
ar
X

iv
:2

10
7.

06
39

9v
1 

 [
cs

.D
M

] 
 1

3 
Ju

l 2
02

1

The Perfect Matching Cut Problem Revisited

Van Bang Le1 and Jan Arne Telle2

1 Institut für Informatik, Universität Rostock, Rostock, Germany
van-bang.le@uni-rostock.de

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
Jan.Arne.Telle@uib.no

Abstract. In a graph, a perfect matching cut is an edge cut that is a perfect matching.
perfect matching cut (pmc) is the problem of deciding whether a given graph has a perfect
matching cut, and is known to be NP-complete. We revisit the problem and show that pmc

remains NP-complete when restricted to bipartite graphs of maximum degree 3 and arbitrarily
large girth. Complementing this hardness result, we give two graph classes in which pmc

is polynomial time solvable. The first one includes claw-free graphs and graphs without an
induced path on five vertices, the second one properly contains all chordal graphs. Assuming
the Exponential Time Hypothesis, we show there is no O∗(2o(n))-time algorithm for pmc

even when restricted to n-vertex bipartite graphs, and also show that pmc can be solved in
O∗(1.2721n) time by means of an exact branching algorithm.

Keywords: Matching cut · Perfect matching cut · Computational complexity · Exact branch-
ing algorithm · Graph algorithm.

1 Introduction

In a graph G = (V,E), a cut is a partition V = X ∪ Y of the vertex set into disjoint,
non-empty sets X and Y . The set of all edges in G having an endvertex in X and the other
endvertex in Y , written E(X,Y ), is called the edge cut of the cut (X,Y ). A matching cut is
an edge cut that is a (possibly empty) matching. Another way to define matching cuts is as
follows; see [8,12]: a cut (X,Y ) is a matching cut if and only if each vertex in X has at most
one neighbor in Y and each vertex in Y has at most one neighbor in X. matching cut

(mc) is the problem of deciding if a given graph admits a matching cut and this problem
has received much attention lately; see [7,10] for recent results.

An interesting special case, where the edge cut E(X,Y ) is a perfect matching, was considered
in [13]. The authors proved that perfect matching cut (pmc), the problem of deciding
if a given graph admits an edge cut that is a perfect matching, is NP-complete. A perfect
matching cut (X,Y ) can be described as a (σ, ρ) 2-partitioning problem [21], as every vertex
in X must have exactly one neighbor in Y and every vertex in Y must have exactly one
neighbor in X. By results of [6,21,22] it can therefore be solved in FPT time when parame-
terized by treewidth or cliquewidth (to mention only the two most famous width parameters)
and in XP time when parameterized by mim-width (maximum induced matching-width) of
a given decomposition of the graph. For several classes of graphs, like interval and permuta-
tion, a decomposition of bounded mim-width can be computed in polynomial-time [3], thus
the problem is polynomial on such classes.

In this paper, we revisit the pmc problem. Our results are:

– While mc is polynomial time solvable when restricted to graphs of maximum degree 3
and its computational complexity is still open for graphs with large girth, we prove
that pmc is NP-complete in the class of bipartite graphs of maximum degree 3 and
arbitrarily large girth. Further, we show that pmc cannot be solved in O∗(2o(n)) time for
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n-vertex bipartite graphs and cannot be solved in O∗(2o(
√
n)) time for bipartite graphs

with maximum degree 3 and arbitrarily girth.

– We provide the first exact algorithm to solve pmc on n-vertex graphs, of runtime
O∗(1.2721n). Note that the fastest algorithm for mc has runtime O∗(1.3280n) and is
based on the current-fastest algorithm for 3-sat [17].

– We give two graph classes of unbounded mim-width in which pmc is solvable in polyno-
mial time. The first class contains all claw-free graphs and graphs without an induced
path on 5 vertices, the second class contains all chordal graphs.

Related work. The computational complexity of mc was first considered by Chvátal in [8],
who proved that mc is NP-complete for graphs with maximum degree 4 and polynomial time
solvable for graphs with maximum degree at most 3. Hardness results were obtained for fur-
ther restricted graph classes such as bipartite graphs, planar graphs and graphs of bounded
diameter (see [4,19,20]). Further graph classes in which mc is polynomial time solvable
were identified, such as graphs of bounded tree-width, claw-free, hole-free and Ore-graphs
(see [4,7,20]). FPT algorithms and kernelization for mc with respect to various parameters
has been discussed in [1,2,10,11,17,18]. The current-best exact algorithm solving mc has a
running time of O∗(1.3280n) where n is the vertex number of the input graph [17]. Faster
exact algorithms can be obtained for the case when the minimum degree is large [7]. The
recent paper [10] addresses enumeration aspects of matching cuts.

Very recently, a related notion has been discussed in [5]. In this paper, the authors consider
perfect matchings M ⊆ E of a graph G = (V,E) such that G \M = (V,E \M) is discon-
nected, which they call perfect matching-cuts. To avoid confusion, we call such a perfect
matching a disconnected perfect matching. Note that, by definition, every perfect matching
cut is a disconnected perfect matching but a disconnected perfect matching need not be a
perfect matching cut. Indeed, all perfect matchings of the cycle on 4k + 2 vertices are dis-
connected perfect matchings and none of them is a perfect matching cut. In [5], the authors
showed, among others, that recognizing graphs having a disconnected perfect matching is
NP-complete even when restricted to graphs with maximum degree 4, and left open the case
of maximum degree 3. It is not clear whether our hardness result on degree-3 graphs can be
modified to obtain a hardness result of recognizing degree-3 graphs having a disconnected
perfect matching.

Notation and terminology. Let G = (V,E) be a graph with vertex set V (G) = V and edge set
E(G) = E. The neighborhood of a vertex v in G, denoted by NG(v), is the set of all vertices
in G adjacent to v; if the context is clear, we simply write N(v). Let deg(v) := |N(v)| be
the degree of the vertex v, and N [v] := N(v) ∪ {v} be the closed neighborhood of v. For a
subset F ⊆ V , G[F ] is the subgraph of G induced by F , and G − F stands for G[V \ F ].
We write NF (v) and NF [v] for N(v) ∩ F and N [v] ∩ F , respectively, and call the vertices
in N(v) ∩ F the F -neighbors of v. The girth of G is the length of a shortest cycle in G,
assuming G contains a cycle. The path on n vertices is denoted by Pn, the complete bipartite
graph with one color class of size p and the other of size q is denoted by Kp,q; K1,3 is also
called a claw.

When an algorithm branches on the current instance of size n into r subproblems of sizes
at most n − t1, n − t2, . . . , n − tr, then (t1, t2, . . . , tr) is called the branching vector of this
branching, and the unique positive root of xn − xn−t1 − xn−t2 − · · · − xn−tr = 0, denoted
by τ(t1, t2, . . . , tr), is called its branching factor. The running time of a branching algorithm
is O∗(αn), where α = maxi αi and αi is the branching factor of branching rule i, and the
maximum is taken over all branching rules. Throughout the paper we use the O∗ notation
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which suppresses polynomial factors. We refer to [9] for more details on exact branching
algorithms.

Algorithmic lower bounds in this paper are conditional, based on the Exponential Time
Hypothesis (ETH) [14]. The ETH states that there is no O∗(2o(n))-time algorithm for 3-sat
where n is the variable number of the input 3-cnf formula. It is known that the hard case
for 3-sat already consists of formulas with O(n) clauses [15]. Thus, assuming ETH, there is
no O∗(2o(m))-time algorithm for 3-sat where m is the clause number of the input formula.

Observe that a graph has a perfect matching cut if and only if each of its connected com-
ponents has a perfect matching cut. Thus, we may assume that all graphs in this paper are
connected.

2 Hardness results

In this section, we give two polynomial time reductions from positive nae 3-sat to pmc.
Recall that an instance for positive nae 3-sat is a 3-cnf formula F = C1 ∧C2 ∧ · · · ∧Cm

over n variables x1, x2, . . . , xn, in which each clause Cj consists of three distinct variables.
The problem asks whether there is a truth assignment of the variables such that every clause
in F has one true and one false variable. Such an assignment is called nae assignment.

It is well-known that there is a polynomial reduction from 3-sat to positive nae 3-sat

where the variable number of the reduced formula is linear in the clause number of the
original formula. Hence, the ETH implies that there is no subexponential time algorithm
for positive nae 3-sat in the number of variables.

Theorem 1. Assuming ETH, pmc cannot be solved in subexponential time in the vertex
number, even when restricted to bipartite graphs.

Proof. We give a polynomial reduction from positive nae 3-sat to pmc restricted to
bipartite graphs. Given a 3-cnf formula F , construct a graph G as follows.

cj1

cj2

cj3

Fig. 1. The graph G(Cj).

For each clause Cj = {cj1, cj2, cj3}, let G(Cj) be the cube with
clause vertices labeled cj1, cj2, cj3, respectively, as depicted in
Fig. 1. For each variable xi, we introduce a variable vertex xi
and a dummy vertex x′i adjacent only to xi. Finally, we connect
a variable vertex xi to a clause vertex in G(Cj) if and only if Cj

contains the variable xi, i.e., xi = cjk for some k ∈ {1, 2, 3}.
Observe that G is bipartite and has the following property: no
perfect matching M of G (in particular, no perfect matching
cut) contains an edge between a clause vertex and a variable
vertex. Thus, for every perfect matching cut M = E(X,Y )
of G, the restriction Mj = E(Xj , Yj) on G(Cj) is a perfect matching cut of G(Cj). Moreover,
G(Cj) has the following property: it has exactly three perfect matching cuts, and in any
perfect matching cut of G(Cj) not all clause vertices belong to the same part. Conversely,
any bipartition of Cj can be extended (in a unique way) to a perfect matching cut Mj

of G(Cj). See also Fig. 2.

We are now ready to see that F has a nae assignment if and only if G has a perfect matching
cut: First, if there is a nae assignment for F then put all true variable vertices into X, all
false variable vertices into Y , and extend X and Y (in a unique way) to a perfect matching
cut of G; note that x′i and xi have to belong to different parts. Second, if (X,Y ) is a perfect
matching cut of G then defining xi be true if xi ∈ X and false if xi ∈ Y we obtain a nae
assignment for F .
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cj1

cj2

cj3

cj1

cj2

cj3

cj1

cj2

cj3

Fig. 2. The three perfect matching cuts of G(Cj); black vertices in X, gray vertices in Y .

Observe that G has N = O(n + m) vertices. Hence the reduction implies that, assuming
ETH, pmc has no subexponential time algorithm in vertex number N , even when restricted
to bipartite graphs. ⊓⊔
We now describe how to avoid vertices of degree 4 and larger (the clause and variable
vertices) in the previous reduction to obtain a bipartite graph with maximum degree 3 and
large girth.

Theorem 2. Let g > 0 be a given integer. pmc remains NP-complete when restricted to
bipartite graphs of maximum degree three and girth at least g.

Proof. We modify the gadgets used in the proof of Theorem 1. Let h ≥ 0 be a fixed integer,
which will be more concrete later.

Clause gadget: we subdivide every edge of the cube with 4h+4 new vertices, fix a vertex cj
of degree 3 and label the three neighbors of cj with cj1, cj2 and cj3, respectively. We denote
the obtained graph again by G(Cj) and call the labeled vertices the clause vertices. The case
h = 0 is shown in Fig. 3. Observe, G(Cj) has the same properties of the cube used in the
previous reduction: it has exactly three perfect matching cuts, and in any perfect matching
cut of G(Cj) not all clause vertices belong to the same part. Moreover, any bipartition of Cj

can be extended (in a unique way) to a perfect matching cut Mj of G(Cj). See also Fig. 4.

Variable gadget: for each variable xi we introduce m variable vertices x
j
i one for each

clause Cj, 1 ≤ j ≤ m, as follows. (We assume that the formula F consists of m ≥ 3
clauses.) First, take a cycle with m vertices x1i , x

2
i , . . . , x

m
i and edges x1ix

2
i , x

2
i x

3
i , . . . ,

xm−1
i xmi and x1i x

m
i . Then subdivide every edge with 4h+3 new vertices to obtain the graph

G(xi). Thus, G(xi) is a cycle on 4m(h + 1) vertices. The case m = 3, h = 0 is shown in
Fig. 3. The following property of G(xi) can be verified immediately: in any perfect matching
cut of G(xi), all variable vertices xji , 1 ≤ j ≤ m, belong to the same part.

cj1
cj2

cj3
v1i

v2i

v3i

Fig. 3. The clause gadget G(Cj) (left) and the variable gadget G(xi) (right) in case m = 3 and h = 0.
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Finally, the graph G is obtained by connecting the variable vertex x
j
i in G(xi) to a clause

vertex in G(Cj) by an edge whenever xi appears in clause Cj , i.e., xi = cjk for some
k ∈ {1, 2, 3}.
It follows from construction, that

– G has maximum degree 3;

– G is bipartite. This can be seen as follows. The bipartite subgraph formed by all G(Cj)
has a bipartition into independent sets A and B such that all clause vertices cjk are in A.
The bipartite subgraph formed by all G(xi) has a bipartition into independent sets C

and D such that all variable vertices x
j
i are in C. Since the edges in G between these

two subgraphs connect clause vertices and variable vertices, therefore the vertex set of
G can be partitioned into independent sets A ∪D and B ∪ C;

– G has girth at least min{4m(h + 1), 8(h + 2)}. This can be seen as follows. There are 3
types of cycles in G. Any of the cycles G(xi) has length 4m(h + 1). A shortest cycle in
any G(Cj) is a subdivision of a 4-cycle and has length 4(4h + 5). The cycles of the last
type go through some G(xi)s and some G(Cj)s; the length of a shortest one among them
is at least 4 + (4h+ 4) + 4 + (4h+ 4) = 8(h+ 2).

Moreover, as in the previous construction, G has the following property: no perfect match-
ing M of G (in particular, no perfect matching cut) contains an edge between a clause
vertex and a variable vertex. Thus, for every perfect matching cut M = E(X,Y ) of G, the
restrictions of M on G(Cj) and on G(xi) are perfect matching cuts of G(Cj) and of G(xi),
respectively.

Now, as in the proof of Theorem 1, we can argue that F has a nae assignment if and only
if G has a perfect matching cut. First, if there is a nae assignment for F then put all true
variable vertices and clause vertices into X, all false variable vertices and clause vertices
into Y , and extend X and Y (in a unique way) to a perfect matching cut of G. See Fig.4
for an extension in G(Cj). Second, if (X,Y ) is a perfect matching cut of G then defining xi
be true if xi ∈ X and false if xi ∈ Y we obtain a nae assignment for F .

cj1
cj2

cj3

cj1
cj2

cj3

Fig. 4. How to extend X (black) and Y (gray) on the left-hand site to a perfect matching cut in G(Cj) on
the right-hand side.

Finally, given g > 0, let h ≥ 0 be an integer at least max{ g
4m − 1, g8 − 2}. Then G has girth

at least min{4m(h + 1), 8(h + 2)} ≥ g. This completes the proof. ⊓⊔
Note that the graph G in the proof of Theorem 2 has N = O(m + nm) vertices, where n

and m are the variable number and clause number, respectively, of the formula F . Since we
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may assume that F has m = O(n) clauses, G has N = O(n2) vertices. Hence we obtain the
following.

Theorem 3. Assuming ETH, there is no O∗(2o(
√
n))-time algorithm for pmc even when

restricted to n-vertex bipartite graphs with maximum degree 3 and arbitrary large girth.

Observe that pmc is trivial for graphs with maximum degree 2: a (connected) graph with
maximum degree 2 has a perfect matching cut if and only if it is a path with even number
of vertices or a cycle with 4k vertices. Thus, the maximum degree constraint in Theorems 2
and 3 is optimal.

3 An exact exponential algorithm

Recall that, assuming ETH, there is no O∗(2o(n))-time algorithm for pmc on n-vertex (bi-
partite) graphs. The main result in this section is an algorithm solving pmc in O∗(1.2721n)
time.

Recall that all graphs considered are connected. Our algorithm follows the idea of known
branching algorithms for mc [7,17,18]. We adapt basic reduction rules for matching cuts
to perfect matching cuts, and add new reduction and branching rules for perfect matching
cuts.

If the input graph G = (V,E) has a perfect matching cut (X,Y ), then some edge has an
endvertex a in X and the other endvertex b in Y . The branching algorithm will be executed
for all possible edges ab ∈ E, hence O(m) times. To do this set A := {a}, B := {b}, and
F := V \ {a, b} and call the branching algorithm. At each stage of the algorithm, A and B

will be extended or it will be determined that there is no perfect matching cut separating A

and B, that is a perfect matching cut (X,Y ) with A ⊆ X and B ⊆ Y . We describe our
algorithm by a list of reduction and branching rules given in preference order, i.e., in an
execution of the algorithm on any instance of a subproblem one always applies the first rule
applicable to the instance, which could be a reduction or a branching rule. A reduction rule
produces one subproblem while a branching rule results in at least two subproblems, with
different extensions of A and B. Note that G has a perfect matching cut that separates A

from B if and only if in at least one recursive branch, extensions A′ of A and B′ of B are
obtained such that G has a perfect matching cut that separates A′ from B′. Typically a
rule assigns one or more free vertices, vertices of F , either to A or to B and removes them
from F , that is, we always have F = V \ (A ∪B).

Reduction Rules 1 (except the last three items), 2 (except the second item), 3 and 4 below
are given in [18] for matching cuts. As perfect matching cuts are matching cuts, they remain
correct for perfect matching cuts.

Reduction Rule 1

– If a vertex in A has two B-neighbors, or a vertex in B has two A-neighbors then STOP:
“G has no matching cut separating A, B”.

– If v ∈ F , |N(v) ∩ A| ≥ 2 and |N(v) ∩ B| ≥ 2 then STOP: “G has no matching cut
separating A, B”.

– If there is an edge xy in G such that x ∈ A and y ∈ B and N(x) ∩N(y) ∩ F 6= ∅ then
STOP: “G has no matching cut separating A, B”.

– If a vertex in A and a vertex in B have three or more common neighbors in F then
STOP: “G has no matching cut separating A, B”.
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– If a vertex in A (respectively in B) has no neighbor in B∪F (respectively in A∪F ) then
STOP: “G has no perfect matching cut separating A, B”.

– If there are x ∈ A and y ∈ B such that N(x) ∩ F = N(y) ∩ F = {v} then STOP: “G
has no perfect matching cut separating A, B”.

Reduction Rule 2

– If v ∈ F has at least 2 A-neighbors (respectively B-neighbors) then A := A ∪ {v} (re-
spectively B := B ∪ {v}).

– If v ∈ F with |N(v) ∩ N(z) ∩ F | ≥ 3 for some z ∈ A (respectively z ∈ B) then A :=
A ∪ {v} ∪ (N(v) ∩N(z) ∩ F ) (respectively B := B ∪ {v} ∪ (N(v) ∩N(z) ∩ F )).

Reduction Rule 3 If x ∈ A (respectively y ∈ B) has two adjacent F -neighbors u, v then
A := A ∪ {u, v} (respectively B := B ∪ {u, v}).
Reduction Rule 4 If there is an edge xy in G such that x ∈ A and y ∈ B then add
N(x) ∩ F to A, and add N(y) ∩ F to B.

If none of these reduction rules can be applied then the following facts hold:

– The edge cut E(A,B) is a (not necessary perfect) matching cut of G[A ∪ B] = G − F

due to Reduction Rule 1. Moreover, any vertex in A and any vertex in B have at most
two common neighbors in F .

– Every vertex in F is adjacent to at most one vertex in A and at most one vertex in B

due to Reduction Rule 2.

– The neighbors in F of any vertex in A and the neighbors in F of any vertex in B form
an independent set due to Reduction Rule 3, and

– Every vertex in A adjacent to a vertex in B has no neighbor in F and every vertex in B

adjacent to a vertex in A has no neighbor in F due to Reduction Rule 4.

Reduction Rule 5 below is given in [17] and remains correct for perfect matching cuts.

Reduction Rule 5 If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with
x ∈ A, y ∈ B, then A := A ∪ {u}, B := B ∪ {v}.
The remaining reduction rules work for perfect matching cuts but not for matching cuts in
general.

Reduction Rule 6 If x ∈ A (respectively y ∈ B) has exactly one neighbor v ∈ F then
B := B ∪ {v} (respectively A := A ∪ {v}).

Proof (of safeness). Let x ∈ A with N(x)∩F = {v}. By Reduction Rule 4, N(x)∩B = ∅. If
(X,Y ) is a perfect matching separating A and B, then N(x)\{v} ⊆ X, hence the neighbor v
of x must belong to Y . The case y ∈ B is symmetric. ⊓⊔
Reduction Rule 7 Let z ∈ A (respectively z ∈ B) and let v ∈ N(z) ∩ F .

– If deg(v) = 1 then B := B ∪ {v} (respectively A := A ∪ {v}).
– If deg(v) = 2 and w ∈ F is other neighbor of v then B := B ∪ {w} (respectively

A := A ∪ {w}).

Proof (of safeness). Let z ∈ A and v ∈ N(z) ∩ F . Let (X,Y ) be a perfect matching of G
separating A and B. If z is the only neighbor of v, then, as z ∈ X, v must belong to Y . If
N(v) = {z, w} with w ∈ F , then w must belong to Y , otherwise both neighbors of v were
in X. The case z ∈ B is symmetric. ⊓⊔
Reduction Rule 8 Let x ∈ A and y ∈ B with |N(x) ∩N(y) ∩ F | = 2. If |N(x) ∩ F | ≥ 3
or |N(y) ∩ F | ≥ 3 then A := A ∪N(x) \N(y), B := B ∪N(y) \N(x).

7



Proof (of safeness). Assume that (X,Y ) is a perfect matching cut of G separating A and B.
Then N(x)∩N(y)∩F must contain one vertex in X and one vertex in Y . Hence N(x)\N(y)
⊆ X and N(y) \N(x) ⊆ Y . ⊓⊔

We now describe the branching rules; see also Fig. 5, 6 and 7. The correctness of all branching
rules follows from the fact that, in any perfect matching cut (X,Y ) separating A and B,
every vertex in X has exactly one neighbor in Y and every vertex in Y has exactly one
neighbor in X. Thus, if some vertex in A has no neighbor in B, it must have a neighbor in F

that must go to Y , and if some vertex in B has no neighbor in A, it must have a neighbor
in F that must go to X. Note that by Reduction Rule 6, every vertex in A∪B has none or
at least two neighbors in F . By Reduction Rule 1, every two vertices x ∈ A and y ∈ B have
at most two common neighbors in F .

To determine the branching vectors which correspond to our branching rules, we set the size
of an instance (G,A,B) as its number of free vertices, i.e., |V (G)| − |A| − |B|. Vertices in
A ∪B having exactly two neighbors in F will be covered by the first four branching rules.

A
x

B
y

F

Branching Rule 1

u v

A
x

B
y1 y2

F

Branching Rule 2

u v
N1 N2

A
x

B
y

F

Branching Rule 3

u v
N

Fig. 5. When Branching Rules 1, 2 and 3 are applicable.

Branching Rule 1 Let x ∈ A and y ∈ B with N(x) ∩ N(y) ∩ F = {u, v}. By Reduction
Rule 8, N(x) ∩ F = N(y) ∩ F = {u, v}. We branch into two subproblems.

– First, add N [u] ∩ F to A. Then N [v] ∩ F has to be added to B.

– Second, add N [u] ∩ F to B. Then N [v] ∩ F has to be added to A.

The branching vector of Branching Rule 1 is

(

|(N [u] ∪N [v]) ∩ F |, |(N [u] ∪N [v]) ∩ F |
)

.

By Reduction Rule 5, |(N [u] ∪ N [v]) ∩ F | ≥ 3, hence the branching factor of Branching
Rule 1 is at most τ(3, 3) = 3

√
2 < 1.2560.

Branching Rule 2 Let x ∈ A with N(x) ∩ F = {u, v} and N(u) ∩B = {y1}, N(v) ∩B =
{y2}. We branch into 2 subproblems.

– First, add u to B. Then v has to be added to A and N2 := N(y2) ∩ F \ {v} has to be
added to B.

– Second, add v to B. Then u has to be added to A and N1 := N(y1) ∩ F \ {u} has to be
added to B.

Symmetrically for y ∈ B with N(y) ∩ F = {u, v} and N(u) ∩A = {x1}, N(v) ∩A = {x2}.
By Branching Rule 1, v 6∈ N1, u 6∈ N2. Hence, the branching vector of Branching Rule 2 is

(

2 + |N1|, 2 + |N2|
)

.
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By Reduction Rule 6, |N1| ≥ 1, |N2| ≥ 1. Hence the branching factor is at most τ(3, 3) =
3
√
2 < 1.2560.

Branching Rule 3 Let x ∈ A with N(x)∩F = {u, v} and N(u)∩B = ∅, N(v)∩B = {y}.
We branch into two subproblems.

– First, add u to B. Then v has to be added to A and N := N(u) ∩ F has to be added
to B.

– Second, add v to B. Then u has to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u, v} and N(u) ∩A = ∅, and N(v) ∩A = {x}.
The branching vector of Branching Rule 3 is

(

2 + |N |, 2
)

.

By Reduction Rule 7, |N | ≥ 2, hence the branching factor of Branching Rule 3 is at most
τ(4, 2) < 1.2721.

Branching Rule 4 Let x ∈ A with N(x) ∩ F = {u1, u2, . . . , ur}, r ≥ 2, and N(ui) ∩ B

= ∅, 1 ≤ i ≤ r. We branch into r subproblems. For each 1 ≤ i ≤ r, the instance of the i-th
subproblem is obtained by adding ui to B. Then N(x) ∩ F \ {ui} has to be added to A and
Ni := N(ui) ∩ F has to be added to B.
Symmetrically for y ∈ B with N(y) ∩ F = {v1, v2, . . . , vr} and vi has no neighbor in A,
1 ≤ i ≤ r.

The branching vector of Branching Rule 4 is
(

r + |N1|, r + |N2|, . . . , r + |Nr|
)

.

By Reduction Rule 7, |Ni| ≥ 2, hence the branching factor of Branching Rule 4 is at most
τ(r + 2, r + 2, . . . , r + 2) = r+2

√
r < 1.2600.

A
x

B

F

Branching Rule 4

u1 ui

ur

Ni

A
x

B
y1 yj yq

F

Branching Rule 5

u1 ui up v1 vj vq
Nj

Fig. 6. When Branching Rules 4 and 5 are applicable.

Branching Rules 1 and 4 together with the remaining branching rules cover vertices in A∪B

having at least three neighbors in F . Branching Rule 5 deals with the case z ∈ A (respectively
z ∈ B) in which at least two vertices in N(z) ∩ F have neighbors in B (respectively in A).

Branching Rule 5 Let x ∈ A with N(x) ∩ F = {u1, . . . , up, v1, v2, . . . , vq}, p ≥ 0, q ≥ 2,
such that N(ui) ∩ B = ∅, 1 ≤ i ≤ p and N(vj) ∩ B = {yj}, 1 ≤ j ≤ q. We branch into
r = p+ q subproblems.

– For each 1 ≤ i ≤ p, the instance of the i-th subproblem is obtained by adding ui to B.
Then N(x) ∩ F \ {ui} has to be added to A and all Nj := N(yj) ∩ F \ {vj}, 1 ≤ j ≤ q,
have to be added to B.

9



– For each 1 ≤ j ≤ q, the instance of the p+j-th subproblem is obtained by adding vj to B.
Then N(x) ∩ F \ {vj} has to be added to A and all Nk := N(yj) ∩ F \ {vj}, 1 ≤ k ≤ q,
k 6= j, have to be added to B.

Symmetrically for y ∈ B with N(y)∩F = {u1, . . . , up, v1, v2, . . . , vq}, p ≥ 0, q ≥ 2 such that
N(ui) ∩A = ∅, 1 ≤ i ≤ p and N(vj) ∩A = {xj}, 1 ≤ j ≤ q.

By Branching Rule 1 and Reduction Rule 2, Nj are pairwise disjoint and Nj ∩ {v1, . . . , vq}
= ∅. Hence, the branching vector of Branching Rule 5 is

(

r +
∑

j

|Nj |, . . . , r +
∑

j

|Nj |, r +
∑

k 6=1

|Nk|, . . . , r +
∑

k 6=q

|Nk|
)

.

Due to Branching Rules 1–4, each yj has at least three neighbors in F . Hence |Nj| ≥ 2,
1 ≤ j ≤ q. Thus, the branching factor is at most τ(r + 2q, . . . , r + 2q, r + 2(q − 1), . . . , r +
2(q − 1)) ≤ τ(r + 4, . . . , r + 4, r + 2, . . . , r + 2) < τ(r + 2, . . . , r + 2) = r+2

√
r < 1.2600.

The last two branching rules deal with the case z ∈ A (respectively z ∈ B) in which exactly
one vertex in N(z) ∩ F has a unique neighbor in B (respectively in A).

A
x

B
y

F

Branching Rule 6

u1 ui
v

vs

A
x

B
y

F

Branching Rule 7

u1 ui

v

vj vs

Fig. 7. When Branching Rules 6 and 7 are applicable.

Branching Rule 6 Let x ∈ A with N(x)∩F = {u1, u2, . . . , ur, v}, r ≥ 2, such that N(ui)∩
B = ∅, 1 ≤ i ≤ r, and N(v)∩B = {y}. Write N(y)∩F \{v} = {v1, . . . , vs}, s ≥ 2. Assume
that some ui has two neighbors in {v1, . . . , vs}. We branch into 2 subproblems.

– First, add v to A. Then {v1, . . . , vs} and ui have to be added to B, and {u1, . . . , ur}\{ui}
has to be added to A.

– Second, add v to B. Then {u1, . . . , ur} has to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩ A = ∅,
1 ≤ i ≤ r, and N(v) ∩A = {x} and some ui has two neighbors in N(x) ∩ F \ {v}.
The branching vector of Branching Rule 6 is

(r + s+ 1, r + 1).

Since r ≥ 2 and s ≥ 2, we have τ(r + s+ 1, r + 1) ≤ τ(5, 3) < 1.1939.

Branching Rule 7 Let x ∈ A with N(x)∩F = {u1, u2, . . . , ur, v}, r ≥ 2, such that N(ui)∩
B = ∅, 1 ≤ i ≤ r, and N(v) ∩ B = {y}. Write N(y) ∩ F \ {v} = {v1, . . . , vs}, s ≥ 2. We
branch into r + s subproblems.

– For each 1 ≤ i ≤ r, the instance of the i-th subproblem is obtained by adding ui to B.
Then {u1, . . . , ur} \ {ui} and v have to be added to A, Ni := N(ui)∩F and {v1, . . . , vs}
have to be added to B.
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– For each 1 ≤ j ≤ s, the instance of the r+j-th subproblem is obtained by adding vj to A.
Then {v1, . . . , vs}\{vj} and v have to be added to B, Mj := N(vj)∩F and {u1, . . . , ur}
have to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩ A = ∅,
1 ≤ i ≤ r, and N(v) ∩A = {x}.
Write αi = |Ni ∩ {v1, . . . , vs}|, 1 ≤ i ≤ r, and βj = |Mj ∩ {u1, . . . , ur}|, 1 ≤ j ≤ s. The
branching vector of Branching Rule 7 is
(

r+s+1+ |N1|−α1, . . . , r+s+1+ |Nr|−αr, r+s+1+ |M1|−β1, . . . , r+s+1+ |Ms|−βs
)

.

By Reduction Rule 7, |Ni| ≥ 2. By Branching Rule 5, vj has no neighbor in A, hence, by
Reduction Rule 7, |Mj | ≥ 2. By Branching Rule 6, αi ≤ 1, βj ≤ 1. Hence the branching
factor is at most τ(r + s+ 2, . . . , r + s+ 2) = r+s+2

√
r + s < 1.2600.

The description of all branching rules is completed. Among all branching rules, Branching
Rule 3 has the largest branching factor of 1.2721. Consequently, the running time of our
algorithm is O∗(1.2721n).

It remains to show that if none of the reduction rules and none of the branching rules is
applicable to an instance (G,A,B) then the graph G has a perfect matching cut (X,Y )
such that A ⊆ X and B ⊆ Y if and only if (A,B) is a perfect matching cut of G. In fact, if
all reduction and branching rules are not longer applicable, then no vertex in A ∪ B has a
neighbor in F . Hence, by connectedness of G, F = ∅. Therefore, G has a perfect matching
cut separating A and B if and only if (A,B) is a perfect matching cut. In summary, we
obtain:

Theorem 4. There is an algorithm for pmc running in O∗(1.2721n) time.

4 Two polynomial solvable cases

In this section, we provide two graph classes in which pmc is solvable in polynomial time.
Both classes are well motivated by the hardness results.

4.1 Excluding a (small) tree of maximum degree three

Let H be a fixed graph. A graph G is H-free if G contains no induced subgraph isomorphic
to H. Since by Theorem 2 pmc remains NP-complete on the class of graphs of maximum
degree three and arbitrarily high girth, it is also NP-complete on H-free graphs whenever H
is outside this class, e.g. if H has a vertex of degree larger than three or has a (fixed-size)
cycle. This suggests studying the computational complexity of pmc restricted to H-free
graphs for a fixed forest H with maximum degree at most three.

Fig. 8. The tree T .

As the first step in this direction, we show that pmc is solvable in
polynomial time for H-free graphs, where H is the tree T with 6
vertices obtained from the claw K1,3 by subdividing two edges each
with one new vertex; see Fig. 8. In particular, pmc is polynomial
time solvable for K1,3-free graphs but hard for K1,4-free graphs (by
Theorem 2).

Given a connected T -free graph G = (V,E), our algorithm works
as follows. Fix an edge ab ∈ E and decide if G has a perfect matching cut M = E(X,Y )
separating A = {a} and B = {b}. We use the notations and reduction rules from Sec-
tion 3. In addition, we need one new reduction rule; recall that F = V \ (A ∪ B). This
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additional reduction rule is correct for matching cuts in general and is already used in [7].
For completeness, we give a correctness proof for perfect matching cuts.

Reduction Rule 9

– If there are vertices u, v ∈ F with a common neighbor in A and |N(u) ∩N(v) ∩ F | ≥ 2,
then A := A ∪ {u, v}.

– If there are vertices u, v ∈ F with a common neighbor in B and |N(u) ∩N(v) ∩ F | ≥ 2,
then B := B ∪ {u, v}.

Proof (of safeness). Let u, v ∈ F with N(u)∩N(v)∩A = {x} and
|N(u) ∩N(v) ∩ F | ≥ 2. We show that G has a perfect matching cut separating A, B if and
only if G has a perfect matching cut separating A ∪ {u, v} and B. First, let (X,Y ) be a
perfect matching cut of G with A ⊆ X and B ⊆ Y . If u ∈ Y then, as x ∈ A, N(u)∩F must
belong to Y and v must belong to X. But then, as |N(v)∩N(u)∩F | ≥ 2, v has two neighbors
in Y , a contradiction. Thus, u ∈ X, and similarly, v ∈ X. That is (X,Y ) separates A∪{u, v}
and B. The other direction is obvious: any perfect matching cut separating A∪{u, v} and B

separates A and B.

The second case is symmetric. ⊓⊔

Now, we apply the Reduction Rules 1–9 exhaustively. Note that this part takes polynomial
time. If F = V \ (A ∪B) is empty, then G has a perfect matching cut separating A and B

if and only if (A,B) is a perfect matching cut of G. Verifying whether (A,B) is a perfect
matching cut also takes polynomial time.

So, let us assume that F 6= ∅. Then due to the reduction rules (recall that G is connected),

– any vertex in A (in B) having no neighbor in B (in A) has at least two neighbors in F ,
and

– any vertex in A (in B) having a neighbor in F has no neighbor in B (in A).

At this point, we will explicitly give an induced subgraph in G isomorphic to the tree T or
correctly decide that G has no perfect matching cut separating A and B. Write

A∗ = {x ∈ A | N(x) ∩B 6= ∅}, B∗ = {y ∈ B | N(y) ∩A 6= ∅}.

Recall that A∗ 6= ∅ and B∗ 6= ∅, and there are no edges between A∗ ∪ B∗ and F , no edges
between A \A∗ and B \B∗.

Thus, as G is connected and F 6= ∅, there is a vertex in A\A∗ adjacent to a vertex in A∗, or
there is a vertex in B \B∗ adjacent to a vertex in B∗. By symmetry, let us assume that there
is a vertex x ∈ A \ A∗ adjacent to a vertex x∗ ∈ A∗. Let y∗ ∈ B∗ be the unique neighbor
of x in B∗. Recall that, every vertex in (A \A∗)∪ (B \B∗) has at least two neighbors in F .

First, suppose that there is a vertex y ∈ B with |N(x) ∩N(y) ∩ F | ≥ 2. Let u, v ∈ N(x) ∩
N(y) ∩ F . If (X,Y ) is a perfect matching cut with A ⊆ X and B ⊆ Y , then u and v

must belong to different parts, say u ∈ X, v ∈ Y . Now, if there were some vertex w ∈
N(u) ∩ N(v) ∩ F , then u would have two neighbors in Y (if w ∈ Y ) or v would have two
neighbors in X (if w ∈ X). So, let us assume that N(u) ∩ N(v) ∩ F = ∅. Then due to
Reduction Rule 5, there exists a vertex w ∈ N(u) ∩ F \ N(v). Due to Reduction Rule 3,
N(x)∩F is an independent set, hence w, u, x, x∗, y∗ and v induce the tree T in G. Thus, we
may assume that

for any vertex y ∈ B, |N(x) ∩N(y)| ≤ 1. (1)

12



Next, observe that

every vertex in B \B∗ adjacent to a vertex in N(x) is adjacent to y∗. (2)

This can be seen as follows: Let z ∈ B \ B∗ be adjacent to some u ∈ N(x). Then u ∈ F .
By (1), z is non-adjacent to all vertices in N(x) ∩ F \ {u}. Recall that some vertex v ∈
N(x) ∩ F \ {u} exists. So, if z is not adjacent to y∗, then z, u, x, x∗, y∗ and v induce the
tree T in G.

Now, fix two vertices u, v ∈ N(x)∩F . Suppose that N(u)∩B = ∅. Then, due to Reduction
Rules 7 and 9, there exists a vertex w ∈ N(u) ∩ F \ N(v), and as above, w, u, v, x, x∗

and y∗ induce the tree T in G. Thus, we may assume that N(u)∩B 6= ∅ and, by symmetry,
N(v) ∩B 6= ∅.
Let y1, y2 ∈ B \ B∗ be the unique neighbors of u and v in B, respectively. By (1), y1 is
non-adjacent to v, and y2 is non-adjacent to u. By (2), y1 and y2 are adjacent to y∗. If y1
and y2 are non-adjacent, then u, y1, y

∗, y2, v and x∗ induce the tree T . So, let us assume
that y1 and y2 are adjacent.

Let u′ 6= u be a second neighbor of y1 in F , and v′ 6= v be a second neighbor of y2 in F .
By (1), x is non-adjacent to u′ and v′. Now, consider two cases:

– assume that u and v′ are adjacent. Then v′, u, x, x∗, y∗ and v induce the tree T in G, and

– assume that u and v′ are non-adjacent. Then v′, y2, y1, u, x and u′ (if u′ and v′ are non-
adjacent), or else u′, v′, y2, y∗, x∗ and v (if u′ and v′ are adjacent) induce the tree T

in G.

In each case, we reach a contradiction.

Thus, we have seen that, in case F 6= ∅, G has no perfect matching cut separating A and B,
or G contains the tree T as an induced subgraph. So, after at most |E| rounds, each for
a candidate ab ∈ E and in polynomial time, our algorithm will find out whether G has a
perfect matching cut at all. In summary, we obtain:

Theorem 5. pmc is solvable in polynomial time for T -free graphs.

4.2 Interval, chordal and pseudo-chordal graphs

Recall that a graph has girth at least g if and only if it has no induced cycles of length less
than g. Thus, Theorem 2 implies that pmc remains hard when restricted to graphs without
short induced cycles. This suggests studying pmc restricted to graphs without long induced
cycles, i.e., k-chordal graphs. Here, given an integer k ≥ 3, a graph is k-chordal if it has no
induced cycles of length larger than k; the 3-chordal graphs are known as chordal graphs.

In this subsection we show that pmc can be solved in polynomial time when restricted to
what we call pseudo-chordal graphs, that contain the class of 3-chordal graphs and thus
known to have unbounded mim-width [16].

We begin with a concise characterization of interval graphs having perfect matching cuts,
to yield a polynomial-time algorithm deciding if an interval graph has a perfect matching
cut which is much simpler than what we get by the mim-width approach [6].

Fact 1 Let G have a vertex set U ⊆ V (G) such that G[U ] is connected with every edge of
G[U ] belonging to a triangle. Then if (X,Y ) is a perfect matching cut of G we must have
U ⊆ X or U ⊆ Y .

This since otherwise we must have a triangle K and two vertices u, v with u ∈ K ∩X and
v ∈ K ∩ Y having a common neighbor in K so this cannot be a perfect matching cut.
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If an interval graph G has a cycle then it has a 3-clique. By Fact 1 these 3 vertices would
have to belong to the same side of the cut, and each would need to have a unique neighbor
on the other side of the cut. But then those 3 neighbors would form an asteroidal triple,
contradicting that G was an interval graph. Thus an interval graph which is not a tree does
not have a perfect matching cut. A tree T is an interval graph if and only if it does not
have the subdivided claw as a subgraph. Thus, T is a caterpillar with basic path x1, . . . , xk,
where x1 and xk does not have a leaf attached, while the other xi may have any number
of leaves attached. (A caterpillar is a tree with a (basic) path such that all vertices outside
the path has a neighbor on the path.) If some xi has at least two leaves attached then T

does not have a perfect matching cut (X,Y ), as xi ∈ X would imply that at least one of
those leaves is in X and this leaf would not have a neighbor in Y . Since a leaf vertex and
its neighbor must belong to opposite sides of the cut, it is not hard to verify the following.

Fact 2 An interval graph has a perfect matching cut if and only if it is a caterpillar with
basic path x1, . . . , xk such that any xi for 1 < i < k has either zero or one leaf, and any
maximal sub-path of x1, . . . , xk with zero leaves contains an even number of vertices.

In particular, caterpillars having a perfect matching cut can be recognized in polynomial
time. For an arbitrary tree T we can decide whether T has a perfect matching as follows:
Root T at a vertex r and let r1, . . . , rk be the children of r. Then T has a perfect matching
cut if and only if there exists some 1 ≤ i ≤ k such that each subtree Tj rooted at rj, j 6= i,
has a perfect matching cut, and Ti − ri has a perfect matching cut. This fact implies a
bottom-up dynamic programming to decide if T has a perfect matching cut.

A similar idea works for a large graph class that properly contains all chordal graphs. We
will show a polynomial-time algorithm for what we call pseudo-chordal graphs. The maximal
2-connected subgraphs of a graph are called its blocks, and a block is non-trivial if it contains
at least 3 vertices.

Definition 1. A graph is pseudo-chordal if, for every non-trivial block B, every edge of B
belongs to a triangle.

Note that chordal graphs are pseudo-chordal, but pseudo-chordal graphs may contain in-
duced cycles of any length, e.g. take a cycle and for any two neighbors add a new vertex
adjacent to both of them.

Theorem 6. There is a polynomial-time algorithm deciding if a pseudo-chordal graph G

has a perfect matching cut.

Proof. We first compute the blocks of G and let D be the subgraph of G formed by the
edges of non-trivial blocks of G. Let D1,D2, . . . ,Dk be the connected components of D.
Note that by collapsing each Di into a supernode we can treat the graph G as having a tree
structure T (related to the block structure) with one node for each v ∈ V (G) \ V (D), and
a supernode for each Di. See Fig. 9.

Note that since G is pseudo-chordal then by Fact 1 all the vertices in a fixed supernode Di

must be on the same side in any perfect matching cut of G.

Our algorithm will pick a root R of T and proceed by bottom-up dynamic programming
on the rooted tree T . Each node S of T will be viewed as the set of vertices it represents
in G. If S is not the root of T then we denote by r(S) the unique vertex of S that has a
parent in T . For each node S of T we will compute two boolean values that concern the
subgraph GS of G induced by vertices of G contained in the subtree of T rooted at S. These
boolean values are defined as follows:
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D1

D2

D3

D4

Fig. 9. A pseudo-chordal graph and perfect matching cut given by (X,Y ) with X being black vertices. Note
the tree structure composed of (i) those vertices that do not belong to a clique of size 3 and (ii) the four
supernodes D1, D2, D3, D4.

– pmc(S) = true if and only if GS has a perfect matching cut

– m(S) = true if and only if GS \ r(S) has a perfect matching cut where all vertices of
S \ r(S) are on the same side.

We first initialize pmc(S) and m(S) to false for all nodes S of T . For a leaf S of T we set
m(S) = true if |S| = 1, i.e. if S is not a supernode.

Consider an inner node S of T , with S = {v1, . . . , vq} ⊆ V (G). In the rooted tree T , let
the children of S that contain a neighbor of vi be C(vi) (note that each child of S in T has
a unique vertex that has a unique neighbor vi ∈ S). Assuming the values pmc(·) and m(·)
have been computed for all children of S, we do the following:

– set pmc(S) = true if for each vi ∈ S we have C(vi) = {S1, . . . , Sk} with k ≥ 1 and
we can find a child with m(Si) = true such that pmc(Sj) = true for the other k − 1
children j 6= i.

– set m(S) = true if (i) for each vi ∈ S \ r(S) we have C(vi) = {S1, . . . , Sk} with k ≥ 1
and we can find a child with m(Si) = true such that pmc(Sj) = true for the other k−1
children j 6= i, and (ii) for every child S′ ∈ C(r(S)) we have pmc(S′) = true.

For the root R of T we update pmc(R) but not m(R) since r(R) is not defined. When we
are done with the bottom-up dynamic programming, then for the root R of T we note that
G = GR so that by the definition of the values G has a perfect matching cut if and only if
pmc(R) = true.

The correctness follows by structural induction on the tree T . By definition, pmc(S) = true

(respectively m(S) = true) if and only if there is a cut of GS so that every node (respectively
every node except r(S)) has a single neighbor, its ‘mate’, on the other side of the cut. The
values at leaves are initialized correctly according to this definition. At an inner node S we
inductively assume the values at children are correct and end up setting pmc(S) to true if
and only if GS has a perfect matching cut, since for each node in S we require a single child
neighbor that needs a mate, while all other child neighbors are required to already have a
mate. Similarly for m(S) but now all children of r(S) are required to already have a mate.
Since each node v of S is a cut vertex of G separating GS so that each child of S defines
its own unique component, we can merge all the cuts in all children while keeping all the
nodes of S on the same side of the cut, to satisfy Fact 1 that requires all the nodes in S to
be on the same side of the cut. The runtime is clearly polynomial. ⊓⊔
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5 Conclusion

We have shown that, assuming ETH, there is no O∗(2o(n))-time algorithm for pmc even when
restricted to n-vertex bipartite graphs, and that pmc remains NP-complete when restricted
to bipartite graphs of maximum degree 3 and arbitrarily large girth. This implies that pmc
remains NP-complete when restricted to H-free graphs where H is any fixed graph having
a vertex of degree at least 4 or a cycle. This suggests the following problem for further
research:

Let F be a fixed forest with maximum degree at most 3. What is the computational
complexity of pmc restricted to F -free graphs?

We have proved a first polynomial case for this problem where F is a certain 6-vertex tree,
including claw-free graphs and graphs without an induced 5-path.

Our hardness result also suggests studying pmc restricted to graphs without long induced
cycles:

What is the computational complexity of pmc on k-chordal graphs?

It follows from our results that pmc is polynomially solvable for 3-chordal graphs.

We have also given an exact branching algorithm for pmc running in O∗(1.2721n) time. It
is natural to ask whether the running time of the branching algorithm can be improved.
Finally, as for matching cuts, also for perfect matching cuts it would be interesting to study
counting and enumeration as well as FPT and kernelization algorithms.
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