕ−

b δ2c −m+ 1 + ϕ

δ
< k′ <

⌊δ
2

⌋
−m+ϕ+

b δ2c −m+ 1 + ϕ

δ
.

(9)

Since δ ≥ 7 and 1 ≤ m < bδ/2c, we have ϕ > bδ/2c−m+1+ϕ
δ . Hence the

only integer solution of (9) is k′ = bδ/2c − m + 1. The fact that it is

a solution also restricts m through the inequality ϕ + bδ/2c−m+1+ϕ
δ > 1,

which transforms to

m < ϕ(δ + 1) + bδ/2c+ 1− δ . (10)

Estimating the ratio |w|/|v|, we get

|w|
|v|
≤ |r|+ |s| − 2

k′δ|r|+ δ|s|
=

2 + (2m+ 1)− 2

(bδ/2c −m+ 1) · δ · 2 + δ · (2m+ 1)
=

2m+ 1

δ(2bδ/2c+ 3)
.

(11)

To finish the proof, it remains to verify that

2m+ 1

δ(2bδ/2c+ 3)
<

1

2δ − 2
. (12)
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From (10) we have m = 1 for δ = 7 and m ≤ 2 for δ ∈ {8, 9, 10}. So in
all these cases (12) trivially holds. If δ ≥ 11, the right hand side of (10)
satisfies

ϕ(δ + 1) + bδ/2c+ 1− δ ≤ (ϕ− 1
2 )δ + 1 + ϕ < 1

4δ + 1
4 ,

yielding

2m+ 1

δ(2bδ/2c+ 3)
<

2 δ+1
4 + 1

δ(2bδ/2c+ 3)
≤ δ + 3

2δ(δ + 2)
<

1

2δ − 2
.

Proof of Theorem 19. By Theorem 1, it is sufficient to show that |w||v| ≤
1

2δ−2 for

every bispecial factor w of x2δ and every return word v to w in x2δ. If π(w) con-
tains both a and b, the required inequality follows from Proposition 20. If π(w)
contains only one of these letters, the inequality follows from Proposition 16.

Remark 21. The inequalities in Proposition 20 and in Item 2 of Proposition 16
are strict, so the only type of factor of exponent 2δ−1

2δ−2 in x2δ is the repeat of
a single letter at distance 2δ − 2. As Proposition 15 shows, such repeats are
unavoidable in balanced d-ary sequences with the critical exponent d−1

d−2 .

Remark 22. The only step in the proof of Proposition 20 that fails for δ = 6
is the derivation from inequality (6): the case `′ = 1, k′ = 2 becomes possible.
Indeed, for δ = 6, the slope is θ = [0, 1, 3, 1]. By Proposition 5, the Parikh
vectors of the return words r and s to the bispecial factor corresponding to the

pair (7, 0) are ~V (r) =

(
p7
q7

)
=

(
29
37

)
and ~V (s) =

(
p6
q6

)
=

(
18
23

)
. Then

|w|
|v|

=
|r|+ |s| − 2

k′δ|r|+ `′δ|s|
=

66 + 41− 2

2 · 6 · 66 + 1 · 6 · 41
=

105

1038
>

1

10
.

In fact, 1038 is the minimal period of a factor with the exponent > 11
10 .

4.2. Balanced sequence over 12 letters

Theorem 23. Let u be the standard sequence with the slope θ = [0, 1, 3, 2],
y = (123456)ω, y′ = (1′2′3′4′5′6′)ω. Then the critical exponent of the balanced
sequence x12 = colour(u,y,y′) is 11

10 .

We prove the following analog of Proposition 20.

Proposition 24. Let w be a bispecial factor of x12 such that π(w) contains a

and b. Then |w||v| <
1
10 for every return word v to w in x12.

Proof. By Lemma 17, z := π(w) is a bispecial factor in u. As z contains both
a and b, it can be any bispecial factor of u except b. We use Proposition 5 to
find the pair (N,m) with m < aN+1 corresponding to z and the slope θ′ of the
derived sequence du(z). As the pair (1, 0) corresponds to z = b, we need to
analyse all pairs (N, 0) and (N, 1) for N ≥ 2 and the pairs (1, 1) and (1, 2).
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• The pair (N, 0), N ≥ 2: By Proposition 5, θ′ = [0, 2] =
√

2− 1.

Let k, ` satisfy Items 1–3 from Lemma 18. Then k = 6k′ and ` = 6`′ for
some `′, k′ ∈ N, k′ + `′ ≥ 1. Dividing all parts of condition 3 by 6, we get

(
√

2− 1)k′ −
√

2

6
< `′ < (

√
2− 1)k′ +

√
2

6
. (13)

We successively obtain `′ ≥ 1 from the left inequality and k′ ≥ 2 from the
right inequality of (13). By Proposition 5, |w| = |π(w)| = |r| + |s| − 2,
|r| = pN +qN , and |s| = pN−1 +qN−1. As (1) implies |r| = aN |s|+pN−2 +
qN−2 > aN |s| = 2|s|, we have

|w|
|v|

=
|r|+ |s| − 2

6k′|r|+ 6`′|s|
≤ |r|+ |s| − 2

12|r|+ 6|s|
≤ |r|+ |s| − 2

10|r|+ 10|s|
<

1

10
.

• The pair (N, 1), N ≥ 2: By Proposition 5, θ′ = [0, 1, 2] = 1√
2
. Similarly

to (13), the pair k′, `′ satisfies

1√
2
k′ − 1 +

√
2

6
√

2
< `′ <

1√
2
k′ +

1 +
√

2

6
√

2
.

From the left inequality, `′ 6= 0 and, moreover, `′ = 1 implies k′ ≤ 1,
contradicting the right inequality. Hence `′ ≥ 2; now k′ ≥ 3 from the
right inequality. Therefore,

|w|
|v|

=
|r|+ |s| − 2

6k′|r|+ 6`′|s|
≤ |r|+ |s| − 2

18|r|+ 12|s|
<

1

10
.

• The pair (1, 1): From (1) and Proposition 5 we have |r| = p1 + q1 = 2,
|s| = p1 + q1 + p0 + q0 = 3 and θ′ = [0, 2] =

√
2− 1. Since θ′ is the same

as in the case (N, 0), N ≥ 2, we have the same estimate

|w|
|v|
≤ |r|+ |s| − 2

12|r|+ 6|s|
=

1

14
<

1

10
.

• The pair (1, 2): By (1) and Proposition 5, |r| = p1 + q1 = 2, |s| =
2(p1 + q1) + p0 + q0 = 5 and θ′ = [0, 1, 2] = 1√

2
. Since θ′ is the same as in

the case (N, 1), N ≥ 2, we have the same estimate

|w|
|v|
≤ |r|+ |s| − 2

18|r|+ 12|s|
=

5

96
<

1

10
.

Proof of Theorem 23. By Theorem 1, it is sufficient to show that |w||v| ≤
1
10 for

every bispecial factor w of x12 and every return word v to w in x12. If π(w) con-
tains both a and b, the required inequality follows from Proposition 24. If π(w)
contains only one of these letters, the inequality follows from Proposition 16.
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5. Conclusion and Open Problems

We have shown that for balanced sequences over a d-ary alphabet, the critical
exponent is greater than or equal to d−1

d−2 for d ≥ 11. In fact, the proved result
is a bit stronger: a balanced d-ary sequence contains a factor of exponent at
least d−1

d−2 (thus in the case E(v) = d−1
d−2 , the supremum is reached). Further,

we have proved this lower bound sharp for all alphabets of even size d ≥ 12
by presenting an explicit construction of balanced sequences with the required
critical exponents. Based on these results, we state a new conjecture, replacing
the conjecture from [26], which fails for d ≥ 11.

Conjecture 25. The minimal critical exponent of a d-ary balanced sequence
with d ≥ 11 equals d−1

d−2 .

This conjecture remains open for alphabets of odd size. As the next step to
set the conjecture, we have found, with the aid of computer search, a balanced
sequence x11 over an 11-letter alphabet with the required critical exponent 11

10 .
The construction is very asymmetric and hard to be found by hand: x11 =
colour(u,y,y′), where θ = [0, 5, 1, 1, 1, 1, 2] and the two constant gap sequences
are y = (12)ω and y′ =

(1′2′3′4′5′6′7′8′1′9′3′2′5′4′7′6′1′8′3′9′5′2′7′4′1′6′3′8′5′9′7′2′1′4′3′6′5′8′7′9′)ω .

We have calculated the critical exponent of the sequence x11 using our computer
program based on the algorithm described in [12]. As the proof is a tedious
version of the proofs from Section 4, we have not included it in the paper.

Besides Conjecture 25, we propose a few questions for further study of the
minimal critical exponents of sequences given by certain natural restrictions.

• A sequence u ∈ AN is k-balanced if
∣∣|u|a − |v|a∣∣ ≤ k for any its factors

u and v of equal length and any letter a. Thus 1-balanced sequences are
exactly balanced sequences; the Thue-Morse sequence, having the minimal
critical exponent among binary sequences, is 2-balanced.

Q1 What is the minimal critical exponent of a d-ary 2-balanced se-
quence?

• A sequence u ∈ AN is symmetric if for any its factor u and any bijec-
tion τ : A → A, u has the factor τ(u). The Thue–Morse sequence, having
the minimal critical exponent among binary sequences, and the Arshon se-
quence [1], having the minimal critical exponent among ternary sequences,
are symmetric.

Q2 What is the minimal critical exponent of a d-ary symmetric sequence?

• Two words are Abelian equivalent if they have equal Parikh vectors. Re-
placing equality in the notion of a power with Abelian equivalence, Abelian
powers, Abelian exponents and Abelian critical exponents are defined.
There exist sequences with Abelian critical exponent arbitrarily close to
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1 [8], but for no alphabet size d the minimal Abelian critical exponent of
a d-ary sequence is known; see [28, 25] for the best known lower bounds.

Q3 What is the minimal Abelian critical exponent of a d-ary balanced
sequence?
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[4] Berstel, J., Séébold, P., 2002. Sturmian words, in: Lothaire, M. (Ed.),
Algebraic Combinatorics on Words. Cambridge University Press. volume 90
of Encyclopedia of Mathematics and Its Applications, pp. 45–110.

[5] Carpi, A., 1988. Multidimensional unrepetitive configurations. Theoret.
Comput. Sci. 56, 233–241.

[6] Carpi, A., 2007. On Dejean’s conjecture over large alphabets. Theoret.
Comput. Sci. 385, 137–151.

[7] Carpi, A., de Luca, A., 2000. Special factors, periodicity, and an application
to Sturmian words. Acta Inf. 36, 983–1006.

[8] Cassaigne, J., Currie, J.D., 1999. Words strongly avoiding fractional pow-
ers. Eur. J. Comb. 20, 725–737.

[9] Currie, J.D., Mol, L., Rampersad, N., 2020. The repetition threshold for
binary rich words. Discret. Math. Theor. Comput. Sci. 22.

18

http://hdl.handle.net/10012/15845


[10] Currie, J.D., Rampersad, N., 2011. A proof of Dejean’s conjecture. Math.
Comp. 80, 1063–1070.
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of generalized Thue-Morse words. Discret. Math. Theor. Comput. Sci. 9.

[21] Mohammad-Noori, M., Currie, J.D., 2007. Dejean’s conjecture and Stur-
mian words. European J. Comb. 28, 876–890.

[22] Morse, M., Hedlund, G.A., 1940. Symbolic dynamics II. Sturmian trajec-
tories. American Journal of Mathematics 62, 1–42.

[23] Moulin-Ollagnier, J., 1992. Proof of Dejean’s conjecture for alphabets with
5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95, 187–205.

[24] Pansiot, J.J., 1984. A propos d’une conjecture de F. Dejean sur les
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