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Abstract

We consider a strategic game, called project game, where each agent has to choose a project
among her own list of available projects. The model includes positive weights expressing
the capacity of a given agent to contribute to a given project. The realization of a project
produces some reward that has to be allocated to the agents. The reward of a realized project
is fully allocated to its contributors according to a simple proportional rule. Existence
and computational complexity of pure Nash equilibria is addressed and their efficiency is
investigated according to both the utilitarian and the egalitarian social function.
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1. Introduction1

We introduce and study project games, a model where some agents take part to2

some projects. Every agent chooses a single project, but several agents can select the same3

project. This situation happens, for example, when some scientists decide on which problem4

they work, when some investors choose the business in which they spend their money, when5

some benefactors select which artistic project they support, etc. Our model includes positive6

weights which express the capacity of a given agent to contribute to a given project. By7

assumption, a project is realized if it is selected by at least one agent. The realization of a8

project produces some reward that has to be allocated to the contributing agents.9

We take a game theoretic perspective, i.e., an agent’s strategy is to select, within the10

projects that are available to her, the one inducing the largest piece of reward. Therefore,11

the way the rewards are allocated is essential to this game. Here, we suppose that the reward12

of a realized project is fully allocated to its contributors, according to a simple proportional13

rule based on the aforementioned weights.14

?A preliminary version of this paper appeared in the Proceedings of the 11th International Conference on
Algorithms and Complexity (CIAC) [8].
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Our motivation is to analyse the impact of this simple and natural allocation rule. Do15

the players reach a Nash equilibrium, that is, a stable state in which no one wants to deviate16

from the project she is currently contributing? How bad is a Nash equilibrium compared to17

the situation where a central authority would, at best, decide by which agent(s) a project is18

conducted? In other words, does the allocation rule incentivize the players to realize projects19

that optimize the total rewards?20

1.1. The Model21

project games are strategic games with a set of n players N = {1, . . . , n} := [n] and a22

set of m projects M = {1, . . . ,m} := [m]. The strategy space of every player i, denoted by23

Si, is a subset of M . We assume that
⋃
i∈N Si = M and a strategy for player i is to select24

a project j ∈ Si. Each project j ∈ M has a positive reward rj. Each player i ∈ N has a25

positive weight wi,j when she selects project j. A strategy profile is a vector of strategies26

σ = (σ1, . . . , σn), where σi denotes the project selected by player i, for each i ∈ N .27

The load of project j under strategy profile σ, denoted by L(σ, j), is the total weight28

of the players selecting j. Thus, L(σ, j) =
∑
{i∈N : σi=j}wi,j. A player’s utility is defined as29

a portion of the reward of the realized project that she is contributing to. This portion is30

proportional to the player’s weight. Thus, the utility of player i (that she wants to maximize)31

under σ is defined as32

ui(σ) =
wi,σi

L(σ, σi)
rσi . (1)

We will sometimes consider special cases of project games. A project game is33

symmetric when Si = M for every player i. The players’ weights are universal when, for34

every player i, wi,j is equal to some positive number wi for every project j; in particular,35

they are identical when wi = 1 for every player i. The weights are project-specific when they36

are not universal. The projects’ rewards are identical when the reward is the same for all37

projects, and this reward is equal to 1 by assumption. When the rewards are not identical,38

we say that they are generic or non-identical.39

A strategy profile σ is a pure Nash equilibrium if for each i ∈ N and j ∈ Si, ui(σ) ≥40

ui(σ−i, j) where σ′ = (σ−i, j) is defined by σ′` = σ` for ` ∈ N \{i} and σ′i = j. For a project41

game G, denote by NE(G) its set of pure Nash equilibria. An improving deviation for player42

i in strategy profile σ is a deviation to a strategy j ∈ Si such that ui(σ−i, j) > ui(σ); a best43

response for i in σ is a strategy j∗ ∈ Si such that ui(σ−i, j
∗) ≥ ui(σ−i, j) for each j ∈ Si.44

Thus, a pure Nash equilibrium is a strategy profile in which no player has an improving45

deviation and in which every player plays a best response.46

For a strategy profile σ, P (σ) = {j ∈ M : L(σ, j) > 0} will denote the set of projects47

selected by some players in σ. The social utility under strategy profile σ, denoted by U(σ), is48

defined as the total sum of the rewards of the selected projects (also known as the utilitarian49

social welfare), i.e., U(σ) =
∑

j∈P (σ) rj. Note that U(σ) =
∑

i∈N ui(σ). A social optimum,50

denoted as σ∗, is a strategy profile maximizing U.51

Given a project game G, the price of anarchy [26] of G is the worst-case ratio between52

the social utility of a social optimum and the social utility of a pure Nash equilibrium for53

G, namely, PoA(G) = supσ∈NE(G)
U(σ∗)
U(σ)

; the price of stability [3] of G is the best-case ratio54
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between the social utility of a social optimum and the social utility of a pure Nash equilibrium55

for G, namely, PoS(G) = infσ∈NE(G)
U(σ∗)
U(σ)

.56

For any two integers n,m > 1, let Gn,m denote the set of all project games with57

n players and m projects. We define PoA(n,m) = supG∈Gn,m PoA(G) (resp., PoS(n,m) =58

supG∈Gn,m PoS(G)) as the worst-case price of anarchy (resp., stability) of games with n players59

and m projects. By definition, we have60

1 ≤ PoS(n,m) ≤ PoA(n,m). (2)

Therefore, in cases where both the price of anarchy and the price of stability are equal to61

some value x, it suffices to show x ≤ PoS(n,m) and PoA(n,m) ≤ x.62

1.2. Our Contribution63

We focus on existence, computational complexity and efficiency of pure Nash equilibria64

in project games. Given the structural simplicity of these games, it will be possible to65

derive some results from the state of the art of similar classes of games.66

For instance, by making use of the notion of strict game isomorphism, we derive that the67

problem of computing a pure Nash equilibrium in project games with universal weights68

belongs to the complexity class PLS (Polynomial Local Search) and can be solved in poly-69

nomial time as long as at least one of the following three conditions holds: the game is70

symmetric, the rewards are identical, the weights are identical. For the more general case of71

project-specific weights, instead, we show, by means of a potential function argument, that72

the problem is in PLS as long as the rewards are identical. Without this assumption, the73

problem gets fairly much more complicated and even the existence of pure Nash equilibria74

remains an open problem. These results are summarized in Figure 1.75

As to the efficiency of pure Nash equilibria, it is easy to see that project games belong76

to the class of valid utility games. For these games, an upper bound of 2 on the price of77

anarchy is given in [36]. We show that this bound is tight only for the case of asymmetric78

games with non-identical rewards and non-identical weights. In all other cases, we give79

refined bounds parametrized by both the number of players and projects, also with respect80

to the price of stability. The obtained bounds are summarized in Figures 2, 3 and 4. All81

these bounds are shown to be tight except for one case involving the price of anarchy of82

asymmetric games with identical rewards and identical weights. For this particular variant83

of the game, we also consider an interesting restriction in which all players have at most two84

available strategies (these games admit a multigraph representation).85

Before concluding, we explore the efficiency of equilibria under an alternative notion of86

social welfare which focuses on the utility of the poorest player (egalitarian social welfare).87

1.3. Related Work88

project games fall within the class of monotone valid utility games introduced in [36]89

and further considered in [4, 6, 20, 21, 24, 28, 29]. In a monotone valid utility game, there90

is a ground set of objects V , and a strategy for a player consists in selecting some subset of91

V . A social function γ : 2V 7→ R associates a non-negative value to each strategy profile; γ92
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P [2,3,4]P [2,4]

P [3,4]P [4]

games with identical weights
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P [2]P [2]

P [3]PLS [2]

games with universal weights

generic identical

symmetric

asymmetric

PLS [*]?

PLS [*]?

games with project-specific weights

Figure 1: The complexity of the problem of computing pure Nash equilibria in all possible variants of
project games. Results labelled with [*] are obtained in this paper, all the other ones are derived from
previous results in other settings by applying the notion of strict game isomorphism. A question mark means
that even the problem of deciding the existence of a pure Nash equilibrium is still open.

PoA(n,m) and PoA(n,m) of games Generic Identical
with symmetric strategies rewards rewards

Any type of 1 + s−1
n

1
project weights [Prop. 4, Thm. 8] [Thm. 4]

Figure 2: The price of anarchy PoA(n,m) and the price of stability PoS(n,m) of project games with
symmetric strategies expressed as a function of n and m, where s := min(n,m). All bounds are tight and
independent of the project weights.

PoA(n,m) of games with Generic Identical
asymmetric strategies rewards rewards

Project-specific & 2 2t+1
t+1

universal weights [Prop. 5, [36]] [Thm. 5, Thm. 6]
Identical 2− 1/n if n ≤ m [ e

e−1
, 5

3
]

weights n+1
n

if n > m = 2 [Thm. 7]
2− 1

m−1
if n > m > 2

[Prop. 6, Thm. 9]

Figure 3: The price of anarchy PoA(n,m) of project games with asymmetric strategies expressed as a
function of n and m, where s := min(n,m) and t :=

⌊
s−1
2

⌋
. The case in which both the rewards and the

projects are identical is the only non-tight bound.

4



PoS(n,m) of games with Generic Identical
asymmetric strategies rewards rewards

Project-specific & 2 1
universal weights [Prop. 5, [36]] [Thm. 3]

Identical 2− 1/n if n ≤ m 1
weights n+1

n
if n > m = 2 [Thm. 3]

2− 1
m−1

if n > m > 2

[Prop. 6, Thm. 9]

Figure 4: The price of stability PoS(n,m) of project games with asymmetric strategies expressed as a
function of n and m. All bounds are tight.

is assumed to be monotone and submodular. The utility of player i in a strategy profile σ93

is at least the value γ(σ)− γ(σ−i). Moreover, the sum of the players’ utilities in σ does not94

exceed the value γ(σ). In [36] it is shown that the price of anarchy of these games is at most95

2.96

Among the special cases of monotone valid utility games considered in the literature, the97

one that mostly relates to our project games is the one studied in [24]. They consider a98

set of projects modelling open problems in scientific research and a set of players/scientists,99

each of which chooses a single problem to work on. However, there are several differences100

between the two models which make them incomparable. In fact, in the games studied in101

[24], players may fail in solving a problem, and so the reward associated with each project102

is not always guaranteed to be realized; moreover, when a problem is solved, its reward103

is always shared equally among the solving players. This assumption makes these games104

instances of congestion games, whereas this is not the case in our project games.105

Congestion games [34] is a well known category of strategic games which, by a potential106

argument [32], always admit a pure Nash equilibrium. In a congestion game, there is a set107

of resources M and every player’s strategy set is a non-empty subset of 2M . For example,108

M contains the links of a network from which each player wants to choose a path. Each109

resource j is endowed with a latency function `j which depends on the number of players110

having j in their strategy. A player’s cost is the sum of the latencies of the resources that111

she uses. This model received a lot of attention in the computer science community, see112

e.g. [1, 2, 13, 14, 17, 22, 23, 27, 30, 31]. Congestion games were generalized to the case113

where the players have different weights (weighted congestion games), or when a resource’s114

latency depends on the identity of the player (player specific congestion games) as in [30].115

These extensions still admit a pure Nash equilibrium if the players’ strategies are singletons.116

Nevertheless, a pure Nash equilibrium is not guaranteed when we combine weights and117

player-specific costs, even with singleton strategies [30]. Singleton congestion games with118

weighted players are also known as Load Balancing games [37]: resources and players may119

represent machines and jobs, respectively. In this context each job goes on the machine that120

offers her the lowest completion time.121

project game is also the name of a very different game studied by [11]. In their setting,122

there is a single project composed of several activities and the authors study it through the123
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lens of cooperative game theory while our model is a strategic game.124

Finally, it is worth mentioning that project games are remotely connected with hedonic125

games [5, 10] and the group activity selection problem [9], as the realized projects induce a126

partition of the player set.127

2. Existence of a Pure Strategy Nash Equilibrium128

In this section, we focus on the existence and efficient computation of pure Nash equilibria129

in project games. We shall show how several positive results can be obtained from the130

realm of load balancing games and singleton congestion games by making use of the notion131

of strict game isomorphism. Intuitively, two games are strictly isomorphic when, for every132

pair of strategy profiles and for every fixed player, they agree when one is better than the133

other (i.e., they have the same Nash dynamics graph1). Formally, we need the following134

general definitions.135

Definition 1. A game Γ is a tuple Γ = (N, (Si)i∈N , (ui)i∈N), where N is a set of n = |N |136

players, and, for each i ∈ N , Si is the set of strategies of player i and ui : ×i∈NSi 7→ R is137

her utility function.138

In a profit maximization game, every player wants to maximize her utility function (as in139

our project game), whereas in cost minimization games, utilities need to be minimized.140

To encompass both types of games under the same umbrella, we introduce the preference141

relations ≺ and � defined as follows. For a game Γ = (N, (Si)i∈N , (ui)i∈N), a player i ∈ N ,142

and two strategy profiles σ and σ′ of Γ, we write σ ≺i σ′ (resp., σ �i σ′) whenever i strictly143

(resp., weakly) prefers the outcome of σ′ to that of σ, that is, when ui(σ) < ui(σ
′) (resp.,144

ui(σ) ≤ ui(σ
′)) if Γ is a profit maximization game and ui(σ) > ui(σ

′) (resp., ui(σ) ≥ ui(σ
′)) if145

Γ is a cost minimization game. With this notation, we can express the notions of pure Nash146

equilibrium and improving deviation for any type of game in a unified manner as follows.147

A pure Nash equilibrium for Γ is a strategy profile σ such that, for each i ∈ N and j ∈ Si,148

(σ−i, j) �i σ. An improving deviation for player i in σ is a deviation to a strategy j ∈ Si149

such that σ ≺i (σ−i, j).150

To formally state the definition of strict game isomorphism, we first need to define a151

game mapping [33, 35].152

Definition 2. Given two games Γ = (N, (Si)i∈N , (ui)i∈N) and Γ′ = (N, (S ′i)i∈N , (u
′
i)i∈N), a153

game mapping ψ from Γ to Γ′ is a tuple ψ = (π, (ϕi)i∈N), where π is a bijection from N to154

N and, for any i ∈ N , ϕi is a bijection from Si to S ′i.155

Observe that a game mapping naturally induces a bijection between the set of strategy156

profiles of Γ and the set of strategy profiles of Γ′, where σ = (σ1, . . . , σn) is mapped to157

1We recall that the Nash dynamics graph associated with a game is the directed graph whose set of nodes
is the set of strategy profiles of the game and there is an arc from profile σ to profile σ′ if and only if there
exists a player who has an improving deviation in σ leading the game to profile σ′.
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σ′ = (σ′1, . . . , σ
′
n) with σ′π(i) = ϕi(σi) for each i ∈ N . We succinctly define this mapping by158

ψ(σ), thus overloading the use of ψ.159

Definition 3. A strict isomorphism from Γ to Γ′ is a game mapping ψ = (π, (ϕi)i∈N) such160

that, for any i ∈ N , and pair of strategy profiles σ and σ′ for Γ, we have σ ≺i σ′ if and only161

if ψ(σ) ≺i ψ(σ′).162

The notion of strict isomorphism is a refinement of that of weak isomorphism given in163

[15], where ≺ is replaced by �. By definition, two games which are strictly isomorphic share164

the same set of pure Nash equilibria. Thus, existential and computational results for one165

game can be directly applied to the other. By leveraging previously known results, we obtain166

the following result.167

Theorem 1. Every project game with universal weights admits a potential function.168

Moreover, a pure Nash equilibrium can be computed in polynomial time when at least one169

of the following conditions is true: the game is symmetric, the rewards are identical, the170

weights are identical.171

Proof. In a load balancing game with related machines each player owns a task which172

needs to be processed on one of m available machines (see, for example, [37] for a survey).173

Every task has a processing time and every machine has a speed. The cost that a player174

experiences in a strategy profile is equal to the completion time of the chosen machine, where175

the completion time of a machine is equal to the sum of the weights of all players selecting176

it, divided by its speed. The game is symmetric if all machines are available to every task.177

In a load balancing game with identical machines, all speeds are identical and normalized178

to 1; in a singleton congestion game with linear latency functions, all processing times are179

identical and normalized to 1.180

Fix a project game G with universal weights. By (1), we have that, for each strategy181

profile σ of G, player i ∈ N and strategy j ∈ Si,182

ui(σ−i, j) > ui(σ) ⇐⇒ L(σ, j) + wi
rj

<
L(σ, σi)

rσi
. (3)

If one interprets the set of projects as a set of related machines, where machine j has a183

speed rj, and the set of players as a set of tasks, where task i has a processing time wi, it184

follows immediately from (3) that G is strictly isomorphic to a load balancing game with185

related machines. Similarly, a project game with universal weights and identical projects186

is strictly isomorphic to a load balancing game with identical machines, and a project187

game with identical weights is strictly isomorphic to a singleton congestion game with188

linear latency functions.189

In [13] it is shown that load balancing games with related machines admit a potential190

function. A characterization by [32] states that a game admits a potential function if and191

only if its Nash dynamics graph is acyclic. As the Nash dynamic graphs of two strictly192

isomorphic games are isomorphic, it follows that also project games with universal193
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weights admit a potential function. Moreover, since in [13] a polynomial time algorithm194

for computing a pure Nash equilibrium in load balancing symmetric games with related195

machines is given, we get an efficient algorithm for computing a pure Nash equilibrium in196

symmetric project games with universal weights. For asymmetric project games with197

identical rewards, the polynomial time algorithm given in [16] for load balancing games198

with identical machines can be applied. Finally, for asymmetric project games with199

identical weights, the algorithm given in [23] for singleton congestion games with linear200

latency functions can be applied. �201

202

For the case of project-specific weights, no transformation to other known classes of203

games are possible (up to our knowledge) and a direct approach needs to be developed. For204

projects with identical rewards, we show the existence of pure Nash equilibria by providing205

a potential function argument.206

Theorem 2. For project games with identical rewards, vector 〈|P (σ)|, Φ(σ)〉, where207

Φ(σ) := Πj∈P (σ)L(σ, j), lexicographically increases after every improving deviation.208

Lexicographic increase means that either |P (σ)| increases, or |P (σ)| stays the same but209

Φ(σ) increases.210

211

Proof. Suppose that some player i performs an improving deviation from a given strategy212

profile σ. The new strategy profile σ′ is identical to σ, except that σi 6= σ′i. Let σi = j and213

σ′i = j′. We have that ui(σ
′) > ui(σ) is equivalent to214

wi,j′

L(σ′, j′)
>

wi,j
L(σ, j)

. (4)

If L(σ′, j) = 0, then player i made a deviation although her utility was maximum (the215

weights being positive, player i was alone on project j): a contradiction. Thus, L(σ′, j) > 0.216

If L(σ, j′) = 0, then player i joins an unused project. The combination L(σ′, j) > 0 and217

L(σ, j′) = 0 indicates that |P (σ′)| = |P (σ)|+ 1. The vector increased lexicographically.218

For the rest of this proof, suppose L(σ, j′) > 0. In this case |P (σ′)| = |P (σ)|. The
deviation induces a change in Φ:

Φ(σ′)− Φ(σ) = K
(
L(σ′, j)L(σ′, j′)− L(σ, j)L(σ, j′)

)
,

where K is some positive term that is common to both Φ(σ′) and Φ(σ). We have L(σ′, j) =
L(σ, j) − wi,j and L(σ′, j′) = L(σ, j′) + wi,j′ . Thus, L(σ′, j)L(σ′, j′) − L(σ, j)L(σ, j′) =
(L(σ, j)− wi,j) (L(σ, j′) + wi,j′) − L(σ, j)L(σ, j′) = L(σ, j)wi,j′ − L(σ, j′)wi,j − wi,jwi,j′ . It
follows that:

Φ(σ′)− Φ(σ) = K (L(σ, j)wi,j′ − L(σ, j′)wi,j − wi,jwi,j′) .

Inequality (4) gives L(σ, j)wi,j′ > wi,jL(σ′, j′) = wi,jL(σ, j′) +wi,jwi,j′ which is equivalent to219

L(σ, j)wi,j′−wi,jL(σ, j′)−wi,jwi,j′ > 0. We deduce that Φ(σ′)−Φ(σ) > 0. As ui(σ
′) > ui(σ)220
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implies Φ(σ′) > Φ(σ), Φ must be a potential function of the game. �221

222

It follows from Theorem 2 that any sequence of improving deviations in project games223

with identical rewards never cycles: it always converges to a pure Nash equilibrium. As the224

potential function given in Theorem 2, as well as the one given in [13] for games with universal225

weights, can be computed in polynomial time, it follows that the problem of computing a226

pure Nash equilibrium in games with project-specific weights and identical rewards and in227

games with universal weights belongs to the complexity class PLS; see, for instance, [12].228

For the case of generic rewards and project-specific weights, it is easy to see that every229

project game is strictly isomorphic to a singleton weighted congestion game with player-230

specific linear latency functions and resource-specific weights. An instance of these games is231

defined as follows. There is a set of n players N = {1, . . . , n} = [n] and a set of m resources232

R = {1, . . . ,m} = [m]. Each player i ∈ N can choose a resource from a prescribed set233

Si ⊆ R and has a weight wi,j > 0 on resource j ∈ R. The load (congestion) of resource j234

in a strategy profile σ is L(σ, j) =
∑

i∈N :σi=j
wi,j. Each resource j ∈ R has a player-specific235

linear latency function `ij(x) = αijx, with αij ≥ 0, for each i ∈ N . The cost of player i in σ236

is defined as ci(σ) = `iσi(L(σ, σi)) = αiσiL(σ, σi).237

To the best of our knowledge, singleton weighted congestion games with player-specific238

linear latency functions and resource-specific weights have been considered so far in the239

literature only under the assumption that the players’ weights are not resource-specific, i.e.,240

each player i ∈ N has a weight wi > 0 for each resource j ∈ Si. These games have been241

considered in [17] and [19]. In particular, in [17] it is shown that they admit a potential242

function if and only if n = 2, while the existence of a pure Nash equilibrium for the cases243

of either n = 3 or m = 2 in proved in [19]; in the latter, a polynomial time algorithm244

for computing an equilibrium is also provided. However, there is no relationship between245

these games and our project games. In fact, if from one perspective project games are246

more general than singleton weighted congestion games with player-specific linear latency247

functions in the definition of the players’ weights (which are resource-specific in the former248

and resource-independent in the latter), on the other hand, singleton weighted congestion249

games with player-specific linear latency functions are more general than project games in250

the definition of the latency functions (which are arbitrary in the former and resource-related251

in the latter).252

We close this section with the most general case of project games, but for a small253

number of players.254

Proposition 1. The best response dynamics of a project game with two players always255

converges.256

Proof. Let N = {a, b}. By contradiction, suppose there is a cycle C in the best response257

dynamics. There must be a state s1 in C, where a and b are on the same project (as long258

as the players are on distinct projects, every profitable deviation from σ to σ′ is such259

that U(σ′) > U(σ)). Suppose s1 is reached from state s0 by a best response of b, and s2
260

immediately follows s1 in C by a best response of a. The deviation of a does not decrease b’s261

9



utility, meaning that b still plays a best response in s2. Thus s2 is a pure Nash equilibrium262

which contradicts the existence of C. �263

264

Proposition 2. Every project game with three players always admits a pure Nash equi-265

librium.266

Before giving the proof, note that Proposition 1 holds even if each project j has some267

residual weight w̄j ≥ 0, and the load of j under strategy profile σ is defined as w̄j+
∑
{i∈N :σi=j}268

wi,j. The residual weight of a project j can be interpreted as the weight of some player whose269

decision is made regardless of the state (alternatively, some player has strategy space {j}).270

271

Proof. There are three players a, b, and c. By Proposition 1, a pure Nash equilibrium σ272

with only players a and b exists. Introduce c in σ and let her play a best response. We shall273

consider all possible cases.274

First, assume that a and b are choosing the same project in σ. If c chooses the same275

project of both a and b, say 1, then c can play 1 in any case, i.e., playing 1 is a dominant276

strategy for c. One can consider a 2-player game with residual weight w̄1 = wc,1. As277

previously mentioned, a pure Nash equilibrium exists and we are done. If c chooses a distinct278

project, then the state is a pure Nash equilibrium since everyone plays a best response.279

From now on, suppose a and b are on projects 1 and 2, respectively. If c is on j /∈ {1, 2},280

then the state is a pure Nash equilibrium since everyone plays a best response. Otherwise,281

c plays 1 or 2. The state is not a Nash equilibrium only if the player who shares the project282

with c wants to move. That player is the only one who is not playing a best response. Her283

deviation (best response) preserves the property that at most one player in {a, b, c} is not284

playing a best response. Therefore, the only way for the dynamics to run into a cycle is285

when the players’ strategies are limited to two projects, as described in the next table.286

σ1 σ2 σ3 σ4 σ5 σ6

a 1 2 2 2 1 1
b 1 1 1 2 2 2
c 2 2 1 1 1 2

287

State σk+1 is reached from state σk by a deviation of one player. State σ1 is reached from288

state σ6 by a deviation of player b, from project 2 to project 1.289

The first deviation σ1 → σ2 is due to player a who moves from project 1 to project 2290

because:291

ua(σ1) =
w1a

w1a + w1b

r1 <
w2a

w2a + w2c

r2 = ua(σ2). (5)

The other deviations give:292

w2c

w2c + w2a

r2 <
w1c

w1c + w1b

r1 (6)

w1b

w1b + w1c

r1 <
w2b

w2b + w2a

r2 (7)
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w2a

w2a + w2b

r2 <
w1a

w1a + w1c

r1 (8)

w1c

w1c + w1a

r1 <
w2c

w2c + w2b

r2 (9)

w2b

w2b + w2c

r2 <
w1b

w1b + w1a

r1 (10)

Let us see that this set of inequalities cannot be satisfied. Suppose w2c > w2b. We get293

that w2a + w2c > w2a + w2b ⇔ w2a

w2a+w2c
r2 <

w2a

w2a+w2b
r2. Use this inequality with (5) and (8)294

to get that w1a

w1a+w1b
r1 <

w1a

w1a+w1c
r1 ⇔ w1c < w1b ⇔ w1c

w1b+w1c
r1 <

w1b

w1b+w1c
r1. Use this inequality295

with (6) and (7) to get that w2c

w2c+w2a
r2 <

w2b

w2b+w2a
r2 ⇔ w2c < w2b. A contradiction with the296

hypothesis is reached. �297

298

3. Social Utility and the Price of Anarchy/Stability299

In this section, we analyse the quality of pure Nash equilibria in project games in term300

of price of anarchy and price of stability. Before presenting our complete characterization of301

their bounds, we observe that a social optimum can be computed efficiently.302

Proposition 3. Maximizing the utilitarian social welfare of a project game can be done303

in polynomial time.304

Proof. When the game is symmetric, a social optimum can be constructed by selecting the305

min(m,n) projects with largest reward. When the game is asymmetric, a social optimum306

can be constructed in polynomial time if we resort to the following transversal matroid (see307

for example [25] for more details). There are n sets S1, . . . , Sn, subsets of M , where Si is308

the strategy space of player i. A subset of projects is feasible if it is a partial transversal.309

A partial transversal is a set T ⊆ M such that an injective map Φ : T → [n] satisfying310

j ∈ SΦ(j) exists. A feasible set of projects which maximizes U can be found by running the311

classical greedy algorithm over the transversal matroid. �312

313

3.1. Games with Identical Rewards314

In this subsection, we give results for games with identical rewards. The first result states315

that there is always a pure Nash equilibrium that is socially optimal.316

Theorem 3. For any two integers n,m > 1, PoS(n,m) = 1.317

Proof. For a fixed pair of integers n,m > 1, consider a project game G ∈ Gn,m. Let σ be318

a Nash equilibrium for G reached after a sequence of improving deviations starting from a319

social optimum σ∗. As it is never profitable for a player who is the only selector of a project320

to leave it in favor of another one, we have P (σ) = P (σ∗) which implies U(σ) ≥ U(σ∗). �321

322

Next, we show that, under the assumption of symmetric games, all pure Nash equilibria323

are socially optimal.324
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Theorem 4. For any two integers n,m > 1, PoA(n,m) = 1 for symmetric games.325

Proof. For a fixed pair of integers n,m > 1, consider a project game G ∈ Gn,m. Fix a326

Nash equilibrium σ and a social optimum σ∗ for G. Assume, by way of contradiction, that327

|P (σ∗)| > |P (σ)|, then there exists a project selected by at least two players in σ. Any of328

these two players improves by deviating to a project in P (σ∗) \P (σ), rising a contradiction.329

Thus, we derive |P (σ∗)| = |P (σ)| which implies U(σ) = U(σ∗). �330

331

For asymmetric games, instead, next theorem shows that the price of anarchy rises to332

almost 2 even when considering universal weights.333

Theorem 5. For any two integers n,m > 1 and s := min(n,m), PoA(n,m) ≥ 2b s−1
2 c+1

b s−1
2 c+1

for334

asymmetric games with universal weights.335

Proof. For a fixed pair of integers n,m > 1, we are going to consider several cases, whether336

s = n or s = m, and whether s is odd or even. For each of them, we shall define a game337

with universal weights attaining the claimed lower bound on the price of anarchy.338

Suppose n < m, i.e., s = n, and n = 2k + 1 for some positive k. The first k players339

have weight 1 and the others have a small positive weight ε. For each i ∈ [k], Si = {i, i +340

k} ∪ {2k + 2, · · · ,m}, and for any other player i ∈ {k + 1, · · · , 2k + 1}, Si = {i, 2k + 1}.341

The maximal number of selected projects is n = 2k + 1 in a profile where every player i342

plays project i. Consider the profile σ in which every player i ∈ [k] selects project i+ k and343

every other player selects project 2k + 1. We shall prove that σ is a pure Nash equilibrium.344

Clearly, none of the first k players improves by deviating, as they are the only selectors of345

their chosen project. Thus, we only need to establish that no player i ∈ {k + 1, · · · , 2k + 1}346

has an incentive in deviating to project i. Since player i ∈ {k + 1, · · · , 2k + 1} is selecting347

a project having k + 1 participants, and all participants have the same weight ε, we get348

ui(σ) = (k + 1)−1 which is a positive constant, as k is fixed (being n fixed). By deviating349

to project i, player i gets ui(σ−i, i) = ε
1+ε

< (k + 1)−1 for a suitable choice of ε (namely,350

ε < 1/k). Hence, σ is a pure Nash equilibrium in which k + 1 projects are selected. Since351

s = n = 2k + 1, we have that 2
⌊
s−1

2

⌋
+ 1 = 2k + 1 and

⌊
s−1

2

⌋
+ 1 = k + 1. The expected352

ratio is reached.353

Suppose n < m, i.e., s = n, and n = 2k for some positive k. The first k − 1 players354

have weight 1 and the others have a small positive weight ε. For each i ∈ [k − 1], Si =355

{i, i+ k − 1} ∪ {2k, · · · ,m}. For each i ∈ {k, · · · , 2k − 1}, Si = {i, 2k − 1}. The last player356

2k can only play 2k−1. The maximal number of selected projects is 2k−1 in a profile where357

every player i ∈ [2k − 1] plays project i, and player 2k plays project 2k − 1. Consider the358

profile σ in which player i ∈ [k − 1] selects project i + k − 1, and every other player selects359

project 2k− 1. Using the same arguments as in the previous case, it is easy to check that σ360

is a pure Nash equilibrium for a suitable choice of ε (namely, ε < 1/k), and k projects are361

selected. Since s = n = 2k, we have that 2
⌊
s−1

2

⌋
+ 1 = 2k − 1 and

⌊
s−1

2

⌋
+ 1 = k. The362

expected ratio is reached.363
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Suppose m ≤ n, i.e., s = m, and m = 2k + 1 for some positive k. The first k players364

have weight 1 and the others have a small positive weight ε. For each i ∈ [k], Si = {i, i+ k}.365

For each i ∈ {k + 1, · · · , 2k}, Si = {i, 2k + 1}. For any other player i, Si = {2k + 1}. The366

maximal number of selected projects is 2k + 1 in a profile where every player i ∈ [2k] plays367

project i, whereas the other players select project 2k + 1. Consider the profile σ in which368

player i ∈ [k] selects project i + k and every other player selects project 2k + 1. Similarly369

as before, σ can be shown to be a pure Nash equilibrium for a suitable choice of ε, and370

k + 1 projects are selected. Since s = m = 2k + 1, we have that 2
⌊
s−1

2

⌋
+ 1 = 2k + 1 and371 ⌊

s−1
2

⌋
+ 1 = k + 1. The expected ratio is reached.372

Suppose m ≤ n, i.e., s = m, and m = 2k for some positive k. The first k players373

have weight 1 and the others have a small positive weight ε. For each i ∈ [k − 1],374

Si = {i, i + k − 1, 2k}. For each i ∈ {k, · · · , 2k − 2}, Si = {i, 2k − 1}. For any other player375

i, Si = {2k − 1}. The maximal number of selected projects is 2k − 1 in a profile where376

every player i ∈ [2k − 2] plays project i, whereas the other players select project 2k − 1.377

Consider the profile σ in which player i ∈ [k − 1] selects project i + k − 1 and every other378

player selects project 2k − 1. Again, σ is a pure Nash equilibrium for a suitable choice of379

ε, and k projects are selected. Since s = m = 2k, we have that 2
⌊
s−1

2

⌋
+ 1 = 2k − 1 and380 ⌊

s−1
2

⌋
+ 1 = k. The expected ratio is reached. �381

382

A matching upper bound, which holds for the more general case of project-specific weights383

is achieved in the following theorem.384

Theorem 6. For any two integers n,m > 1, PoA(n,m) ≤ 2b s−1
2 c+1

b s−1
2 c+1

, where s := min(n,m),385

holds for asymmetric games with project-specific weights.386

Proof. For a fixed pair of integers n,m > 1, consider a project game G ∈ Gn,m. Fix a387

Nash equilibrium σ and a social optimum σ∗ for G and, for the sake of simplicity, denote388

P = P (σ) and P ∗ = P (σ∗).389

Given a project j ∈ P ∗ \ P , let o(j) denote any player choosing project j in σ∗. Define390

P ∗1 = {j ∈ P ∗ \ P : σo(j) ∈ P ∗}, P ∗2 = (P ∗ \ P ) \ P ∗1 , P1 = {j′ ∈ P : ∃j ∈ P ∗1 : σo(j) = j′} and391

P2 = {j′ ∈ P : ∃j ∈ P ∗2 : σo(j) = j′}. By definition, we have P1 ⊆ P ∗ ∩ P and P2 ⊆ P \ P ∗.392

Note that, for each j ∈ P ∗ \ P , player o(j) must be the only selector of project j′ =393

σo(j) 6= j in σ, otherwise she could deviate to j and improve her utility (the rewards are394

identical by assumption). This property implies that |P ∗1 | = |P1| and |P ∗2 | = |P2|.395

Assume that P ∗1 6= ∅, i.e., |P ∗1 | ≥ 1. We claim that P \ P1 6= ∅. Indeed, if this does not396

hold, we have P \ P1 = ∅ which gives P = P1. Since we know that each project in P1 has a397

unique selector in σ, it follows that |P1| = n. As we also know that P1 ⊆ P ∗ ∩ P , we derive398

|P ∗ ∩ P | ≥ n. Putting all together, we get |P ∗| ≥ |P ∗1 | + |P ∗ ∩ P | ≥ n + 1, which yields a399

contradiction. Thus, we have proven the following implication:400

P ∗1 6= ∅ =⇒ P \ P1 6= ∅. (11)

We get:

PoA(n,m) =
U(σ∗)

U(σ)
=

|P ∗1 |+ |P ∗2 |+ |P ∗ ∩ P |
|P1|+ |P2|+ |P \ (P1 ∪ P2)|

.
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As |P ∗2 | = |P2| and P2 ⊆ P \ P ∗, PoA(n,m) is maximized when P ∗2 = P2 = ∅, by which
we get:

PoA(n,m) ≤ |P
∗
1 |+ |P ∗ ∩ P |
|P1|+ |P \ P1|

.

Clearly, if P ∗1 = ∅, we derive a price of anarchy of 1, so assume |P ∗1 | ≥ 1. Using (11), we
get |P \ P1| > 0. By P1 ⊆ P ∗ ∩ P and |P1| = |P ∗1 |, we obtain that PoA(n,m) is maximized
when |P \ P1| = 1 and P \ P1 ⊆ P ∩ P ∗, i.e., when |P ∗| = 2|P ∗1 |+ 1 and |P | = |P ∗1 |+ 1. By

using |P ∗1 | =
⌊
|P ∗|−1

2

⌋
and |P ∗| ≤ min(n,m) = s, we derive:

PoA(n,m) ≤ 2|P ∗1 |+ 1

|P ∗1 |+ 1
≤

2
⌊
s−1

2

⌋
+ 1⌊

s−1
2

⌋
+ 1

,

which yields the claim. �401

402

By Theorems 5 and 6, we get that PoA(n,m) =
2b s−1

2 c+1

b s−1
2 c+1

for games with both project-403

specific and universal weights.404

3.1.1. Identical Weights.405

In this subsection, we consider the case of games with identical weights and identical406

rewards. We shall focus on the basic restriction in which the strategy space of each player407

is made up of at most two projects, i.e., |Si| ≤ 2 for each i ∈ N .408

Indeed, when bounding the price of anarchy of a game, at most two strategies per player409

need to be taken into account: the strategy used in the worst-case pure Nash equilibrium and410

the one adopted in a social optimum. If there are players possessing additional strategies,411

these strategies can be removed from the game without altering the analysis of the price412

of anarchy. For such a reason, restricting to games with at most two strategies per player413

is without loss of generality when characterizing the price of anarchy. Thus, the bounds414

claimed in the upcoming result (Theorem 7) extend to any project game.415

Games with this property admit an interesting representation via multigraphs with pos-416

sible loops.417

Let G = (V,E) be a multigraph where V and E are the set of vertices and edges. The418

neighborhood of vertex v ∈ V , denoted by NG(v), is the set of vertices adjacent to v, i.e.,419

NG(v) = {u ∈ V : uv ∈ E}, and the degree of v is dG(v) = |NG(v)|. An orientation of G420

is a digraph G′ = (V,E ′), where each edge e = uv ∈ E of G has a direction e′ = (u, v)421

from u to v or e′ = (v, u) from v to u; such edge e′ is called directed edge or arc. Given a422

digraph G′, the outgoing (resp., incoming) neighborhood of v ∈ V , denoted by N+
G′(v) (resp.,423

N−G′(v)), is the set of vertices connected to v by means of an arc outgoing (resp., incoming)424

v, i.e., N+
G′(v) = {u ∈ V : (v, u) ∈ E ′} (resp., N−G′(v) = {u ∈ V : (u, v) ∈ E ′}). The425

outdegree (resp., indegree) of v ∈ V , denoted by d+
G′(v) (resp., d−G′(v)), is the number of arcs426

outgoing (resp., incoming) v, i.e., |N+
G′(v)| (resp., |N−G′(v)|); hence, dG′(v) = d−G′(v) + d+

G′(v).427

A source (resp., a sink) of G′ is a vertex with d−G′(v) = 0 (resp., d+
G′(v) = 0). Given a428

digraph G′ = (V,E ′), we define the partition (V0, . . . , Vd) based on indegrees of V in G′,429
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where Vi = {y ∈ V : d−G′(y) = i} and d is the maximum indegree of G′. Note that V0 is the430

set of sources of G′ and |E ′| =
∑d

i=1 i · |Vi|.431

We shall be interested in a problem that we call Nash Orientation Graph Game (NOGG432

in short), which is described as follows:433

Nash Orientation Graph Game (NOGG)
Input: A multigraph G = (V,E).
Solution: Orientation σ of E, i.e., G′σ = (V,E ′).
Output: Nash orientation.

434

A Nash orientation σ of G = (V,E), given by digraph G′σ = (V,E ′), is an orientation435

satisfying:436

∀e′ = (u, v) ∈ E ′, d−G′σ(v) ≤ d−G′σ(u) + 1. (12)

Any project game can be transformed into an equivalent NOGG and vice versa, by437

associating projects to vertices and players to edges. In particular, there is an edge e = uv438

in the graph if and only if player e has two possible projects u and v (it is a loop if there439

is only one project). A strategy profile σ of the game corresponds to an orientation, where440

the head of an edge e is the action of player e ∈ E. Moreover, σ is a pure Nash equilibrium441

if and only if the corresponding orientation σ of G′σ satisfies (12). Since we study the price442

of anarchy, we can always assume that the given multigraphs are connected (otherwise, we443

deal with each connected component separately). The social utility of an orientation G′σ is444

given by U(G′σ) = |V \ V0|. The social utility of an optimal orientation σ∗ is denoted by445

U(G∗). The following result gives a characterization of U(G∗).446

Lemma 1. Let G = (V,E) be a connected graph with m vertices. If G is a tree, then447

U(G∗) = m− 1, otherwise, U(G∗) = m.448

Proof. Assume first that G is a tree. Since any orientation of G gives an acyclic graph, this449

orientation has a source. Thus, U(G∗) ≤ m − 1. Now, any orientation from a root to the450

leaves gives a social utility of m− 1. Therefore, U(G∗) ≥ m− 1, which yields the claim.451

Assume now that G is a connected graph and it contains a cycle. Take a spanning tree452

T of G and an edge uv /∈ T (uv exists because G has a cycle). Let v be the root of T ,453

and orient all the edges from v to the leaves. Edge uv is oriented from u to v, while every454

remaining edge is arbitrarily oriented. No vertex is a source in the resulting orientation, so455

its social utility is m. �456

457

The following technical lemma will play a crucial role in the following result of this458

subsection.459

Lemma 2. For a connected multigraph G = (V,E) and a Nash orientation G′σ = (V,E ′) of460

G defining a partition (V0, . . . , Vd) with d ≥ 2, the following properties hold:461
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(i) the sub-digraph induced by V0 ∪ NG′σ(V0) is a collection of |V0| stars, each rooted at a462

vertex of |V0|, NG′σ(V0) ⊆ V1 and |NG′σ(V0) \ S1| ≥ |V0|, where S1 = {x ∈ V1 : d+
G′σ

(x) =463

0};464

(ii) for every 1 ≤ i < d, N+
G′σ

(Vi) \ (∪ij=1Vj) ⊆ Vi+1.465

Proof. For property (i), observe that the claim holds trivially if V0 = ∅. If V0 6= ∅, then466

consider an arc (x, y) ∈ E ′ with x ∈ V0. If y ∈ Vi for some i ≥ 2, which implies d−G′σ(y) ≥ 2,467

it follows that G′σ = (V,E ′) is not a Nash orientation because Inequality (12) is not satisfied.468

So, every vertex in V0 is adjacent to vertices in V1 only, which yields that V0 is an independent469

set and NG′σ(V0) ⊆ V1. Moreover, NG′σ(V0) is also an independent set. In fact, if there were470

an arc between two vertices in NG′σ(V0), then one of these vertices would have indegree at471

least two, thus contradicting the fact that NG′σ(V0) ⊆ V1. Thus, V0 ∪ NG′σ(V0) induces a472

collection of |V0| stars, each rooted at a vertex of |V0|. Finally, since d−G′σ(y) = 1 for each473

y ∈ NG′σ(V0) and G is connected, it follows that, in order to connect the |V0| stars induced474

by V0 ∪ NG′σ(V0), there must be an outgoing arc from at least one leaf of each star, which475

yields |NG′σ(V0) \ S1| ≥ |V0|.476

For property (ii), observe that, by definition, N+
G′σ

(V1) ∩ V0 = ∅. If N+
G′σ

(V1) \ V1 * V2,477

then there exists z ∈ Vi for i ≥ 3 and x ∈ V1 such that (x, z) ∈ E ′. Thus, Inequality (12)478

is not satisfied: a contradiction. Inequality N+
G′σ

(Vi) \ (∪ij=1Vj) ⊆ Vi+1 for i > 1 is obtained479

using the same argument. �480

481

We can now prove upper and lower bounds on the price of anarchy.482

Theorem 7. For any connected multigraph G = (V,E) with m vertices and n edges, we483

have 1.582 ≈ e
e−1
≤ PoA(G) ≤ 5

3
≈ 1.667. The lower bound holds even for trees.484

Proof. Fix a Nash orientation G′σ of G defining a partition (V0, . . . , Vd). If d ≤ 1, then485

every player selects a different project in σ, yielding U(G′σ) = |V | ≥ U(G∗), which gives486

PoA(G) = 1. Thus, we assume d ≥ 2 which allows us to apply Lemma 2.487

Let V ′1 := NG′σ(V0) \ S1 ⊆ V1 and V ′2 := N+
G′σ

(V1) \ V1 ⊆ V2. From property (i) of Lemma

2, we know that |V ′1 | ≥ |V0|. Now, observe that N−G′σ(V ′2) ⊆ V ′1 . Property (ii) of Lemma 2,

and the definition of V2 give |V ′2 | ≥ 1
2
|V ′1 |. Hence, using these two inequalities, we get:

U(G′σ) =
d∑
i=1

|Vi| ≥
3

5

d∑
i=1

|Vi|+
2

5
(|V ′1 |+ |V ′2 |) ≥

3

5

d∑
i=0

|Vi| =
3

5
|V | ≥ 3

5
U(G∗).

For the lower bound, consider a tree Tk arranged in k + 1 levels 0, . . . , k, such that each
node at level i has k − i children. The number of nodes of Tk is equal to

k∑
i=0

k!

(k − i)!
= k!

k∑
i=0

1

(k − i)!
= k!

k∑
i=0

1

i!
.
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Moreover, the number of its leaves is equal to k!. Consider the orientation T ′k obtained by488

orienting all edges towards the root. Any node at level i has k − i incoming edges and this489

immediately implies that T ′k is a Nash orientation. It follows that PoA(Tk) ≥
k!

∑k
i=0

1
i!
−1

k!
∑k
i=0

1
i!
−k!

.490

As limk→∞
∑k

i=0
1
i!

= e, we obtain limk→∞ PoA(Tk) = e
e−1

. �491

492

3.2. Games with Generic Rewards493

In this section, we address the more general case of generic rewards. We start by showing494

a lower bound on the price of stability which holds even for symmetric games with identical495

weights.496

Proposition 4. For any two integers n,m > 1, PoS(n,m) ≥ 1 + min(n,m)−1
n

for symmetric497

games with identical weights.498

Proof. For any two integers n,m > 1, consider a game with n players of weight 1, one499

project p with reward n + ε, where ε > 0 is an arbitrary number, and m − 1 projects with500

reward 1.501

As choosing project p is a dominant strategy for each player, this game has only one502

pure Nash equilibrium in which all the players select p. Under this strategy profile, the503

social utility is n + ε. In a social optimum, a maximum number of min(n,m) projects can504

be selected by some player, so that the social utility is at most n+ ε+ min(n,m)− 1. Thus,505

by the arbitrariness of ε, the price of stability is at least 1 + min(n,m)−1
n

. �506

507

We now show a matching upper bound that holds even for the price of anarchy of sym-508

metric games with project-specific weights.509

Theorem 8. For any two integers n,m > 1, PoA(n,m) ≤ 1 + min(n,m)−1
n

for symmetric510

games with project-specific weights.511

Proof. For a fixed pair of integers n,m > 1, consider a project game G ∈ Gn,m. Fix a512

Nash equilibrium σ and a social optimum σ∗ for G and, for the sake of simplicity, denote513

P = P (σ) and P ∗ = P (σ∗). Actually, P ∗ consists of the min(m,n) projects with largest514

reward.515

We assume P ∗ \ P 6= ∅, otherwise σ is a social optimum as well. We can also assume516

that P ∗ and P have the project j∗ with largest reward in common. Indeed, if the maximum517

reward for a project of P is strictly less than rj∗ , then σ is not a pure Nash equilibrium.518

Thus, the maximum reward is the same for P ∗ and P , and we can assume without loss of519

generality that j∗ ∈ P ∗ ∩ P . We deduce that min(n,m)− 1 ≥ |P ∗ \ P | ≥ 1.520

As the game is symmetric, for each j ∈ P ∗ \ P , and i ∈ N , we know that ui(σ) ≥
ui(σ−i, j) = rj. Thus, we get |P ∗ \ P | · ui(σ) ≥

∑
j∈P ∗\P rj which implies that (min(n,m)−

1)ui(σ) ≥
∑

j∈P ∗\P rj. By summing over all players, we obtain:

(min(n,m)− 1)
∑
i∈N

ui(σ) ≥
∑
i∈N

∑
j∈P ∗\P

rj.
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Since
∑

i∈N ui(σ) = U(σ) and
∑

j∈P ∗\P rj ≥ U(σ∗) − U(σ), we get (min(n,m) − 1)U(σ) ≥521

n
(
U(σ∗) − U(σ)

)
which is equivalent to (n + min(n,m) − 1)U(σ) ≥ nU(σ∗). That is, the522

price of anarchy is at most 1 + min(n,m)−1
n

. �523

524

We now move to the case of asymmetric games. We shall prove an upper bound on525

the price of anarchy for the case of project-specific weights and then provide a matching526

lower bound on the price of stability which holds for universal weights. As to the upper527

bound, from [36], we have that for any two integers n,m > 1, PoA(n,m) ≤ 2 for games with528

project-specific weights. Now, we show the matching lower bound.529

Proposition 5. For any two integers n,m > 1, PoS(n,m) ≥ 2 for asymmetric games with530

universal weights.531

Proof. Given two integers n,m > 1, define s = min(n,m). Consider a game such that each532

player i ∈ [s − 1] has weight 1 and set of strategies Si = {i, s}, while the last n − s + 1533

players have weight ε
n−s+1

, where ε > 0 is an arbitrary value, and set of strategies equal to534

M \ [s − 1]. Each of the first s − 1 projects has reward 1, project s has reward s − 1 + ε′535

where ε′ > ε is also an arbitrary value, and any project in M \ [s] has a negligible but positive536

reward (i.e., choosing a project in M \ [s] is always a dominated strategy).537

As choosing project s is a dominant strategy for each player, this game has only one538

pure Nash equilibrium in which all the players select s. Under this strategy profile, the539

social utility is s − 1 + ε′. In a social optimum, a maximum number of s projects can be540

selected by some player, so that the social utility is at most 2(s − 1) + ε′. Thus, by the541

arbitrariness of both ε and ε′, the price of stability is at least 2. �542

543

The lower bound for the price of stability given in Proposition 5 does not apply to games544

with identical weights. This leaves open the possibility to obtain better bounds on both the545

price of anarchy and the price of stability in this setting. The following two results cover546

this case. Again, we shall give a lower bound on the price of stability and a matching upper547

bound on the price of anarchy.548

Proposition 6. For any two integers n,m > 1, we have PoS(n,m) ≥ 2 − 1
n

if m ≥ n,549

PoS(n,m) ≥ n+1
n

if n > m = 2, and PoS(n,m) ≥ 2 − 1
m−1

if n > m > 2 for asymmetric550

games with identical weights.551

Proof. The lower bounds PoS(n,m) ≥ 2− 1/n if m ≥ n and PoS(n,m) ≥ n+1
n

if n > m = 2552

come from Proposition 4 which holds even for the case of symmetric games. Here, we give a553

lower bounding instance for the case of n > m > 2.554

Consider the game with identical weights such that Si = {i,m− 1} for each i ∈ [m− 1]555

and Si = {m} for each i ≥ m. The first m − 2 projects have reward 1, project m − 1 has556

reward m− 1 + ε and project m has reward ε, where ε > 0 is an arbitrary value.557

Note that the first m − 2 players are the only one who can perform a choice and,558

for each of them, playing project m − 1 is a dominant strategy. Hence, there exists a559
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unique pure Nash equilibrium σ in which only the last two projects are selected, that is,560

such that U(σ) = m − 1 + 2ε. As in a social optimum all projects can be selected, for an561

overall social value of 2m−3+2ε, the claimed lower bound follows by the arbitrariness of ε.�562

563

We shall prove the upper bounds by exploiting the primal-dual method developed in [7].564

Before doing this, we need some additional notation. Given two strategy profiles σ and σ∗,565

define α(σ, σ∗) := |P (σ∗) \ P (σ)|; moreover, for each j ∈ M , denote as Cj(σ, σ
∗) = {i ∈566

N : σi = σ∗i = j} the set of players selecting project j in both σ and σ∗ and denote as567

Oj(σ, σ
∗) = {i ∈ N \ Cj(σ, σ∗) : σ∗i = j} the set of players selecting project j in σ∗, but not568

in σ. In the application of this method, we shall make use of the following technical lemma.569

Lemma 3. Fix an asymmetric game with identical weights. For each strategy profile σ and570

social optimum σ′, there exists a social optimum σ∗ such that (i) P (σ∗) = P (σ′) and (ii) for571

each j ∈ P (σ∗) ∩ P (σ), |Cj(σ, σ∗)| ≥ L(σ, j)− α(σ, σ∗).572

Proof. Fix a strategy profile σ and a social optimum σ′ and, for the sake of simplicity, set573

α = α(σ, σ′). Our aim is to slightly modify σ so as to obtain a social optimum σ∗ mimicking574

the assignment of players to projects realized in σ for as much as possible. To do this,575

consider the following algorithm operating in three steps.576

At step 1, for each j ∈ P (σ′) \ P (σ), choose a unique player o(j) such that j ∈ So(j)577

and define σ∗o(j) = j. Let T1 be the set of players chosen at this step; clearly, |T1| = α. At578

step 2, for each j ∈ P (σ′) ∩ P (σ), choose a unique player o(j) in N \ T1 such that j ∈ So(j)579

and define σ∗o(j) = j. Let T2 be the set of players chosen at this step. At step 3, for each580

i /∈ T1 ∪ T2, set σ∗i = σi if σi ∈ P (σ′) ∩ P (σ) and σ∗i = j otherwise, where j is an arbitrary581

project in P (σ′) ∩ Si.582

The existence of σ′ implies that there exists a choice for T1 and T2 which guarantees that
P (σ∗) = P (σ′). To show part (ii) of the claim, consider a project j∗ ∈ P (σ) ∩ P (σ∗) such
that L(σ, j∗) ≥ α (if no such project exists, then the claim is trivially true). Let

β := |{j ∈ P (σ′) ∩ P (σ) : {i ∈ N \ T1 : σi = j} = ∅}|

be the number of projects in P (σ′) ∩ P (σ) that lost all of their users in σ after step 1 of583

the algorithm. We have that step 1 selects at least β players from β different projects in584

P (σ) ∩ P (σ∗). This implies that j∗ loses at most α − β users after step 1. At step 2, j∗585

can lose at most other β additional users for a total of α users. Hence, at least L(σ, j)− α586

players are assigned to j∗ in σ∗ at step 3 of the algorithm and this shows claim (ii). �587

588

Theorem 9. For any two integers n,m > 1, we have PoA(n,m) ≤ 2 − 1
n

if m ≥ n,589

PoA(n,m) ≤ n+1
n

if n > m = 2, and PoA(n,m) ≤ 2 − 1
m−1

if n > m > 2 for asymmet-590

ric games with identical weights.591

Proof. For a fixed pair of integers n,m > 1, consider a project game G ∈ Gn,m. Fix592

a pure Nash equilibrium σ and a social optimum σ∗ for G and, for the sake of simplicity,593
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set α = α(σ, σ∗). By Lemma 3, we can assume without loss of generality that, for each594

j ∈ P (σ∗) ∩ P (σ), |Cj(σ, σ∗)| ≥ L(σ, j) − α. We assume α ≥ 1 as, otherwise, the price595

of anarchy is trivially equal to 1. By applying the primal-dual method, we get that the596

inverse of the optimal solution of the following linear program provides an upper bound on597

PoA(n,m):598

min
∑

j∈P (σ) rj
s.t.
rσi

L(σ,σi)
−

rσ∗
i

L((σ−i,σ∗i ),σ∗i )
≥ 0 ∀i ∈ N,∑

j∈P (σ∗) rj = 1

rj ≥ 0 ∀j ∈M

For a strategy profile τ and a project j, denote by 1j(τ) the indicator function that is equal599

to 1 if and only if j ∈ P (τ). The dual of the above linear program is the following (we600

associate variable xi with the first constraint for each i ∈ N and variable γ with the second601

one):602

max γ
s.t.∑

i:σi=j
xi

L(σ,j)
−
∑

i:σ∗j

xi
L((σ−i,j),j)

+ γ1j(σ
∗) ≤ 1j(σ) ∀j ∈M,

xi ≥ 0 ∀i ∈ N
By the Weak Duality Theorem, the inverse of the objective value of any feasible solution to603

this program provides an upper bound on PoA(n,m).604

First of all, we observe that, for any dual solution such that xi = x for each i ∈ N and605

γ = x, the dual constraint becomes:606

x

(
1j(σ)− |Cj(σ, σ

∗)|
L(σ, j)

− |Oj(σ, σ
∗)|

L(σ, j) + 1
+ 1j(σ

∗)

)
≤ 1j(σ). (13)

If 1j(σ
∗) = 0, (13) is satisfied as long as x ≤ 1. If 1j(σ

∗) = 1 and 1j(σ) = 0, which imply607

|Cj(σ, σ∗)| = 0, |Oj(σ, σ
∗)| ≥ 1, and L(σ, j) + 1 = 1, (13) is satisfied independently of the608

value of x. The case of 1j(σ
∗) = 1 and 1j(σ) = 1 is then the only one which can cause a609

price of anarchy higher than 1 and we focus on this case in the remainder on the proof. Note610

that, in this case, we can always assume |Cj(σ, σ∗)|+ |Oj(σ, σ
∗)| ≥ 1.611

Consider the dual solution such that x = n
2n−1

. As L(σ, j) + 1 ≤ n, (13) is satisfied. This612

proves a general upper bound of 2 − 1/n. However, for the case of n > m, better upper613

bounds can be derived. Note that, in this case, we have 1 ≤ α ≤ m− 1.614

Assume α ≤ m−2 and consider the dual solution such that x = m−1
2m−3

. If L(σ, j) ≤ α, the615

term within the parenthesis in the left-hand side of (13) is at most 2m−3
m−1

and the constraint is616

satisfied. If L(σ, j) > α, as |Cj(σ, σ∗)| ≥ L(σ, j)− α, the term within the parenthesis in the617

left-hand side of (13) is at most 2− L(σ,j)−α
L(σ,j)

= L(σ,j)+α
L(σ,j)

which is maximized for α = m−2 and618

L(σ, j) = α + 1 = m − 1. Again, (13) is satisfied. This proves an upper bound of 2 − 1
m−1

.619

Note that this bound does not apply to the case of m = 2, as α cannot be equal to m− 2 in620

this case.621
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Assume now α = m − 1 and consider the dual solution such that x = n
n+m−1

. The622

assumption α = m − 1 implies that there exists a unique project j ∈ P (σ) ∩ P (σ∗) and so623

L(σ, j) = n and Cj(σ, σ
∗) = n−m+ 1. In this case, the term within the parenthesis in the624

left-hand side of (13) is exactly n+m−1
n

and (13) is satisfied. This proves an upper bound of625

n+m−1
n

.626

As 2− 1
m−1
≥ n+m−1

n
for n > m > 2, the claimed upper bounds follow. �627

628

4. Egalitarian Social Welfare629

So far, we have considered the utilitarian social welfare U(σ) :=
∑

i∈N ui(σ). In this630

section, we use the egalitarian social welfare E(σ) := mini∈N ui(σ) (to be maximized). For631

this section, we suppose adapted definitions of the PoA and the PoS which include E instead632

of U. The motivation for considering E instead of U is fairness among the players.633

Proposition 7. For the egalitarian social welfare, the PoS of project games is unbounded634

even with 4 players, 2 projects, universal weights and identical rewards.635

Proof. Suppose there are 2 players with weight 1 and 2 players with weight X � 1. If636

both projects host one player of each kind then the strategy profile is a Nash equilibrium σ637

where E(σ) = (X + 1)−1. The egalitarian social welfare is equal to 1/2 for the unstable state638

when one project gets the 2 players of weight 1, and the other project gets the 2 players of639

weight X. �640

641

Since PoA ≥ PoS, the PoA of project games is unbounded as well. One can be tempted642

to try to enforce a social optimum. However, unlike the utilitarian social welfare (see Propo-643

sition 3), the problem is intractable.644

Proposition 8. It is NP-hard to compute a strategy profile that maximizes the egalitarian645

social welfare of project games even if there are two projects, identical rewards, and646

universal weights.647

Proof. Take an instance of partition with n values a1, . . . , an such that
∑n

i=1 ai = 2B.648

The problem is to decide if there exists a subset of indices I ⊂ {1, . . . , n} such that649 ∑
i∈I ai =

∑
i/∈I ai = B, see [18]. We can suppose without loss of generality that650

0 < a1 ≤ a2 ≤ . . . ≤ an. Create a project game with n + 2 players. There are two651

projects with identical rewards. Each ai corresponds to a player i with universal weight ai,652

and strategy space {1, 2}. There are two additional players n + i, i ∈ {1, 2}, with weight653

ε := a1/2 and strategy space {i}. The egalitarian social welfare is equal to the minimum654

utility between the ones realized by players n + 1 and n + 2. It is not difficult to see that655

this quantity is equal to ε/(B+ε) if and only if the instance of partition is a yes instance. �656

657

Nevertheless, we were able to identify a polynomial case.658

21



Proposition 9. Maximizing the egalitarian social welfare in project games can be done659

in polynomial time when the players have identical weights.660

Proof. Since the players have identical weights, there are at most nm possible values for661

the individual utility of a player. For every possible value u∗ of the optimal egalitarian social662

welfare, construct a bipartite graph (N ∪M,E), where E := {(i, j) ∈ N ×M : j ∈ Si}.663

Each node i ∈ N has capacity κi = 1 and each node j ∈ M has capacity κj = b rj
u∗
c. A664

b-matching is a set of edges E ′ ⊆ E such that the number of edges incident to every node v665

is at most κv. A b-matching of maximum cardinality in the bipartite graph can be computed666

in polynomial time, see e.g. [25]. If a b-matching saturates all the player vertices then a667

feasible strategy can be derived (edge (i, j) indicates that player i plays project j) where668

the utility of every player is at least u∗. �669

670

5. Conclusion and Open Problems671

We introduced a new class of games sharing similarities with valid utility games, singleton672

congestion games, and hedonic games. We focused on existence, computational complexity673

and efficiency of pure Nash equilibria under a natural method for sharing the rewards of the674

projects that are realized.675

Though the existence of a pure Nash equilibrium is showed for many important special676

cases, proving (or disproving) its existence in general is a challenging task. An interesting677

special case that is left open is when the number of projects is small (e.g. m = 2). Other678

solution concepts (e.g., strong Nash equilibria) deserve attention.679

Our upper bounds on PoA and PoS under the utilitarian social welfare never exceed 2,680

but it does not prevent to explore other sharing methods. Moreover, closing the gap shown681

in Theorem 7 is an intriguing open problem.682

Regarding the computation of an optimal strategy profile with respect to the egalitarian683

social welfare, there is a gap between hard and polynomial cases (see Propositions 8 and 9).684

As a first step, it would be interesting to settle the complexity of the symmetric case. As685

the PoS is unbounded under the egalitarian social welfare, it is natural to ask if a different686

reward sharing method can provide better results.687
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