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Abstract

For a graph G = (V,E), a subset D of vertex set V , is a dominating set of G if every vertex not
inD is adjacent to atleast one vertex ofD. A dominating setD of a graphG with no isolated vertices
is called a paired dominating set (PD-set), if G[D], the subgraph induced by D in G has a perfect
matching. The MIN-PD problem requires to compute a PD-set of minimum cardinality. The deci-
sion version of the MIN-PD problem remains NP-complete even when G belongs to restricted graph
classes such as bipartite graphs, chordal graphs etc. On the positive side, the problem is efficiently
solvable for many graph classes including intervals graphs, strongly chordal graphs, permutation
graphs etc. In this paper, we study the complexity of the problem in AT-free graphs and planar graph.
The class of AT-free graphs contains cocomparability graphs, permutation graphs, trapezoid graphs,
and interval graphs as subclasses. We propose a polynomial-time algorithm to compute a minimum
PD-set in AT-free graphs. In addition, we also present a linear-time 2-approximation algorithm for
the problem in AT-free graphs. Further, we prove that the decision version of the problem is NP-
complete for planar graphs, which answers an open question asked by Lin et al. (in Theor. Comput.
Sci., 591(2015) : 99− 105 and Algorithmica, 82(2020) : 2809− 2840).

Keywords: Domination, Paired domination, Planar graphs, AT-free graphs, Graph algorithms, NP-
completeness, Approximation algorithm.

1 Introduction

Let G = (V,E) be a graph. A vertex v ∈ V is adjacent to another vertex u ∈ V if uv is an edge
of G. In this case, we say u, a neighbour of v. The set of all vertices adjacent to v ∈ V , denoted by
NG(v), is known as open neighbourhood of v, whereas the setNG[v] = NG(v)∪{v} is known as closed
neighbourhood of v in G.

In a graph G = (V,E), a vertex v ∈ V dominates a vertex u ∈ V if u ∈ NG[v]. A subset D of
vertex set V , is a dominating set of G if every vertex of V is dominated by at least one vertex of D. The
domination number, symbolized as γ(G), is the minimum cardinality of a dominating set. The concept
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of domination has wide applications and is thoroughly studied by researchers in the literature. A survey
of the results, both algorithmic as well as combinatorial, on domination can be found in [8, 9]. Due to
several applications in the real world problems, numerous variations of domination are introduced by
imposing one or more additional condition on dominating set. Many of these variations are thoroughly
studied by researchers in the literature. Total domination is one of the important variation of domination.
For a graph G = (V,E) without an isolated vertex, a total dominating set of G is a subset D of vertex
set such that every vertex of the graph is adjacent to at least one vertex in D.

Paired domination is another important variation of domination, introduced by Haynes and Slater in
[10]. A detailed survey of results on domination problem and its variations can also be found in a recent
book by Haynes et al. [7]. Given a graph G = (V,E) with no isolated vertices, a subset D of vertex
set V , is a paired dominating set(PD-set) if D is a dominating set and the subgraph induced by D in
G has a perfect matching. The paired domination number, symbolized as γpr(G), is the cardinality of
a minimum PD-set of G. The MIN-PD problem requires to compute a PD-set of a graph G without an
isolated vertex. More precisely, the MIN-PD problem and its decision version of the same are defined as
follows:

MIN-PD problem

Instance: A graph G with no isolated vertices.

Solution: A PD-set D.

Measure: Size of D.

DECIDE PD-SET problem

Instance: A graph G and an integer k > 0, satisfying k ≤ |V |.

Query: Is there is a PD-set D of G, satisfying |D| ≤ k?

It is shown that the decision version of the problem is NP-complete for general graphs [10]. There-
fore, complexity of the problem is studied for several restricted graph classes. It is proven that, the
decision version of the problem is NP-complete when restricted to special graph classes, including bi-
partite graphs [4], perfect elimination bipartite graphs [17], and split graphs [4]. But, on the good side,
the problem is efficiently solvable in several important graph classes, including permutation graphs [13],
interval graphs [4], block graphs [4], strongly chordal graphs [5], circular-arc graphs [14] and some oth-
ers. A detailed survey of the results on paired domination can be found in [6]. In Fig. 1 we show the
hierarchy of some important graph classes and the complexity status of the DECIDE PD-SET problem in
these graph classes.

The computational complexity of the problem is still unknown in some graph classes including planar
graphs, AT-free graphs and circle graphs. AT-free graphs is introduced by Corneil et al. in [1]. AT-free
graph class includes some important classes of graphs such as interval graphs, permutation graphs and
cocomparability graphs as subclasses. A minimum dominating and total dominating set of an AT-free
graph can be computed in polynomial-time, see [12]. In this paper, we investigate the computational
complexity of the problem on AT-free graph and planar graphs. We show that minimum PD-set of an
AT-free graph can be computed in polynomial-time. In addition, we give an approximation algorithm
which computes a PD-set of any AT-free graph, within a factor of 2. Lin et al. in [14] and [15] asked
to determine the complexity of the problem in planar graphs. In this paper, we prove that DECIDE PD-
SET problem remain NP-complete even for planar graphs. The section wise contribution of the paper is
outlined as follows:
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Figure 1: Complexity status of MIN-PD problem in some well known graph classes.

In Section 2, we give insights on some notations and definitions, including properties of AT-free
graphs. In Section 3, we prove the existence of a linear-time 2-approximation algorithm to compute a
PD-set of an AT-free graph. In Section 4, we design a polynomial time algorithm to compute a minimum
cardinality PD-set of an AT-free graph. In Section 5, we show that the problem remains NP-hard for
planar graphs. Finally, Section 6 wind up the paper with some interesting open questions on the problem.

2 Preliminaries

2.1 Basic Notations and Definitions

In this paper, we consider only simple, connected and finite graphs with no isolated vertices. Let
G = (V,E) be a graph. The sets V (G) and E(G) represents node(vertex) set and edge set respectively
of the graph. When there is no ambiguity regarding graph G, for simplification, we use V and E to
denote of V (G) and E(G) respectively. For an edge e = uv ∈ E, u and v are called end vertices of
e. For any non-empty set A ⊆ V , the open neighbourhood of A, symbolized as NG(A), is given by
NG(A) =

⋃
v∈ANG(v) whereas the set NG[A] = NG(A) ∪ A is known as closed neighbourhood of A.

Further, for a set A ⊆ V , G \A represents the graph obtained by deleting vertices of set A and all edges
having at least one end vertex in A, from the graph. In case, A = {u}, we use G \ u, instead of using
G \ {u}.

A subset X of vertex set is an independent set if no two vertices of X are adjacent in G. A path P
in G is a sequence of vertices (x1, x2, . . . , xn) such that (xi, xi+1) ∈ E for each i ∈ {1, 2, . . . , n − 1}.
For a path P = (x1, x2, . . . , xn+1) in G, the length of P is |V (P ) − 1| = n. Let x, y ∈ V (G). The
distance between x and y in the graph G, denoted by dG(x, y), is the length of a shortest path between
x and y. The diameter of a graph G, denoted by diam(G), is defined as diam(G) = max{dG(x, y) |
x, y ∈ V (G)}. We use the standard notation [n] to denote the set {1, 2, . . . , n}.
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2.2 AT-free Graphs

Let G = (V,E) be a graph. A set T = {p, q, r} of three vertices, is called an asteroidal tripe(in
short AT) if T is an independent set and for any two vertices in the set T there exits a path P between
them such that V (P) does not contain any vertex from the closed neighbourhood of third. A graph is AT
free if it does not contain an asteroidal tripe. A path on six vertices is an example of an AT-free graph.

Definition 2.1. In a graph G = (V,E), a pair of vertices (x, y) is called a dominating pair, if the vertex
set of any path between x and y in G is a dominating set of G. A dominating shortest path is a shortest
path connecting x and y in G.

b b

b b

bbc bc
v1 v3

v4

v5 v6

v5

v2

Figure 2: An AT-free graph G

An asteroidal triple free graph is shown in Fig. 2. For the graph G in Fig. 2, (v1, v3) is a dominating pair,
and P = (v1, v2, v3) is a dominating shortest path. We have the following result for a connected AT-free
graph in the literature.

Theorem 2.1. [1, 2] A dominating pair exists in every AT-free graph which can be computed in linear
time.

3 Approximation Algorithm

In this section, we show that a PD-set of an AT-free graph G, can be computed in linear time whose
cardinality is at most twice of γpr(G). Let G is an AT-free graph. Using Theorem 2.1, we note that there
exists a dominating pair (x, y) in G. Assume that P is a dominating shortest path between x and y in G,
and the number of vertices in P are t. Note that any vertex that is not in P is adjacent to some vertex of
V (P ), as the set V (P ) is a dominating set of G. We may also conclude that any vertex not in P has at
most three neighbours in P , since otherwise P will not be a shortest path. By a similar argument we note
that any two adjacent vertices in G dominate at most the vertices of a P4 in P . Consequently, γpr2 ≥ d

t
4e,

that is, γpr ≥ 2 · d t4e. Before proving the Theorem 3.1, which is the main result of this section, we notice
that the following lemma is true.

Lemma 3.1. For any odd positive integer n, dn4 e ≥
n+1
4 .

Proof. The proof is easy, and hence is omitted.

Theorem 3.1. Given an AT-free graph G, a PD-set D of G can be computed in linear time, satisfying
|D| ≤ 2 · γpr(G).
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Proof. Given an AT-free graph G = (V,E), there is a linear-time algorithm to find a dominating pair
(x, y) of G (by Theorem 2.1). Let P = (x = v1, v2 . . . vt−1, vt = y) be a shortest path between x and
y, and D = V (P ). We have already observed that γpr(G) ≥ 2 · d t4e. We prove the result under the
following assumptions:

Case 1: If t is even.
Here, we note that the set D is a PD-set and |D| = t ≤ 4 · d t4e ≤ 2 · γpr(G).

Case 2: If t is odd.
In this case, we construct a PD-set of the graph G by adding at most one vertex in D. Clearly, D is a
dominating set. For pairing, we pair vi with vi+1 for i ∈ [t − 2]. Now we need to pair vt. Note that if
N(vt) ⊆ D then D \ {vt} is a PD-set of G, otherwise if there exists a vertex u ∈ N(vt) \ D then the
updated set D = D ∪ {u} is a PD-set of g. Therefore, we can always construct a PD-set D of G, where
|D| ≤ t+ 1. Using Lemma 3.1, we have t+ 1 ≤ 4 · d t4e. Hence, |D| ≤ t+ 1 ≤ 2γpr(G).

In both the cases, we can obtain a PD-set D satisfying, |D| ≤ 2γpr(G). Hence, we have an efficient
2-approximation algorithm to computes a PD-set of an AT-free graph.

4 Exact Polynomial-time Algorithm

The main purpose this section is to establish a polynomial time algorithm that outputs a minimum
cardinality PD-set, when the input graph is an AT-free graph. For this, we first present a theorem, which
will be useful in designing our algorithm. In this theorem, we show that there exists a BFS-tree T of G
and a minimum PD-set D of G such that the number of vertices of D in some consecutive levels of T
are bounded. We will use the notation Li to denote the vertices, which are at ith level in the tree T , that
is, the set of vertices which are at distance i from the root node in tree T . The following result is already
known in literature.

Theorem 4.1. [11] Let G be an AT-free graph with dominating pair (x, y) and T be a BFS-tree of G
rooted at x. Let L0, L1, L2, . . . , Ll are the BFS-levels of the BFS-tree T . Then there exists a linear-
time algorithm which computes a path P = (x = x0, x1, x2, . . . , xd = y) such that xi ∈ Li for each
0 ≤ i ≤ d and every vertex w ∈ Li for i ∈ {1, 2, . . . , l} is adjacent to either xi−1 or xi.

Theorem 4.2. LetG = (V,E) be an AT-free graph and (x, y) be a dominating pair ofG. IfL0, L1, L2, . . . , Ll
are the BFS-levels of the BFS-tree T rooted at x then there exists a minimum cardinality PD-set Dp of
G such that |Dp ∩

⋃i+j
k=i Lk| ≤ j + 4 for all i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i}.

Proof. Let G = (V,E) be an AT-free graph and Dp be a minimum cardinality PD-set of the graph G.
Suppose that the set Dp does not satisfy the given property, that is, there is at least one pair (i, j) such
that |Dp ∩

⋃i+j
k=i Lk| > j + 4 where i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i}. Let B = {(i, j) : |Dp ∩⋃i+j

k=i Lk| ≥ j + 5}. Note that B 6= ∅. Now we choose pair (i′, j′) such that i′ = min{i|(i, j) ∈ B} and
j′ = max{j | (i′, j) ∈ B}. By the choice of the pair (i′, j′), note thatDp∩Li′−1 = ∅ andDp∩Li′+j′+1 =

∅. Using the properties of a BFS-tree, we note that for any vertex v ∈ (Dp ∩
⋃i′+j′

k=i′ Lk), any neighbor
of v belongs to one of the levels Li′−1, Li′ , · · ·Li′+j+1. Let A = {xi′−2, xi′−1, . . . xi′+j′+1}. Note that,
|A| = j′ + 4. Since V (P ) is a dominating set of G and each vertex z ∈ Li is adjacent to either xi−1
or xi,

⋃i′+j′+1
k=i′−1 Lk ⊆ N [A]. Now by updating Dp we will find another minimum PD-set D′p such that

A ⊆ D′p.
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Case 1: If xi′−2 /∈ Dp and |A| is even.
Since Dp ∩ Li′+j′+1 = ∅, xi′+j′+1 /∈ Dp. If xi′−2 /∈ Dp and |A| is even then the set D′p =

(Dp \
⋃i′+j′

k=i′ Lk) ∪A is a PD-set of G with |D′p| < |Dp|, a contradiction to the choice of Dp.

Case 2: If xi′−2 /∈ Dp and |A| is odd.
Note that |A| is odd and G[A] is a path, if we include A in a PD-set we can pair all the vertices in A

except one. We pair (xi′−2, xi′−1), (xi′ , xi′+1), . . . , (xi′+j′−1, xi′+j′). Now we need to pair xi′+j′+1. If
(NG(xi′+j′+1) \ {xi′+j′}) ⊆ Dp and (NG(xi′+j′+1) \ {xi′+j′})∩ (Lxi′+j′+1

∪Lxi′+j′ ) = ∅. In this case
using the property of path P , note that all the vertices in Li′+j′+1 is adjacent to xi′+j′ . Hence the set
D′p = (Dp \

⋃i′+j′

k=i′ Lk) ∪ (A \ {xi′+j′+1}) is a PD-set of G with |D′p| < |Dp|, a contradiction. If there
is a vertex u ∈ NG(xi′+j′+1) \ {xi′+j′} such that u /∈ Dp or if NG(xi′+j′+1) \ {xi′+j′} ⊆ Dp but there
is a vertex u ∈ NG(xi′+j′+1) \ {xi′+j′} such that u ∈ (Lxi′+j′+1

∪ Lxi′+j′ ) then take A′ = A ∪ {u}.
Note that the set D′p = (Dp \

⋃i′+j′

k=i′ Lk)∪A
′ is a PD-set of G, implying that |D′p| ≥ |Dp|. Also we have

|Dp ∩
⋃i′+j′

k=i′ Lk| ≥ j′ + 5 and |A′| = j′ + 5 implying that |D′p| ≤ |Dp|. Hence D′p is also a minimum
PD-set of G.

Case 3: If xi′−2 ∈ Dp and |A| is even.
SinceDp∩Li′−1 = ∅ andDp∩Li′+j′+1 = ∅, no vertex inDp\(

⋃i′+j′+1
k=i′−1 Lk) is paired with a vertex in⋃i′+j′+1

k=i′−1 Lk implying that xi′−2 is not paired with any vertex ofA. Note that |A\{xi′−2}| is odd. Hence,
we can pair the vertices of A \ {xi′−2} except one. Since G[A \ {xi′−2}] is a path, we pair (xi′−1, xi′),
(xi′+1, xi′+2), . . ., (xi′+j′−1, xi′+j′). Now we need to find a pair of xi′+j′+1. Similar to the previous
case, if (NG(xi′+j′+1)\{xi′+j′}) ⊆ Dp and (NG(xi′+j′+1)\{xi′+j′})∩ (Lxi′+j′+1

∪Lxi′+j′ ) = ∅, then
using the property of path P , we nay observe that all the vertices in Li′+j′+1 is adjacent to xi′+j′ . Hence
the set Dp′ = (Dp \

⋃i′+j′

k=i′ Lk)∪ (A\{xi′+j′+1)} is a PD-set of G with |Dp′ | < |Dp|, a contradiction. If
there is a vertex u ∈ NG(xi′+j′+1) \ {xi′+j′} such that u /∈ Dp or if NG(xi′+j′+1) \ {xi′+j′} ⊆ Dp but
there is vertex u ∈ NG(xi′+j′+1) \ {xi′+j′} such that u ∈ (Lxi′+j′+1

∪Lxi′+j′ ) then take A′ = A∪ {u}.
Note that the set Dp′ = (Dp \

⋃i′+j′

k=i′ Lk) ∪ A
′ is a PD-set of G, implying that |Dp′ | ≥ |Dp|. Also we

have |Dp ∩
⋃i′+j′

k=i′ Lk| ≥ j′ + 5 and |A′| = j′ + 5 implying that |Dp′ | ≤ |Dp|. Hence Dp′ is also a
minimum PD-set of G.

Case 4: If xi′−2 ∈ Dp and |A| is odd.
Since xi′−2 /∈ Dp and |A| is odd, similar to previous cases we can pair the vertices (xi′−1, xi′),

(xi′+1, xi′+2), . . ., (xi′+j′−1, xi′+j′) and we can find a PD-set of smaller cardinality or a vertex u such
that if we take A′ = A ∪ {u} then the set Dp′ = (Dp \

⋃i′+j′

k=i′ Lk) ∪ A
′ is a PD-set of G, implying that

|Dp′ | ≥ |Dp|. Also we have |Dp ∩
⋃i′+j′

k=i′ Lk| ≥ j′ + 5 and |A′| = j′ + 5 implying that |Dp′ | ≤ |Dp|.
Hence Dp′ is also a minimum PD-set of G.

Further, note that if i′ is 0 or 1, we can chooseA = {x0, x1, . . . , xi′+j′+1} if |{x0, x1, . . . , xi′+j′+1}|
is even, otherwise we can choose A = {x0, x1, . . . , xi′+j′+1, u}, where u ∈ N(xi′+j′+1). We can show
the existence of u as we did above. In both the cases |A| ≤ j′+4 implying thatD′p = (Dp\

⋃i′+j′

k=i′ Lk)∪A
is a PD-set of G having cardinality less than the minimum cardinality PD-set Dp of G, a contradiction.
Hence i′ /∈ {0, 1}. Similarly we can claim that i′ + j′ /∈ {l − 1, l}.

We call this replacement of Dp with D′p an exchange step. Now, if |D′p ∩
⋃i+j
k=i Lk| ≤ j + 4 for all

i ∈ {0, 1, . . . l} and j ∈ {0, 1, . . . l − i} then G has a minimum paired dominating D′p satisfying the
condition given in Theorem 4.2. Otherwise, let B′ = {(i, j) : |D′p ∩

⋃i+j
k=i Lk| ≥ j + 5}. Suppose
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(i, j) ∈ B′. Now we will show that i > i′. By contradiction suppose, i ≤ i′. In this case note
that i + j ≥ i′ − 2 otherwise, (i, j) ∈ B, contradicting the choice of i′. Also, |D′p ∩ Lt| ≥ 1 for
all t ∈ {i′ − 2, i′ − 1, . . . , i′ + j′ + 1}. Hence for (i, j) ∈ B′ with i < i′ and i + j ≥ i′ − 2
there exits a j′ such that (i, j′) ∈ B′ and i + j′ ≥ i′ + j′ + 1. By construction of D′p, we note that

|Dp ∩
⋃i+j′

k=i Lk| ≥ |D
′
p ∩

⋃i+j′

k=i Lk| ≥ j′ + 5 implying that (i, j′) ∈ B, a contradiction to the choice of
i′ or j′. Hence i > i′. Therefore, if i

′′
= min {i | (i, j) ∈ B′} then i

′′
> i′.

This implies that, at every exchange step, we replace a minimum cardinality PD-set Dp with an
updated minimum cardinality PD-set D′p. After each exchange step, we note that the smallest value of i
for which there was a j ∈ {0, 1, . . . , l−i} satisfying |Dp∩

⋃i+j
k=i Lk| ≥ j+5, for the minimum cardinality

PD-set Dp, will increase. Therefore, we conclude that, if we start with any minimum cardinality PD-set
Dp, we obtain a minimum cardinality PD-setD′p, such that |D′p∩

⋃i+j
k=i Lk| ≤ j+4 for all i ∈ {0, 1, . . . l}

and j ∈ {0, 1, . . . l − i}, by executing at most d exchange steps.

Now we are ready to present an algorithm to compute a minimum cardinality PD-set of an AT-free
G. Using Theorem 4.2, we may conclude that there is a minimum PD-set of G that contains at most 6
vertices from any three consecutive BFS-levels of x, where (x, y) is a dominating pair of G. The idea
behind our algorithm is the following:

In our algorithm, we explore a BFS-level of x in each iteration. In the ith-iteration of the algorithm,
we do the following:

• store all the possible sets X ′ ⊆
⋃i+1
j=0 Lj such that X ′ dominates all the vertices till ith-level.

• ensure that all the vertices in X ′ ∩ (
⋃i
j=0 Lj) are paired as these vertices can not be paired with a

vertex at level i+ 2 or above.

• for every possible set X ′, store another set X = X ′ ∩ (Li ∪ Li+1)

The set X helps in extending a partial solution X ′ to the next level as we are restricted to select at
most 6 vertices from any three consecutive levels in a minimum PD-set. Below, we have provided the
detailed algorithm for computing a minimum cardinality PD-set Dp of an AT-free graph G. The set Dp

maintains the property that it contains at most 6 vertices from any three consecutive BFS-levels of x.

Now we prove the following theorem to show that the Algorithm 4 returns a minimum PD-set. We
also analyse the running time of the algorithm.

Theorem 4.3. Let G = (V,E) be an AT-free graph such that |V | = n and |E| = m. Algorithm 4
computes a minimum cardinality PD-set of G in O(n8.5)-time.

Proof. First, we show that Algorithm 4 computes a minimum cardinality PD-set of an AT-free graph G.
For any tuple (X,X ′, size(X ′)) in queueQi, the setX ′ represents a subsolution,X represent the vertices
picked in X ′ from (i− 1)th and ith levels, and size(X ′) represents the cardinality of X ′. We claim that
for any tuple (X,X ′, size(X ′)) in queue Qi where i ∈ [l],

⋃i−1
j=0 Lj ⊆ N [X ′], that is, X ′ dominates

the all vertices w such that w ∈ Lr where r ∈ [i − 1] and if a vertex w in G[X ′] is unmatched then
w ∈ X ′ ∩ Li, that is, all vertices w ∈ X ′ \ Li is paired in G[X ′]. Note that this is true for i = 1 because
Q1 contains all tuples (X,X ′, size(X ′)) such that X = X ′ ⊆ N [x] implying that {x} = L0 ⊆ N [X ′]
satisfying the other property also.

Suppose the claim is true for i − 1 where i ∈ [l]. Now we need to show that the claim is true for
ordered tuples (X,X ′, size(X ′)) in Qi. Indeed, the tuple (X,X ′, size(X ′)) is inserted in Qi only if

7



Algorithm 1 Minimum Paired Domination in AT-free Graphs
Input: A connected AT-free graph G = (V,E) with a dominating pair (x, y);
Output: A PD-set Dp of G;
Compute the BFS-levels of x;
For 0 ≤ i ≤ l, let Li = {w ∈ V | dG(x,w) = i} denote the set of vertices at level i in the BFS of G rooted at u.
In particular, L0 = {x}.
Initialize the queue Q1 which contains an ordered tuple (X,X, size(X)) for all non-empty X ⊆ N [x] such that
size(X) = |X| ≤ 6;
Initialize i = 1;
while (Qi 6= ∅ and i < l) do

Update i = i+ 1;
for (each element (X,X ′, size(X ′)) of the queue Qi−1) do

for (every U ⊆ Li with |X ∪ U | ≤ 6) do
if (Li−1 ⊆ N [X ∪ U ] and there exists a set U ′ ⊆ U such that G[X ′ ∪ U ′] has a perfect matching )
then

Y = (X ∪ U) \ Li−2;
Y ′ = X ′ ∪ U ;
size(Y ′) = size(X ′) + |U |;
if (for all element (X,X ′, size(X ′)) of Qi, X 6= Y ) then

insert (Y, Y ′, size(Y ′)) in the queue Qi;

if (there is a tuple (Z,Z ′, size(Z ′)) in Qi such that Z = Y and size(Y ′) < size(Z ′)) then
delete (Z,Z ′, size(Z ′)) form Qi;
insert (Y, Y ′, size(Y ′)) in Qi;

Among all the triples (X,X ′, size(X ′)) in the queueQl that satisfy Ll ⊆ N [X] andG[X ′] has a perfect matching,
find one such that size(X ′) is minimum, say (D,D′, size(D′));
Dp = D′;
return Dp;

there is tuple (Y, Y ′, size(Y ′)) in Qi−1, a set A ⊆ Li where, |Y ∪A| ≤ 6 such that, Li−1 ⊆ N [Y ∪A],
and there is a subset B of A such that induced subgraph G[Y ′ ∪ B] has a perfect matching. Note that
∪i−1j=0Lj ⊆ N [Y ′] and all vertices w ∈ Y ′ \Li−2 is paired in G[Y ′]. Hence, by the way we have selected
the set A ⊆ Li+1, we have

⋃i−1
j=0 Lj ⊆ N [X ′] and all vertices w ∈ X ′ \ Li−1 is paired in G[X ′]. This

proves the claim.
Therefore, for any tuple (X,X ′, size(X ′)) inQl with Ll ⊆ N [X] andG[X ′] has a perfect matching,

X ′ is a PD-set of G. Hence, for any minimum cardinality PD-set Dp of G where Dp contains at most 6
vertices from any three consecutive BFS-levels of x, there will be a tuple (X = Dp∩ (Ll−1∪Ll)), X ′ =
Dp, size(X

′) = |Dp| in Ql such that Ll ⊆ N [X] and G[X ′] has a perfect matching when Algorithm 4
explores all BFS-levels of x. Consequently, we conclude that the Algorithm 4 outputs a minimum cardi-
nality PD-set of an AT-free graph.

Next, we analyse the time complexity of the Algorithm 4. Note that for each set X and U with
|X ∪ U | ≤ 6, at most O(n)-time is required to check whether all the vertices at level Li are dominated.
In addition for each U ′ ⊆ U at most O(m

√
n) is required to check whether the subgraph G[X ′∪U ′] has

a perfect matching. Since there at most 26 = 64 possibilities for U ′, we need O(m
√
n) time to check

check whether the subgraph G[X ′ ∪ U ′] has a perfect matching for all possibilities U ′ ⊆ U . Also note
that there at most O(n6) subsets of V , whose size is at most 6. Hence, the running time of the algorithm
is O(n8.5).
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5 Paired Domination in Planar Graphs

In this section we show that the DECIDE PD-SET problem is NP-complete even when restricted
to planar graph. For this purpose, we will give a polynomial reduction from the MINIMUM VERTEX

COVER(MIN-VC) problem to the MIN-PD problem. In a graph G = (V,E), a vertex cover is a set
C ⊆ V such that C has at least one end point of every edge e ∈ E. The MIN-VC problem require
to compute a minimum cardinality vertex cover of a given graph G. The following theorem is already
proved for the the MIN-VC problem.

Theorem 5.1. [16] The MIN-VC problem is NP-hard for the planar cubic graphs.

Now, we prove the main result of this section.

Theorem 5.2. The DECIDE PD-SET problem is NP-complete for planar graphs with maximum degree
5.

Proof. Clearly, the DECIDE PD-SET problem is in NP. To show the hardness of the problem, we give
a reduction from MIN-VC problem which is NP-hard for planar cubic graphs, by Theorem 5.1. Let
G = (V,E) be a planar cubic graph with V = {v1, v2, . . . , vn}. We transform the graph G into a graph
G′ = (V ′, E′) as follows:

• replace each vertex vi ∈ V with the gadget Gvi as shown in the Fig. 3

• If three edges ej , ek, el were incident on vi inG, then inG′, we make ej incident on v1i , ek incident
on v2i and el incident on v3i .

b b b b b b b b b

b b

b

v1
i v2

i

v3
i

x1
i x2

i

y1
i y2

i y3
i y4

iz1
i z2

i z3
i

Gvi

b b
a1
i a2

i

Figure 3: Gadget Gvi used in the construction of graph G′ from G in Theorem 5.2.

We note that the graph G′ is a planar graph with maximum degree 5, and G′ can be computed from
G in polynomial time. Now, to prove the result we only need to prove the following claim:

Claim 5.1. If β(G) denotes the cardinality of a minimum vertex cover ofG, then γpr(G′) = 4n+2β(G),
where n denotes the number of vertices in G.

Proof. Let V c be a minimum cardinality vertex cover of G. Let Dp = {v1i , y1i , v2i , y4i , v3i , z2i | vi ∈
V c} ∪ {y2i , z1i , y3i , z3i | vi /∈ V c} where i ∈ [n]. Note that if vi /∈ V c, then all the three vertices adjacent
to vi in G must be present in V c. Using this fact, it can be easily verified that Dp is a PD-set of G′, and
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|Dp| = 6 · β(G) + 4 · (n− β(G)) = 4n+ 2β(G). Therefore, if D∗p is a minimum cardinality PD-set of
G′ then |D∗p| ≤ 4n+ 2β(G). Hence, we have

γpr(G
′) ≤ 4n+ 2β(G) (1)

Conversely, suppose Dp is a minimum cardinality PD-set of G′. Then, to dominate the vertex x1i ,
Dp ∩ {x1i , y1i , y2i } must be non-empty. Further, a vertex u ∈ {x1i , y1i , y2i } ∩Dp can only be paired with
a vertex in the set {v1i , x1i , y1i , y2i , z1i } \ {u}. Hence, |Dp ∩ {v1i , x1i , y1i , y2i , z1i }| ≥ 2. Similarly, we have
|Dp ∩ {v3i , x3i , y3i , y4i , z3i }| ≥ 2. Therefore, for each i ∈ [n], we have |Dp ∩ V (Gvi)| ≥ 4. Note that
to dominate x1i , Dp ∩ {x1i , y1i , y2i } 6= ∅. Further, to dominate a1i , Dp ∩ {z1i , z2i , a1i } 6= ∅. Similarly,
to dominate x2i and a2i , Dp ∩ {x2i , y3i , y4i } 6= ∅ and Dp ∩ {z3i , z2i , a2i } 6= ∅ respectively. Therefore, we
observe that, if |Dp ∩ V (Gvi)| = 4, then Dp ∩ V (Gvi) = {y2i , z1i , y3i , z3i }.

Now, we prove that we can update Dp such that Dp remains a minimum cardinality PD-set of G′ and
for each i ∈ [n], |Dp ∩ V (Gvi)| = 4 or |Dp ∩ V (Gvi)| ≥ 6. Suppose |Dp ∩ V (Gvi)| = 5 for some
i ∈ [n]. As we observed, the vertices dominating x1i and x2i are paired with the vertices of V (Gvi), and
|Dp ∩ V (Gvi)| ≥ 4. Hence if |Dp ∩ V (Gvi)| = 5 then Dp ∩ {v1i , v2i , v3i } 6= ∅, as only these vertices of
the gadget Gvi can be paired with a vertex of another gadget.
Case 1: Suppose v1i ∈ Dp.

In this case, first we show that Dp ∩ {v2i , v3i } = ∅. Note that v1i is paired with a vertex of some
other gadget, and v1i is not dominating x1i . Further, if u is the vertex dominating vertex x1i then u can
only be paired with a vertex in the set {x1i , y1i , y2i , z1i } \ {u}. Therefore, |Dp ∩ {v1i , x1i , y1i , y2i , z1i }| ≥
3. Also as |Dp ∩ {v2i , x2i , y3i , y4i , z3i }| ≥ 2 and |Dp ∩ V (Gvi)| = 5, we have v3i /∈ Dp. Further, as
|Dp ∩ {v1i , x1i , y1i , y2i , z1i }| ≥ 3 therefore, |Dp ∩ {v2i , x2i , y3i , y4i , z3i }| = 2. Now, if v2i ∈ Dp then v2i
is paired with y4i this leaves the vertex z3i undominated, a contradiction. Therefore, v2i /∈ Dp. This
concludes that Dp ∩ {v2i , v3i } = ∅.

Now, let v1i is paired with a vertex u of another gadget, say Gvj where i 6= j. Note that u ∈
{v1j , v2j , v3j }. It is easy to observe that |Dp ∩ V (Gvj )| ≥ 5. Suppose v1i is paired with v1j . Now if
y1j /∈ Dp then update Dp as follows: Dp = Dp \ V (Gvi)∪ {y2i , y3i , z1i , z3i , y1j } and pair v1j with y1j . Now,
suppose that y1j already belongs toDp. Note that y1j is paired with either y2j or x1j . If both y2j and x1j ∈ Dp

then y1j must be paired with x1j . In this case, the set D′p = Dp \ (V (Gvi) ∪ {x1j}) ∪ {y2i , y3i , z1i , z3i , y1j }
where v1j is paired with y1j is a PD-set of G′ and |D′p| < |Dp|, a contradiction. Therefore, in this case
either y2j /∈ Dp or x1j /∈ Dp. If x1j /∈ Dp then y1j is paired with y2j and in this case, we update Dp as
follows: Dp = Dp \ V (Gvi)∪ {y2i , y3i , z1i , z3i , x1j}, pair v1j with y1j and y2j with x1j . We can update Dp in
a similar way if y2j /∈ Dp.

Similarly we can update Dp if v1i is paired with v2j . Now suppose v1i is paired with v3j . If z2j /∈ Dp

then update Dp as follows: Dp = Dp \ V (Gvi) ∪ {y2i , y3i , z1i , z3i , z2j } and pair v3j with z2j . But, if
z2j ∈ Dp, we may observe that it is possible to update Dp by giving similar arguments as above with
suitable modifications, such that v3j is paired with z2j . After update in each case, we may note that
|Dp ∩ V (Gvi)| = 4 and |Dp ∩ V (Gvj )| ≥ 6.

Case 2: Suppose v2i ∈ Dp.
The arguments are similar to Case 1.

Case 3: Suppose v3i ∈ Dp.
Let v3i is paired with a vertex u of another gadget Gvj . Since, |Dp ∩ V (Gvi)| = 5 we have |Dp ∩

{v1i , x1i , y1i , y2i , z1i }| = 2 and |Dp ∩ {v3i , x3i , y3i , y4i , z3i }| = 2. Now, if v1i ∈ Dp then v1i is paired with
y1i this leaves the vertex z1i undominated, a contradiction. Similarly, if v2i ∈ Dp then v2i is paired with
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y4i this leaves the vertex z3i undominated, a contradiction. Hence, Dp ∩ {v1i , v2i } = ∅. Now we can
give similar arguments as Case 1, to show that Dp can be updated such that |Dp ∩ V (Gvi)| = 4 and
|Dp ∩ V (Gvj )| ≥ 6.

Now, without loss of generality, we may assume that there exists a minimum cardinality PD-set of
G′ such that for each i ∈ [n], |Dp ∩ V (Gvi)| = 4 or |Dp ∩ V (Gvi)| ≥ 6

Define V c = {vi ∈ V | |Dp ∩ V (Gvi)| ≥ 6}. Next, we claim that V c is a vertex cover of
G. Consider any two distinct vertices vi and vj in G such that vivj ∈ E(G). We prove that either
|Dp ∩ V (Gvi)| ≥ 6 or |Dp ∩ V (Gvj )| ≥ 6. Let vki is made adjacent to vk

′
j , where k, k′ ∈ [3]. Note that

if |Dp ∩ V (Gvi)| = 4 and |Dp ∩ V (Gvi)| = 4 then from above observation, we have Dp ∩ V (Gvi) =
{y2i , z1i , y3i , z3i } and Dp ∩ V (Gvj ) = {y2j , z1j , y3j , z3j }, this leaves the vertices vki and vk

′
j undominated, a

contradiction. Therefore, V c is a vertex cover of G. Also, γpr(G′) ≥ 6|V c|+ 4(n− |V c|). So, we have
2|V c| ≤ γpr(G′)− 4n. Hence,

2β(G) ≤ γpr(G′)− 4n (2)

Therefore, using Equation 1 and 2, we have γpr(G′) = 4n+ 2β(G). This proves the claim.

Since, the MIN-VC problem is NP-hard for cubic planar graphs, from above claim we conclude that
the DECIDE PD-SET problem is NP-complete for planar graphs with maximum degree 5.

6 Concluding Remarks

In this paper, we resolve the complexity of the MIN-PD problem for planar graphs and AT-free
graphs. We proposed a polynomial time algorithm for MIN-PD problem in AT-free graphs. We also
proposed a 2-approximation algorithm to compute a PD-set in AT-free graphs. Since the class of AT-
free graphs include the class of cocomparability graphs, the results and algorithms presented for paired
domination in AT-free graphs, also holds for cocomparability graphs. We further investigated the com-
putational complexity of the problem in planar graphs and proved that the problem is NP-hard. The
complexity of the problem is still not known in circle graphs. One may be interested in investigating
the complexity status of the MIN-PD problem in circle graph. Further, it is interesting to design more
efficient algorithm for the problem in AT-free graphs and cocomparability graphs.
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