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Abstract

Consider a group of autonomous mobile computational entities, called agents, arbitrarily placed at
some nodes of a dynamic but always connected ring. The agents neither have any knowledge about
the size of the ring nor have a common notion of orientation. We consider the EXPLORATION problem
where the agents have to collaboratively to explore the graph and terminate, with the requirement
that each node has to be visited by at least one agent. It has been shown by Di Luna et al. [Distrib.
Comput. 2020] that the problem is solvable by two anonymous agents if there is a single observably
different node in the ring called landmark node. The problem is unsolvable by any number of anony-
mous agents in absence of a landmark node. We consider the problem with non-anonymous agents
(agents with distinct identifiers) in a ring with no landmark node. The assumption of agents with dis-
tinct identifiers is strictly weaker than having a landmark node as the problem is unsolvable by two
agents with distinct identifiers in absence of a landmark node. This setting has been recently studied
by Mandal et al. [ALGOSENSORS 2020]. There it is shown that the problem is solvable in this setting
by three agents assuming that they have edge crossing detection capability. Edge crossing detection
capability is a strong assumption which enables two agents moving in opposite directions through an
edge in the same round to detect each other and also exchange information. In this paper we give an
algorithm that solves the problem with three agents without the edge crossing detection capability.

1 Introduction

Consider a team of autonomous computational entities, usually called agents or robots, lo-
cated at the nodes of a graph. The agents are able to move from a node to any neighboring
node. The EXPLORATION problem asks for a distributed algorithm that allows the agents to
explore the graph, with the requirement that each node has to be visited by at least one agent.
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Being one of the fundamental problems in the field of autonomous multi-agent systems, the
problem has been extensively studied in the literature. However, the majority of existing lit-
erature studies the problem for static graphs, i.e., the topology of the graph does not change
over time. Recently within the distributed computing community, there has been a surge
of interest in highly dynamic graphs: the topology of the graph changes continuously and
unpredictably. In highly dynamic graphs, the topological changes are not seen as occasional
anomalies (e.g., link failures, congestion, etc) but rather integral part of the nature of the sys-
tem [19, 26]. We refer the readers to [4] for a compendium of different models of dynamic
networks considered in the literature. If time is discrete, i.e., changes occur in rounds, then
the evolution of a dynamic graph can be seen as a sequence of static graphs. A popular as-
sumption in this context is always connected (Class 9 of [4]), i.e., the graph is connected in
each round.

In the dynamic setting, the EXPLORATION problem was first studied in [20]. In particu-
lar, the authors studied the EXPLORATION problem in a dynamic but always connected ring
by a set of autonomous agents. They showed that EXPLORATION is solvable by two anony-
mous agents (agents do not have unique identifiers) under fully synchronous setting (i.e.,
all agents are active in each round) if there is a single observably different node in the ring
called landmark node. They also proved that in absence of a landmark node, two agents can-
not solve EXPLORATION even if the agents are non-anonymous and they have chirality, i.e.,
they agree on clockwise and counterclockwise orientation of the ring. The impossibility re-
sult holds even if we relax the problem to EXPLORATION with partial termination. As opposed
to the standard explicit termination setting where all agents are required to terminate, in the
partial termination setting at least one agent is required to detect exploration and termi-
nate. If the agents are anonymous, then EXPLORATION with partial termination with chiral-
ity remains unsolvable in absence of a landmark node even with arbitrary number of agents.
Then in [22], the authors considered the EXPLORATION problem (without chirality and re-
quiring explicit termination) with no landmark node. Since the problem cannot be solved
even with arbitrary number of anonymous agents, they considered non-anonymous agents,
in particular, agents with unique identifiers. Since the problem is unsolvable by two non-
anonymous agents, they considered the question that whether the problem can be solved
by three non-anonymous agents. They showed that the answer is yes if the agents are en-
dowed with edge crossing detection capability. Edge crossing detection capability is a strong
assumption which enables two agents moving in opposite directions through an edge in the
same round to detect each other and also exchange information. In collaborative tasks like
exploration, the agents are often required to meet at a node and exchange information. How-
ever, the edge crossing detection capability allows two agents to exchange information even
without meeting at a node. The assumption is particularly helpful when the agents do not
have chirality where it is more difficult to ensure meeting. Even if we do not allow exchange
of information, simple detection of the swap can be useful in deducing important informa-
tion about the progress of an algorithm. In [22], it was also shown that the assumption of
edge crossing detection can be removed with the help of randomness. In particular, without
assuming edge crossing detection capability, they gave a randomized algorithm that solves
EXPLORATION with explicit termination with probability at least 1− 1

n where n is the size of
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the ring. Therefore this leaves the open question that whether the problem can be solved by
a deterministic algorithm by three non-anonymous agents without edge crossing detection
capability. In this paper, we answer this question affirmatively.

1.1 Related Work

The problem of EXPLORATION by mobile agents in static anonymous graph has been studied
extensively in the literature [2, 5, 7, 8, 10, 12, 25]. Prior to [20], there have been a few works on
EXPLORATION of dynamic graphs, but under assumptions such as complete a priori knowl-
edge of location and timing of topological changes (i.e., offline setting) [9, 15, 17, 23] or pe-
riodic edges (edges appear periodically) [11, 16] or δ-recurrent edges (each edge appears at
least once every δ rounds) [17] etc. In the online or live setting where the location and timing
of the changes are unknown, distributed EXPLORATION of graphs without any assumption
other than being always connected was first considered in [20]. In particular, they considered
the problem on an always connected dynamic ring. They proved that without any knowledge
of the size of the ring and without landmark node, EXPLORATION with partial termination is
impossible by two agents even if the agents are non-anonymous and have chirality. They
also proved that if the agents are anonymous, have no knowledge of size, and there is no
landmark node then EXPLORATION with partial termination is impossible by any number of
agents even in the presence of chirality. On the positive side the authors showed that un-
der fully synchronous setting, if an upper bound N on the size of the ring is known to two
anonymous agents, then EXPLORATION with explicit termination is possible within 3N − 6
rounds. They then showed that for two anonymous agents, if chirality and a landmark node
is present, then exploration with explicit termination is possible within O(n) round, and in
the absence of chirality with all other conditions remaining the same, EXPLORATION with ex-
plicit termination is possible within O(n logn) rounds, where n is the size of the ring. They
have also proved a number of results in the semi-synchronous setting (i.e., not all agents
may be active in each round) under different assumptions. Then in [22], the authors consid-
ered agents with unique identifiers and edge crossing detection capability in a ring without
any landmark node. They showed that EXPLORATION with explicit termination is impossible
in the absence of landmark node and the knowledge of n by two agents with access to ran-
domness, even in the presence of chirality, unique identifiers and edge-crossing detection
capability. In the absence of randomness even EXPLORATION with partial termination is im-
possible in the same setting. With three agents under fully synchronous setting, the authors
showed that EXPLORATION with explicit termination is possible by three non-anonymous
agents with edge-crossing detection capability in absence of any landmark node. Remov-
ing the assumption of edge-crossing detection and replacing it with access to randomness,
the authors gave a randomized algorithm for EXPLORATION with explicit termination with
success probability at least 1− 1

n . EXPLORATION of an always connected dynamic torus was
considered in [14]. In [13] the problem of PERPETUAL EXPLORATION (i.e., every node is to be
visited infinitely often ) was studied in temporally connected (i.e., may not be always con-
nected but connected over time) graphs. Other problems studied in dynamic graphs include
GATHERING [3, 21, 24], DISPERSION [1, 18], PATROLLING [6] etc.
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1.2 Our Results

We consider a dynamic but always connected ring of size n. A team of three agents are oper-
ating in the ring under a fully synchronous scheduler. Each agent has a k bit unique identi-
fier. The agents do not have any knowledge of n and they do not have chirality. Furthermore,
they do not have edge crossing detection capability. In this setting, we give a determinis-
tic algorithm for EXPLORATION with explicit termination. The algorithm solves the problem
in O(k22k n) rounds. As a subroutine, we also solve the problem MEETING where any two
agents in the team are required to meet each other at a node. Another basic ingredient of our
approach is an algorithm for the CONTIGUOUS AGREEMENT problem which requires that the
agents have to agree on some common direction for some number of consecutive rounds.
These problems may be of independent interest and useful for solving other problems is
similar settings. A comparison of the results obtained in this paper with previous works is
given in Table 1.

Paper Number
of agents

Agents Landmark
node

Edge cross.
detection

Algorithm

[20] 2 Anonymous Yes No Deterministic

[22] 3 Have unique
identifiers

No Yes Deterministic

[22] 3 Have unique
identifiers

No No Randomized

This
paper

3 Have unique
identifiers

No No Deterministic

Table 1: Comparison of our results with previous works.

1.3 Outline of the Paper

In Section 2, we describe the model and terminology used in the paper. In Section 3, we
give an algorithm for EXPLORATION in the simpler setting where the agents have chirality. In
Section 4, we use the techniques used in Section 3 to give an algorithm for EXPLORATION in
the absence of chirality.

2 Model and Terminology

We consider a dynamic ring of size n. All nodes of the ring are identical. Each node is con-
nected to its two neighbors via distinctly labeled ports. The labeling of the ports may not
be globally consistent and thus might not provide an orientation. We consider a discrete
temporal model i.e., time progresses in rounds. In each round at most one edge of the ring
may be missing. Thus the ring is connected in each round. Such a network is known in the
literature as a 1-interval connected ring.
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We consider a team of three agents operating in the ring. The agents do not have any
knowledge of the size of the ring. Each agent is provided with memory and computational
capabilities. An agent can move from one node to a neighbouring node if the edge between
them is not missing. Two agents moving in opposite direction on the same edge are not
able to detect each other. An agent can only detect an active agent co-located at the same
node i.e., if an agent terminates it becomes undetectable by any other agent. Two agents can
communicate with each other only when they are present at the same node. Each agent has a
unique identifier which is a bit string of length k > 1. The length k of the identifier is the same
for each agent. For an agent r , its unique identifier will be denoted by r.I D . Also val (r.I D)
will denote the numerical value of r.I D . For example val (00110) = 6, val (10011) = 19, etc.
Hence for any agent r , val (r.I D) < 2k .

Each agent has a consistent private orientation of the ring, i.e., a consistent notion of
left or right. If the left and right of all three agents are the same then we say that the agents
have chirality. By clockwise and counterclockwise we shall refer to the orientations of the
ring in the usual sense. These terms will be used only for the purpose of description and
the agents are unaware of any such global orientation if they do not have chirality. For two
agents r1 and r2 on the ring, d�(r1,r2) and d	(r1,r2) denotes respectively the clockwise and
counterclockwise distance from r1 to r2.

We consider a fully synchronous system, i.e., all three agents are active in each round. In
each round, the agents perform the following sequence of operations:

LOOK: If other agents are present at the node, then the agent exchanges messages with
them.

COMPUTE: Based on its local observation, memory and received messages, the agent per-
forms some local computations and determines whether to move or not, and if yes,
then in which direction.

MOVE: If the agent has decided to move in the COMPUTE phase, then the agent attempts to
move in the corresponding direction. It will be able to move only if the corresponding
edge is not missing. An agent can detect if it has failed to move.

During the execution of algorithm, two agents can meet each other in two possible ways:
(1) two agents r1 and r2 moving in opposite direction come to the same node, or, (2) an
agent r1 comes to a node where there is a stationary agent r2. In the second case we say that
r1 catches r2. If two agents r1, r2 are moving in opposite direction on the same edge in the
same round, then we say that r1 and r2 swaps over an edge.

3 Exploration by Agents with Chirality

In this section, we shall assume that the agents have chirality. Since the agents have agree-
ment in direction we shall use the terms clockwise and counterclockwise instead of right
and left respectively. In Section 3.1 we present an algorithm for MEETING where at least two
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agents are required to meet at a node. Then in Section 3.2 we shall use this algorithm as a
subroutine to solve EXPLORATION.

3.1 Meeting by Agents with Chirality

We have three agents placed arbitrarily at distinct nodes of the ring. Our objective is that at
least two of the agents should meet. The algorithm works in several phases. The lengths of
the phases are 2 j+k , j = 0,1,2, . . .. In phase j , an agent r tries to move clockwise for the first
val (r.I D)2 j rounds, and then remains stationary for (2k − val (r.I D)).2 j rounds.

We shall prove the correctness of the algorithm in Theorem 1. Before that we shall prove
a lemma. This lemma will be used several times in the proofs throughout the paper.

Lemma 1. Let r1,r2 and r3 be three agents in the ring such that at round t, 0 ≤ d�(r1,r3) <
d�(r1,r2). If r1 remains static and both r2 and r3 try to move clockwise for the next 2n rounds,
then within these 2n rounds either r2 meets r1 or r3 meets r2.

Proof. Assume that at round t , d	(r1,r2) = x and d	(r2,r3) = y . We have x+y ≤ n. Within the
next 2n rounds, if r2 is able to move clockwise for at least x rounds, then it will meet r1 and
we are done. So assume that r2 does not meet r1. Suppose that r2 succeeds to make a move
x ′ < x times in the next 2n rounds. This means that r2 remains static for 2n − x ′ rounds.
Therefore, r3 moves clockwise in those 2n − x ′ rounds when r2 is static. Hence, d	(r2,r3)
decreases in these rounds. Recall that initially we had d	(r2,r3) = y . Also, in the x ′ rounds
when r2 was able to move, d	(r2,r3) may or may not have increased depending on whether
r3 respectively failed or succeeded to move in those rounds. Now notice that

2n −x ′ ≥ n +x + y −x ′ (since n ≥ x + y)

> n + y (since x > x ′)
> x ′+ y (since n > x ′)

This implies that r3 will catch r2. This completes the proof that within the 2n rounds
either r2 meets r1 or r3 meets r2.

Theorem 1. The above algorithm solves MEETING for three agents with chirality. The algo-
rithm ensures that the meeting takes place within 2k+dlogne+2 rounds.

Proof. Let p = dlog2ne = dlogne+1. Hence p is the smallest positive integer such that 2p ≥
2n. If two agents have met before the pth phase, then we are done. If not, we show that a
pair of agents is guaranteed to meet during the pth phase. Recall that in this phase, an agent
r should (attempt to) rotate clockwise for val (r.I D)2p rounds, and then remain stationary
for the remaining (2k − val (r.I D))2p rounds. Let r1 be the first agent to come to rest in that
phase, say at round t . Let r2 be the agent closest to r1 in the counterclockwise direction
and r3 be the third agent. We have val (r2.I D)2p − val (r1.I D)2p ≥ 2n and val (r3.I D)2p −
val (r1.I D)2p ≥ 2n. This implies that both r2 and r3 attempts to move for at least 2n rounds
after r1 comes to rest at round t . By Lemma 1, either r2 and r1 meets, or r3 and r2 meets. So
the meeting takes place within 2k ∑p

i=0 2i < 2k+dlogne+2 rounds.
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3.2 Exploration with Termination by Agents with Chirality

3.2.1 Description of the Algorithm

We consider three agents in the ring having chirality. For simplicity assume that the agents
are initially placed at distinct nodes of the ring. We shall later remove this assumption. Our
plan is to first bring two of the agents at the same node using the MEETING algorithm de-
scribed in Section 3.1. Then one of them will settle at that node and play the role of land-
mark node. Then the situation reduces to a setting similar to [20]. However we cannot use
the same algorithm from [20] in our case. This is because unlike in [20] we have to ensure
that the agent acting as landmark also terminates. However our algorithm uses some ideas
from [20]. We now describe our algorithm in the following. The detailed pseudocode de-
scription of the algorithms are given in Algorithm 1, 2, 3, 4 and 5.

Initially all the agents start with their st ate variable set to search. Until an agent meets
another agent, it executes the MEETING algorithm described in Section 3.1. Now according
to Theorem 1, two agents are guaranteed to meet within 2k+dlog2ne+2 rounds from the start of
the algorithm. On meeting the agents compare their IDs and the one with smaller ID changes
its st ate to settled and stops moving. The other agent changes its wi nner variable to Tr ue
and henceforth abandons its phase-wise movement and attempts to move clockwise in each
round.

Let us now describe the case when an agent with st ate search meets the settled agent.
If an agent with wi nner = F al se encounters the settled agent it also abandons its phase-
wise movement and henceforth tries to move in the clockwise direction in every round. If an
agent with wi nner = Tr ue meets the settled agent r , then it indicates that it is meeting
the settled agent for the second time and hence all nodes of the ring have been explored.
The agent can also calculate the size of the ring as it is equal to the number of successful
moves between the two meetings. The agent assigns this value to the variable RSi ze and also
informs the settled agent about it. Then the agent will continue to move in the clockwise
direction for 2n more rounds. Both these agents will terminate after the completion of these
2n rounds.

Now consider the case when an agent with st ate = search and wi nner = Tr ue meets an
agent with st ate = search and wi nner = F al se. If the agent with wi nner = Tr ue already
knows n, i.e., it has visited the settled agent twice, then both of them terminates immedi-
ately. If the agent with wi nner = Tr ue does not already know n, then it changes its st ate
to forward and continues to move in the clockwise direction every round. On the other
hand, the agent with wi nner = F al se changes its st ate to bounce and starts moving in the
counterclockwise direction. This phenomenon is called the formation of settled-forward-
bounce triplet. In this case, both the agents initiates a variable T T i me to keep track of the
number of rounds elapsed after triplet formation.

After the triplet is created, the agent with st ate forward will continue to move in clock-
wise direction. The agent with st ate bounce will move counterclockwise and then on fulfill-
ment of certain conditions, it may change its st ate to return and start moving clockwise.
Then it may again change its st ate to bounce and start moving counterclockwise. The pe-
riod between any two such st ate changes will be called a r un. While moving in the clock-
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Algorithm 1 The algorithm executed by an agent r with state search

1. Until another agent is found, execute the algorithm for MEETING described in Section
3.1.

2. Upon the first meeting do the following.

2.1 If two agents are encountered in the first meeting, then set r.st ate ← bounce and
move counterclockwise. Also initiate the counter r.T T i me. Otherwise if there is
exactly one agent r ′ then do the following.

2.2. If r ′.st ate = search and r ′.wi nner = F al se then do the following. If val (r.I D) <
val (r ′.I D), then set r.st ate ← settled and remain at the current node. Oth-
erwise if val (r.I D) > val (r ′.I D), then set r.wi nner ← Tr ue and keep moving
clockwise until the next meeting. Also initiate a counter SCount to count the
number of successful steps since the first meeting with r ′.

2.3. If r ′.st ate = search and r ′.wi nner = Tr ue, then set r.st ate ← bounce and move
counterclockwise. Also initiate the counter r.T T i me.

2.4. If r ′.st ate = settled, then keep moving clockwise until the next meeting.

3. Upon any subsequent meeting do the following.

3.1. If only one agent r ′ is encountered with r ′.st ate = search, then do the following.

3.1.1. If r ′.wi nner = F al se and r.RSi ze =;, then set r.st ate ← forward and move
clockwise. Also initiate the counter r.T T i me.

3.1.2. If r ′.wi nner = Tr ue and r ′.RSi ze = ;, then set r.st ate ← bounce and
move counterclockwise. Also initiate the counter r.T T i me. Otherwise, if
r ′.wi nner = Tr ue and r ′.RSi ze 6= ;, then terminate.

3.2. If only one agent r ′ is encountered with r ′.st ate = settled, then do the follow-
ing.

3.2.1. If r.wi nner = Tr ue, then set r.RSi ze ← r.SCount = n (since r ′ is encoun-
tered for the second time) and inform r ′ about n. Keep moving clockwise for
2n more rounds and then terminate.

3.2.2. If r.wi nner = F al se and r ′.RSi ze 6= ;, then terminate.

3.3 If two agents are encountered then there must be an agent r ′ with st ate search.
Then execute 3.1.1. or 3.1.2. whichever is applicable.
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Algorithm 2 The algorithm executed by an agent r with state settled

1. Do not move. Terminate on one of the following conditions.

1.1. If the other two agents are present at the same time and one of them has st ate
forward, then terminate immediately.

1.2. If an agent r ′ is encountered such that r ′.SBound 6= ;, then terminate immedi-
ately.

1.3. If n is already known, i.e., r.RSi ze 6= ;, and an agent r ′ is encountered that does
not know n, i.e., r ′.RSi ze =;, then terminate immediately.

1.4. If an agent r ′ with state search informs r ′.RSi ze = n, then terminate after 2n
more rounds.

1.5. If an agent r ′ with state forward or return informs r ′.RSi ze = n and r ′.T T i me,
then initiate counter r.T T i me with starting value r.T T i me ← r ′.T T i me and ter-
minate after the round when r.T T i me = 16n.

wise direction with st ate forward, the agent keeps count of the number of successful steps
with state forward in the variable F Steps. The variable BSteps (resp. RSteps) is used to
keep count of the number of successful steps with state bounce (resp. return) in the current
run. Also while moving in the counterclockwise direction with st ate bounce, the variable
BBlocked counts the number of unsuccessful attempts to move in that run.

An agent r with st ate bounce will change its st ate to return if one of the following takes
place: 1) r.BBlocked exceeds r.BSteps or 2) the agent r encounters the settled agent twice
in the same run. An agent r with st ate return will change its st ate to bounce if r meets with
the agent with st ate forward and r.RSteps > 2r.BSteps, where BSteps was counted in the
last run with st ate bounce.

Here the main idea is that the agents will try to gauge the size of the ring. An agent may
be able to find the size n exactly or calculate an upper bound of n. An agent can exactly
find n only if it visits the static settled agent twice in the same direction. In this case it
will also inform the settled agent about n. Clearly when this happens the ring has been
explored completely. However the two agents cannot terminate immediately because the
third agent is not aware of this. So the agents will remain active till T T i me = 16n, i.e., 16n
rounds from the time when the triplet was created. It should be noted here that the settled
agent initially did not know the time when the triplet was created. It came to know about
this from the T T i me value of some agent that it met and initiated its own T T i me counter
accordingly. Now it can be shown that within these 16n rounds the third agent will meet
one of the two agents that already know n. These two agents will terminate immediately
upon meeting. Now consider the case where an agent is able to find an upper bound of
n. This happens when one of the following three takes place: 1) the forward agent meets
the agent with st ate bounce, 2) the forward agent catches the agent with st ate return,
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Algorithm 3 The algorithm executed by an agent r with state forward

1. Until a new meeting, keep moving clockwise. Maintain the counters r.F Steps ← num-
ber of successful steps with state forward and r.T T i me ← number of rounds since the
triple was formed.

2. If all three agents meet at a node then terminate immediately. Otherwise upon meeting
an agent r ′, do the following.

2.1. If r.RSi ze =;∧r ′.RSi ze 6= ; or r.RSi ze 6= ;∧r ′.RSi ze =; then terminate imme-
diately. Otherwise, do the following.

2.2. If r ′.st ate = settled, then infer r.RSi ze ← r.SCount = n (since r ′ is encoun-
tered for the second time) and inform r ′ about n. Keep moving clockwise and
terminate after the round when r.T T i me = 16n.

2.3. If r ′.st ate = bounce, set r.SBound ← r.F Steps + r ′.BSteps. Then keep moving
clockwise for r.SBound rounds and then terminate. If the settled agent is met
meanwhile, then terminate immediately.

2.4. If r ′.st ate = return, then do the following.

2.4.1. If r catches r ′, then set r.SBound ← r.F Steps + r ′.BSteps. Then keep mov-
ing clockwise for r.SBound rounds and then terminate. If the settled agent
is met meanwhile, then terminate immediately.

2.4.2. If r ′ catches r and r ′.Rsteps > 2r ′.B steps, then keep moving clockwise until
the next meeting. Otherwise if r ′.Rsteps ≤ 2r ′.B steps, then set r.SBound ←
r.F Steps+r ′.BSteps+1. Then keep moving clockwise for r.SBound rounds
and then terminate. If the settled agent is met meanwhile, then terminate
immediately.
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Algorithm 4 The algorithm executed by an agent r with state bounce

1. Maintain the counters r.BSteps ← number of successful steps with state bounce in the
current run, r.BBlocked ← number of unsuccessful attempts with state bounce in the
current run and r.T T i me ←number of rounds since the triple was formed. Until a new
meeting or fulfillment of the condition r.BBlocked > r.BSteps, keep moving in the
counterclockwise direction. If r.BBlocked > r.BSteps is satisfied, change r.st ate ←
return and move clockwise.

2. If all three agents meet at a node then terminate immediately. Otherwise upon meeting
any agent r ′, do the following.

2.1. If r.RSi ze =;∧r ′.RSi ze 6= ; or r.RSi ze 6= ;∧r ′.RSi ze =; then terminate imme-
diately. Otherwise, do the following.

2.2. If r ′.st ate = settled then do the following.

2.2.1. If it is the first meeting with r ′ in the same run, then keep moving counter-
clockwise until a new meeting or fulfillment of the condition r.BBlocked >
r.BSteps. Also initiate a counter SCount to count the number of successful
steps since the first meeting with r ′ in the current run.

2.2.2. If it is the second meeting with r ′ in the same run, then set r.RSi ze ←
r.SCount = n. Change r.st ate ← return and move clockwise.

2.3. If r ′.st ate = forward, then set r.SBound ← r ′.F Steps + r.BSteps. Then keep
moving counterclockwise for r.SBound rounds and then terminate. If the
settled agent is met meanwhile, then terminate immediately.
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Algorithm 5 The algorithm executed by an agent r with state return

1. If the size of the ring is already known, i.e., r.RSi ze = n, then keep moving clockwise
and terminate after the round when r.T T i me = 16n. Otherwise, keep moving in the
clockwise direction until a new meeting. Maintain the counters r.RSteps ← number
of successful steps with state return in the current run and r.T T i me ← number of
rounds since the triple was formed.

2. If all three agents meet at a node then terminate immediately. Otherwise upon meeting
any agent r ′, do the following.

2.1. If r.RSi ze =;∧r ′.RSi ze 6= ; or r.RSi ze 6= ;∧r ′.RSi ze =; then terminate imme-
diately. Otherwise, do the following.

2.2. If r ′.st ate = forward, then do the following.

2.2.1. If r ′ catches r , then set r.SBound ← r.F Steps+r ′.BSteps. Then move coun-
terclockwise for r.SBound rounds and then terminate. If the settled agent
is met meanwhile, then terminate immediately.

2.2.2. If r catches r ′ then do the following.

2.2.2.1. If r.RSteps ≤ 2r.BSteps then set r.SBound ← r.F Steps + r ′.BSteps +1.
Then move counterclockwise for r.SBound rounds and then terminate.
If the settled agent is met meanwhile, then terminate immediately.

2.2.2.2. Otherwise, if r.RSteps > 2r.BSteps, then change r.st ate ← bounce and
move counterclockwise.
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3) the agent with st ate return catches the forward agent with RSteps ≤ 2BSteps. It can
be shown in each of the cases, these two agents will be able to correctly calculate an upper
bound SBound of n. Furthermore these cases imply that the ring has been already explored
completely. However the two agents cannot terminate immediately because the settled
agent is not aware of this. Therefore in order to acknowledge the settled agent, these two
agents will start moving in opposite directions for SBound more rounds and then terminate.
Clearly one of them will be able to meet the settled agent.

3.2.2 Correctness

Lemma 2. There exists a round T1 ≤ 2k+dlogne+2 when two of the agents with state search
meet and a settled agent is created.

Proof. This follows from Theorem 1 since the agents execute the algorithm from Section 3.1
until they meet another agent.

Lemma 3. Suppose that r1 and r2 meets at round T1 and r1 becomes settled. There is a
round T2, with T1 < T2 < 2k+dlogne+3, when the third agent r3 meets either r1 or r2.

Proof. At round T1, r1 and r2 meet and r1 becomes settled. After T1, r2 is trying to move
clockwise in each round. On the other hand, since r3 is still executing the MEETING algo-
rithm, it will try to move clockwise on some rounds and on other rounds, will not try to move
at all. Now if both r2 and r3 try to move clockwise for some 2n consecutive rounds together,
then by Lemma 1 either r2 meets r3 or r3 meets r1. Clearly, this is guaranteed to happen
in any phase l , where l ≥ p = dlog2ne. Now suppose that T1 belongs to the j th phase. By
Lemma 2, j ≤ p. If j < p, then the required meeting should take place in or before the pth
phase and if j = p, then the required meeting will take place in pth or (p+1)th phase. There-
fore, we have T2 ≤∑p+1

i=0 2i+k < 2k+dlogne+3.

Lemma 4. Within T2 + 4n rounds either all three agents terminate or a settled-forward-
bounce triple is created.

Proof. Recall that by Lemma 3, at round T2, either r3 meets r1 or r3 meets r2. In the latter
case, a settled-forward-bounce triple is created and we are done. So consider the other
case where r3 meets the settled agent r1. Before this meeting, r3 was trying to move clock-
wise in some rounds, while in other rounds, it was not trying to move at all. After meeting r1,
r3 will try moving clockwise in each round. Then by Lemma 1 within 2n rounds (i.e., within
T2 + 2n rounds from the beginning), either r2 meets r1 again, or r3 meets r2. In the latter
case, a settled-forward-bounce triple is created, and we are done. So consider the other
case where r2 meets r1 for the second time. Thus r2 finds out n (the size of the ring) and also
informs r1 about it. Then r2 will keep moving clockwise for 2n more rounds and then termi-
nate. Also r1 will remain active for 2n more rounds and then terminate. Now within these
2n rounds, r3 will meet either r1 or r2 and terminate immediately. Therefore, within T2 +4n
rounds either all three agents terminate or a settled-forward-bounce triple is created.
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Suppose that at round T3 ≤ T2+4n a settled-forward-bounce triple is formed. We shall
denote by r1, r2 and r3 the agents with states settled, forward and bounce respectively. We
shall say that the agents r2 and r3 agree on an upper bound of n if one of the following events
occur at any round after T3. We show in Lemma 5 that indeed if one of the following events
take place then the agents can find an upper bound of n.

Event 1. The agent r2 with state forward and r3 with state bounce meet each other at a node
and neither of them know n.

Event 2. The agent r2 with state forward catches r3 with state return at a node and neither
of them know n.

Event 3. The agent r3 with state return catches r2 with state forward at a node and r3.Rsteps ≤
2r3.B steps and neither of them know n.

Lemma 5. If one of Event 1-3 takes place, then

1. exploration is complete,

2. r2 and r3 can infer an upper bound N of n such that n ≤ N ≤ 3n and will set it as
SBound.

Proof. Event 1. Consider a run of r3, starting when it met r2 and changed its state to bounce
and ending when it met r2 again (Event 1). Then it is easy to see that all nodes of the ring
have been explored by r2 and r3. Upon meeting, both r2 and r3 set SBound = r2.F Steps +
r3.BSteps. Clearly SBound ≥ n. Also since both r2 and r3 do not know n, r2.F Steps < n and
r3.BSteps < 2n. To see the first inequality observe that if r2.F Steps ≥ n then it implies that
r2 with st ate forward has met r1. But recall that r2 has already met r1 before when it was in
st ate search and moving in the same direction. This implies that r2 can infer n by counting
the number of successful steps since the first meeting. For the second inequality observe
that if r3.BSteps ≥ 2n then it implies r3 has met r1 twice in the same run and therefore can
infer n by counting the number of successful steps from the first and second meeting. Hence
SBound < 3n.

Event 2. Suppose that at some node u, r2 and r3 meet each other and continue mov-
ing in clockwise (with state forward) and counterclockwise (with state bounce) direction
respectively. Then suppose that at node v , r3 changes its state to return and its direction to
clockwise. Then after sometime r2 catches r3 (Event 2). Clearly all nodes in the counterclock-
wise path from u to v have been visited by r3 and all nodes in the clockwise path from u to v
have been visited by r2. Hence all nodes in the ring have been together explored by r2 and r3.
Upon meeting, they both set SBound = r2.F Steps+r3.BSteps. Clearly r3.BSteps = d	(u, v)
and r2.F Step ≥ d�(u, v). Hence SBound ≥ d�(u, v)+d	(u, v) = n. Also by previous argu-
ment SBound < 3n.

Event 3. Suppose that at some time r2 and r3 meet each other at node u and con-
tinue moving in clockwise (with state forward) and counterclockwise (with state bounce)
direction respectively. Then at some time r3 changes its state to return (when we have
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r3.BBlocked = r3.BSteps+1) and its direction to clockwise. Then after sometime it catches
r2 and finds that r3.RSteps ≤ 2r3.BSteps (Event 3). We show that this implies that explo-
ration is complete. If r2 and r3 swapped over an edge at some round in between, then it
implies that all nodes of the ring have been explored and we are done. Otherwise we have
r3.RSteps = r3.BSteps + r2.F Steps at the time of meeting. Since r3.RSteps ≤ 2r3.BSteps,
we have r2.F Steps ≤ r3.BSteps. Also recall that r3.BBlocked = r3.BSteps + 1. Now if r2

had been able to successfully execute a move during each of those rounds when r3 was
blocked with state bounce, we must have had r2.F Steps > r3.BSteps. But since r2.F Steps ≤
r3.BSteps, r2 with state forward and r3 with state bounce must have been blocked at the
same round. This can only happen if r2 and r3 are blocked on two ends of the same miss-
ing edge. This implies that the ring has been explored. Upon meeting both r2 and r3 set
SBound = r2.F Steps+r3.BSteps+1. If they had swapped over an edge then clearly SBound ≥
n. Otherwise we showed that r2 and r3 were blocked at two adjacent nodes of the ring,
say v and w respectively. Then r3.BSteps ≥ d	(u, w) and r2.F Step ≥ d�(u, v). Hence
SBound ≥ d�(u, v)+d	(u, w)+1 = n. Also by previous argument SBound < 3n +1 ≤ 3n.

Lemma 6. Suppose that r2 and r3 meet at some round T and r3 changes its st ate to bounce.
If they do not meet again for 10n rounds then all three agents are guaranteed to find out n

Proof. Assume that r2 and r3 do not meet for 10n rounds from T . Now at round T , r3 changes
its state to bounce. By round T +4n either r3 has made 2n successful moves in the counter-
clockwise direction or the condition BBlocked > BSteps is fulfilled. In the former case r3

finds out n and changes its state to return. In the latter case also r3 changes its state to
return. Therefore within 4n rounds r3 is guaranteed to start moving in clockwise direction,
say at round T ′ ≤ T +4n i.e., from T ′ onwards both r2 and r3 are moving in the same direc-
tion. Therefore within 2n rounds either r2 and r3 meet each other or one of them meets r1.
Since we assumed that r2 and r3 do not meet, the latter takes place.

Case 1: Suppose that r1 meets r2. Then both r1 and r2 find out n (if not already known).
Within 2n rounds r3 comes to r1 and also find out n (if not already known). So within 4n
rounds from T ′, i.e. 8n rounds from T all three agents find out n.

Case 2: Suppose that r1 meets r3. Then within next 2n rounds r2 meets r1. Then by the
arguments of Case 1, all three agents will find out n within next 2n rounds. Therefore, within
6n rounds from T ′, i.e., 10n rounds from T , all three agents find out n.

Lemma 7. Within 16n rounds after T3, either all three agents find out n or r2,r3 agree on an
upper bound of n.

Proof. Let us refer to the meeting of r2 and r3 at round T3 as their 1st meeting. If r2 and r3

do not meet each other again for 16n rounds, then by Lemma 6 all three agents will find out
n, and we are done. Therefore we assume that r2 and r3 meet again at least once after T3

within 16n rounds. Let ti denote the time between the i th and (i + 1)th meeting. In view
of Lemma 6 we can assume that ti ≤ 10n because otherwise all three agents will find out n,
and we are done. Also if any one of these meetings is of the type Event 1-3, then we are done
as such meetings allow r2 and r3 to agree on an upper bound of n (c.f. Lemma 5). So let us
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assume that such meetings do not occur. Therefore in each meeting after T3, r3 with state
return catches r2 with state forward. If at the time of any meeting after T3, r3 is aware of
n (by meeting r1 twice in a run with st ate bounce), then we are done. This is because r2

finds out n from r3 at the time of the meeting and r1 also had already found out n from r3.
So assume that this does not happen at any of the meetings. Notice that if we can show that
one such meeting takes place after r2 visits r1, then we are done. To see this observe that if r2

visits r1 then r2 finds out n and also informs r1 about it. Then r3 also comes to know about n
in the next meeting between r2 and r3. So we complete the proof by showing that a meeting
between r2 and r3 takes place within 16n rounds from T3 with r2 having already met r1.

Recall that ti denotes the time between the i th and (i + 1)th meeting. Let f si , bsi and
r si denote the number of successful steps made during this time by r2 with state forward,
r3 with state bounce and r3 with state return respectively. First we claim that if r2 and r3

swap over an edge between their i th and (i +1)th meeting, then r2 will find out n before the
(i +1)th meeting. Since the (i +1)th meeting is not of the type Event 3, we have r si > 2bsi . If
bsi > n, then r si > 2n > n. This means that r3 with state return meet r1. But then r2 must
have met r1 before this meeting and found out n. So let bsi ≤ n. Then it is not difficult to see
that bsi + f si = n+r si . Again using r si > 2bsi , we have f si > n+bsi > n. This implies that r2

have met r1 and found out n. So assume that r2 and r3 do not swap in between the i th and
(i +1)th meeting. Then we have r si = bsi + f si . Furthermore we have ti ≤ 2bsi +1+ f si +r si .
Here 2bsi + 1 is an upper bound on the time needed by r3 to switch state from bounce to
return. To see this, recall that r3 changes its state to return if one of the following takes
place: (1) it finds out n by meeting r1 twice, (2) r3.BBlocked > r3.BSteps is satisfied. Since
we assumed that (1) does not take place, r3 must have changed its state to return because of
(2). Since this happens when the number of failed attempts to move exceeds the number of
successful moves, we can conclude that 2bsi +1 is an upper bound on the time needed by r3

to switch state from bounce to return. Also, f si +r si is an upper bound on the time needed
for r3 with state return to catch r2. This is because the number of successful moves by r3

is r si and the number of failed attempts to move by r3 is bounded by f si since each failed
move by r3 implies a successful move by r2. Substituting the value of r si in the inequality
we get, ti ≤ 3bsi +2 f si +1. Since this meeting is not of the type Event 3, we have r si > 2bsi

=⇒ f si > bsi . Therefore ti < 6 f si . Let k be the smallest integer such that t1+ . . .+ tk ≥ 6n. So
we have 6n ≤ t1+t2+. . .+tk < 6( f s1+ f s2+. . . f sk ) =⇒ n < f s1+ f s2+. . . f sk . This implies that
r2 makes enough progress to meet r1 before the (k+1)th meeting. Therefore after the (k+1)th
meeting all three robots have found out n. It remains to show that this meeting takes place
within 16n rounds from T3. For this observe the following. It follows from the definition of k
(which implies that t1 + . . .+ tk−1 < 6n) and the fact that tk ≤ 10n that t1 + . . .+ tk < 16n.

Lemma 8. Within 19n rounds after T3 exploration of the ring is complete and all three agents
terminate.

Proof. By Lemma 7 within 16n rounds after T3 either all three agents find out n or r2, r3 agree
on an upper bound of n. In the former case the agents will terminate when T T i me = 16n,
i.e., after 16n rounds from T3. Now in the latter case when r2 and r3 meet at a node to agree
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on an upper bound N of n, they will move in opposite direction for N more rounds. Within
these N rounds one of them will meet r1 and both will terminate. The other agents will
terminate after the completion of these N rounds. Recall that by Lemma 5 N < 3n. Hence in
this case all the three agents terminate within 19n rounds after T3.

Theorem 2. EXPLORATION with explicit termination is solvable by three agents with chirality
in 2k+dlogne+3 +23n =O(2k n) rounds.

Proof. By Lemma 8 the exploration is complete and all three agents terminate within T3+19n
rounds. By Lemma 4 T3 ≤ T2 +4n and by Lemma 3 T2 < 2k+dlogne+3. Therefore our algorithm
solves EXPLORATION with explicit termination by three agents with chirality in 2k+dlogne+3 +
23n =O(2k n) rounds.

4 Exploration by Agents without Chirality

4.1 Contiguous Agreement

In this section we define a new problem called CONTIGUOUS AGREEMENT. Three agents
with unique identifiers are placed at three different nodes in the ring. In each round, each
agent chooses a direction according to a deterministic algorithm based on its ID and current
round. The requirement of the problem is that the agents have to choose the same direction
for some N consecutive rounds where N is a constant unknown to the agents.

4.1.1 The Algorithm

Before presenting the algorithm, we describe the construction of modified identifiers which
will be used in the algorithm. Recall that r.I D is a binary string of length k. We now describe
the construction of the corresponding modified identifier r.M I D which is a binary string of
length k(k−1)

2 +k +1. We shall first concatenate a string of length k(k−1)
2 at end of r.I D . Let us

write k(k−1)
2 = l . To define the string, we shall identify each position of the string as, instead

of an integer from [l ] = {1, . . . , l }, a 2-tuple from the set S = {(u, v) ∈ [k]× [k] | u < v}. In order
to formally describe this, let us define a bijection φ : S → [l ] in the following way. Notice that
|S| = l . Arrange the elements of S in lexicographic order. For any (u, v) ∈ S, we defineφ((u, v))
to be the position of (u, v) in this arrangement. For example, if k = 4, then the elements of
S, arranged in lexicographic order, are (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). Therefore, we have
φ((1,2)) = 1, φ((1,3)) = 2, φ((1,4)) = 3, φ((2,3)) = 4, φ((2,4)) = 5 and φ((3,4)) = 6. Now we
define the string of length l that will be concatenated with r.I D . The i th bit of the string is
the Z2 sum of the uth and vth bit of r.I D where (u, v) = φ−1(i ). After the concatenation, we
get a string of length k + l = k + k(k−1)

2 . Finally we append 0 at the beginning of this string to

obtain r.M I D of length k(k−1)
2 +k +1 (c.f. Fig. 1).

We now present the algorithm that solves CONTIGUOUS AGREEMENT. The algorithm

works in phases with the length of the phases being 2 j
(

k(k−1)
2 +k +1

)
, j = 0,1,2, . . .. For
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Figure 1: The construction of the modified identifier.

a string S and a positive integer t , let Dup(S, t ) denote the string obtained by repeating
each bit of string S t times. For example, Dup(101,3) = 111000111. For the j th phase, the
agent r computes Dup(r.M I D,2 j ). Notice that the length of the j th phase is equal to the
length of Dup(r.M I D,2 j ). In the i th round of the j th phase, r moves left if the i th bit of
Dup(r.M I D,2 j ) is 0 and otherwise moves right.

4.1.2 Correctness

Theorem 3. The algorithm described above solves CONTIGUOUS AGREEMENT.

Proof. Let us denote the three agents by r1,r2 and r3. For a binary string S and an index 1 ≤
α≤ |S|, we denote by S[α] theαth bit of S. We first show that in the 0th phase, there is a round
in which all three agents choose the same direction. In the 0th phase, each agent ri uses the
string Dup(ri .M I D,20) = ri .M I D to set its direction. First consider the case where all three
agree on the orientation, say the left according to each of the agents is the counterclockwise
direction. Clearly if there is an index α where the strings r1.M I D , r2.M I D and r3.M I D have
the same bit, i.e., r1.M I D[α] = r2.M I D[α] = r3.M I D[α], then the agents will decide the same
the direction in theαth round of the 0th phase. Now suppose that the agents do not agree on
orientation. Consider the case where left according to r1,r2 is the counterclockwise direction
(i.e., r1 and r2 have agreement on orientation), while left according to r3 is the clockwise
direction. Clearly in this case, if there is an index α such that r1.M I D[α] = r2.M I D[α] 6=
r3.M I D[α], then the agents will decide the same the direction in the αth round of the 0th
phase. Therefore, it follows from the above discussion that it suffices to show that ∃ indices
α, β, γ and η such that,

1. r1.M I D[α] = r2.M I D[α] = r3.M I D[α]
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2. r1.M I D[β] = r2.M I D[β] 6= r3.M I D[β]

3. r1.M I D[γ] = r3.M I D[γ] 6= r2.M I D[γ]

4. r2.M I D[η] = r3.M I D[η] 6= r1.M I D[η]

Recall that each of the strings start with 0. Hence, we have α = 1. Since r1.I D 6= r2.I D ,
∃ an index a so that r1.I D[a] 6= r2.I D[a]. Without loss of generality let r3.I D[a] = r1.I D[a],
i.e., r1.I D[a] = r3.I D[a] 6= r2.I D[a]. So we let γ = a + 1 which fulfills the requirement that
r1.M I D[γ] = r3.M I D[γ] 6= r2.M I D[γ]. We add 1 here because of the 0 appended at the begin-
ning of the MIDs. Similarly since r1.I D 6= r3.I D , ∃ an index b 6= a so that r1.I D[b] 6= r3.I D[b].
Without loss of generality let r2.I D[b] = r1.I D[b], i.e., r1.I D[b] = r2.I D[b] 6= r3.I D[b]. So we
let β = b +1. So now it remains to find the index η. We take η to be the index of MID where
we put the sum of the βth bit of MID (β−1th bit of ID) and the γth bit of MID (γ−1th bit
of ID). We have to show that r2.M I D[η] = r3.M I D[η] 6= r1.M I D[η]. For the equality, observe
the following.

r2.M I D[η] = r2.M I D[β]+ r2.M I D[γ]

= (1+ r3.M I D[β])+ (1+ r3.M I D[γ]) (for x, y ∈Z2, x 6= y ⇐⇒ x = y +1)

= r3.M I D[β]+ r3.M I D[γ]

= r3.M I D[η]

To prove the inequality, we assume for the sake of contradiction that r1.M I D[η] = r2.M I D[η].
This leads to a contradiction as shown in the following.

r1.M I D[η] = r2.M I D[η]

=⇒ r1.M I D[β]+ r1.M I D[γ] = r2.M I D[β]+ r2.M I D[γ]

=⇒ r2.M I D[β]+ (1+ r2.M I D[γ]) = r2.M I D[β]+ r2.M I D[γ]

=⇒ 1 = 0

Hence, we show that there is round in the 0th phase where all three agents will decide the
same direction. It immediately follows from the proof that there are 2 j consecutive rounds
in the j th phase where all three agents will choose the same direction. Hence, for j = dlog Ne,
the agents will choose the same direction for N consecutive rounds in the j th phase.

4.2 Meeting by Agents without Chirality

In Section 3.1, we describe an algorithm that solves MEETING by agents with chirality. In
the current setting where agents do not have chirality, the main idea is to use the strategy
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of CONTIGUOUS AGREEMENT so that the agents can implicitly agree on a common direc-
tion and solve MEETING by employing the strategy from section 3.1. Similar to the algo-
rithm for CONTIGUOUS AGREEMENT, our algorithm for MEETING also works in phases. In

the algorithm for CONTIGUOUS AGREEMENT the length of the phases were 2 j
(

k(k−1)
2 +k +1

)
,

j = 0,1,2, . . .. For MEETING, the phases will be of length 2 j+k
(

k(k−1)
2 +k +1

)
, j = 0,1,2, . . ..

In the j th phase of the algorithm an agent r uses the string Dup(r.M I D,2 j+k ) to decide
its movement. Notice that the length of Dup(r.M I D,2 j+k ) is equal to the length of the j th

phase. The string Dup(r.M I D,2 j+k ) is a concatenation of
(

k(k−1)
2 +k +1

)
blocks of length

2 j+k where each block consists of all 0’s or all 1’s. Our plan is to simulate the MEETING al-
gorithm from section 3.1. So, in the 2 j+k rounds corresponding to each block, the agent r
will (try to) move in the first val (r.I D)2 j rounds and will be stationary for the remaining(
2k − val (r.I D)

)
2 j rounds. If the block consists of 0’s, then the movement will be towards

left and otherwise towards right.

Theorem 4. The above algorithm solves MEETING for three agents without chirality. The al-
gorithm ensures that the meeting takes place within k22k+dlogne+3 rounds.

Proof. Let p = dlog2ne. If two agents have met before the pth phase, then we are done. Oth-
erwise, we show that a pair of agents must meet during the pth phase. Recall that in the pth
phase, an agent r uses the bits of the string Dup(r.M I D,2p+k ) to decide its movement in
each round. Each block of Dup(r.M I D,2p+k ) is 2p+k bits long. From the proof of Theorem
3 it follows that there is a block in Dup(r.M I D,2p+k ) so that the agents have an agreement
in direction in the rounds corresponding to that block. Recall that the agents simulate the
MEETING algorithm from section 3.1 in the rounds corresponding to each block. Hence it
follows from Theorem 1 that two agents are guaranteed to meet during the rounds corre-
sponding to the aforesaid block. Therefore, the algorithm ensures that the meeting takes

place within 2k
(

k(k−1)
2 +k +1

)∑p
i=0 2i < k22k+dlogne+3 rounds.

4.3 Exploration with Termination by Agents without Chirality

For simplicity assume that the agents are placed arbitrarily at distinct nodes of the ring. We
shall remove this assumption at the end of this section. Initially the st ate variable of all
three agents are set to search. We shall adopt a strategy similar to the one used in Section
3. In fact, we only need to make some modifications in the algorithms to be executed by the
agents with st ate search and settled.

The agents will execute the MEETING algorithm described in Section 4.2 until another
agent is encountered. The agents will keep count of the number of rounds since the begin-
ning in the variable ST i me. Now by Theorem 4 two of the agents are guaranteed to meet
within k22k+dlogne+3 rounds. Upon meeting the agents will agree on a common direction,
say the right direction of the agent with larger ID. Without loss of generality assume that the
agreed direction is the clockwise direction. The agent with smaller ID, say r1, will become the
settled agent and the one with larger ID, say r2, will continue moving in the clockwise direc-
tion. The agent r1 will save the port number leading to the agreed direction, i.e., clockwise.
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Let r3 denote the third agent which is still executing the MEETING algorithm. Using similar
arguments as in Lemma 3 we can show that a second meeting is guaranteed to take place
on or before dlog2ne+1th phase, i.e., within k22k+dlogne+4 rounds from the start of the algo-
rithm. However unlike in Section 3 where the agents had chirality, here the second meeting
may also take place between r1 and r2. This is because r3 is moving in clockwise direction in
some rounds and counterclockwise in other rounds. Hence there is a possibility that r2 and
r3 may swap over an edge and r1 meets r2 first. However even then it is not difficult to see that
r3 is guaranteed to meet r1 or r2 on or before (dlog2ne+1)th phase i.e., within k22k+dlogne+4

rounds from the start of the algorithm. To see this, observe that r2 and r3 will try to move in
the same direction for some 4n consecutive rounds in the (dlog2ne+1) = dlog4neth phase.
Within the first 2n rounds a meeting should take place by Lemma 1. If this meeting involves
r3 then we are done. Otherwise r1 and r2 meet each other and then by again applying by
Lemma 1, r3 will meet one of them within the following 2n rounds.

Now consider the following cases depending on which of the two robots meet on the
second meeting.

1. Suppose that the second meeting takes place between r1 and r2. In this case the ring
has been explored and r2 finds out n and informs r1 about it. Then r2 will continue
moving in the clockwise direction. Both agents will terminate after the round when
ST i me = k22k+dlogne+4. Recall that r3 is guaranteed to meet one of them in the mean-
time and will terminate immediately.

2. Suppose that the second meeting takes place between r2 and r3. Then r2 informs r3

about the agreed direction. Hence the case reduces to the setting of Section 3. There-
fore r2 and r3 will change their st ate to forward and bounce respectively and execute
the algorithms as before.

3. Now suppose that the second meeting takes place between r1 and r3. In this case r3

will come to know about the agreed direction and again the case reduces to the setting
of Section 3. So r3 will continue to move in the agreed direction i.e., clockwise.

Theorem 5. EXPLORATION with explicit termination is solvable by three agents without chi-
rality in k22k+dlogne+4 +23n =O(k22k n) rounds.

Proof. It follows from the above discussions and the results proved in Section 3 that the
agents will terminate after exploring the ring within k22k+dlogne+4 +23n =O(k22k n) rounds.

Recall that we assumed that the agents are placed initially at distinct nodes of the ring.
We now show that this assumption is not necessary if the initial configuration has two agents
r1, r2 at the same node and the third agent r3 at a different node. Then the case reduces to
the situation when the first meeting takes place. Then r1 and r2 will change their st ate to
settled and forward while r3 will execute the MEETING algorithm with st ate search. The
algorithm will progress as before and achieve exploration with termination.
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If all three agents are in the same node in the initial configuration then the three agents
will compare their identifiers and will change their st ate to settled, forward and bounce
accordingly. Again, the algorithm will progress as before and achieve exploration with termi-
nation.

5 Concluding Remarks

We showed that EXPLORATION (with explicit termination) in a dynamic always connected
ring without any landmark node is solvable by three non-anonymous agents without chi-
rality. This is optimal in terms of the number of agents used as the problem is known to be
unsolvable by two agents. Our algorithm takes O(k22k n) rounds to solve the problem where
n is the size of the ring and k is the length of the identifiers of the agents. An interesting ques-
tion is whether the problem can be solved in O(pol y(k)n) rounds. However with k =O(1) the
round complexity is O(n). This is asymptotically optimal as there are n nodes to be explored
and in each round three agents can visit at most three nodes.

A challenging problem that remains open is EXPLORATION in a dynamic network of ar-
bitrary underlying topology. Except for some bounds on the number of agents obtained in
the recent work [13], almost nothing is known. As for other special topologies only the case
of torus has been studied [14]. Comparison of what can be achieved by anonymous and
non-anonymous agents in these settings is an direction to explore.
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