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On the Lie complexity of Sturmian words
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Abstract

Bell and Shallit recently introduced the Lie complexity of an infinite word s as the function
counting for each length the number of conjugacy classes of words whose elements are all
factors of s. They proved, using algebraic techniques, that the Lie complexity is bounded
above by the first difference of the factor complexity plus one; hence, it is uniformly bounded
for words with linear factor complexity, and, in particular, it is at most 2 for Sturmian words,
which are precisely the words with factor complexity n + 1 for every n. In this note, we
provide an elementary combinatorial proof of the result of Bell and Shallit and give an exact
formula for the Lie complexity of any Sturmian word.
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1. Introduction

The factor complexity pw of an infinite word w is the integer function that counts, for
every nonnegative integer n, the number of distinct factors of length n occurring in w. This
notion is widely used in the combinatorial investigation of infinite sequences. For example,
it is used in the definition of topological entropy of a symbolic dynamical system.

A fundamental result of Morse and Hedlund [13] is that any aperiodic right-infinite word
has factor complexity at least n + 1 for every n. Sturmian words are aperiodic words with
minimal factor complexity, i.e., they have factor complexity equal to n + 1 for every n (in
particular they have two factors of length 1, i.e., they are binary words).

In the literature, other complexity functions have been introduced. To cite a few, abelian
complexity [7], k-abelian complexity [10], arithmetic complexity [1, 5], maximal pattern com-
plexity [9], cyclic complexity [4], binomial complexity [15], window complexity [6], periodicity
complexity [12], etc.
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Recently, Bell and Shallit [3] introduced the notion of Lie complexity of an infinite word
w as the integer function whose value at n is the number of conjugacy classes (under cyclic
shift) of factors of length n of w with the property that every element in the conjugacy class
occurs as a factor in w. We call such a conjugacy class a Lie class of factors of w.

Bell and Shallit proved the following result:

Theorem 1 ([3]). Let Σ be a finite alphabet, let w be a right-infinite word over Σ, and let

Lw : N 7→ N be the Lie complexity function of w. Then for each n ≥ 1 we have

Lw(n) ≤ pw(n)− pw(n− 1) + 1.

Hence, the Lie complexity is uniformly bounded for words with linear factor complexity,
and, in particular, it is bounded by 2 for Sturmian words.

The proof of the previous theorem given in [3] is purely algebraic. In this note, we
provide an elementary combinatorial proof of this result.

We then give an exact formula for the Lie complexity of any Sturmian word of slope α
in terms of the continued fraction expansion of α. For a general introduction to Sturmian
words the reader is pointed to [11].

2. A combinatorial proof for the bound on the Lie complexity

For all n ≥ 0, let Factw(n) denote the set of factors of length n of w, so that pw(n) =
#Factw(n). Recall that the Rauzy graph of order n ≥ 1 for w, denoted by Γw(n), is the
directed graph with set of vertices Factw(n− 1) and set of edges Factw(n) such that an edge
e ∈ Factw(n) starts at vertex v and ends at a vertex v′ if and only if v is a prefix of e and
v′ is a suffix of e.

Recall that in a directed graph, a (simple) cycle is a walk that starts and ends in the
same vertex and no other vertex is repeated. For our purposes, we identify cycles having
the same sets of vertices (and edges).

Lemma 2. Lie classes of factors of length n correspond exactly to cycles whose lengths

divide n in Γw(n).

Proof. Suppose that all cyclic shifts of u = a1 · · · an are factors of w. Then such shifts
correspond to consecutive edges of a cycle in the Rauzy graph; if they are all distinct, i.e., u
is primitive, then clearly the cycle has length n. Otherwise we can write u = vn/d for some
v, with d the smallest index such that u = ad+1 · · · ana1 · · · ad.

Conversely, let u1, . . . , ud be consecutive edges of a cycle, with d|n, and set

u1 = a1a2 · · · an−1x1,

u2 = a2 · · · an−1x1x2,

...

ud = ad · · · an−1x1 · · ·xd
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for letters a1, . . . , an−1 and x1, . . . , xd. Since the last edge ud returns to the starting vertex
a1 · · · an−1, the word a1 · · ·an−1x1 · · ·xd has a1 · · ·an−1 as a suffix as well as a prefix. This
implies that all its factors u1, . . . , ud have d as a period, so that they are all the cyclic shifts
of u1.

In view of the previous lemma, we say that a cycle in the Rauzy graph Γw(n) is a Lie

cycle if its length divides n. Thus, Lw(n) is the number of Lie cycles in Γw(n), whereas
pw(n) and pw(n− 1) are the numbers of edges and vertices, respectively.

For a vertex v, we let odeg(v) denote the out-degree of v, i.e., the number of distinct
edges leaving v.

Proof of Theorem 1. We first observe that two Lie cycles may share one or more vertices
but cannot share edges, since conjugacy classes are disjoint. As a consequence, if a vertex
belongs to k different Lie cycles, its out-degree is at least k.

We show that in Γw(n) there exists a set L of Lw(n) − 1 edges such that every vertex
of Γw(n) has an outgoing edge not belonging to L; this proves that the number of edges
minus the number of vertices is at least Lw(n)− 1, whence the claimed inequality Lw(n) ≤
pw(n)− pw(n− 1) + 1.

Consider a walk on Γw(n) visiting at least one edge for each Lie cycle (w itself provides
an example of such a walk). With the possible exception of the last one visited, every Lie
cycle must contain a vertex with out-degree at least 2. Suppose v is such a vertex, and let
k ≥ 1 be the number of Lie cycles containing v, so that odeg(v) ≥ k. Then, since the walk
visits all Lie cycles in Γw(n), at least one of the following cases occurs:

1. one of the k cycles is the last one visited by the walk;

2. odeg(v) ≥ k + 1;

3. at least one of the k cycles contains a vertex v′ 6= v with odeg(v′) ≥ 2.

Therefore, we can define L as follows: for each of the first Lw(n)− 1 Lie cycles, we choose
an edge belonging to the same Lie cycle and leaving from a vertex with out-degree at least
2, with the requirement that each of these vertices has at least one outgoing edge which is
not chosen. This choice for L ensures that each vertex in Γw(n) has at least one outgoing
edge not belonging to L, as required.

3. A formula for the Lie complexity of Sturmian words

A Sturmian word s = sα,ρ over Σ = {0, 1} can be defined by taking an irrational number
0 < α < 1 (called slope) and a real number ρ (called intercept) and defining for each n ≥ 0

sα,ρ(n) = ⌊α(n + 1) + ρ⌋ − ⌊αn+ ρ⌋

As is well known, any two Sturmian words s = sα,ρ and s′ = s′α,ρ′ with the same slope
have the same factors. Therefore, one often considers the characteristic Sturmian word of
slope α, which is the word sα,α.
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Let [0; d1 + 1, d2, . . . , dn, . . .] be the continued fraction expansion of α. We will assume
that 11 is not a factor of sα,α, which corresponds to assuming d1 > 0, i.e., α < 1/2. The
other case, i.e., when 11 is a factor of sα,α for α = [0; 1, d2, d3, . . .], can be reduced to the
previous one by considering the characteristic Sturmian word obtained by exchanging the
two letters, which has slope α′ = [0; d2 + 1, d3, . . .].

The characteristic Sturmian word s = sα,α is the limit of the sequence of finite words
s−1 = 1, s0 = 0 and sn = sdnn−1sn−2 for n > 0. The words sk, k ≥ 0, are called standard

prefixes of s.
For each k ≥ 0, the length of sk is equal to qk, the denominator of the k-th convergent

pk/qk = [0; d1 + 1, d2, . . . , dk] (we assume q0 = 1). We will also need, when dk > 1, the
denominators qk,ℓ of the k-th semiconvergents pk,ℓ/qk,ℓ = [0; d1+1, d2, . . . , dk−1, ℓ], 1 ≤ ℓ < dk.
The words sk,ℓ = sℓk−1sk−2 of length qk,ℓ are sometimes called semistandard prefixes of s.

Let S denote the set of standard or semistandard prefixes of s. For every word v ∈ S
of length at least 2, one has v = uab, where ab ∈ {01, 10} and the word u, called a central

prefix, is a bispecial factor of s. Recall that a factor u of s is left (resp. right) special if
both 0u, 1u (resp. both u0, u1) are factors of s and bispecial if it is both left special and
right special. Notice that since a Sturmian word has n+ 1 factors of length n, it must have
exactly one left (resp. right) special factor of each length n, and this must therefore be a
prefix (resp. suffix) of a bispecial factor.

The following result follows from [4, Lemma 9].

Lemma 3. Let s be a Sturmian word and w a primitive factor of s of length at least 2.
Then all conjugates of w are factors of s if and only if w is a conjugate of an element of S.

The best known example of a Sturmian word is the Fibonacci word f =
0100101001001 · · · , which can be defined as the fixed point of the morphism sending 0
to 01 and 1 to 0. The Fibonacci word is intimately related to the well-known sequence of
Fibonacci numbers: F1 = 1, F2 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. The precise relation
is the following: f is the characteristic Sturmian word s1/φ2,1/φ2 , where φ = (1 +

√
5)/2 is

the golden ratio. Since 1/φ2 = [0; 2, 1], we have that for the Fibonacci word dn = 1 for every
n and the sequence qn = Fn+2 is the sequence of denominators of the convergents of 1/φ2.
The standard prefixes of f (of length Fn) are the Fibonacci finite words 1, 0, 01, 010, 01001,
etc.

In Example 7.4 of [3], the authors looked at the Lie complexity Lf of the Fibonacci word
f and showed that

Lf (n) =











1, if n = 0 or n = Fk for k ≥ 4 or n = Fk + Fk−3 for k ≥ 4;

2, if n = 1, 2;

0, otherwise.

Notice that Fk + Fk−3 = Fk−1 + Fk−2 + Fk−3 = 2Fk−1.
The main result of this section is the following:
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Theorem 4. The Lie complexity of any Sturmian word s of slope α < 1/2 is:

Ls(n) =











1, if n = 0 or n = qk,ℓ for k ≥ 2 or n = mqk for 1 ≤ m ≤ dk+1 + 1 and k ≥ 1;

2, if n = 1, 2, . . . , q1;

0, otherwise.

Lemma 5. Let s be a Sturmian word and w a factor of s of length at least 2. If all conjugates
of w are factors of s, then w is a power of a conjugate of an element of S.

Proof. If w = vm, v primitive, and all conjugates of w are factors of s, then in particular all
conjugates of v are factors of s, hence by Lemma3, v is a conjugate of an element of S.

Example 6. The converse is not true. Consider the Fibonacci word f =
010010100100101001 · · · . The factor w = (010)3 is a power of the standard prefix 010,
yet no other conjugate of w is a factor of f .

The following result is due to Damanik and Lenz [8, Thm. 4] (see also [14]). Recall that
the index of a factor v of s is the largest integer n such that vn is a factor of s.

Theorem 7 ([8]). Let s be a Sturmian word.

• All conjugates of the standard prefix s1 have index d2 + 1;

• For every k ≥ 2, the set of indexes of all conjugates of the standard prefix sk is

{dk+1 + 1, dk+1 + 2};

• For every k ≥ 2, the set of indexes of all conjugates of a semistandard prefix sk,ℓ is

{1, 2}.

Corollary 8. Let s be a Sturmian word.

• For every k ≥ 1 and 1 ≤ m ≤ dk+1 + 1, all conjugates of smk are factors of s, but not

all conjugates of s
dk+1+2

k are factors of s;

• For every k ≥ 2, all conjugates of sk,ℓ are factors of s, but not all conjugates of s2k,ℓ
are factors of s.

We are now able to give the proof of Theorem 4.

Proof. The assertion is trivially verified for n = 0, as well as for 1 ≤ n ≤ q1 since the n + 1
factors of s of length n are 0n and the n conjugates of 0n−11.

Let then n > q1, and suppose Ls(n) > 0, so that there exists a factor w of length n such
that all conjugates of w are factors of s. By Lemma 5, there exists v ∈ S and m ≥ 1 such
that all conjugates of vm are factors of s. Since n > q1, either v = sk−1 or v = sk,ℓ for some
k ≥ 2. By Corollary 8, n = qk,ℓ for k ≥ 2 or n = mqk for 1 ≤ m ≤ dk+1 + 1 and k ≥ 1.
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To conclude the proof, we must show that Ls(n) ≤ 1 for n > q1, i.e., that the prefix v is
uniquely determined by n. For k ≥ 1 and 1 ≤ ℓ < dk+1, by definition one has the following:

qk+1 = dk+1qk + qk−1, qk+1,ℓ = ℓqk + qk−1 . (1)

In particular, the sequence (qk) is strictly increasing; let then k ≥ 2 be such that qk ≤ n <
qk+1, where Ls(n) > 0. By the above argument, the possible values for n are

1. mqk, for 1 ≤ m ≤ dk+1,
2. (dk + 1)qk−1 = qk + qk−1 − qk−2,
3. qk+1,ℓ, for 1 ≤ ℓ < dk+1.

In view of (1), these are all distinct, so that the corresponding value for |v| (respectively qk,
qk−1, and qk+1,ℓ) is well defined and uniquely determined.
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