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Abstract

Cheeger’s inequality states that a tightly connected subset can be extracted from a graph G using an

eigenvector of the normalized Laplacian associated with G. More specifically, we can compute a subset

with conductance O(
√
φG), where φG is the minimum conductance of a set in G.

It has recently been shown that Cheeger’s inequality can be extended to hypergraphs. However, as the

normalized Laplacian of a hypergraph is no longer a matrix, we can only approximate its eigenvectors;

this causes a loss in the conductance of the obtained subset. To address this problem, we here consider

the heat equation on hypergraphs, which is a differential equation exploiting the normalized Laplacian.

We show that the heat equation has a unique global solution and that we can extract a subset with

conductance
√
φG from the solution under a mild condition. An analogous result also holds for directed

graphs.
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1 Introduction

The goal of spectral clustering of graphs is to extract tightly connected communities from a given weighted

graph G = (V,E,w), where w : E → R+ is a weight function, using eigenvectors of matrices associated

with G. One of the most fundamental results in this area is Cheeger’s inequality, which relates the second-

smallest eigenvalue of the normalized Laplacian of G and the conductance of G. Here, the (random-walk)

normalized Laplacian of G is defined as LG = I − AGD
−1
G , where AG ∈ RV×V and DG ∈ RV×V

are the (weighted) adjacency matrix and the (weighted) degree matrix, respectively, of G, that is, DG is a

diagonal matrix with the (v, v)-th element for v ∈ V being the (weighted) degree dG(v) :=
∑

e∈E|v∈ew(e)
of v. Note that all eigenvalues of LG are non-negative and the smallest eigenvalue is always zero, as

LG(DG1) = 0, where 1 is the all-one vector and 0 is the zero vector. The conductance of a set ∅ ( S ( V
is defined as

φG(S) :=

∑
e∈∂G(S) w(e)

min{volG(S), volG(V \ S)}
,

where ∂G(S) is the set of edges between S and V \ S, and volG(S) :=
∑

v∈S dG(v) is the volume of S.

Intuitively, smaller φG(S) corresponds to more tightly connected S. The conductance of G is the minimum

conductance of a set in G; that is, φG := min∅(S(V φG(S). Then, Cheeger’s inequality [2, 3] states that

λG

2
≤ φG ≤

√
2λG, (1)

where λG ∈ R+ is the second-smallest eigenvalue of LG. The second inequality of (1) is algorithmic in

the sense that we can compute a set ∅ ( S ( V with conductance of at most
√
2λG = O(

√
φG), which is

called a Cheeger cut, in polynomial time from an eigenvector corresponding to λG. Moreover, Cheeger’s

inequality is tight in the sense that computing a set with conductance o(
√
φG) is NP-hard [16], assuming

the small set expansion hypothesis (SSEH) [15].

Several attempts to extend Cheeger’s inequality to hypergraphs have been made. To explain the known

results, we first extend the concepts of conductance and the normalized Laplacian to hypergraphs. Let

G = (V,E,w) be a weighted hypergraph, where w : E → R+ is a weight function. The (weighted) degree

of a vertex v ∈ V is dG(v) :=
∑

e∈E|v∈ew(e). For a vertex set ∅ ( S ( V , the conductance of S is defined

as

φG(S) :=

∑
e∈∂G(S) w(e)

min{volG(S), volG(V \ S)}
,

where ∂G(S) is the set of hyperedges intersecting both S and V \S, and volG(S) has the same definition as

usual graph. The conductance of G is defined as φG := min∅(S(V φG(S).

The normalized Laplacian LG : RV → 2R
V 1 of a hypergraph G [4, 20] is multi-valued and no longer

linear (see Section 2 for a detailed definition). In the simplest setting that the hypergraph G is unweighted

and d-regular, that is, every vertex has degree d, and the elements of the given vector x ∈ RV are pairwise

distinct, the LG acts as follows: We create an undirected graph Gx on V from G by adding for each

hyperedge e ∈ E an undirected edge uv, where u = argminw∈e x(w) and v = argmaxw∈e x(w), then

return LGx
x.

1We note that the range of the Laplacian defined in [4] is RV instead of 2R
V

. They chose the value of LG(x) so that it satisfies a

necessary condition that the heat equation (HE; s) has a solution, which makes it unique. Hence as long as we consider the solution

to (HE; s), our Laplacian behaves as that defined in [4]. Nevertheless, we keep the range 2R
V

for a general treatment of the heat

equation using the theory of monotone operators. See Section 5 for more details.
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When LG(v) ∋ λv holds for λ ∈ R and v 6= 0, we can state that λ and v are an eigenvalue and an

eigenvector, respectively, of LG. As with the graph case, all eigenvalues of LG are non-negative and the

first eigenvalue is zero as LG(D1) = 0 holds. Moreover, the second-smallest eigenvalue λG ∈ R+ exists.

Cheeger’s inequality for hypergraphs [4, 20] states that

λG

2
≤ φG ≤ 2

√
λG. (2)

Again, the second inequality is algorithmic: If we can compute an eigenvector corresponding to λG, we

can obtain a Cheeger cut; that is, a set ∅ ( S ( V with φG(S) = O(
√
φG), in polynomial time. Unlike

the undirected graph case, however, only an O(log n)-approximation algorithm is available for computing

λG [20]. Further, this approximation ratio is tight under the SSEH [4]. Hence, the following natural question

arises: Can we compute a Cheeger cut without computing λG and applying Cheeger’s inequality on the

corresponding eigenvector?

To answer this question, we consider the following differential equation called the heat equation [4]:

dρt

dt
∈ −LG(ρt) and ρ0 = s, (HE; s)

where s ∈ RV is an initial vector. Intuitively, we gradually diffuse values (or heat) on vertices along

hyperedges so that the maximum and minimum values in each hyperedge become closer. We can show

that (HE; s) always has a unique global solution for t ≥ 02 using the theory of monotone operators and

evolution equations [12], [14] (see Section 5 for details), and let ρs
t ∈ RV be the solution at time t ≥ 0. In

particular, ρs
0 = s holds. In addition, if

∑
v∈V s(v) = 1, we can show that

∑
v∈V ρs

t (v) = 1 holds for any

t ≥ 0, and that ρs
t converges to π ∈ RV as t → ∞ when G is connected, where π(v) := dG(v)/vol(V )

(see [4, Theorem 3.4]). Throughout this paper, we assume that hypergraph G is connected.

For a vector x ∈ RV , let sweep(x) denote the set of all sweep sets with respect to x; that is, sets of

the form either {v ∈ V | x(v) ≥ τ} or {v ∈ V | x(v) ≤ τ}, for some τ ∈ R. We want to show that the

conductance of the sweep set of a vector obtained from the heat equation is small. To this end, for T ≥ 0,

we introduce a key quantity in our analysis:

gv(T ) = −
d

dt
log ‖ρπv

t − π‖2D−1

∣∣∣∣
t=T

,

where ‖x‖2D−1 := x⊤D−1x, which quantifies how fast the heat converges to the limit, that is, π. We can

show that gv(T ) is twice the Rayleigh quotient of D−1/2(ρπv

T −π) with respect to the normalized Laplacian

x 7→ D−1/2LG(D−1/2(x)). This fact, combined with Cheeger’s inequality for hypergraphs, implies that

gv(T ) captures the minimum conductance of a sweep set obtained from ρπv

T .

Theorem 1. Let G = (V,E,w) be a weighted hypergraph and ∅ ( S ( V be a set. For any t > 0, we have

gv(T ) ≥ (κvT,t)
2

where κvT,t := min{φG(S
′) | ξ ∈ [T, t], S′ ∈ sweep(ρπv

ξ )} and πv ∈ RV is a vector for which πv(v) = 1
and πv(u) = 0 for u 6= v.

Let u2(Gv,T ) be an eigenvector corresponding to the second smallest eigenvalue λ2(Gv,T ) of the nor-

malized Laplacian LGv,T
. Then, by using Cheeger’s inequality for undirected graphs, we have the following

corollary:

2Previous works [4, 20] only guaranteed that it has a local solution for 0 ≤ t ≤ T0 for some T0 > 0.

2



Algorithm 1: Finding Cheeger Cuts via Heat Equation

Input : Hypergraph G = (V,E,w) and t > T > 0
Output: S ⊆ V

1 Select an arbitrary v ∈ V ;

2 Solve (HE;πv) to obtain ρπv

ξ for ξ ∈ [T, t];

3 Sout ← argminS∈
⋃

ξ∈[T,t] sweep(ρ
πv
ξ

) φG(S);

4 return Sout

Corollary 2. Assume that 〈u2(Gv,T ), ρ
πv

T 〉D−1 6= 0 holds. Then, we have

4φGhv(T ) ≥ (κvT,t)
2,

where hv(T ) = gv(T )/λ2(Gv,T ).

We can show that hv(T ) is close to 1 when T is large. Hence, Corollary 2 implies that, when T
is sufficiently large, under the assumption in the statement, we can obtain a set ∅ ( S ( V such that

φG(S) = O(
√
φG), thereby avoiding the problem of computing the second smallest eigenvalue λG of the

hypergraph normalized Laplacian LG. Algorithm 1 gives a pseudocode of our algorithm.

Although we cannot solve the differential equation (HE; s) exactly in polynomial time, we can effi-

ciently simulate it by discretizing time using, e.g., the Euler method or the Runge-Kutta method. Indeed

these methods have already been used in practice [19]. Alternatively, we can use difference approximation,

developed in the theory of monotone operators and evolution equations [14], to obtain the following:

Theorem 3. Let G = (V,E,w) be a weighted hypergraph and v ∈ V , and let T ≥ 1 and λ ∈ (0, 1). Then,

we can compute (a concise representation) of a solution {ρλ
t }0≤t≤T such that ‖ρπv

t − ρλ
t ‖D−1 = O(

√
λT )

for every 0 ≤ t ≤ T , in time polynomial in 1/λ, T , and
∑

e∈E |e|.

1.1 Directed graphs

We briefly discuss directed graphs here, as we can show analogues of Theorem 1, Corollary 2, and Theo-

rem 3 for such graphs with almost the same proof.

For a directed graph G = (V,E,w), the degree of a vertex v ∈ V is dG(v) =
∑

e∈E|v∈ew(e) and the

volume of a set S ⊆ V is volG(S) =
∑

v∈S dG(v). Note that we do not distinguish out-going and in-coming

edges when calculating degrees. Then, the conductance of a set ∅ ( S ( V is defined as

φG(S) :=
min{∑e∈∂+

G
(S)w(e),

∑
e∈∂−

G
(S) w(e)}

min{volG(S), volG(V \ S)}
,

where ∂+
G(S) and ∂−

G(S) are the sets of edges leaving and entering S, respectively. Then, the conductance

of G is φG := min∅(S(V φG(S). Note that φG = 0 when G is a directed acyclic graph.

Yoshida [19] introduced the notion of a Laplacian for directed graphs and derived Cheeger’s inequality,

which relates φG and the second-smallest eigenvalue λG of the normalized Laplacian of G. As with the

hypergraph case, computing λG is problematic, and we can apply an analogue of Theorem 1 to obtain a

set of small conductance without computing λG. In this paper, we focus on hypergraphs for simplicity of

exposition.
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1.2 Sketch of proof

Chung [7] presented analogues of Theorem 1 and Corollary 2 for usual undirected graphs. Here, we review

her proofs of these analogue, because our proofs of Theorem 1 and Corollary 2 extend them partially.

For the undirected graph case, we consider the following single-valued differential equation:

dρt

dt
= −LGρt and ρ0 = s.

This differential equation has a unique global solution ρs
t = exp(−tLG)s. We define a function fs : R+ →

R as

fs(t) = ‖ρs
t/2 − π‖2D−1 .

When G is connected, ρs
t converges to π as t → ∞ irrespective of s; hence, fs measures the difference

between ρs
t/2 and its unique stationary distribution π. For a set S ⊆ V , we define πS ∈ RV as πS(v) =

d(v)/vol(S) if v ∈ S and πS(v) = 0 otherwise. Then, we can show the inequalities

exp(−O(φ(S)t)) ≤ fπS(t) ≤ exp
(
−Ω

(
(κπS

t )2t
))

, (3)

for every S ⊆ V , where κπS
t is the minimum conductance of a sweep set with respect to the vector

(ρπS
t (v)/d(v))v∈V . From the closed solution of ρs

t , we observe that ρ
πS

t/2 =
∑

v∈S
d(v)
vol(S)ρ

πv

t/2. Then,

we have

exp(−O(φ(S)t)) ≤ fπS(t) = ‖ρπS

t/2 − π‖2D−1 ≤
(
∑

v∈S

d(v)

vol(S)
‖ρπv

t/2 − π‖D−1

)2

(by triangle inequality)

≤ max
v∈S
‖ρπv

t/2 − π‖2D−1 = max
v∈S

fπv(t) ≤ max
v∈S

exp
(
−Ω

(
(κπv

t )2t
))

.

Taking the logarithm yields the desired result.

The main obstacle to extending the above argument to hypergraphs is that ρt does not have a closed-

form solution as LG is no longer a linear operator and single-valued. To overcome this obstacle, we observe

that there exists the sequence t0 = 0 < t1 < t2 < · · · such that LG can be regarded as a linear operator Li
in each interval [ti, ti+1). Here, Li is the normalized Laplacian of a graph constructed from the hypergraph

G and the vector ρti . Then, we can show a counterpart of the second inequality of (3) for each fs
i : R+ → R

defined as fs
i (∆) = ‖ρs

ti+∆/2−π‖2D−1 , which is sufficient for our analysis. (We will use another equivalent

definition for fs
i for convenience. See Section 4 for details.)

Another obstacle is that the triangle inequality applied in the above argument is not true in general,

because ρ
πS

t/2 may not generally be equal to
∑

v∈S
d(v)
vol(S)ρ

πv

t/2 for the hypergraph case. Due to this obstacle,

it is hard to obtain a counterpart of the first inequality of (3). To overcome this problem, using the fact

that the logarithmic derivative gv(t) is monotonically non-increasing and considering t > T for T > 0, we

obtain a non-trivial lower bound exp(−O(gv(T )(t − T )) of the square of norm ‖ρπv
t − π‖2D−1 . Then, we

show that gv(T ) goes to an eigenvalue of the normalized Laplacian LGv,T
as T becomes larger. Hence, if

gv(T ) is close to λ2(Gv,T ), by using the Cheeger inequality (1) for graphs and the relation φGv,T
≤ φG, we

obtain a counterpart of the first inequality of (3).
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1.3 Related work

As noted above, an analogue of Theorem 1 for usual graphs has been presented by Chung [7]. However, as

the normalized Laplacian LG = I−AGD
−1
G is a matrix for the graph case, that analysis is much simpler than

that presented herein. Kloster and Gleich [11] have presented a deterministic algorithm that approximately

simulates the heat equation for graphs. Hence, they extracted a tightly connected subset by considering a

local part of the graph only.

The concept of the Laplacian for hypergraphs has been implicitly employed in semi-supervised learn-

ing on hypergraphs in the form x⊤LG(x), where LG(x) = LG(D
−1
G x) [10, 21]. This concept was then

formally presented by Chan et al. [4] at a later time. Subsequently, the Laplacian concept was further

generalized to handle submodular transformations [13, 20]; this development encompasses Laplacians for

graphs, hypergraphs [4], directed graphs [19], and directed hypergraphs [6]. On our work here, we need pre-

cise description of undirected graphs G̃i introduced below. To achieve this, we borrow some results in [6,

Sections 3 and 4].

Finally, we note that another type of Laplacian for hypergraphs, which essentially replaces each hyper-

edge with a clique, has been used in the literature [1, 17]. We stress that that Laplacian differs from the

Laplacian for hypergraphs studied in this work.

1.4 Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the basic concepts used

throughout this paper. In Section 3, we show some basic facts on the heat equation (3). In Section 4, we

prove Theorem 1. We show that (HE; s) has a unique global solution in Section 5. A proof of Theorem 3 is

given in Section 6.

2 Preliminaries

For a vector x ∈ RV and a set S ⊆ V , let x(S) =
∑

v∈S x(v). For a vector x ∈ RV and a positive

semidefinite matrix A ∈ RV×V , we define 〈x,y〉A = x⊤Ay and ‖x‖A =
√
〈x,x〉A =

√
x⊤Ax.

Let G = (V,E,w) be a hypergraph. We omit the subscript G from notations such as AG when it is clear

from the context. For a set S ⊆ V , let 1S ∈ RV denote the characteristic vector of S, that is, 1S(v) = 1 if

v ∈ S and 1S(v) = 0 otherwise. When S = V or S = {v}, we simply write 1 and 1v , respectively. For

a set S ⊆ V , we define a vector πS ∈ RV as πS(v) =
dG(v)
volG(S) if v ∈ S and πS(v) = 0 otherwise. When

S = V or S = {v}, we simply write π and πv, respectively. For a vector ρ ∈ RV , we write ρ/dG to denote

a vector with (ρ/dG)(v) = ρ(v)/dG(v) for each v ∈ V .

2.1 Normalized Laplacian for hypergraphs

We define (random-walk) normalized Laplacian for hypergraphs precisely. Let G = (V,E,w) be a hyper-

graph. For each hyperedge e ∈ E, we define a polytope Be = conv({1u − 1v | u, v ∈ e}), where conv(S)

denotes the convex hull of S ⊆ RV . Then, the Laplacian LG : RV → 2R
V

of G is defined as

LG(x) =

{
∑

e∈E

w(e)beb
⊤
e x | be ∈ argmax

b∈Be

b⊤x

}
, (4)

and the normalized Laplacian is defined as LG : x 7→ LG(D
−1
G x).

5



We can write LG(x) more explicitly as follows. For each hyperedge e ∈ E, let Se = argmaxv∈e x(v)
and Ie = argminv∈e x(v). Let E′ = {uv | e ∈ E, u ∈ Se, v ∈ Ie} ∪ {vv | v ∈ V }. Then,

we arbitrarily define a function w′
e : E

′ → R+ so that w′
e(uv) > 0 only if u ∈ Se and v ∈ Ie and

we have
∑

u∈Se,v∈Ie
w′
e(uv) = w(e). Then, we construct a graph G′ = (V,E′, w′), where w′(uv) =∑

e∈E|u∈Se,v∈Ie
w′
e(uv) for each uv ∈ E′ and w′(vv) = dG(v) −

∑
e∈E′|v∈e w

′(e) for each v ∈ V . Note

that dG(v) = dG′(v) for every v ∈ V . Let G(G,x) be the set of graphs constructed this way. Then, we have

LG(x) = {LG′x | G′ ∈ G(G,x)}.
We can understand Laplacian for hypergraphs in terms of submodular functions. Let Fe : 2

V → {0, 1}
be the cut function associated with a hyperedge e ∈ E, that is, Fe(S) = 1 if and only if S ∩ e 6= ∅ and

(V \ S) ∩ e 6= ∅. It is known that Fe is submodular, that is, Fe(S) + Fe(T ) ≥ Fe(S ∩ T ) + Fe(S ∪ T )
holds for every S, T ⊆ V . Then, Be is the base polytope of Fe and be in (4) is chosen so that b⊤e x = fe(x),
where fe : R

V → R is the Lovász extension of Fe. See [9] for detailed definitions of these notions.

When G = (V,E,w) is a usual graph, its Laplacian LG ∈ RV×V and (random-walk) normalized

Laplacian LG ∈ RV×V are defined as DG − AG and IG − AGD
−1
G , respectively. Indeed, this coincides

with (4) when we regard G as a hypergraph with each hyperedge having size two.

3 Properties of Solutions to Heat Equation

We review some facts on the heat equation (HE; s). We say that {ρt}t≥0 is a solution of (HE; s) if ρt is

absolutely continuous with respect to t (hence ρt is differentiable at almost all t) and ρ0 = s and satisfies
d
dtρt ∈ −LG(ρt) for almost all t ≥ 0. As we see in Section 5, the heat equation (HE; s) always has a unique

global solution. Also as we mentioned, when G is connected, ρt converges to π as t→∞ for any s ∈ RV

with
∑

v∈V s(v) = 1.

We consider the heat equation (HE; s) on a hypergraph G = (V,E,w) with an initial vector s ∈ RV

and let {ρs
t }t≥0 be its unique solution. Let µs

t = D−1ρs
t . Then, there is an ordered equivalence relation

(σ∗,≻) on V consistent with {dkµs
t /dt

k}k introduced in [6, Section 3.1], i.e., for u, v ∈ V , u ∼σ∗ v if all

higher (right) derivatives of µs
t (u) and µs

t (v) at t = 0 are equal and for two σ∗-equivalence classes U and

U ′, U ≻ U ′ if there is an integer l ∈ Z+ such that for u ∈ U and u′ ∈ U ′, the following hold:

dkµs
t

dtk

∣∣∣∣
t=0

(u) =
dkµs

t

dtk

∣∣∣∣
t=0

(u′) for k = 0, . . . , l − 1, and
dlµs

t

dtl

∣∣∣∣
t=0

(u) >
dlµs

t

dtl

∣∣∣∣
t=0

(u′).

We define � as ≻ or =. We divide V by the equivalence relation σ∗ as V =
⊔m

k=1 Uk so that Uk ≻ Uk+1

for every k. For v ∈ V , let [v]σ∗ be the equivalence class including v.

Let x = µs
0 = D−1s. For e ∈ E, we recall Se = Se(x) = argmaxv∈e x(v) and Ie = Ie(x) =

argminv∈e x(v). Then, we define Sσ∗

e = Sσ∗

e (x) and Iσ
∗

e = Iσ
∗

e (x) as

Sσ∗

e (x) = {u ∈ Se(x) | [u]σ∗ � [v]σ∗ for any v ∈ Se(x)}
Iσ

∗

e (x) = {u ∈ Ie(x) | [u]σ∗ � [v]σ∗ for any v ∈ Ie(x)}.

We set Ṽ as a complete system of representatives {u1, u2, . . . , um} ⊆ V (uk ∈ Uk) and set Ẽ = {ukul ⊂

6



Ṽ | k, l = 1 . . . m}. We define the weights w̃ on Ẽ as

w̃(ukul) =
∑

e∈E, Sσ∗
e ∩Uk 6=∅

Iσ
∗

e ∩Ul 6=∅

we +
∑

e∈E, Sσ∗
e ∩Ul 6=∅

Iσ
∗

e ∩Uk 6=∅

we for k 6= l,

w̃(ukuk) =
∑

v∈Uk

dG(v)−
∑

l=1,...,m,
l 6=k

w̃(ukul),

Then, the triple G̃ = (Ṽ , Ẽ, w̃) can be regarded as a weighted undirected graph. Let d
G̃
(uk) =

∑
v∈Uk

dG(v),

DG̃ = diag(dG̃(uk)) ∈ Rm×m, s̃ =
(∑

u∈Uk
s(u)

)
k
∈ Rm, and x̃ = (x(uk))k ∈ Rm. Then, we have

s̃ = D̃x̃ by using the equivalence relation σ∗. Then for ρ̃s
t =

(∑
u∈Uk

ρs
t (u)

)
k
∈ Rm, the following holds.

The proof is deferred to Appendix A.

Theorem 4. ρ̃s
t is a unique solution of the following heat equation:

dρ̃t

dt
= −LG̃ρ̃t, ρ̃0 = s̃.

until when a next tie occurs for µs
t , i.e., if we retake the ordered equivalence relation σ∗ consistent with

{dkµs
t /dt

k}k at t, either Sσ∗

e (µs
t ) or Iσ

∗

e (µs
t ) changes for some e. Here, L

G̃
is the graph normalized

Laplacian of G̃. Moreover, the solution of this heat equation ρ̃s
t determines ρs

t for such t.

Then, there is a time sequence t0 = 0 < t1 < t2 < · · · such that there is a weighted graph G̃i =
(Ṽi, Ẽi, w̃i) for each i ∈ Z+ such that the heat equation on the interval [ti, ti+1) satisfies

dρ̃t

dt
= −Liρ̃t,

where ρ̃t :=
(∑

u∈U i
k
ρt(u)

)
k

for equivalence classes {U i
k}k by equivalence relation σ∗ consistent with

{dkµs
t /dt

k}k at t = ti, and Li is the normalized Laplacian associated with G̃i. Hence, we can write the

solution ρ̃i,∆ :=
(∑

u∈U i
k
ρti+∆(u)

)
k

for ∆ ∈ [0, ti+1 − ti) as

ρ̃i,∆ := Hi,∆ρ̃ti , where Hi,∆ := e−∆Li =

∞∑

n=0

(−∆)nLni
n!

. (5)

Although ρ̃i,∆ was originally defined for ∆ ∈ [0, ti+1 − ti), we can extend it to any ∆ ≥ 0 by using (5).

When we want to stress the initial vector, we write ρs
t , ρs

i,∆, ρ̃s
t , ρ̃s

i,∆, etc.

In what follows, we assume that for the initial vector s and t > 0, there is an integer n ∈ Z+ and a

sequence 0 = t0 < t1 < · · · < tn < T satisfying the following condition: On each interval [ti, ti+1],
i = 0, 1, . . . , n − 1, and [tn, T ], the solution ρs

t of heat equation (HE; s) can be obtained by the solution of

the heat equation on the weighted graph G̃i (i = 0, 1, . . . , n) as above. We assume this only for simplicity

of exposition. Indeed, if the above condition does not hold, the sequence {ti}i converges to some T0 <∞.

Then, the existence of the global solution ρt shown in Section 5 implies that ρT0 is well defined, and hence

another sequence {t′i}i starts from T0 again, we can continue this process until we reach T . It is not hard to

generalize our argument for such a case.
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4 Proof of Theorem 1

In this section, we prove Theorem 1. Missing proofs are found in Appendix B.

Consider the heat equation (HE; s). We borrow notations from Section 3. For each i ∈ Z+, we define a

function fi : R+ → R as

fi(∆) := ρ̃⊤
i,0D

−1
G̃i

(
ρ̃i,∆ − π̃i

)
,

where π̃i =
(∑

u∈U i
k
π(u)

)
k
=
(
d
G̃i
(uik)/volṼi

)
k
. When we wish to stress the initial vector s ∈ RV , we

write fs
i . As the following proposition implies, the value of fi(∆) indicates the difference between ρ̃i,∆/2

and the stationary distribution π̃i on G̃i.

Proposition 5. For any initial vector s ∈ RV , i ∈ Z+, and ∆ ≥ 0, we have

fi(∆) = ‖ρ̃i,∆/2 − π̃i‖2
D−1

G̃i

=
∑

v∈Ṽi

(
ρ̃i,∆/2(v)

d
G̃i
(v)

− 1

vol(Ṽi)

)2

dG̃i
(v) ≥ 0.

Proof. We have

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i) = ‖D−1/2

G̃i
(Hi,∆/2 − π̃i

1
⊤)ρ̃i,0‖2 = ‖D−1/2

G̃i
(ρ̃i,∆/2 − π̃i)‖2.

The following lemma shows the compatibility of norms between vectors on G and G̃i.

Lemma 6. For t = ti +∆, 0 ≤ ∆ ≤ ti+1 − ti, we have ‖ρ̃i,∆ − π̃i‖D−1

G̃i

= ‖ρt − π‖D−1 .

Theorem 1 is obtained by bounding fi(∆) from above and below. To obtain an upper bound, for 0 ≤
T ≤ t, we define

κ̃i,I = min

{
φ
G̃i
(S)

∣∣∣∣∣ ξ ∈ I, S ∈ sweep

(
ρ̃i,ξ

dG̃i

)}
(i ∈ Z+, I ⊂ [0, ti+1 − ti]),

κ̃i = κ̃i,[0,ti+1−ti] (i ∈ Z+),

κ̃T,t = min

{
min

j=i0+1,...,i1−1
κ̃j , κ̃i0,[T−ti0 ,ti0+1], κ̃i1,[0,t−ti1 ]

}
,

where i0, i1 ∈ Z+ are such that T ∈ [ti0 , ti0+1) and t ∈ [ti1 , ti1+1).

Again, when we wish to stress the initial vector πv ∈ RV , we write κ̃vi,I , etc. In the following lemma, we

present an upper bound on a quotient of norms of heat when the initial vector s is πv for some v ∈ V .

Lemma 7. For any t ≥ T ≥ 0, the following inequality holds:

‖ρπv
t − π‖2D−1

‖ρπv

T − π‖2
D−1

≤ exp(−(κ̃vT,t)2(t− T )).

Next, we consider a lower bound on the squared norm of the heat with the initial vector πv. Let T ≥ 0
and set

gv(T ) = −
d

dt
log ‖ρπv

t − π‖2D−1

∣∣∣∣
t=T

= −
d
dt‖ρ

πv
t − π‖2D−1 |t=T

‖ρπv

T − π‖2
D−1

= 2
〈ρπv

T ,L(ρπv

T )〉D−1

‖ρπv

T − π‖2
D−1

.

Then, the following inequality holds:
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Lemma 8. For any t ≥ T , the following inequality holds:

‖ρπv
t − π‖2D−1

‖ρπv

T − π‖2
D−1

≥ exp (−gv(T )(t− T )) .

Based on these lemmas, we obtain the following:

Theorem 9. Let G = (V,E,w) be a hypergraph, and v ∈ V and t ≥ T ≥ 0. Then, we have

gv(T ) ≥ (κ̃vT,t)
2.

We remark that the gv(T ) is close to an eigenvalue of normalized Laplacian of an undirected graph in

the following sense: For ρπv
t , as in Section 2.1, there is a graph Gv,t = Gρ

πv
t

= (V,Ev,t, wv,t) such that

LGv,tρ
πv
t ∈ LG(ρπv

t ). We remark that if t ∈ [ti, ti+1), the graph G̃i introduced in Section 3 is obtained by

contracting Gv,t. We fix T ≥ 0 and consider a small ∆ > 0. Let t = T +∆. Then, ρπv
t can be written by

ρπv
t =

n∑

j=1

aje
−λj(Gv,T )(T+∆)uj(Gv,T ),

for some aj ∈ R. Here, 0 = λ1(Gv,T ) ≤ λ2(Gv,T ) ≤ · · · ≤ λn(Gv,T ) ≤ 2 are the eigenvalues of LGv,T

and u1(Gv,T ), . . . ,un(Gv,T ) are these eigenvectors such that {D−1/2u1(Gv,T ), . . . ,D
−1/2un(Gv,T )} is

orthonormal. We set j0 as

j0 = min{j | j ≥ 2, aj 6= 0}.
Then, the gv(T ) can be rephrased as

gv(T ) = 2

∑n
j=j0

a2jλj(Gv,T )e
−2λj(Gv,T )T

∑n
j=j0

a2je
−2λj(Gv,T )T

= 2λj0(Gv,T )

(
1 + (aj0+1/aj0)

2(λj0+1(Gv,T )/λj0(Gv,T ))e
−2(λj0+1(Gv,T )−λj0

(Gv,T ))T + · · ·
1 + (aj0+1/aj0)

2e−2(λj0+1(Gv,T )−λj0
(Gv,T ))T + · · ·

)
.

We define hv(T ) so that gv(T ) = 2λj0(Gv,T )hv(T ). Then, hv(T ) goes to 1 as T increases. Hence, hv(T )
is close to 1 for large T . If j0 = 2 (equivalent to 〈u2(Gv,T ),ρ

πv

T 〉D−1 6= 0), we can find a nearly Cheeger

cut:

Corollary 10. Notation is the same as above. We assume that 〈u2(Gv,T ),ρ
πv

T 〉D−1 6= 0. Then, we have the

following inequality:

4φGhv(T ) ≥ (κ̃vT,t)
2.

Proof. By the assumption j0 = 2, Theorem 9, and Cheeger’s inequality for graphs (1), we have

gv(T ) = 2λ2(Gv,T )hv(T ) ≤ 4φGv,T
hv(T ).

It is easy to see that φGv,T
(S) ≤ φG(S) holds for any S ⊂ V . This completes the proof.

To deduce Theorem 1 and Corollary 2, we need to show a relation κ̃vT,t with κvT,t. The following relates

the conductance of a sweep set in a hypergraph G and that in a graph G̃.
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Lemma 11. Let G = (V,E,w) be a hypergraph, x ∈ RV be a vector, a be a real number, and σ∗ be the

ordered equivalence relation compatible with x in the sense of [6, Section 3], i.e., u and v are σ∗-equivalent

if and only if x(u) = x(v). Let G̃ = (Ṽ , Ẽ, w̃) be the weighted graph defined as in Section 3 with this

equivalent relation σ∗. If Sa ⊆ V (resp., S̃a ⊆ Ṽ ) is the sweep set on G (resp., G̃) with x(u) ≥ a, then

φG(S
a) = φG̃(S̃

a) holds.

Proof of Theorem 1 and Corollary 2. As κ̃vT,t = κvT,t by Lemma 11, we see that Theorem 9 and Corollary 10

imply Theorem 1 and Corollary 2, respectively.

5 Existence and Uniqueness of Solution

In this section, we show the existence and uniqueness of a solution to the heat equation (HE; s) using the the-

ory of monotone operators. We refer the interested reader to the books by Miyadera [14] and Showalter [18]

for a detailed description of this topic.

We begin by introducing some definitions. Let X = (X, 〈·, ·〉) be a Hilbert space, ‖ · ‖ be the norm

defined from the inner product, and A : X → 2X be a multi-valued operator on X. Let R(A) ⊆ X be the

range of A. We often identify A with the graph of A; that is, {(x, y) | x ∈ X, y ∈ A(x)} ⊆ X ×X.

Definition 12. An operator A : X → 2X is monotone (or accretive) if, for any x, x′ ∈ X and y ∈ A(x), y′ ∈
A(x′), we have

〈y − y′, x− x′〉 ≥ 0.

When −A is monotone, A is called dissipative.

Definition 13. A monotone operator A : X → 2X is maximal if A is maximal as a graph of the monotone

operator on X; i.e., if there is a monotone operator B : X → 2X with A(x) ⊆ B(x) for any x ∈ X. Then

we have A = B.

To show that the heat equation (HE; s) has a unique global solution, by the theory of monotone operators,

it is sufficient to show that LG : RV → 2R
V

is a maximal monotone operator. In our case, the Hilbert space

is X = RV equipped with the inner product 〈·, ·〉D−1 for x,y ∈ RV .

Lemma 14. The operator LG is monotone.

Proof. For any x ∈ RV and y ∈ LG(x), we can write

y = BWB⊤D−1x =
∑

e∈E

w(e)beb
⊤
e x,

where x = D−1x. Further, W ∈ RE×E is a diagonal matrix with the (e, e)-th entry being w(e). B =
(be)e∈E is a matrix with column vectors be ∈ RV , for which

be ∈ argmax
b∈be

〈b,x〉.

We use this to show monotonicity. For x1,x2 ∈ RV and y1 ∈ LG(x1),y2 ∈ LG(x2), we have

y1 = B1WB⊤
1 x1, y2 = B2WB⊤

2 x2.
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Then, we have

〈y1 − y2,x1 − x2〉D−1 = 〈y1,x1〉D−1 + 〈y2,x2〉D−1 − 〈y2,x1〉D−1 − 〈y1,x2〉D−1

= ‖B⊤
1 x1‖2W + ‖B⊤

2 x2‖2W − x⊤
2 B2WB⊤

2 x1 − x⊤
1 B1WB⊤

1 x2

≥ ‖B⊤
1 x1‖2W + ‖B⊤

2 x2‖2W − x⊤
2 B2WB⊤

1 x1 − x⊤
1 B1WB⊤

2 x2

= ‖B⊤
1 x1 −B⊤

2 x2‖2W ≥ 0.

Lemma 15. The operator LG is maximal.

Proof. By [18, IV.1. Proposition 1.6], it is sufficient to show that R(I + LG) = RV . This condition

means that, for any b ∈ RV , the equation x + LG(x) ∋ b has a solution x in RV . In a previous work [8,

Section 3.1], an equivalent condition of the existence of the solution to LG(x) ∋ b was given. By a similar

argument, we can give an equivalent condition for x+LG(x) ∋ b and show the existence of the solution to

x+ LG(x) ∋ b.

We obtain the following corollary using the theory of nonlinear semigroup:

Corollary 16. The heat equation (HE; s) has a unique global solution.

Proof. Immediate from Lemmas 14 and 15. See [18, IV, Proposition 3.1] for details.

6 Computation and Error Analysis of Difference Approximation

In this section, we prove Theorem 3. In what follows, we fix a hypergraph G = (V,E,w), v ∈ V , T ≥ 1,

and λ ∈ (0, 1).
We first review the construction of difference approximation ρλ

t given in [14, Section 5.3]. By the

condition (5.27) in [14] and the maximality of LG, for any x ∈ RV , there is a real number µ satisfying the

following conditions: 



0 < µ ≤ λ,

xµ ∈ RV , yµ ∈ −LG(xµ),

‖xµ − x− µyµ‖D−1 < µλ.

(6)

We define µ(x) as the least upper bound on µ satisfying (6). We consider an initial vector x0 ∈ RV .

Then, there is h1 ∈ R such that µ(x0)/2 < h1 ≤ λ and there are x1 ∈ RV and y1 ∈ −LG(x1) satisfying

‖x1 − x0 − h1y1‖D−1 < h1λ. By repeating this argument, we can take sequences {hk}, {xk}, and {yk}
for k = 1, 2, . . . satisfying the following conditions:

1. µ(xk−1)/2 < hk ≤ λ,

2. ‖xk − xk−1 − hkyk‖D−1 < hkλ.

Let tk =
∑k

j=1 hj . Then, it is easy to show that {tk}, {xk}, and {yk} satisfy the following conditions for

{tλk}, {xλ
k}, and {yλ

k}:

1. 0 = tλ0 < tλ1 < · · · < tλk < · · · with limk→∞ tλk =∞,

2. tλk − tλk−1 < λ (k = 1, 2, . . . ),

3. ‖xλ
k − xλ

k−1 − (tλk − tλk−1)y
λ
k‖D−1 < λ(tλk − tλk−1) (k = 1, 2, . . . ).
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Then, the function ρλ
t was defined by

ρλ
t =

{
x0 if t = 0,

xλ
k if t ∈ (tλk , t

λ
k+1] ∩ (0, T ].

(7)

Theorem 3 follows from Lemmas 17 and 18 below.

Lemma 17. We can compute (a concise representation) of {ρλ
t }0≤t≤T for every 0 ≤ t ≤ T in time polyno-

mial in 1/λ, T , and
∑

e∈E |e|.

Proof. From the construction of ρλ
t , it suffices to compute xλ

k until tk ≥ T . Note that we can obtain xλ
k

from xλ
k−1 by solving the equation

x− xλ
k−1 ∈ −λLG(x), (8)

because, then, we can set hk = λ and xλ
k to be the obtained solution.

Let x = D−1x for any x ∈ RV . Then, solving (8) is equivalent to solving

Dx−Dxλ
k−1 ∈ −λLG(x). (9)

By an argument similar to [8, Section 3.1], solving (9) is equivalent to computing the following proximal

operator

prox(xλ
k−1) := argmin

x∈RV

(
λ

2

∑

e∈E

w(e)fe(x)
2 +

1

2
‖x− xλ

k−1‖2D

)
, (10)

which can be computed in time polynomial in
∑

e∈E |Ve|, where Ve is the set of extreme points of be [8,

Theorem D.1 (i)]. As Ve ≤ |e|2, we can compute xλ
k = D prox(xλ

k−1) in time polynomial in
∑

e∈E |e|.
As hk = λ, we need to compute xλ

k for k ≤ ⌈T/k⌉. Hence, the total time complexity is polynomial in

1/λ, T , and
∑

e∈E |e|.

Lemma 18. We have ‖ρλ
t − ρπv

t ‖D−1 = O(
√
λT ).

Proof. Let |||LG(x)||| = inf{‖y‖D−1 | y ∈ LG(x)}. We set Nλ ∈ Z+ as tλNλ
< T ≤ tλNλ

, |∆λ| =
max{tλk − tλk−1; k = 1, 2, . . . , Nλ} and Eλ =

∑Nλ

k=1 ‖Eλ
k‖D−1(tλk − tλk−1), where E

λ
k is defined as

E
λ
k =

xλ
k − xλ

k−1

tλk − tλk−1

− yλ
k (k = 1, 2, . . . ).

Then, by the equation (5.20) of [14] instantiated with ω0 = 0, t = s, xp = x, we have

‖ρλ
t − ρ

µ
t ‖D−1 ≤ Eλ + Eµ +

(
(|∆λ|+ |∆µ|)2 + |∆λ|(t+ |∆λ|) + |∆µ|(t+ |∆µ|)

) 1
2 × |||LG(πv)|||

for t ∈ [0, T ] and µ > 0. The condition 3 for {tλk}, {xλ
k}, and {yλ

k} implies ‖Eλ
k‖D−1 < λ. Hence,

Eλ < λtλNλ
< λ(T + λ) as tλNλ−1 < T ≤ tλNλ

.

Therefore by taking limit µ→ 0+, we have

‖ρλ
t − ρπv

t ‖D−1 < λ(T + λ) +
√
λ2 + λ(t+ λ)|||LG(πv)||| = O(

√
λT ).
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A Proof of Theorem 4

Proof. By Corollary 16, for any initial vector s, there exists a unique solution ρs
t of (HE; s). Let µs

t =

D−1ρs
t . By [6, §.3 and §.4], we can compute any higher right derivatives

dnµs

t

dtn |t=0. Let (σ∗,≻) be the

lexicographical ordered equivalence relation on V consistent with {dnµs
t /dt

n|t=0}n.

For each e ∈ E, let Se, Ie, Sσ∗

e , and Iσ
∗

e be subsets introduced in §.2.1 and §.2.2. Let G′ = (V ′, E′, w′)
be the undirected weighted graph with respect to µs

t as in §.2.1. We remark that for each e ∈ E, w′
e(uv) 6= 0

only if (u, v) or (v, u) is in Sσ∗

e × Iσ
∗

e , because any vertex in Se\Sσ∗

e (resp. Ie\Iσ∗

e ) will leave Se (resp.

Ie) after infinitesimal time. We take T > 0 such that if we retake ordered equivalence relation (σ∗,≻)
consistent with {dnµs

t /dt
n|t=t′}n at t′ ∈ [0, T ], for e ∈ E, Sσ∗

e and Iσ
∗

e do not change. Then, for any

t ∈ [0, T ], we have

−LG(ρ
s
t ) = −(I −AGD

−1)(ρs
t ) ∋ −ρs

t +Aµs

t
µs
t

= −ρs
t +

(
∑

v∈V

w′(uv)µs
t (v)

)

u

=

(
−dG(u)µs

t (u) +
∑

v∈V

w′(uv)µs
t (v)

)

u

=

(
−
(
∑

v∈V

w′(uv)

)
µs
t (u) +

∑

v∈V

w′(uv)µs
t (v)

)

u

=


−



∑

v∈V,
v 6=u

w′(uv)


µs

t (u) +
∑

v∈V,
v 6=u

w′(uv)µs
t (v)




u

=


−



∑

v∈V,

v 6=u

w′(uv)


 (µs

t (u)− µs
t (v))




u
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=


−

∑

e∈E



∑

v∈V,
v 6=u

w′
e(uv)


 (µs

t (u)− µs
t (v))




u

.

If u ∈ Sσ∗

e , then w′
e(uv) 6= 0 holds only if v ∈ Iσ

∗

e . Hence, we have



∑

v∈V,
v 6=u

w′
e(uv)


 (µs

t (u)− µs
t (v)) =


 ∑

v∈Iσ∗
e

w′
e(uv)


∆e(µ

s
t ),

where ∆e(µ
s
t ) = maxu,v∈e(µ

s
t (u)−µs

t (v)). On the other hand, if u ∈ Iσ
∗

e , then w′
e(uv) 6= 0 holds only if

v ∈ Sσ∗

e . Hence, we have



∑

v∈V,
v 6=u

w′
e(uv)


 (µs

t (u)− µs
t (v)) = −


 ∑

v∈Sσ∗
e

w′
e(uv)


∆e(µ

s
t ).

Using these equalities, we obtain


−

∑

e∈E



∑

v∈V,
v 6=u

w′
e(uv)


 (µs

t (u)− µs
t (v))




u

=


−

∑

e∈E,

u∈Sσ∗
e


 ∑

v∈Iσ∗
e

w′
e(uv)


∆e(µ

s
t ) +

∑

e∈E,

u∈Iσ
∗

e


 ∑

v∈Sσ∗
e

w′
e(uv)


∆e(µ

s
t )




u

.

Let C[σ∗] = {U1, . . . , Um} be the family of σ∗-equivalence classes such that Uk ≻ Ui+1 and we fix

uk ∈ Uk for each i. For u ∈ Uk, we note [u]σ∗ = Uk.

We sum up the entries of the above vector along Uk. Then, we have

∑

u∈Uk


−

∑

e∈E,

u∈Sσ∗
e


 ∑

v∈Iσ∗
e

w′
e(uv)


∆e(µ

s
t ) +

∑

e∈E,

u∈Iσ
∗

e


 ∑

v∈Sσ∗
e

w′
e(uv)


∆e(µ

s
t )




= −
∑

e∈E,

Sσ∗
e ∩Uk 6=∅



∑

u∈Sσ∗
e

v∈Iσ
∗

e

w′
e(uv)


∆e(µ

s
t ) +

∑

e∈E,

Iσ
∗

e ∩Uk 6=∅



∑

u∈Iσ
∗

e

v∈Sσ∗
e

w′
e(uv)


∆e(µ

s
t )

= −
∑

e∈E,

Sσ∗
e ∩Uk 6=∅

we∆e(µ
s
t ) +

∑

e∈E,

Iσ
∗

e ∩Uk 6=∅

we∆e(µ
s
t ).

We remark that the last form is independent of the choice of w′
e(uv). Now, if Sσ∗

e ∩ Uk 6= ∅, ∆e(µ
s
t ) =

µs
t (uk) − µs

t (ul) for some l > k such that Iσ
∗

e ∩ Ul 6= ∅. Similarly, if Iσ
∗

e ∩ Uk 6= ∅, ∆e(µ
s
t ) =

15



µs
t (ul)− µs

t (uk) for some l < k such that Sσ∗

e ∩ Ul 6= ∅. Hence the sum becomes

−
∑

e∈E,

Sσ∗
e ∩Uk 6=∅

we∆e(µ
s
t ) +

∑

e∈E,

Iσ
∗

e ∩Uk 6=∅

we∆e(µ
s
t )

= −
∑

e∈E,

Sσ∗
e ∩Uk 6=∅

∑

l 6=k

Iσ
∗

e ∩Ul 6=∅

we(µ
s
t (uk)− µs

t (ul)) +
∑

e∈E,

Iσ
∗

e ∩Uk 6=∅

∑

l 6=k

Sσ∗
e ∩Ul 6=∅

we(µ
s
t (ul)− µs

t (uk))

= −
∑

l 6=k

∑

e∈E,Sσ∗
e ∩Uk 6=∅

Iσ
∗

e ∩Ul 6=∅

we(µ
s
t (uk)− µs

t (ul))−
∑

l 6=k

∑

e∈E,Iσ
∗

e ∩Uk 6=∅

Sσ∗
e ∩Ul 6=∅

we(µ
s
t (uk)− µs

t (ul))

= −
∑

l 6=k

akl(µ
s
t (uk)− µs

t (ul))−
∑

l 6=k

alk(µ
s
t (uk)− µs

t (ul)),

= −


∑

l 6=k

(akl + alk)


µs

t (uk) +
∑

l 6=k

(akl + alk)µ
s
t (ul),

where

akl =
∑

e∈E,Sσ∗
e ∩Uk 6=∅

Iσ
∗

e ∩Ul 6=∅

we.

We set

w̃(ukul) = akl + alk for k 6= l and w̃(ukuk) = dG̃(uk)−
∑

l 6=k

w̃(ukul),

where dG̃(uk) =
∑

i∈Uk
dG(u). For ρs

t , we set ρ̃s
t =

(∑
u∈Uk

ρs
t (u)

)
k
∈ Rm. Then, we have

ρ̃s
t =




∑

u∈Uk

dG(u)


µs

t (uk)




k

= (dG̃(uk)µ
s
t (uk))k.

Let DG̃ = diag(dG̃(uk)) and µ̃s
t := (µs

t (uk))k = D−1
G̃

ρ̃s
t ∈ Rm. Then, we have


∑

u∈Uk

(−ρs
t (u) + (Aµs

t
µs
t )(u))




k

=


−


∑

l 6=k

w̃(ukul)


µs

t (uk) +
∑

l 6=k

w̃(ukul)µ
s
t (ul)




k

= −ρ̃s
t + ρ̃s

t +


−


∑

l 6=k

w̃(ukul)


µs

t (uk) +
∑

l 6=k

w̃(ukul)µ
s
t (ul)




k

= −ρ̃s
t +




dG̃(uk)−

∑

l 6=k

w̃(ukul)


µs

t (uk) +
∑

l 6=k

w̃(ukul)µ
s
t (ul)




k

= −ρ̃s
t + (w̃(ukul))k,lµ̃

s
t = −(I − (w̃(ukul))k,lD

−1
G̃

)ρ̃s
t .
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This I − (w̃(ukul))k,lD
−1
G̃

is the normalized graph Laplacian LG̃ introduced in Section 3.

We return to the heat equation. We consider the solution ρs
t of heat equation (HE; s). We set µs

t =
D−1

G ρs
t . By the definition of σ∗, µs

t (u) = µs
t (v) if u ∼σ∗v until the next tie occurs. We remark that ρs

t until

the next tie occurs is determined by µs
t (uk), i = 1, . . . ,m. Also

dµs

t (u)
dt =

dµs

t (v)
dt holds for such u, v and t.

Hence, we have

∑

u∈Uk

dρs
t

dt
(u) = dG̃(uk)

dµs
t

dt
(uk)

Let ρ̃s
t =

(∑
u∈Uk

ρs
t (u)

)
k
∈ Rm, and µ̃s

t := D−1
G̃

ρ̃s
t . By the argument above, ρ̃s

t is the unique solution

of the heat equation
dρ̃t

dt
= −LG̃ρ̃t, ρ̃0 = s̃. (11)

This solution ρ̃s
t determines µ̃s

t , and hence µs
t . If u ∈ Uk, then

ρs
t (u) = dG(u)µ

s
t (uk)

holds. Hence, we can recover ρs
t from the heat equation (11).

B Proofs of Section 4

B.1 Useful lemmas

In this section, we derive several inequalities on fi that will be useful later. Note that the proofs are deferred

to Section B. We define Ri : R
Ṽi → R as

Ri(x) =
x⊤LG̃i

x

‖x‖2D
G̃i

=

∑
uv∈Ẽi

(x(u)− x(v))2w̃i(uv)
∑

v∈Ṽi
x(v)2d

G̃i
(v)

. (12)

Lemma 19. For any i ∈ Z+, we have

d

d∆
log fi(∆) =

ρ̃⊤
i,0D

−1
G̃i

d
d∆ ρ̃i,∆

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i)
= −Ri

(
ρ̃i,∆/2

d
G̃i

− 1

vol(Ṽi)

)
.

Proof. We first prove the following lemma:

Claim 20. For any i ∈ Z+ and ∆ ≥ 0, we have

ρ̃⊤
i,0D

−1
G̃i

dρ̃i,∆

d∆
= −(D−1

G̃i
ρ̃i,∆/2)

⊤
(DG̃i

−AG̃i
)(D−1

G̃i
ρ̃i,∆/2)

= −
∑

uv∈Ẽi

(
ρ̃i,∆/2(u)

d
G̃i
(u)

−
ρ̃i,∆/2(v)

d
G̃i
(v)

)2

w̃i(uv) ≤ 0,

where A
G̃i

is the adjacency matrix of G̃i.
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Proof. We have

ρ̃⊤
i,0D

−1
G̃i

dρ̃i,∆

d∆
= −ρ̃⊤

i,0D
−1
G̃i

Hi,∆Liρ̃i,0 = −ρ̃⊤
i,0D

−1
G̃i

Hi,∆/2Hi,∆/2Liρ̃i,0 (by Hi,∆ = Hi,∆/2Hi,∆/2)

= −ρ̃⊤
i,0(Hi,∆/2)

⊤D−1
G̃i

(DG̃i
−A

G̃i
)D−1

G̃i
Hi,∆/2ρ̃i,0 (by DG̃i

Hi,∆/2 = (Hi,∆/2)
⊤DG̃i

)

= −(D−1
G̃i

ρ̃i,∆/2)
⊤
(DG̃i

−A
G̃i
)(D−1

G̃i
ρ̃i,∆/2).

The second equality in the statement is obtained through a direct calculation.

We are now ready to prove Lemma 19. The first equality is obtained through direct calculation and the

second equality follows from Proposition 5 and Lemma 20.

Lemma 21. For any i ∈ Z+, we have

d2

d∆2
log fi(∆) ≥ 0.

Proof. By Lemma 19, we have

− d2

d∆2
(− log(ρ̃⊤

i,0D
−1
G̃i

(ρ̃i,∆ − π̃i))) =
d

d∆

(
−

ρ̃⊤
i,0D

−1
G̃i

d
d∆ ρ̃i,∆

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i)

)

=
d

d∆

(
ρ̃⊤
i,0D

−1
G̃i
Liρ̃i,∆

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i)

)
=

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i)ρ̃⊤
i,0D

−1
G̃i
L2i ρ̃i,∆ − (ρ̃⊤

i,0D
−1
G̃i
Liρ̃i,∆)

2

(ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i))
2 .

It is sufficient to check the positivity of the numerator. Note that the numerator can be written as

(ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i))(ρ̃⊤
i,0D

−1
G̃i
L2i ρ̃i,∆)− (ρ̃⊤

i,0D
−1
G̃i
Liρ̃i,∆)

2
. (13)

The first factor of the first term of (13) is

ρ̃⊤
i,0D

−1
G̃i

(ρ̃i,∆ − π̃i) = ‖D−1/2

G̃i
(ρ̃i,∆/2 − π̃i)‖2

by Proposition 5. The second factor of the first term of (13) is

ρ̃⊤
i,0D

−1
G̃i
L2i ρ̃i,∆ = ρ̃⊤

i,0D
−1
G̃i

(I −A
G̃i
D−1

G̃i
)
2
Hi,∆ρ̃i,0

= ρ̃⊤
i,0D

−1
G̃i

DG̃i
(Hi,∆/2)

⊤D−1
G̃i

(I −AG̃i
D−1

G̃i
)
2
Hi,∆/2ρ̃i,0

= ρ̃⊤
i,0(Hi,∆/2)

⊤D−1
G̃i

(DG̃i
−AG̃i

)D−1
G̃i

(DG̃i
−AG̃i

)D−1
G̃i

Hi,∆/2ρ̃i,0

= ‖D−1/2

G̃i
(DG̃i

−A
G̃i
)D−1

G̃i
Hi,∆/2ρ̃i,0‖2

= ‖D−1/2

G̃i
(I −AG̃i

D−1
G̃i

)ρ̃i,∆/2‖2

= ‖D−1/2

G̃i
Liρ̃i,∆/2‖2.

The second term of (13) is

ρ̃⊤
i,0D

−1
G̃i
Liρ̃i,∆ = ρ̃⊤

i,0D
−1
G̃i

(I −AG̃i
D−1

G̃i
)Hi,∆ρ̃i,0

= ρ̃⊤
i,0(Hi,∆/2)

⊤D−1
G̃i

(I −AG̃i
D−1

G̃i
)Hi,∆/2ρ̃i,0

= ρ̃⊤
i,∆/2D

−1
G̃i

(I −A
G̃i
D−1

G̃i
)ρ̃i,∆/2 = ρ̃⊤

i,∆/2D
−1
G̃i
Liρ̃i,∆/2. (14)
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We can rephrase (14) as the inner product of the vectors D
−1/2

G̃i
Liρ̃i,∆/2 and D

−1/2

G̃i
(ρ̃i,∆/2−π̃i), as follows:

(D
−1/2

G̃i
Liρ̃i,∆/2)

⊤
D

−1/2

G̃i
(ρ̃i,∆/2 − π̃i) = ρ̃⊤

i,∆/2L⊤i D
−1/2

G̃i
D

−1/2

G̃i
(ρ̃i,∆/2 − π̃i)

= ρ̃⊤
i,∆/2L⊤i D−1

G̃i
ρ̃i,∆/2 − ρ̃⊤

i,∆/2L⊤i D−1
G̃i

π̃i = ρ̃⊤
i,∆/2L⊤i D−1

G̃i
ρ̃i,∆/2,

where the last equality follows from

ρ̃⊤
i,∆/2L⊤i D−1

G̃i
π̃i = ρ̃⊤

i,∆/2L⊤i
1

vol(Vi)
1

and L⊤i 1 = D−1
G̃i

(DG̃i
−AG̃i

)1 = D−1
G̃i

0 = 0.

Hence, we have

(13) = ‖D−1/2

G̃i
Liρ̃i,∆/2‖2 · ‖D−1/2

G̃i
(ρ̃i,∆/2 − π̃i)‖2 −

(
(D

−1/2

G̃i
Liρ̃i,∆/2)

⊤
D

−1/2

G̃i
(ρ̃i,∆/2 − π̃i)

)2

≥ 0,

where the last inequality follows from the Cauchy-Schwarz inequality.

B.2 Proof of Lemma 6

Proof. We recall that

ρ̃i,∆/2(u
i
k) =

∑

v∈U i
k

ρi,∆/2(v) =


∑

v∈U i
k

dG(v)


µi,∆/2(u

i
k).

Hence, we obtain

‖ρ̃i,∆/2 − π̃i‖2
D−1

G̃i

= (ρ̃i,∆/2 − π̃i)⊤D−1
G̃i

(ρ̃i,∆/2 − π̃i)

=

mi∑

k=1

1

dG̃i
(uik)

(ρ̃i,∆/2(u
i
k)− π̃i(uik))

2

=

mi∑

k=1

1

dG̃i
(uik)


∑

u∈U i
k

ρi,∆/2(u)−
dG̃i

(uik)

vol(Ṽi)




2

=

mi∑

k=1

dG̃i
(uik)

(
µi,∆/2(u

i
k)−

1

vol(V )

)2

.
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On the other hand, the norm on G becomes the following:

‖ρi,∆/2 − πi‖2D−1 =
∑

u∈V

1

dG(u)
(ρi,∆/2(u)− π(u))2

=

mi∑

k=1

∑

u∈U i
k

1

dG(u)

(
ρi,∆/2(u)−

dG(u)

vol(V )

)2

=

mi∑

k=1

∑

u∈U i
k

dG(u)

(
µi,∆/2(u

i
k)−

1

vol(V )

)2

=

mi∑

k=1

dG̃i
(uk)

(
µi,∆/2(u

i
k)−

1

vol(V )

)2

.

B.3 Proof of Lemma 7

We first derive a lower bound on the log derivative of fi(∆).

Lemma 22. For any i ∈ Z+ and ∆ ≥ 0, we have

− d

d∆
log fi(∆) ≥

κ̃2i,∆/2

2
.

Proof of Lemma 22. By Lemma 19, we have

− d

d∆
log fi(∆) = Ri

(
ρ̃i,∆/2

d
G̃i

− 1

vol(Ṽi)

)
.

Then, by applying Cheeger’s inequality on the vector ρ̃i,∆/2/dG̃i
, we obtain

max
c∈R
Ri

(
ρ̃i,∆/2

d
G̃i

− c

)
≥

κ̃2i,∆/2

2
.

Hence, it suffices to show that the left hand side (LHS) attains the maximum value when c = 1/vol(Ṽi). Let

ϕ : R→ R be the denominator of the LHS (recall (12)) as a function of c. Then,

ϕ′(c) = −2
∑

v∈Ṽi

(
ρ̃i,∆/2(v)

d
G̃i
(v)

− c

)
d
G̃i
(v).

Hence ϕ′(c) = 0 yields

∑

v∈Ṽi

ρ̃i,∆/2(v)−


∑

v∈Ṽi

d
G̃i
(v)


 c = 0,

which implies c = 1/vol(Ṽi) attains the minimum of ϕ.
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Proof of Lemma 7. We are now ready to prove Lemma 7. By Lemma 22, we have

log fi1(2(t − ti1))− log fi1(0) ≤ −κ̃2i1,[0,∆](t− ti1),

log fj(2(tj+1 − tj))− log fj(0) ≤ −κ̃2j (tj+1 − tj) (j = 0, . . . , i− 1),

log fi0(2(ti0+1 − ti0))− log fi0(2T − 2ti0) ≤ −κ̃2i0,[T−ti0 ,ti0+1−ti0 ]
(ti0+1 − T ),

Hence, we have

fi1(t− ti1) ≤ fi1(0) exp
(
−κ̃2i1,[0,t−ti1 ]

(t− ti1)
)
= ‖ρ̃i1,0 − π̃i1‖2

D−1

G̃i1

exp
(
−κ̃2i1,[0,t−ti1 ]

(t− ti1)
)

= ‖ρ̃i1−1,ti1−t(i1−1)
− π̃(i1−1)‖2

D−1

G̃(i1−1)

exp
(
−κ̃2i1,[0,t−ti1 ]

(t− ti1)
)

= f(i1−1)(2(ti1 − t(i1−1))) exp
(
−κ̃2i1,[0,t−ti1 ]

(t− ti1)
)

≤ f(i1−1)(0)
(
−κ̃2i1,[0,t−ti1 ]

(t− ti1)− κ̃2(i1−1)(ti1 − t(i1−1))
)
≤ · · ·

≤ fi0(2T − 2ti0) exp


−κ̃2i1,[0,t−ti1 ]

(t− ti1)−
i1−1∑

j=i0+1

κ̃2j(tj+1 − tj)− κ̃2i0,[T−ti0 ,ti0+1−ti0 ]
(ti0+1 − T )




≤ ‖ρπv

T − π‖2D−1 exp(−κ̃vT,t2(t− T )).

B.4 Proof of Lemma 8

Proof. As in [5, Lemma 4.11, 3], the derivative of the Rayleigh quotient 〈ρπv
t ,Lρπv

t 〉D−1/‖ρπv
t − π‖2D−1

is non-positive, hence this does not increase about t. By this monotonicity, we have

− d

dt
log ‖ρπv

t − π‖2D−1 = 2
〈ρπv

t ,Lρπv
t 〉D−1

‖ρπv
t − π‖2

D−1

≤ 2
〈ρπv

T ,Lρπv

T 〉D−1

‖ρπv

T − π‖2
D−1

= gv(T ).

By integrating this on [T, t], we obtain the claimed inequality.

B.5 Proof of Lemma 11

Proof. Let {U1, U2, . . . , Um} ⊆ 2V be the σ∗-equivalence classes such that Uk ≻ Uk+1 (k = 1, . . . ,m−1),

i.e., for any u ∈ Uk, v ∈ Uk+1, x(u) > x(v). Then, the sweep set S can be written by

Sa = Si := U1 ∪ · · · ∪ Ui

for a certain integer i. We recall that the conductance of this S on G is

φG(Si) =

∑
e∈E,e∩Si 6=∅
e∩V\Si 6=∅

we

min{vol(Si), vol(V \Si)}
.

Now, S̃a is equal to S̃i = {u1, u2, . . . , ui} for same i. Then, the conductance φ
G̃
(S̃i) is

φ
G̃
(S̃i) =

∑
uv∈Ẽ,uv∩S̃i 6=∅

uv∩Ṽ\S̃i 6=∅

w̃(uv)

min{vol(S̃i), vol(Ṽ \S̃i)}
.
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By simple calculation, we can show that the denominators are equal. We check the equality of the numerators

here.

∑

uv∈Ẽ,uv∩S̃i 6=∅

uv∩Ṽ\S̃i 6=∅

w̃(uv) =
∑

j≤i

∑

k≥i+1

w̃(ujuk)

=
∑

j≤i

∑

k≥i+1




∑

e∈E,Sσ∗
e ∩Uj 6=∅

Iσ
∗

e ∩Uk 6=∅

we +
∑

e∈E,Sσ∗
e ∩Uj 6=∅

Iσ
∗

e ∩Uk 6=∅

we




=
∑

e∈E,Sσ∗
e ∩Si 6=∅

Iσ
∗

e ∩V\Si 6=∅

we =
∑

e∈E,e∩Si 6=∅
e∩V\Si 6=∅

we.

Hence, the numerators are also the same.
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