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Abstract

A real-valued set function is (additively) approximately submodular if it satisfies the submodularity
conditions with an additive error. Approximate submodularity arises in many settings, especially in
machine learning, where the function evaluation might not be exact. In this paper we study how close
such approximately submodular functions are to truly submodular functions.

We show that an approximately submodular function defined on a ground set of n elements is O(n2)
pointwise-close to a submodular function. This result also provides an algorithmic tool that can be
used to adapt existing submodular optimization algorithms to approximately submodular functions. To
complement, we show an Ω(

√

n) lower bound on the distance to submodularity.
These results stand in contrast to the case of approximate modularity, where the distance to modu-

larity is a constant, and approximate convexity, where the distance to convexity is logarithmic.

1 Introduction

The study of submodular functions is classical. A real-valued set function is said to be submodular if it
satisfies the so-called “diminishing returns property”, i.e., the incremental value of adding a new element
to the set decreases as the set becomes larger. Submodularity surfaces naturally in many situations and
has turned out to be a key concept in combinatorial optimization. The well-known greedy algorithm for
submodular maximization, owing to its simplicity, has found important applications in many subfields of
computer science including approximation algorithms, machine learning, natural language processing, and
game theory. Submodularity also has profound relationships to both convex and concave functions. See the
books by [Lov83, Fuj05, Sch03] for more details of the connection and applications of these concepts, as well
as the monograph by [Bac13] and the references in [KSG08, KC10] for developments in machine learning
that rely on submodularity.

In this paper we develop and study the notion of approximate submodularity. Informally, a real-valued
set function is approximately submodular if the definition of submodularity is additively relaxed, for example,
the incremental value of adding a new element to the set either decreases, or increases up to a small additive
error, as the set becomes larger.

Motivation. There are many reasons to study approximate submodularity. Firstly, various definitions of
approximately submodular functions have been investigated in the machine learning community. A powerful
notion called submodularity ratio [DK11, KCZ+14], which captures how much more is the value of adding a
large subset compared to the value of adding its individual elements, has been studied to understand why
greedy algorithms perform well even with correlations. Approximate submodularity, where the submodular
inequalities can hold to within an additive error, was considered in [KC10, KSG08] to handle failures and
uncertainties in models; while their definition is analogous to ours, importantly, they also require the function
to be monotone and non-negative.
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The aim of these works is to extend the scope of the standard greedy algorithm and make it more
applicable to real-world settings where the function is not exactly submodular but only weakly satisfies
the submodularity property. Some of these results can be used to find an approximate maximum of a set
function (which is close to submodularity in some sense) only if it is also non-negative and monotonically
increasing. It is less clear how to use them to optimize approximately submodular functions in other ways,
e.g., minimization, maximization under constraints, etc, when non-negativity and monotonicity are not
satisfied.

Other papers dealing with approximate submodularity [HS16, SH18] assume explicitly that the input
set function is to within a multiplicative constant of an (exactly) submodular function. While these pa-
pers provide useful algorithms for such functions, they do not address the basic question of how far are
“approximately submodular” functions to submodularity, the main focus of our work.

Secondly, approximate submodularity is a natural computational and mathematical notion. For example,
approximate submodularity has been studied in property testing [PRR03, SV14], along with related proper-
ties of monotonicity and modularity. In the continuous setting, approximate convexity has been studied in
functional analysis [Cho84], where the stability of a functional equation associated with the convex function
has been investigated by many researchers over the last few decades. In contrast, much less is known about
the properties of approximate submodularity.

The stronger and simpler notion of approximate modularity, where the function satisfies the set additive
equation to an additive approximation, has been studied both in the mathematics and theoretical computer
science communities. A classical result of [KR83] showed that an approximately modular function is constant-
close to a truly modular function; see [BPR13, FFTC17] for recent improvements to the constant. Progress
on approximate modularity might be seen as a first step towards progress on the approximate submodularity
problem. However the latter poses substantial technical challenges and it is unclear how much, if any, of the
machinery developed for approximate modularity can be adapted to the approximate submodularity case.

Our contributions. In this paper we study the concept of approximate submodularity, with the goal of
understanding the following question:

Given a set function that satisfies an approximate submodularity property, how close can it

be to a truly submodular function in the ℓ∞-sense?

Let n be the number of elements in the universe. Recall that a function f : 2[n] → R is defined to be
submodular if it satisfies f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ), for each pairs of sets S, T ⊆ [n]. We relax
those inequalities so that each of them allows a small additive error, and we study upper and lower bounds
on the distance of such approximately submodular functions to their closest submodular functions.

Our main positive result is that if a function satisfies submodularity in an approximate manner, then
it is no more than O(n2)-close to being submodular1. This upper bound is constructive in that it is given
through an algorithmic filter, which returns the value of a (O(n2)-close) submodular function on the generic
set, in time poly(n). This filter can then be used as a black-box by generic submodular algorithms. We
also conduct some experiments with this filter and discuss the results. As for the lower bound, we show
that there is a function that satisfies submodularity approximately but is Ω(

√
n)-far from every submodular

function.
These findings are interesting for two main reasons. First, they show that approximate submodularity,

which is at polynomial distance to submodularity, is very different from approximate modularity, which is at
constant distance to modularity [KR83, FFTC17]. More intriguingly, it is also different from approximate
convexity since if a function is approximately convex, its distance to convexity is only logarithmic [Cho84].
It is to be noted that, even though submodularity is sometimes viewed as a discrete analog of convexity,
when it comes to approximate notions, their properties vastly differ.

Secondly, for approximately submodular functions that do not satisfy the joint conditions of being both
monotone and non-negative, our construction, that creates a submodular function that is point-wise close
to the given function, gives the first optimization technique with any provable guarantee.

1We will later detail the role of the additive error in the closeness bound.
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We also study the distance of approximate submodular functions to submodularity, in the case where the
set of constraints that are guaranteed to hold to within an additive error is restricted to, e.g., diminishing
returns, and “second-order derivatives” constraints.

Overview of techniques. To prove the O(n2) upper bound, we give a filter that is able to transform
the value (at an arbitrary set) of an approximately submodular function into the value of a submodular
function at that same set. The function is not created explicitly beforehand (such an approach would take
exponential time) but instead is defined incrementally and can be very efficiently computed as queries are
presented to the filter. The filter can then be used to seamlessly apply algorithms for submodular functions
to approximately submodular functions.

The lower bound is the most technically involved of our results. It is based on three steps. First, we obtain
a general lower bound on the distance to submodularity for a class of “block”-functions. Then, we propose an
approximately submodular function that maximizes this lower bound on the distance to submodularity. We
end up with a lower bound of Ω(

√
n) on the distance to submodularity of functions that are approximately

submodular.

Other notions. We relate our notion to other existing notions of approximate submodularity.
Marginal gain. Exact submodularity can equivalently be defined in terms of diminishing marginal gains.

In Section 6, we consider the ǫ-approximate marginal gain property. We observe that the algorithmic filter
in the main body of the paper, and its additive O(ǫn2) approximation, directly carry over to the case
of ǫ-approximate marginal gain. We also give a lower bound on the distance of functions satisfying the
ǫ-approximate marginal gain property.

Submodularity ratio [DK11]. Submodularity ratio and approximate submodularity are very different, and
seem to be unrelated notions. Indeed, consider the following examples.

Let f : [2] → R be such that f(∅) = 0, f({1}) = f({2}) = ǫ−2−ǫ−1 and f({1, 2}) = 2ǫ−2, for a small ǫ > 0.
Then, the submodularity ratio of f is 1 − ǫ. (Recall that the submodularity ratio of submodular functions
is at least 1. Thus, in terms of submodularity ratio, f is as close to submodularity as a non-submodular
function can be.) On the other hand, the distance of f to submodularity according to our definition (i.e.,
its additive distance to submodularity) is Ω(1/ǫ), i.e., it is very large. Conversely, let f : [2] → R be s.t.
f(∅) = f({1}) = f({2}) = 0, f({1, 2}) = ǫ. Then, the submodularity ratio of f is 0 (i.e., it is as bad as
possible) but f is at ℓ∞ distance at most ǫ from submodularity (i.e., it is close). Tightening the relationship
for special cases looks intriguing.

Horel–Singer notion [HS16]. If f satisfies the Horel–Singer property with factor (1+ ǫ), it is easy to show
that f is O(ǫmaxS |f(S)|)-approximately submodular; no better bound is possible, in general.

Roadmap. In Section 2, we discuss related work. In Section 3 we introduce the notation. In Section 4, we
provide our algorithmic filter, which can also be used to upper bound the distance to submodularity of ap-
proximately submodular functions. In Section 5, we prove our lower bound on the distance to submodularity
of functions that are approximately submodular. In Section 6 we consider different classes of constraints. In
Section 7, we detail the experimental results we obtained through our algorithmic filter.

2 Related work

Approximate notions of submodularity have recently been studied in cases where the diversity, or valuation,
measures are themselves being estimated from the data, and hence the submodularity constraints hold only
approximately. While modeling the effectiveness of greedy feature selection, [DK11] defined an approximate
version of submodularity that characterizes the multiplicative factor of incremental gain obtained by adding
k items, versus their union, to a ground set. Additively approximate submodular functions were used
by [KSG08, KC10] to model sensor placements. Motivated by the robustness of welfare guarantees, [RTV17]
relax the typical assumption of submodularity on valuation functions to one where they are only pointwise
multiplicatively close to submodular functions.

Our additive definition is aligned with the notion of an approximately convex function, defined first
by [HU52] as part of the study of stability of functional equations. Approximate convex functions areO(log n)-
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close to convex functions, where the domain is R
n [HU52, Cho84]. Unfortunately, the proof techniques for

showing closeness to convexity depend heavily on the fact that the function domain itself is either a Banach
space or convex. Belloni et al. [BLNR15] studied methods to optimize such functions using random walk-
based techniques.

The work of [KR83] showed that an approximately modular function is 44.5-close to a modular function,
using inequalities created via a “split and merge” strategy; this constant was improved to 35 by [BPR13].
Recently, these bounds were improved by [FFTC17] to 12.65, using a number of novel ideas including some
from [CDDK15]. Unfortunately, the strategies in [KR83, CDDK15, BPR13, FFTC17] depend crucially on
the two-sided nature of the approximate modular inequalities (i.e., the fact that one can lower and upper
bound f(A)+ f(B) in terms of f(A∪B) + f(A∩B) plus some additive error) and seem hard to be adapted
to the submodular setting.

Seshadri and Vondrak [SV14] studied the testability of submodularity property in terms of the number
of queries needed to decide whether the function be modified on a small fraction of the inputs to make it
submodular; such a definition is different from the multiplicative or additive definitions mentioned above.
Goemans et al. [GHIM09] and Balcan and Harvey [BH11] gave sampling based algorithms to learn submod-
ular function to a multiplicative factor. In the approximate modularity case, [CDDK15] and [FFTC17] give
randomized and deterministic algorithms respectively for learning the closest modular function via queries.

3 Preliminaries

Let [n] = {1, . . . , n}. We will denote subsets of [n] as A,B, S, T, . . .. We consider the set of functions 2[n] → R,
and denote them by f(·), g(·), . . .. We begin by defining the distance between two set functions.

Definition 1 (Distance). The distance between functions f, g : 2[n] → R is defined as maxS⊆[n] |f(S)−g(S)|.

Recall that a set function is submodular if, for each A,B ⊆ [n], it holds that [Sch03] f(A)+f(B) ≥ f(A∪
B) + f(A ∩ B). Formally, there are three equivalent natural ways of defining submodular functions [Sch03].

Each of them asks for the submodular rule to be satisfied on some class C ⊆
(
2[n]

2

)
of pairs of sets:

(i) The full constraints set: Cfull = {{A,B} | min (|A|, |B|) ≥ |A ∩B|+ 1}, e.g., f(A)+f(B) ≥ f(A∪B)+
f(A ∩B), for each A 6⊆ B 6⊆ A.

(ii) The diminishing returns constraints set: Cdimin = {{A,B} | min (|A|, |B|) = |A ∩B|+ 1}, e.g., f(A ∪
{c})− f(A) ≥ f(B ∪ {c})− f(B) for each A ⊂ B and for each c 6∈ B.

(iii) The cross-second order derivatives constraints set: Ccross = {{A,B} | |A| = |B| = |A ∩B|+ 1}, e.g.,
f(A ∪ {a1}) + f(A ∪ {a2}) ≥ f(A ∪ {a1, a2}) + f(A), for each A ⊆ [n] and for each {a1, a2} ∈

(
[n]\A

2

)
.

We observe that the three sets of constraints range from the full set Cfull of constraints2 to the smallest set
Ccross of constraints guaranteeing submodularity.3

We introduce the following notion.

Definition 2 (Approximate C-submodularity). We say that a function f : 2[n] → R is ǫ-approximately
C-submodular, if it satisfies the constraints

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B)− ǫ,

for each {A,B} ∈ C.
2All constraints induced by pairs in

(

2
[n]

2

)

\ Cfull are satisfied by any function and we have thus excluded them from the

definition.
3One can show that each set of constraints C that is not a superset of Ccross does not guarantee a finite distance from

submodularity even if all the submodular constraints induced by the pairs in C hold with no error. Thus, Ccross is the unique

minimal set of constraints guaranteeing a finite distance to submodularity.
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The distance of a function f to submodularity is the distance of f to its closest submodular function.
A function f is α-far from submodularity if its distance to submodularity is at least α, and is α-close to
submodularity otherwise. Note that the ratio of the distance of f to submodularity and ǫ remains invariant
under scaling. Hence, by scaling, we can take ǫ = 1 without loss of generality; when convenient, we refer to
a 1-approximately C-submodular function as simply approximately submodular.

For x ∈ {full, dimin, cross}, we use ǫx = ǫx(f) to denote the minimum ǫ ≥ 0 for which the function
f : 2[n] → R is ǫ-approximately Cx-submodular.

Clearly, for any function f it holds ǫfull ≥ ǫdimin ≥ ǫcross, since Ccross ⊆ Cdimin ⊆ Cfull.

4 The upper bound

We show that approximately Ccross-submodular functions are O(n2)-close to submodular functions.

Theorem 3. For any ǫ-approximately Ccross-submodular function, there is a submodular function at distance
at most (1/8) · ⌊n2/2⌋ · ǫ.

Given an ǫ-approximately submodular function f : 2[n] → R, we define the function gf,ǫ : 2
[n] → R,

gf,ǫ(S) = f(S) + ǫ ·
(
1

8

⌈
n2

2

⌉

− 1

2

(

|S| − n

2

)2
)

.

We will prove Theorem 3 by showing that gf,ǫ is a submodular function at distance at most ǫ · n2/16 from
f . We begin by bounding the distance to f .

Lemma 4. For each S ⊆ [n], it holds |f(S)− gf,ǫ(S)| ≤ ǫ · (1/8) ·
⌊
n2/2

⌋
≤ ǫ · n2/16.

Proof. We have

f(S)− gf,ǫ(S) ≤ ǫ

(
1

2

(n

2

)2

− n2 + [n is odd]

16

)

= ǫ

(
n2 − [n is odd]

16

)

=
ǫ

8

⌊
n2

2

⌋

,

and

f(S)− gf,ǫ(S) ≥ ǫ

(

1

2

(
[n is odd]

2

)2

− n2 + [n is odd]

16

)

= ǫ

(
[n is odd]− n2

16

)

= − ǫ

8

⌊
n2

2

⌋

.

It follows that |f(S)− gf,ǫ(S)| ≤ ǫ · (1/8) ·
⌊
n2/2

⌋
≤ ǫ · n2/16.

We next prove that if f is ǫ-approximately Ccross-submodular, then the function gf,ǫ is submodular.

Lemma 5. If f is ǫ-approximately Ccross-submodular, then the function gf,ǫ is submodular.

Proof. To prove the submodularity of gf,ǫ, it is sufficient to prove that for each pairs of sets A,B, such that
there exists c satisfying c = |A| = |B|, |A ∩ B| = c − 1 and |A ∪ B| = c + 1, it holds gf,ǫ(A) + gf,ǫ(B) ≥
gf,ǫ(A ∩ B) + gf,ǫ(A ∪ B). That is, it is sufficient to prove that the Ccross constraints — the second-order
derivatives constraints — are satisfied [Sch03]. By the ǫ-approximate Ccross-submodularity of f , we have
f(A) + f(B)− f(A ∩B)− f(A ∪B) ≥ −ǫ. Then, using the definition of gf,ǫ, we have

gf,ǫ(A) + gf,ǫ(B)− gf,ǫ(A ∩B)− gf,ǫ(A ∪B)

= f(A) + f(B)− f(A ∩B)− f(A ∪B)− ǫ

2
·
(

(c− n

2
)2 + (c− n

2
)2 − (c− 1− n

2
)2 − (c+ 1− n

2
)2
)

≥ −ǫ− ǫ

2
·
(

2(c− n

2
)2 − (c− 1− n

2
)2 − (c+ 1− n

2
)2
)

= −ǫ− ǫ

2
·
(

2c2 − (c− 1)2 − (c+ 1)2 − n(2c− (c+ 1)− (c− 1))
)

= −ǫ+ ǫ = 0.

Thus, the function gf,ǫ is submodular.
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Notice that through the use of the filter gf,ǫ, we can adapt any algorithm operating on submodular
functions to work with the function f : whenever the algorithm asks for the value associated to the generic
set S, we query f(S) and return gf,ǫ(S) according to its definition.

For instance, we could obtain in polynomial time an
(
ǫ · n2/16

)
-additive approximation of the minimum

value of an ǫ-approximately submodular function f , by running any of the classical algorithms [Cun85,
GLS81] for submodular minimization on the filter gf,ǫ. Or, assuming that f is uniformly larger than ǫ ·n2/4
(i.e., f(S) ≥ ǫ · n2/4, ∀S), one can find the set S whose value O(1)-multiplicatively-approximates the
maximum value of f , by using, e.g., [BFNS15] on gf,ǫ.

We point out that [IB12, Lemma 3.1, Lemma 3.2] can be used to show an O(n2 · ǫdimin) upper bound on
the distance to submodularity. Since ǫcross ≤ ǫdimin, our upper bound of O(n2 · ǫcross) is never worse. In fact,

there are simple functions for which ǫcross ≤ ǫdimin

n−1 ; for these functions, our bound is stronger by a factor Θ(n).

Take, for instance, f(A) = |A|2. The function f has ǫcross = 2; indeed, the generic cross-derivative constraint
reduces to 2(|A|+1)2 ≥ (|A|+2)2 + |A|2 − ǫcross, so that ǫcross = 2 = (|A|+2)2 + |A|2 − 2(|A|+1)2. On the
other hand, for the same f , ǫdimin ≥ 2n−2; indeed, the diminishing returns constraint for A = ∅, B = [n−1]
and c = n, reduces to 1 + (n− 1)2 ≥ n2 + 0− ǫ′, entailing ǫ′ ≥ 2n− 2.

5 A lower bound

In this section we present a lower bound on the distance to submodularity of approximately Cfull-submodular.
By Ccross ⊆ Cdimin ⊆ Cfull, our lower bound directly carries over to the other two sets of constraints (in
Section 6, we present stronger lower bounds for these other sets of approximate submodularity constraints.)
Without loss of generality, we assume ǫ = 1.

The main technical novelty here is a lower bound on the distance to submodularity of a special class of
functions that are based on a partition of the underlying set of items.

The first construction, which mostly serves illustrative purposes, is easy to state. Consider a partition
[n] = S1 ∪ · · · ∪ S√

n, where, say, |Si| =
√
n and the function f(S) = log2

(
maxi∈[

√
n] |S ∩ Si|

)
, for |S| ≥ 1

and f(∅) = 0. It is not hard to show that the function f is approximately submodular — our main technical
lemma entails that this f is Ω(logn)-far from any submodular function.

Our strongest construction is based on a generalization of the proof that the above function is Ω(logn)-far
from any submodular function. Here is a brief overview. First, we show a general statement (Lemma 7) that
can be used to lower bound the distance to submodularity of an arbitrary “block” function, i.e., a function
whose value on a set S depends on the sizes of the intersections of S with the parts of a partition of the
ground set [n]. Next, we propose a specific partition into k parts, and a specific function fk (Definition 9)
that (i) is approximately submodular (Lemma 10), and that (ii) pushes the lower bound on the distance
given by Lemma 7 to

√

n/8−O(1) (Lemma 11).
Before delving into the proofs, we give a brief intuition on the function fk. This function is chosen to be

very far from submodularity while still being approximately submodular. Loosely speaking, fk, on part of
its domain, is the sum of two functions that are very far from submodularity: if S is the input set, then the
first function is the maximum of the intersection sizes between S and the blocks4 and the second function is
the number of empty intersections of S and the blocks5. (Let us also mention the following interpretation of
the two functions. Suppose that, for an arbitrary set S, we let the vector xS ∈ R

k contain in its ith position
the size of the intersection of S and the ith block. Then, the first function evaluated at S is equal to the
ℓ∞-norm of xS , while the second function at S is equal to the opposite of the ℓ0-norm of xS , plus a fixed
term.)

4This function can be easily shown to be far from submodularity on the full domain. Pick two blocks of sizes c and d where

2 ≤ c ≤ d. Let the set S contain half of the first block and half of the second, and let the set T contain the same half of the

first block and the other half of the second. Then, the max-sizes function can be easily shown to be off by c/2 on the {S, T}
submodular constraint.

5For this function, suppose that there are k blocks of size at least 2 each plus possibly some other blocks of size 1. Let S be

composed of one element from each of the k blocks of size at least 2. Let T have the same property but let the two sets satisfy

S ∩ T = ∅. It is easy to observe that the empty-intersections function is off by k on the {S, T} submodular constraint.
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While these two functions are very far from submodularity on their full domain, they are approximately
submodular on a restricted domain: we define the backbone class to contain a set if and only if it inter-
sects each block, bar at most one exception, in at most one element. The two functions above become
approximately submodular on the generic pair {S, T } if S ∪ T belongs to the backbone.

The function fk that we will use to prove the lower bound is (essentially) equal to the average of the two
functions mentioned above, whenever the input set is part of the backbone; for other sets S, fk(S) will be
chosen so to make it easy to prove that each approximately submodular constraint involving S is satisfied.
We show that (i) fk is approximately submodular everywhere and (ii) the constant submodularity error
introduced in the backbone pushes fk to an Ω(

√
n) distance to submodularity.

We begin the technical part of this section by giving a formal definition of block functions:

Definition 6 ((t1, . . . , tk)-block functions). A function f : 2[n] → R is a (t1, . . . , tk)-block function if
there exists a partition of [n] into blocks S1, . . . , Sk, with |Si| = ti for i ∈ [k], and there exists a function
F : {0, 1, . . . , t1} × · · · × {0, 1, . . . , tk} → R such that, for each S ⊆ [n], it holds that

f(S) = F (|S ∩ S1|, . . . , |S ∩ Sk|).

We say that F is the cardinality representation of f .

We introduce a shortcut to represent the value of a cardinality representation: we will use F (

i−1
︷ ︸︸ ︷

1, . . . , 1, ti,

k−i
︷ ︸︸ ︷

0, . . . , 0),
to denote the value of F with an input sequence composed of i− 1 leading 1’s, k− i trailing 0’s, and a single

ti in between; we will also use F (

k
︷ ︸︸ ︷

1, . . . , 1) and F (

k
︷ ︸︸ ︷

0, . . . , 0), to denote the values of F with, respectively, an
input composed of k distinct 1’s, and an input composed of k distinct 0’s.

Lemma 7. Let f : 2[
∑

k
i=1 ti] → R be a (t1, . . . , tk)-block function, and let F be its cardinality representation.

Then, for each submodular function g : 2[
∑k

i=1 ti] → R, there exists S ⊆
[
∑k

i=1 ti

]

such that |f(S)− g(S)| ≥
ν(f), where

ν(f) =

k∏

j=1

tj−1
tj

2
· F (

k
︷ ︸︸ ︷

0, ... , 0) +

k∑

i=1








k∏

j=i+1

tj−1
tj

2 · ti
· F (

i−1
︷ ︸︸ ︷

1, ... , 1, ti,

k−i
︷ ︸︸ ︷

0, ... , 0)








− 1

2
· F (

k
︷ ︸︸ ︷

1, ... , 1).

Proof. Given any submodular function g : 2[n] → R, let X = X(g) = maxS⊆[n] |f(S)− g(S)|. Therefore, for
each S ⊆ [n], we have −X ≤ f(S) − g(S) ≤ X. We will prove that X ≥ ν(f); the main claim will then
follow.

Suppose that the blocks of the (t1, . . . , tk)-block function f are S1, . . . , Sk, with |Si| = ti for i ∈ [k].
Define the following sums for s = 1, . . . , k:

σs =
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is∈Ss
︸ ︷︷ ︸

s

g ({i1, i2, . . . , is}) ,

and let σ0 = g(∅). Observe that

σk ≤
∑

i1∈S1

∑

i2∈S2

· · ·
∑

ik∈Sk

(f ({i1, i2, . . . , ik}) +X)

=
∑

i1∈S1

∑

i2∈S2

· · ·
∑

ik∈Sk



F (

k
︷ ︸︸ ︷

1, . . . , 1) +X



 =





k∏

j=1

tj



 ·



F (

k
︷ ︸︸ ︷

1, . . . , 1) +X



 ,
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where the inequality follows from the definition of X , and the last equation follows from |Si| = ti for i ∈ [k].
For each s ≥ 1, σs satisfies:

σs =
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is−1∈Ss−1

(
∑

is∈Ss

g ({i1, i2, . . . , is−1} ∪ {is})
)

≥
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is−1∈Ss−1

(g ({i1, i2, . . . , is−1} ∪ Ss) + (ts − 1) · g ({i1, i2, . . . , is−1}))

≥
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is−1∈Ss−1

(f ({i1, i2, . . . , is−1} ∪ Ss)−X + (ts − 1) · g ({i1, i2, . . . , is−1}))

=
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is−1∈Ss−1



F (

s−1
︷ ︸︸ ︷

1, . . . , 1, ts,

k−s
︷ ︸︸ ︷

0, . . . , 0)−X + (ts − 1) · g ({i1, i2, . . . , is−1})





=





s−1∏

j=1

tj



 ·



F (

s−1
︷ ︸︸ ︷

1, . . . , 1, ts,

k−s
︷ ︸︸ ︷

0, . . . , 0)−X



+ (ts − 1)
∑

i1∈S1

∑

i2∈S2

· · ·
∑

is−1∈Ss−1

g ({i1, i2, . . . , is−1})

=





s−1∏

j=1

tj



 ·



F (

s−1
︷ ︸︸ ︷

1, . . . , 1, ts,

k−s
︷ ︸︸ ︷

0, . . . , 0)−X



+ (ts − 1)σs−1.

By expanding this sum we get:

σk ≥
k−1∑

i=0









i∏

j=1

tj









k∏

j=i+2

(tj − 1)



 ·



F (

i
︷ ︸︸ ︷

1, . . . , 1, ti+1,

k−1−i
︷ ︸︸ ︷

0, . . . , 0)−X







+





k∏

j=1

(tj − 1)



 g(∅)

≥
k−1∑

i=0









i∏

j=1

tj









k∏

j=i+2

(tj − 1)



 ·



F (

i
︷ ︸︸ ︷

1, . . . , 1, ti+1,

k−1−i
︷ ︸︸ ︷

0, . . . , 0)−X









+





t∏

j=1

(tj − 1)







F (

k
︷ ︸︸ ︷

0, . . . , 0)−X



 .

By chaining this lower bound on σk with the previously proven upper bound on σk, we get:





k∏

j=1

tj







F (

k
︷ ︸︸ ︷

1, . . . , 1) +X



 ≥
k−1∑

i=0









i∏

j=1

tj









k∏

j=i+2

(tj − 1)







F (

i
︷ ︸︸ ︷

1, . . . , 1, ti+1,

k−1−i
︷ ︸︸ ︷

0, . . . , 0)−X







+





k∏

j=1

(tj − 1)







F (

k
︷ ︸︸ ︷

0, . . . , 0)−X





F (

k
︷ ︸︸ ︷

1, . . . , 1) +X ≥
k−1∑

i=0








1

ti+1
·

k∏

j=i+2

(

1− 1

tj

)


 ·



F (

i
︷ ︸︸ ︷

1, . . . , 1, ki+1,

t−1−i
︷ ︸︸ ︷

0, . . . , 0)−X







+





k∏

j=1

(

1− 1

tj

)






F (

k
︷ ︸︸ ︷

0, . . . , 0)−X



 .
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We move the X terms to the LHS, and the F (1, . . . , 1) term to the RHS, to get:



1 +
k∏

j=1

(

1− 1

tj

)

+
k−1∑

i=0




1

ti+1
·

k∏

j=i+2

(

1− 1

tj

)






 ·X ≥

k−1∑

i=0








1

ti+1
·

k∏

j=i+2

(

1− 1

tj

)


 · F (

i
︷ ︸︸ ︷

1, . . . , 1, ti+1,

k−1−i
︷ ︸︸ ︷

0, . . . , 0)





+





k∏

j=1

(

1− 1

tj

)


F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1).

Now, if we define pj = 1 − 1
tj
, we have 0 ≤ pj ≤ 1. Suppose that we flip the mutually independent coins

Ck, Ck−1, . . . , C1 in order, stopping when we either get tails, or right after having flipped coin C1. Let pj
be the heads probability of coin Cj . Then, the probability of stopping right after having flipped the coin of

index i, 2 ≤ i ≤ k, is equal to (1− pi) ·
∏k

j=i+1 pj . The probability of stopping after having flipped the coin

of index 1 is, instead, (1− p1) ·
∏k

j=2 pj +
∏k

j=1 pj . Since these events partition the probability space, we
have

k∏

j=1

pj +

k∑

i=1



(1− pi) ·
k∏

j=i+1

pj



 = 1.

Going back to our inequality, we then have

k∏

j=1

(

1− 1

tj

)

+

k−1∑

i=0




1

ti+1
·

k∏

j=i+2

(

1− 1

tj

)


 = 1.

The inequality then reduces to

2X ≥
k−1∑

i=0








1

ti+1
·

k∏

j=i+2

(

1− 1

tj

)


 · F (

i
︷ ︸︸ ︷

1, . . . , 1, ti+1,

k−1−i
︷ ︸︸ ︷

0, . . . , 0)





+





k∏

j=1

(

1− 1

tj

)


F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1),

and the proof is concluded.

We observe that Lemma 7 directly gives a lower bound of Ω(logn) on the distance to submodularity of
the (

√
n, . . . ,

√
n)-block function f(S) = log2

(
maxi∈[

√
n] |S ∩ Si|

)
for |S| ≥ 1, and f(∅) = 0.

Our main approximately Cfull-submodular block function fk, instead, will be a function over k blocks of
sizes 2, 3, . . . , k+1. We will prove that its distance to submodularity is at least ν(fk) =

k
4 . As our next step,

we consider a special case of Lemma 7 dealing with (2, 3, . . . , k + 1)-block functions.

Corollary 8. Let f : 2[nk] → R with nk = (k+3)k
2 be a (2, 3, . . . , k + 1)-block function and let F be its

cardinality representation. Then, for each submodular function g : 2[nk] → R, there exists S ⊆ [nk] such that
|f(S)− g(S)| ≥ ν(f), where

ν(f) =
F (

k
︷ ︸︸ ︷

0, . . . , 0) +
∑k

i=1 F (

i−1
︷ ︸︸ ︷

1, . . . , 1, i+ 1,

k−i
︷ ︸︸ ︷

0, . . . , 0)

2 · (k + 1)
− F (

k
︷ ︸︸ ︷

1, . . . , 1)

2
.

9



Proof. We apply Lemma 7, with ti = i+ 1, for i = 1, . . . , k, to get that

2ν(f) =
k∑

i=1





∏k

j=i+1

(

1− 1
tj

)

ti
· F (

i−1
︷ ︸︸ ︷

1, . . . , 1, ti,

k−i
︷ ︸︸ ︷

0, . . . , 0)



 +





k∏

j=1

(

1− 1

tj

)


F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1)

=

k∑

i=1





∏k
j=i+1

tj−1
tj

ti
· F (

i−1
︷ ︸︸ ︷

1, . . . , 1, ti,

k−i
︷ ︸︸ ︷

0, . . . , 0)



 +





k∏

j=1

tj − 1

tj



F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1).

We now substitute the values of ti and tj , so to get:

2ν(f) =
k∑

i=1





∏k

j=i+1
j

j+1

i+ 1
· F (

i−1
︷ ︸︸ ︷

1, . . . , 1, i+ 1,

k−i
︷ ︸︸ ︷

0, . . . , 0)



+





k∏

j=1

j

j + 1



F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1)

=

k∑

i=1





i+1
k+1

i+ 1
· F (

i−1
︷ ︸︸ ︷

1, . . . , 1, i+ 1,

k−i
︷ ︸︸ ︷

0, . . . , 0)



+
1

k + 1
· F (

k
︷ ︸︸ ︷

0, . . . , 0)− F (

k
︷ ︸︸ ︷

1, . . . , 1).

Thus, finally,

2ν(f) =

∑k

i=1 F (

i−1
︷ ︸︸ ︷

1, . . . , 1, i+ 1,

k−i
︷ ︸︸ ︷

0, . . . , 0) + F (

k
︷ ︸︸ ︷

0, . . . , 0)

k + 1
− F (

k
︷ ︸︸ ︷

1, . . . , 1).

We now describe our approximately submodular block function fk.

Definition 9. Let k ≥ 1 be an integer and let nk = (k+3)k
2 . Consider a partition of [nk] into k pairwise

disjoint blocks S1, . . . , Sk, satisfying |Si| = ti = i + 1 for i = 1, . . . , k. Let the backbone B of the partition
S1, . . . , Sk be the class of sets

B = {S | S ⊆ [nk] and at most one i ∈ [k] satisfies |S ∩ Si| ≥ 2} .

Given S ⊆ [nk], let ZS =
∑k

i=1 [S ∩ Si = ∅], and let MS = maxki=1 |S ∩ Si|. The function fk : 2[nk] → R is
defined to be:

fk(S) =

{
MS+ZS−[S 6=∅]

2 if S ∈ B,
−(k + 2)|S| otherwise.

Observe that fk(S) is a function of the sequence (|S ∩ S1|, |S ∩ S2|, . . . , |S ∩ Sk|): it follows that fk is
a (2, 3, . . . , k + 1)-block function. The non-negative part of fk (i.e., fk restricted to its backbone B) can
be interpreted as the “structure” of the function. We will apply Corollary 8 to that part in order to prove
the lower bound on the distance of fk to submodularity. The negative part of fk is irrelevant for the lower
bound; it was chosen in order to simplify the proof of fk’s approximate submodularity.

Lemma 10. The function fk is approximately Cfull-submodular.

Proof. We aim to prove that, for each {A,B} ⊆ [n], such that A 6⊆ B and B 6⊆ A, it holds fk(A) + fk(B) ≥
fk(A ∪B) + fk(A ∩B)− 1. Observe that, then, A,B 6= ∅ and A ∪B 6= ∅. We consider two cases.

First, we assume that A∪B ∈ B. Then, since for each S ∈ B and for each T ⊆ S we have T ∈ B, it must
be that A,B,A ∩B ∈ B, as well. We now have,

2 · (fk(A) + fk(B)) = MA +MB + ZA + ZB − [A 6= ∅]− [B 6= ∅] = MA +MB + ZA + ZB − 2.

Moreover,
2 · fk(A ∪B) = MA∪B + ZA∪B − [A ∪B 6= ∅] = MA∪B + ZA∪B − 1,
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and
2 · fk(A ∩B) = MA∩B + ZA∩B − [A ∩B 6= ∅].

Thus,

2 · (fk(A ∪B) + fk(A ∩B)) = MA∪B +MA∩B + ZA∪B + ZA∩B − 1− [A ∩B 6= ∅].

Proving that fk(A)+fk(B) ≥ fk(A∪B)+fk(A∩B)−1 is equivalent to proving that 2·(fk(A) + fk(B)) ≥ 2·
(fk(A ∪B) + fk(A ∩B))−2 which, after substituting the values of 2·(fk(A) + fk(B)) and 2·(fk(A ∪B) + fk(A ∩B)),
becomes:

(MA +MB + ZA + ZB − 2) ≥ (MA∪B +MA∩B + ZA∪B + ZA∩B − 1− [A ∩B 6= ∅])− 2,

or, equivalently,

(MA +MB −MA∪B −MA∩B + [A ∩B 6= ∅]) + (ZA + ZB − ZA∪B − ZA∩B + 1) ≥ 0.

We will prove the latter inequality by proving the two inequalities ZA + ZB ≥ ZA∪B + ZA∩B − 1 and
MA +MB ≥ MA∪B +MA∩B − [A ∩B 6= ∅]:

• First, we consider the Z’s inequality. We will show that there exists at most one block Sj where the
equation

[A ∩ Sj = ∅] + [B ∩ Sj = ∅] = [(A ∪B) ∩ Sj = ∅] + [(A ∩B) ∩ Sj = ∅]

does not hold and, in that block, the inequality

[A ∩ Sj = ∅] + [B ∩ Sj = ∅] ≥ [(A ∪B) ∩ Sj = ∅] + [(A ∩B) ∩ Sj = ∅]− 1

must hold. These two observations imply that ZA + ZB ≥ ZA∪B + ZA∩B − 1.

Consider any block Sj . We first prove that if |(A ∪ B) ∩ Sj | ≤ 1, then the equation [A ∩ Sj = ∅] +
[B ∩ Sj = ∅] = [(A ∪B) ∩ Sj = ∅]+ [(A ∩B) ∩ Sj = ∅] holds. If |(A∪B)∩Sj | = 0, then the equation
holds trivially. If |(A ∪ B) ∩ Sj | = 1, then either (i) |(A ∩ B) ∩ Sj | = 1, in which case A ∩ Sj =
B ∩ Sj = (A ∪ B) ∩ Sj = (A ∩B) ∩ Sj , so the equality holds or (ii) |(A ∩B) ∩ Sj| = 0, in which case
{|A ∩ Sj |, |B ∩ Sj |} = {0, 1} = {|(A ∪B) ∩ Sj |, |(A ∩B) ∩ Sj |}, so the equation holds yet again.

Second, we consider the case where |(A ∪B) ∩ Sj | ≥ 2. Observe that by A ∪B ∈ B, there can exist at
most one j ∈ [k] for which the latter inequality holds. For such a j, we have

[A ∩ Sj = ∅] + [B ∩ Sj = ∅] ≥ 0 ≥ [(A ∩B) ∩ Sj = ∅]− 1

= [(A ∪B) ∩ Sj = ∅] + [(A ∩B) ∩ Sj = ∅]− 1.

• Second, we consider the M ’s inequality. Let u be such that |(A ∪ B) ∩ Su| = MA∪B and let i be
such that |(A ∩ B) ∩ Si| = MA∩B. We have that MA∪B = |A ∩ Su| + |B ∩ Su| − |(A ∩ B) ∩ Su| ≤
MA +MB − |(A ∩B) ∩ Su|.
Now, if MA∩B ≥ 2, it must hold i = u by A ∪B ∈ B. Thus, if MA∩B ≥ 2, we have

MA +MB ≥ MA∪B + |(A ∩B) ∩ Su| = MA∪B + |(A ∩B) ∩ Si| = MA∪B +MA∩B.

Otherwise, MA∩B ≤ 1. In this case, we have MA∩B = [A ∩B 6= ∅]. Thus,

MA +MB ≥ MA∪B + |(A ∩B) ∩ Su| ≥ MA∪B = MA∪B +MA∩B − [A ∩B 6= ∅].
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Therefore, the claim has been proved for each A,B such that A ∪B ∈ B.
We next consider the case A ∪ B 6∈ B. Observe that, in general, −(k + 2)|S| ≤ fk(S) ≤ k. Thus,

fk(A) + fk(B) ≥ −2 · (k + 2)max(|A|,|B|). Moreover, fk(A ∩ B) ≤ k and fk(A ∪ B) = −(k + 2)|A∪B| ≤
−(k + 2)max(|A|,|B|)+1. Then,

fk(A) + fk(B) ≥ −2 · (k + 2)max(|A|,|B|)

= −(k + 2)max(|A|,|B|)+1 +
(

(k + 2)max(|A|,|B|)+1 − 2 · (k + 2)max(|A|,|B|)
)

≥ fk(A ∪B) +
(

(k + 2)max(|A|,|B|)+1 − 2 · (k + 2)max(|A|,|B|)
)

= fk(A ∪B) + (k + 2− 2) · (k + 2)max(|A|,|B|)

≥ fk(A ∪B) + k ≥ fk(A ∪B) + fk(A ∩B).

The following Lemma proves the claimed lower bound on the distance to submodularity of fk.

Lemma 11. The distance of fk to submodularity is at least ν(fk) =
k
4 .

Proof. By applying Corollary 8, we obtain that the distance of fk to submodularity is at least:

ν(fk) =
k
2 +

∑k

i=1
(i+1)+(k−i)−1

2

2 · (k + 1)
− 1

2
· 0 =

k
2 +

∑k

i=1
k
2

2 · (k + 1)
=

k · (k + 1)

4 · (k + 1)
=

k

4
.

We then have the lower bound for the submodular case.

Theorem 12. There is an infinite sequence of increasing integers 1 < n1 < n2 < · · · such that, for each
k ≥ 1, there exists an approximately Cfull-submodular function fk : 2[nk] → R whose distance to submodularity
is larger than

√

nk/8− 3/8.

Proof. Given a k ≥ 1, pick the fk of Definition 9. Then, by Lemma 10, fk is approximately Cfull-submodular.

The size of the ground set of fk is equal to nk = (k+3)k
2 . By the AM-GM inequality, we have (k + 3/2)2 >

(k + 3)k. Thus, nk < 1
2 ·
(
k + 3

2

)2
and, therefore,

√
nk

8 < k
4 + 3

8 . By Lemma 11, the distance of fk to

submodularity is at least ν(fk) = k/4, and by the latter inequality ν(fk) >
√

nk

8 − 3
8 .

Note that the lower bound also holds if we restrict the functions to be non-negative. If we define gk as
gk(S) = fk(S) −minT fk(T ), we have that (i) gk is non-negative, that (ii) gk retains the same approximate
submodularity property of fk, and that (iii) gk and fk are at the same distance to submodularity.

6 Lower Bounds for Other Classes of Constraints

In this section, we give lower bounds on the distance to submodularity of functions that are approximately
submodular with various other classes of constraints.

Observe that the polytope of approximately Cfull-submodular functions is contained in the polytope
of approximately Cdimin-submodular functions, which is contained in the polytope of Ccross-submodular
functions.

6.1 An Ω(n) lower bound for approximately Cdimin-submodular functions

In this section we obtain an easy lower bound for the Cdimin-submodular case.

Theorem 13. For each odd n ≥ 1, there exists an approximately Cdimin-submodular function f : 2[n] → R

whose distance to submodularity is at least (n− 1)/8.
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Proof. Let the function f : 2[n] → R be defined as f(S) = max
(
0, |S| − n−1

2

)
, for each S ⊆ [n].

First, consider any {A,B} ∈ Cdimin. Wlog, let a = |A| ≤ |B| = b; then |A∩B| = a−1 and |A∪B| = b+1.
We have,

f(A)− f(A ∩B) = max

(

0, a− n− 1

2

)

−max

(

0, a− 1− n− 1

2

)

≥ 0,

and

f(B)− f(A ∪B) = max

(

0, b− n− 1

2

)

−max

(

0, b+ 1− n− 1

2

)

≥ −1.

Thus, f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) − 1, for each {A,B} ∈ Cdimin. The function f is therefore
approximately Cdimin-submodular.

We will now show that for any submodular function g, there is a subset S ⊆ [n] such that |f(S)−g(S)| ≥
(n− 1)/8. Let A =

[
n−1
2

]
. Then, f(A) + f([n] \A) = 0 + 1 = 1. Moreover, f([n]) + f(∅) = n+1

2 + 0 = n+1
2 .

Thus, for any submodular function g,
∑

S∈{A,[n]\A,[n],∅}
|f(S)− g(S)| ≥

∑

S∈{[n],∅}
(f(S)− g(S))−

∑

S∈{A,[n]\A}
(f(S)− g(S))

= (f([n]) + f(∅)− f(A)− f([n] \A)) + (g(A) + g([n] \A)) − (g([n]) + g(∅))

≥ f([n]) + f(∅)− f(A)− f([n] \A) = n+ 1

2
− 1,

where the last inequality follows from the submodularity of g. Hence, the distance to submodularity of f is
at least 1

4 ·
(
n+1
2 − 1

)
= n−1

8 .

6.2 A Ω(n2) lower bound for approximately Ccross-submodular functions

Finally, we show a lower bound for the Ccross case that matches exactly the upper bound given by our
algorithmic filter.

Theorem 14. For any n ≥ 1, there exists an approximately Ccross-submodular function f : 2[n] → R whose
distance to submodularity is at least (1/8) ·

⌊
n2/2

⌋
≥ (n2 − 1)/16.

Proof. We define f to be:

f(S) =
(n− 2 · |S|)2

8
.

We will first lower bound the distance of f to submodularity. For A = [⌊n/2⌋] , B = [n] \A, we have

f(A) + f(B) =
(n− 2 · ⌊n/2⌋)2 + (n− 2 · ⌈n/2⌉)2

8
=

{
0 if n is even,
1
4 if n is odd.

On the other hand, we have

f(A ∪B) + f(A ∩B) = f([n]) + f(∅) =
2 · n2

8
=

n2

4
.

Thus, (f(A ∪B) + f(A ∩B))− (f(A) + f(B)) = n2−[n is odd]
4 = ν. It follows that, if the maximum additive

absolute change to the values of f is less than ν/4, the resulting function will not be submodular. Thus, f

is at distance at least ν/4 = n2−[n is odd]
16 from submodularity.

Now, consider any {A,B} ∈ Ccross. There must exist a, b 6∈ A ∩ B, a 6= b, such that A = (A ∩ B) ∪ {a}
and B = (A ∩B) ∪ {b}. Let i = |A ∩B|. We then have:

(f(A ∪B) + f(A ∩B))− (f(A) + f(B)) =
(n− 2(i+ 2))2 + (n− 2i)2 − 2(n− 2(i+ 1))2

8
= 1,

thus, f satisfies the approximate Ccross-submodularity condition.
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7 Experiments

In this section we describe the experiments with our filter. We sampled approximately submodular (cut) func-
tions, and compared the results obtained by running maximization algorithms on the original approximately
submodular function f , and on the submodular function gf,ǫ obtained with our filter.

Recall that the standard algorithm for maximizing monotone submodular functions is the greedy algo-
rithm [NW81]. An interesting property of our filter is the following: for any function f , and for any value
of ǫ, the execution of the greedy algorithm on the filtered function gf,ǫ is the same as the execution of the
greedy algorithm on the original function f . Indeed, for each set S and each element x 6∈ S, the quantities
gf,ǫ(S)− f(S) and gf,ǫ(S ∪ {x})− f(S ∪ {x}) are independent of x and hence greedy makes the same choice
for f(·) and gf,ǫ(·) at each step. Hence, in our experiments, we focus on algorithms for non-monotone sub-
modular functions, more specifically, the cut function. Recall that, given an input graph G(V,E), the cut
function cutG(·) is defined as: ∀S ⊆ V, cutG(S) = |E(S, V \ S)|, i.e., the number of edges from S to V \ S in
G.

Local search algorithms. In this setting, our approximate submodular function are chosen as follows:
we sample a graph G from the Erdős–Rényi model with n = 100 nodes and p = 0.5. Then, the function f
is defined as: ∀S ⊆ V, f(S) = cutG(S) + ZS where ZS is a random variable sampled iid from N(µ = 0, σ2);
we considered σ2 ∈ {np/2, np}.

Given access to f(·), the algorithm first estimates ǫ by sampling pairs of sets. The pair {Si, Ti} was
sampled as follows. We first sampled two integers n1 and n2 uniformly independently and uniformly at
random from [n− 1]. Si (resp. Ti) is then created by sampling n1 (resp. n2) elements from the ground set
V without replacement. We then estimate ǫ as ǫ = max (0,maxi [f(Si ∪ Ti) + f(Si ∩ Ti)− f(Si)− f(Ti)]).
Note that the true ǫ can be obtained by taking the maximum over all set pairs. All experiments were done
on a standard i5 desktop.

With this estimated ǫ, the maximization algorithm uses a local search procedure [FMV11] for the function
gf,ǫ. The table below notes the results for σ2 = np/2 and σ2 = np. For each value of σ, for 50 times (each
time, with different random graph and noise realizations), we ran both algorithms. Denote the output set

of local search on f(·) as Sf , and the output set of local search on gf,ǫ(·) as Sg. We calculate the ratio
f(Sg)
f(Sf )

for 50 instantiations of the random graph, and of the noise Z, and then report the minimum, mean, and
standard deviation of the ratios.

Local search using the filtered function never returns a set of lesser value than local search using the
original function. In a large number of runs, the sets returned are actually same. When they differ, the
filtered function yields a set of higher value than the original function. This observation is consistent across
the values of n and p that we have experimented with.

Double greedy algorithm. In the second set of experiments we used the randomized double greedy
(RDG) algorithm [BFNS15] for maximization. In this setup, we created the submodular function as follows:
first a stochastic block model random graph in 1000 nodes is created, with partition size as [100, 900] and
the block probability matrix = [[0.1, 0.8], [0.8, 0.1]]. Again, we consider two situations where noise is added
with σ2 to be 500 and 1000 respectively.

The ǫ is estimated as described above and the RDG algorithm is run on the filtered function. We
summarize the results in the following table. For both the algorithms, we observe that the filtered function
yields a better solution than the unfiltered one.

Comparison against exact solution. In the above experiments, the ground-set size is large and it is
computationally infeasible to obtain the exact maximum. We also ran the experiments with n = 20 and
the graph generated as per the description above and with σ = np/2, and using an exhaustive search for
maximization. The (min, median, s.d.) ratios obtained over 10 iterations are reported in the Table 1. As per
the results, the set found using the filtered function has a value which is at least 91% of the true maximum;
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σ2 = np/2 σ2 = np

Local search
min(ratio) 1 1
avg(ratio) 2.981 2.174

median (ratio) 2.376 2.506
Randomized min(ratio) 0.924 1.922

double avg(ratio) 2.282 3.763
greedy median(ratio) 1.947 3.313

min(ratio) 0.918 -
Exhaustive avg(ratio) 0.945 -

median (ratio) 0.936 -

Table 1: Results for local search, double greedy and exhaustive search algorithms with our filter.

c = 160 c = 80
min(ratio) 0.831 0.893

RDG avg(ratio) 0.983 1.01
median(ratio) 0.99 1.02

Table 2: Results for RDG with our filter on the BitCoin graph.

the low standard deviation (0.017) that we observed demonstrates the robustness of this statement to the
errors in ǫ-estimation.

Summary. To summarize, the experiments demonstrate the using the proposed filter gives empirically
a good solution, often better that running the approximation algorithms on the unfiltered approximately
submodular function. Even when exhaustive search is being used, the solution from the filtered function is
quite close to the optimal. This observation holds across the different ǫ-values that we tested.

7.1 Experiments on real data

We experimented with the BitCoin trust graph (5000 nodes) obtained from SNAP repository 6. Here,
the nodes represent users and the edge (i, j) represents the trust value assigned by user i to user j. We
considered the graph as an undirected graph, the weight of every edge is an integer in [−10, 10] (the weight
of an undirected edge is an average of the two directed edges, if both existed). We considered the cut-
function on this graph and we created an approximately submodular function in the same way as before,
i.e., f(S) = cutG(S) + ZS where ZS is defined as follows: ZS = c with probability 0.5 and ZS = −c else.
(Observe that the noise model is additive and thus guarantees that f is approximately submodular; additive
noise models capture the fact that, in practice, one can only estimate the weight of a cut by sampling the
weight of its edges and, thus, one is bound to an additive error in the estimation. We chose the simplest
additive model for our experiments.) Note that f(S) is a (4c)-approximately submodular and is neither
monotone nor non-negative. We follow the same procedure for estimating ǫ as described in Section 7, run
randomized double greedy (RDG) and evaluate the result in a similar fashion as before.

Table 2 presents the minimum, mean, and median of the ratios of the solutions obtained by RDG on
actual f(·) and that applied on the filtered gf,ǫ(·). Notice that unlike the result on synthetic graphs, the
solution obtained from the filtered gf,ǫ(·) can sometimes be a little worse than the one obtained from the
unfiltered f(·). However, note that the average ratio is always larger than than 0.98, that the ratio is
a function of the noise model and, while filtering does provide a provable guarantee on the solution, no
guarantee is available on the solution obtained by RDG on the unfiltered f(·).

6https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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8 Conclusions

In this paper we have taken a first step in studying the distance to submodularity of approximately sub-
modular functions. There are many open questions that stand out: first, what is the tight bound on the
distance to submodularity of approximately submodular functions? We have proved that it is polynomial in
n (whereas, in the approximately modular case it is a constant independent of n), bounded between Ω(

√
n)

and O(n2). There are also some algorithmic open questions. What type of optimization can we perform on
approximately submodular functions? We have shown that it is possible to compute, in polynomial time, an
additive approximation of the minimum value of these functions. Can one obtain a better approximation in
polynomial time? And, with which approximation guarantees can approximately submodular functions be
optimized under cardinality constraints, and under matroid constraints?
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[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, Jun 1981.

[HS16] Thibaut Horel and Yaron Singer. Maximization of approximately submodular functions. In
NeurIPS, pages 3045–3053, 2016.

[HU52] Donald H. Hyers and Stanislaw M. Ulam. Approximately convex functions. Proc. Amer. Math.
Soc., 3:821––828, 1952.

[IB12] Rishabh Iyer and Jeff Bilmes. Algorithms for approximate minimization of the difference between
submodular functions, with applications. In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence, UAI’12, page 407–417, Arlington, Virginia, USA, 2012.
AUAI Press.

[KC10] Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse representation.
In ICML, pages 567–574, 2010.

[KCZ+14] Matt J. Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q. Weinberger, and Yixin
Chen. Feature-cost sensitive learning with submodular trees of classifiers. In AAAI, pages 1939–
1945, 2014.

[KR83] Nigel J Kalton and James W Roberts. Uniformly exhaustive submeasures and nearly additive
set functions. Transactions of the American Mathematical Society, 278(2):803–816, 1983.

[KSG08] Andreas Krause, Ajit Paul Singh, and Carlos Guestrin. Near-optimal sensor placements in
Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235–284, 2008.
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