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Abstract

A finite word f is Hamming-isometric if for any two words u and v

of the same length avoiding f , u can be transformed into v by changing

one by one all the letters on which u differs from v, in such a way that all

of the new words obtained in this process also avoid f . Words which are

not Hamming-isometric have been characterized as words having a border

with two mismatches. We derive from this characterization a linear-time

algorithm to check whether a word is Hamming-isometric. It is based

on pattern matching algorithms with k mismatches. Lee-isometric words

over a four-letter alphabet have been characterized as words having a

border with two Lee-errors. We derive from this characterization a linear-

time algorithm to check whether a word over an alphabet of size four is

Lee-isometric.

Keywords: Isometric words; Pattern matching with mismatches.

1 Introduction

Many parallel processing applications have communication patterns that can be
viewed as graphs called d-ary n-cubes. A d-ary n cube is a graphQd

n whose nodes
are the words of length n over the alphabet Zd = {0, 1, . . . , d− 1}. Two nodes
are linked if and only if they differ in exactly one position, and the mismatch is
given by two symbols a and b that verify a = b± 1 mod d. In order to obtain
some variants of hypercubes for which the number of vertices increases slower
than in a hypercube, Hsu [9] introduced Fibonacci cubes in which nodes are
on a binary alphabet and avoid the factor 11. The notion of d-ary n-cubes has
subsequently be extended to define the generalized Fibonacci cube [10, 11, 19] ;
it is the subgraph Q2

n(f) of a 2-ary n-cube whose nodes avoid some factor f . In
this framework, a binary word f is said to be Lee-isometric when, for any n ≥ 1,
Q2

n(f) can be isometrically embedded into Q2

n, that is, the distance between
two words u and v vertices of Q2

n(f) is the same in Q2
n(f) and in Q2

n.
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On a binary alphabet, the definition of a Lee-isometric word can be equiv-
alently given by ignoring hypercubes and adopting a point of view closer to
combinatorics on words. A binary word f is n-Hamming-isometric if for any
pair of words u and v of length n avoiding f , u can be transformed into v

by exchanging one by one the bits on which they differ meanwhile generating
only words avoiding f . The word f is Hamming-isometric if it is n-Hamming-
isometric for all n. The structure of binary non-Hamming-isometric words has
been characterized in [12, 17, 18] and extended to general alphabets in [2]. In
particular, a binary word is Hamming-isometric if and only if it is Lee-isometric.
A word is not Hamming-isometric if and only if it has a 2-error border, that is
if it has a suffix that mismatches with the prefix of the same length in exactly
two positions. In [12, 17, 18] and [2], 2-error border are called 2-error overlap.

In the case of an alphabet of size 4, non-Lee-isometric words have been
characterized in [2] as words having a suffix and a prefix of the same length
which are at distance 2 according to the Lee distance.

Binary Hamming-isometric words have also been considered in the two-
dimensional setting, and non-Hamming-isometric pictures are investigated in
[3], where they are called bad pictures.

In this paper we study the algorithmic complexity of checking whether a word
is not Hamming-isometric. Our approach is based on the characterization of 2-
error borders of such words. The naive algorithm runs clearly in quadratic time.
We show that known algorithms for matching patterns with mismatches can be
used to solve this problem efficiently. Pattern matching with k mismatches
can be solved by algorithms running in time O(nk) (see [13] and [7]). These
algorithms are mostly based on a technique called the Kangaroo method. This
method computes the Hamming distance for every alignment in time O(k) by
“jumping” from one error to the next error. A faster algorithm for pattern
matching with k mismatches runs in O(n

√
k log k) [1]. A simpler version of this

algorithm is given in [15].
We show two methods to check whether a word is not Hamming-isometric.

The first one uses the Kangaroo method which allows to derive an algorithm
running in time O(kn) and using O(n) space to check whether a word of length
n has a k-error border. The method has a preprocessing of linear time and
space for computing the suffix tree of the word and to enhance it in order to
answer lowest common ancestor queries in constant time. This overall leads to a
linear-time and linear-space algorithm to check whether a word is not Hamming-
isometric, and hence also to check whether a binary word is Lee-isometric. The
second method uses the computation of a k-prefix table that gives, for some
word u and every position on u, the length of the longest proper factor of u at
this position that matches its prefix of the same length with at most k differences
[5]. The computation of this k-prefix table is done in time O(kn) using O(n)
space.

We also use the Kangaroo method to derive an algorithm running in time
O(kn) and using O(n) space on a constant size alphabet to check whether a
word of size n has a k-Lee-error border and thus check in linear time whether a
word over an alphabet of size 4 is Lee-isometric.
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2 Definitions and background

Let A be a finite alphabet. A word u in A⋆ is a finite sequence u[0]u[1] · · ·u[n−1]
of letters in A, where n is the length of u and u[i] are its letters. The suffix of
index i on u, denoted by ui, is the word u[i] · · ·u[n− 1] of length n− i. A suffix
(or prefix) of it is proper if it is distinct from u itself.

Let k be a non-negative integer. We say that a word u has a k-error border

if u has a proper suffix s that matches its prefix of the same length with exactly
k differences. In other words, the Hamming distance between the suffix and the
prefix is k.

Example 1 The word 1010011 has a 2-error border. Indeed, it has the prefix
101 and the suffix 011 and the Hamming distance between 101 and 011 is 2.

Let f be a finite word and n be a positive integer. Then a word u is called
f -free if it does not contain f as a factor, and f is called n-Hamming-isometric

if for every f -free words u and v of length n, the following holds: u can be
transformed into v by changing one by one all the letters on which u differs
from v, in such a way that all of the new words obtained during this process are
also f -free. Such a transformation is called an f -free transformation from u to
v. Eventually, a word f is said to be Hamming-isometric if it is n-Hamming-

isometric for every positive integer n.
The d-ary n-cube, denoted by Qd

n, is the graph whose vertices are the words
of length n over the alphabet Zd = {0, 1, . . . , d − 1}, and for which any two
words u and v are adjacent if and only if u and v differ by one unit at exactly
one position, say i, that is, u[i] = v[i]± 1 mod d. The d-ary n-cube avoiding f ,
where f is a word over the alphabet Zd is the graph Qd

n(f) obtained from Qd
n

by deleting the vertices containing f as a factor [2].
A word f over Zd is said to be Lee-isometric if for all n ≥ 1, Qd

n(f) is an
isometric subgraph of Qd

n.

Example 2 The word 0301 on the alphabet Z4 = {0, 1, 2, 3} is non-Lee-isometric.
Indeed, the words u = 030001 and v = 030201, which do not contain the factor
0301, are at distance 2 but there is no path of length 2 from u to v in Q4

6
(0301)

since any path of length 1 changing the symbol of index 3 of u goes from u to
030101 or to 030301 and these two words both have the word 0301 as factor.

It is shown in [2] that non-Hamming-isometric and non-Lee-isometric words
coincide for words on an alphabet of size at most three. But this property is no
more true for larger alphabets.

Hamming-isometric words have the following characterization obtained in
[12, 17] for binary alphabets and in [2] for general alphabets.

Proposition 3 A word is not Hamming-isometric if and only if it has a 2-error

border.

Example 4 For instance the words 11, 1n for n ≥ 1 are Hamming-isometric.
The word 1010011 is not Hamming-isometric.
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3 Algorithms for checking whether a word is

Hamming-isometric

In this section, we use the characterization of non-Hamming-isometric words in
terms of 2-error border (Proposition 3) and assume that the alphabet A has a
constant size. Observe that a quadratic-time naive algorithm can be obtained
to check whether a word is non-Hamming-isometric by computing the Hamming
distance between each suffix of index i and the prefix of the same length. We
show that checking if a word of length n has a k-error border can be done in
time O(kn) and space O(n).

Proposition 5 It can be checked in time O(kn) and space O(n) whether a word

of length n has a k-error border.

Proof. We give two algorithms for solving this problem. The first one is based
on a technique called the Kangaroo method used for pattern matching with k

mismatches in O(nk) time (see [13], [7] and [14]). These algorithms compute
the Hamming distance for every alignment in O(k) time by “jumping” from one
error to the next. We use the Kangaroo method to check for each index i on a
word u of length n whether it has a k-error border of length n− i in time O(k).

To do so, we first compute in time and space O(n) the suffix tree of the word
u. The suffix tree is a compacted trie containing all the suffixes of u by their
keys and positions on u as their values [6], [4]. The tree has a linear number of
nodes and edges, each edge containing a pair of integers identifying a factor of
u, e.g. (position, length), hence the linear space complexity. Suffix arrays can
also be used for this problem. They contain essentially the starting positions of
suffixes of u sorted in lexicographic order.

To get the overall running time, we need to answer Lowest Common Ances-
tor (LCA) queries in constant time [8], [16]. LCA queries give us the longest
common prefix between two suffixes of u, essentially telling us where the first
mismatch appears between a suffix of u and its prefix of the same length. This
can be performed by first constructing a Longest Common Prefix (LCP) array.
The LCP array stores the length of the longest common prefix between two
consecutive suffixes in the suffix array (lexicographic consecutive suffixes). This
array can also be constructed in linear time. To compute the length of the
longest prefix common to any two suffixes in the suffix tree (instead of consec-
utive suffixes), we need to use some range minimum query data structure.

Thus, we assume that our suffix tree is enhanced to answer LCA queries
in constant time. This can be done in linear time and space. We denote by
LCA(i, j) the query that returns in O(1) time the length of the common prefix
between the suffix ui and the suffix uj of u.

For every index i, we try to find if the suffix of index i of the word u has k
mismatches with its prefix of the same length. We first compute LCA(0, i). Let
this length be ℓ0. We skip the mismatching character in u0 and ui and try to
find LCA(ℓ0 +1, i+ ℓ0 +1). We repeat this to obtain k mismatches between ui

and u[0] · · ·u[n− i− 1] or fail to obtain this condition.
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The pseudo code of the technique is given in Algorithm 1. We maintain a
variable ℓ which gives, after the line 4 of Algorithm 1, the index of the current
mismatch between ui and u0. A variable d contains the current Hamming
distance between u[i] · · ·u[i+ ℓ− 1] and u[0] · · ·u[ℓ− 1]. It is increased by 1 at
the line 8 since a mismatch has been found.

Since there are at most O(k) LCA queries for each index i, this can be
done in O(k) time. The overall time complexity is thus O(kn) and the space
complexity is O(n).

We now show a second method to check whether a word of length n has
a k-error border. We use the computation of a k-prefix table as done in [5].
For each position i, we compute a table πk for which πk(i) is the length ℓ of
the longest word u[i] . . . u[i + ℓ − 1] such that the Hamming distance between
u[0] . . . u[ℓ− 1] and u[i] . . . u[i+ ℓ− 1] is at most k and u[0] . . . u[ℓ− 1] is proper
prefix of u.

This computation can be done in time O(kn) and space O(n) (see [5, The-
orem 5]). It needs the computations of the prefix array of u and the longest
common prefix array preprocessed for range minimum queries. The longest
common prefix array gives for each index r the length of the longest common
prefix of the rth suffix and the (r − 1)th suffix in lexicographic order.

The existence of a k-error border is then obtained as follows. For k ≥ 1, a
word u has a k-error border if and only if there is a position i, 1 ≤ i < n, for
which πk[i] = n − i and πk−1[i] < n − i. Indeed such a position i exists if and
only if there is a proper suffix u[i] . . . u[n − 1] of u whose Hamming distance
with u[0] . . . u[n− i − 1] is exactly k. The existence of a k-error border is thus
obtained with Algorithm 2 which is in O(n) time. The overall time complexity
is again in O(kn) and the space complexity is O(n).

Algorithm 1: Word with a k-error border(u)

Input: A non empty word u of length n, a non-negative integer k
Output: true if u has a k-error border

1 for i← 1 to n− 1 do

2 (ℓ, d)← (0, 0);
3 while d ≤ k do

4 ℓ← ℓ+ LCA(ℓ, i+ ℓ);
5 if d = k and ℓ = n− i then

6 return true;
7 if d < k and ℓ < n− i then

8 (ℓ, d)← (ℓ + 1, d+ 1);
9 else

10 break

11 return false;

Example 6 Let u = 101011. Let us check with Algorithm 1 whether u has a
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2-error border. For i = 1, at the first step of the loop of the line 3 we obtain
at the line 4 ℓ = LCA(0, 1) = 0; we set ℓ to 1 (the jump) and d to 1 at the
line 8. At the second step of the loop of the line 3 we obtain at the line 4
ℓ = ℓ+LCA(1, 2) = 1; we set ℓ to 2 and d to 2 at the line 8. At the third step of
the loop of the line 3, we obtain at the line 4 ℓ = ℓ + LCA(2, 3) = 2 and break
at the line 10. For i = 2 the loop of the line 3 fails to return true. For i = 3, at
the first step of the loop of the line 3 we obtain at the line 4 ℓ = LCA(0, 3) = 0;
we set ℓ to 1 and d to 1 at the line 8. At the second step of the loop of the line
3 we obtain at the line 4 ℓ = ℓ + LCA(1, 4) = 1; we set ℓ to 2 and d to 2 at
the line 8. At the third step of the loop of the line 3, we obtain the at line 4
ℓ = ℓ+LCA(2, 5) = 3 and, since d = 2 and ℓ = n− i = 3, the algorithm returns
true at the line 6. The algorithm has thus detected the 2-error border of length
3.

Algorithm 2: Word with a k-error border(u)

Input: A non empty word u of length n, a non-negative integer k, the
k-prefix table πk and the (k − 1)-prefix table πk−1

Output: true if u has a k-error border

1 for i← 1 to n− 1 do

2 if πk[i] = n− i and πk−1[i] < n− i then

3 return true;

4 return false;

The following corollary follows then directly from Proposition 3 and the
analysis of Algorithm 1 in Proposition 5.

Corollary 7 It can be checked in linear time and space whether a word is

Hamming-isometric.

4 Algorithm for checking whether a word over

an alphabet of size 4 is Lee-isometric

A combinatorial characterization of Lee-isometric words over an alphabet of size
4 has been obtained in [2]. It uses the notion of Lee distance which is defined as
follows. The Lee distance, denoted by dL, between two letters of the alphabet
Zd = {0, 1, . . . , d− 1} is

dL(a, b) = min(|a− b|, d− |a− b|).

The Lee distance between two words u and v of length n over Zd is

dL(u, v) =
n−1∑

i=0

dL(u[i], v[i]).

6



A word has a k-Lee-error border if it has a suffix u and a prefix v of same length
satisfying dL(u, v) = k.

For words over Z4, the Lee-isometric words are characterized as follows in
[2].

Proposition 8 A word over a 4-letter alphabet is non-Lee-isometric if and only

if it has a 2-Lee-error border.

In this section we show that checking if a word of length n has a k-Lee-error
border can be done in time O(kn) and space O(n). The algorithm is Algorithm
3.

Algorithm 3: Word with a k-Lee-error border(u)

Input: A non empty word u of length n, a non-negative integer k
Output: true if u has a k-Lee-error border

1 for i← 1 to n− 1 do

2 (ℓ, d)← (0, 0);
3 while d ≤ k do

4 ℓ← ℓ+ LCA(ℓ, i+ ℓ);
5 if d = k and ℓ = n− i then

6 return true;
7 if d = k and ℓ < n− i then

8 break

9 if d < k and ℓ = n− i then

10 break

11 d← d+ dL(u[ℓ], u[i+ ℓ]);
12 ℓ← ℓ+ 1;

13 return false;

Proposition 9 It can be checked in time O(kn) and space O(n) whether a word

of length n has a k-Lee-error border.

Proof. The algorithm is almost the same as Algorithm 1 and the proof is similar
to the proof of Proposition 5. Therefore we only discuss the differences.

For every index i, we try to find if the suffix of index i is at Lee distance k

from its prefix of the same length.
The pseudo code of the technique is given in Algorithm 3. A variable d

contains, after the line 11, the current Lee distance between u[i] · · ·u[i+ ℓ] and
u[0] · · ·u[ℓ].

The difference with Algorithm 1 appears when there is mismatch between
the suffix ui and the prefix u[0] · · ·u[n − i − 1] at positions ℓ on ui and i +
ℓ on u[0] · · ·u[n − i − 1]. The current Lee distance between u[0] · · ·u[ℓ] and
u[i] · · ·u[i+ ℓ] is augmented this time by the value of dL(u[ℓ], u[i+ ℓ]).

7



The case d < k and ℓ = n− i of the line 9 of Algorithm 3 corresponds to the
case where the suffix of u at position i is a d-Lee-error border with d < k and is
thus not a solution. The algorithms continues then to check the position i+ 1.

Since there are at most O(k) LCA queries for each index i, this can be
done in O(k) time. The overall time complexity is thus O(kn) and the space
complexity is O(n).

The following corollary follows then directly from Proposition 8 and the
analysis of Algorithm 2 in Proposition 9.

Corollary 10 It can be checked in linear time and space whether a word over

an alphabet of size 4 is Lee-isometric.
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