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Abstract

We study the Gathering problem for n autonomous mobile robots
in semi-synchronous settings with persistent memory called light. It is
well known that Gathering is impossible in a basic model when robots
have no lights, if the system is semi-synchronous or even centralized
(only one robot is active in each time) [5, 21]. On the other hand,
Rendezvous (Gathering when n = 2) is possible if robots have lights
of various types with a constant number of colors [10, 22]. If robots
can observe not only their own lights but also other robots’ lights,
their lights are called full-light. If robots can only observe the state of
other robots’ lights, their lights are called external-light. If robots can
only observe their own lights, their lights are called internal-light.

In this paper, we extend the model of robots with lights so that
Gathering algorithms can be discussed properly. Then we show Gath-
ering algorithms with three types of lights in the semi-synchronous
settings and reveal relationship between the power of lights and other
additional assumptions. The most algorithms shown here are optimal
in the number of colors they use.

1 Introduction

Background and Motivation The computational issues of autonomous
mobile robots have been research object in distributed computing fields. In
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particular, a large amount of work has been dedicated to the research of theo-
retical models of autonomous mobile robots [1–3,6,13,17,20,21]. In the basic
common setting, a robot is modeled as a point in a two dimensional plane
and its capability is quite weak. We usually assume that robots are oblivious
(no memory to record past history), anonymous and uniform (robots have
no IDs and run identical algorithms) [9]. Robots operate in Look-Compute-
Move (LCM) cycles in the model. In the Look operation, robots obtain a
snapshot of the environment and they execute the same algorithm with the
snapshot as an input in Compute operation, and move towards the computed
destination in Move operation. Repeating these cycles, all robots perform a
given task. It is difficult for these too weak robot systems to accomplish the
task to be completed. Revealing the weakest capability of robots to attain a
given task is one of the most interesting challenges in the theoretical research
of autonomous mobile robots.

In this paper, we also explore such weakest capabilities. In particular,
we reveal the weakest additional assumptions for the task which cannot be
solved in the basic common models. The problem considered in this paper is
Gathering, which is one of the most fundamental tasks of autonomous mo-
bile robots. Gathering is the process of n mobile robots, initially located on
arbitrary positions, meeting within finite time at a location, not known a pri-
ori. When there are two robots in this setting, this task is called Rendezvous.
Since Gathering and Rendezvous are simple but essential problems, they have
intensively studied and a number of possibility and/or impossibility results
have been shown under the different assumptions [1–3,5,6,8,11,14,15,17–20].
The solvability of Gathering and Rendezvous depends on the activation
schedule and the synchronization level. Usually three basic types of sched-
ulers are identified, the fully synchronous (FSYNC), the semi-synchronous
(SSYNC) and the asynchronous (ASYNC). In the FSYNC model, there is a
common round and in each round all robots are activated simultaneously and
Compute and Move are done instantaneously. The SSYNC is the same as
FSYNC except that in each round only a subset of robots are activated. In
the ASYNC scheduler, there is no restriction about notion of time, Compute
and Move in each cycle can take an unpredictable amount of time, and the
time interval between successive activations is also unpredictable (but these
times must be finite). Gathering and Rendezvous are trivially solvable in
FSYNC and the basic model. However, these problems can not be solved
in SSYNC without any additional assumptions [9]. In particular, Gather-
ing can not be solvable even in a restricted subclass of SSYNC scheduler,
where exactly one robot is activated in each round (called CENT) [5]. If all
robots are initially located on different positions (called distinct Gathering),
this Gathering can not be solved even in the ROUND-ROBIN scheduler, in
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which exactly one robot is activated in each round and always in the same
order [5].

In [4], persistent memory called light has been introduced to reveal rela-
tionship between the solvability of Gathering and the synchrony of schedulers
and they show asynchronous robots with lights equipped with a constant
number of colors, are strictly more powerful than semi-synchronous robots
without lights. Robots with lights have been also introduced in order to solve
Rendezvous without any other additional assumptions. [4, 10, 22]. Table 1
shows results to solve Rendezvous by robots with lights in each scheduler,
where the circle (©) and the cross (×) mean Rendezvous is solvable and
unsolvable, respectively, the hyphen (−) indicates that this part has been
solved under weaker conditions or unsolved under the stronger ones, and the
question mark (?) means that this part has not been solved. In the table,
full-light means that robots can see not only lights of other robots but also
their own light, and external-light and internal-light1 mean that they can see
only lights of other robots and only own light, respectively. Full-light is not a
weaker assumption than external-light and internal-light, and internal-light
seems to be weaker than external-light. Although this relationship is not
proved, the results indicate the relationship. For example, Rendezvous is
solved by robots with 3 colors of external-light in SSYNC and non-rigid. On
the other hand, it is solved by robots with 6 colors of internal-light in SSYNC
and rigid, where robots can reach the computed destination in rigid and they
may be stopped before reaching it in non-rigid. The number of colors used
in the external-light algorithm is less than that in the internal-light one, and
the former uses non-rigid assumption but the latter uses the stronger one,
rigidness. When robots know the value δ of a minimum distance movement
in non-rigid (denoted by +δ in the table), the number of colors can be re-
duced into only 3 in SSYNC and internal-light. Thus, the assumption robots
know δ in non-rigid seems to be stronger than that in rigid. The power of
lights to solve other problems are discussed in [7, 16].

Table 1: Rendezvous algorithms by robots with lights.
scheduler movement full-light external-light internal-light no-light

FSYNC − − − − © [9]

SSYNC
rigid − ? 6 [10]

× [9]
non-rigid − 3 [10] 3(+δ) [10]

ASYNC
rigid − 12 [10] ?

−
non-rigid 2 [12] 3(+δ) [10] ?

1In [10], external-light and internal-light are called FCOMM and FSTATE, respectively.
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Our Contribution In this paper, we discuss Gathering algorithms by
robots with lights and reveal relationship about the solvability between kinds
of lights and other additional assumptions. First, we extend the model of
robots with lights in which Gathering algorithms can be discussed properly.
Unlike Rendezvous, the multiplicity detection affects the solvability of Gath-
ering and in fact, Gathering can be solvable by robots without lights if robots
detect the exact number of robots on the same points (strong multiplicity
detection) [9]. When several robots with lights occupy a same location, if
we assume that robots can recognize all colors of the robots on the location,
the strong multiplicity detection is possible and robots without lights can
solve the Gathering problem. Thus, we define the model so that robots can
not detect the exact number of robots on the same location provided that
robots use only one color. We consider two types of models according to
views robots observe. One is called set-view, where robots can recognize sets
of colors robots have on the same locations2. Another is called arbitrary-
view, where robots can recognize arbitrary color robots have on the same
locations. We usually use the set view assumption in this paper. We also
consider the case that several robots occupy a same location and how these
robots observe one another. We call local-aware if any robot can recognize
other robots located on the same position and local-unaware, otherwise. If
we assume the local-awareness, the view of robots obeys the model (set-view
or arbitrary-view) we assume. We usually assume the local-unawareness but
we show the local-awareness reduces the number of colors for some Gathering
algorithm.

In the extended model, we show the following six Gathering algorithms
with lights (Table 2).

(a) Algorithm 1:(2, full, SSYNC, non-rigid),

(b) Algorithm 2:(3, external, SSYNC, rigid),

(c) Algorithm 3:(2, external, SSYNC, rigid; local-awareness),

(d) Algorithm 4+5+6:(2, internal, SSYNC, non-rigid; D-distant),

(e) Algorithm 7:(2, external, CENT, non-rigid), and

(f) Algorithm 8:(2, internal, ROUND-ROBIN, rigid),

where Algorithm i:(α, β, γ, δ; η) means Algorithm i uses β-light with α col-
ors and works in γ scheduler and movement restriction δ with additional
assumption η (if any).

2Recognition of multi-set-view enables us the strong multiplicity detection.
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Table 2 also shows the unsolvability of Gathering and every algorithm
using two colors is optimal with respect to the number of colors, since Gath-
ering is not solvable without lights in every case. We show four algorithms
in SSYNC. In the full-light model, we construct an algorithm with the weak-
est assumptions, non-rigid and the least number of colors (2 colors). In the
external-light model, we construct an algorithm with 3 colors of lights and
rigid assumption and we reduce the number of colors used in the algorithm
into 2 colors if the local-awareness is assumed. In the internal-light model,
with a little bit more assumption we construct an algorithm with lights of
2 colors if robots know the minimum distance δ of movement in non-rigid
and if initial configurations of robots satisfy some condition called 2δ-distant,
where arbitrary two robots not occupying the same locations are separated
by at least 2δ. We reveal some relationship between view of lights (full, ex-
ternal and internal) and the other assumptions (movement, local-awareness)
in our algorithms.

We also construct Gathering algorithms in CENT and ROUND-ROBIN
schedulers. Since Gathering and distinct Gathering can not be solved without
lights in CENT and ROUND-ROBIN, respectively [5], our algorithms use 2
colors but fairly weak assumptions. We give algorithms in external-light of
2 colors, non-rigid and CENT, and in internal-light of 2 colors, rigid and
ROUND-ROBIN, respectively.

Table 2: Our Gathering algorithms by robots with lights.
scheduler movement full-light external-light internal-light no-light

FSYNC − − − − ©
ROUND-ROBIN rigid − − 2(f) ×∗ [5]

CENT non-rigid − 2(e) ? × [5]

SSYNC
rigid − 3(b),2∗∗(c) ?

−
non-rigid 2(a) ? 2(+δ)∗∗∗(d)

∗Distinct Gathering, ∗∗local-awareness, ∗∗∗2δ-distant

The remainder of the paper is organized as follows. In Section 2, we
define a robot model with lights, gathering problems, and terminologies.
Section 3 shows the previous results for Gathering and Rendezvous problems,
and Section 4 shows Gathering algorithms of robots with lights in SSYNC
on several situations for which Gathering algorithms do not exist by using
lights. Section 5 shows Gathering algorithms of robots with lights in CENT.
Section 6 concludes the paper.
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2 Model and Preliminaries

We consider a set of anonymous mobile robots R = {r1, . . . , rn} located in
IR2. Each robot ri has a persistent state ℓi called light which may be taken
from a finite set of colors L.

We denote by ℓi(t) the color that the light of robot ri has at time t and
pi(t) ∈ IR2 the position occupied by ri at time t represented in some global
coordinate system. A configuration C(t) at time t is a multi-set of n pairs
(ℓi(t), pi(t)), each defining the color of light and the position of robot ri at
time t. When no confusion arises, C(t) is simply denoted by C.

For a subset S of L × IR2, L(S) and P(S) are denoted as projections to
L and IR2 from S, respectively.

Each robot ri has its own coordinate system where ri is located at its
origin at any time. These coordinate systems do not necessarily agree with
those of other robots. It means that there is no common knowledge of unit
of distance, directions of its coordinates, or clockwise orientation (chirality
3).

At any point of time, a robot can be active or inactive. When a robot ri
is activated, it executes Look , Compute, and Move cycles:

• Look: The robot ri activates its sensors to obtain a snapshot which
consists of a pair of light and position for every robot with respect
to the coordinate system of ri. Let SS i(t) denote the snapshot of
ri at time t. We assume robots can observe all other robots(unlimited
visibility). Note that SS i(t) represents a sub-multi-set of C(t) according
to imposed assumptions by the local coordinate system of ri, where ri
is at the origin.

• Compute: The robot ri executes its algorithm using the snapshot
and the color of its own light (if allowed by the model) and returns a
destination point desi expressed in its coordinate system and a light
ℓi ∈ L. The robot ri sets its own light ℓi to the color.

• Move: The robot ri moves to the computed destination desi. A robot
r is said to collide with robot s at time t if p(r, t) = p(s, t) and at time
t r is performing Move. The collision is accidental if r’s destination is
not p(r, t). Since robots are seen as points, we assume that accidental
collisions are immaterial. A moving robot, upon causing an accidental
collision, proceeds in its movement without changes, in a “hit-and-
run” fashion [9]. If the robot may be stopped by an adversary before

3In some cases, we may assume chirality.
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reaching the computed destination, the movement is said to be non-
rigid. Otherwise, it is said to be rigid. If stopped before reaching its
destination, we assume that a robot moves at least a minimum distance
δ > 0. Note that without this assumption an adversary could make it
impossible for any robot to ever reach its destination. If the distance
to the destination is at most δ, the robot can reach it. If the movement
is non-rigid and robots know the value of δ, it is called non-rigid(+δ).

In Look operation, a snapshot SS i of ri should contain positions of all
robots including ri. However, if other robots are located on pi and ri can
recognize the other robots, robots have somehow multiplicity detection at this
point. Thus, we need some treatment of observation of other robots located
on pi for robot ri. If any robot ri can observe other robots located on pi, it
is said to be local-aware. Otherwise, it is said to be local-unaware. Note that
if we assume the local-awareness, ri recognizes whether other robots occupy
the location pi or not. In the following, we usually use the local-unaware
assumption but we will show that we can reduce the number of colors for
some Gathering algorithm if we assume the local-awareness.

A scheduler decides which subset of robots is activated for every configu-
ration. The schedulers we consider are asynchronous and semi-synchronous
and it is assumed that schedulers are fair, each robot is activated infinitely
often.

• ASYNC: The asynchronous scheduler (ASYNC), activates the robots
independently, and the duration of each Compute, Move and between
successive activities is finite and unpredictable. As a result, robots
can be seen while moving and the snapshot obtained with the Look
operation and its actual configuration when performing the Compute
operation are not the same and so its computation may be done with
the old configuration.

• SSYNC: The semi-synchronous scheduler (SSYNC) activates a subset
of all robots synchronously and their Look -Compute-Move cycles are
performed at the same time. We can assume that activated robots at
the same time obtain the same snapshot and their Compute and Move
are executed instantaneously. In SSYNC, we can assume that each
activation defines discrete time called round and Look -Compute-Move
is performed instantaneously in one round. In the following, since we
consider SSYNC and its subsets, we use round and time interchange-
ably.

As a special case of SSYNC, if all robots are activated in each round,
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the scheduler is called fully-synchronous (FSYNC). We also consider the
following subsets of SSYNC.

• CENT: In CENT scheduler exactly one robot is activated in each
round.

• k-BOUNDED: In k-BOUNDED scheduler there exists some bound
k such that between any two consecutive activation of any robot, no
other robot is activated more than k times.

• ROUND-ROBIN: ROUND-ROBIN scheduler is 1-BOUNDED and
CENT. It means that robots are activated one in each round and always
in the same sequence.

Let C(t) be a configuration at round t. When C(t) reaches C(t + 1) by
executing the cycle at t, it is denoted as C(t)→ C(t+ 1). The reflective and
transitive closure is denoted as →∗.

Snapshots may be different by using assumptions even if these configura-
tions are the same, and they depend on multiplicity detection or how robots
can see lights of other robots when robots equip with lights. The robots are
said to be capable of multiplicity detection whether they can distinguish if a
point is occupied by at least two robots. The multiplicity detection is strong
if the robots can detect the exact number of robots on the same points.

In our settings, robots have persistent lights and can change its color after
Compute operation. We consider the following three robot models according
to the visibility of lights.

• full-light, the robot can recognize not only colors of lights of other
robots but also its own color of light.

• external-light, the robot can recognize only colors of lights of other
robots but cannot see its own color of light. Note robot can change its
own color.

• internal-light, the robot can recognize only its own color of light but
cannot see colors of lights of other robots.

When a robot performs Look operation in the internal-light model, its
snapshot is the same as that in the case of robots without lights. On the
other hand, in the full-light or external-light model, it obtains a snapshot
with locations of other robots and their colors. In this case we consider
several types of snapshots according to view robots observe.

Given a snapshot SS i of a robot ri and a point pj(j 6= i) included in
P(SS i), a view Vi[pj ] of pj in SS i is a subset of ALi[pj] = {ℓ|(ℓ, pj) ∈
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SS i, rj 6= ri}, where ALi[pj ] is a multi-set of colors of other robots that ri
can see at point pj

4. For any robot ri and any point p of snapshot of ri, if
Vi[p] = ALi[p], view of robots is called multi-set- view. If Vi[p] regards ALi[p]
as just a set, it is called set-view. If Vi[p] is a set of any single element taken
from ALi[p], it is called arbitrary-view. Let Vi denote ∪(ℓ,p)∈SSi

Vi[p].
Multi-set-view is a strong assumption, because robots without lights (with

one color) can have strong multiplicity detection if multi-set-view is assumed.
In fact we can solve a Gathering problem by using robots without lights
and multi-set-view [9]. On the other hand, set-view and arbitrary-view do
not imply multiplicity detection. In the following we assume set-view or
arbitrary-view.

An n-Gathering problem is defined as follows: given n(≥ 2) robots ini-
tially placed at arbitrary positions in IR2, they congregate in finite time at a
single location which is not predefined. In the following, the case 2-Gathering
problem is called Rendezvous and the n-Gathering problem (n ≥ 3) is simply
called Gathering. Gathering is said to be distinct if all robots are initially
placed in different positions. An algorithm solving Gathering is said to be
self-stabilizing if robots are initially set their lights to arbitrary colors and
they start their execution from Look operation.

Let S be a configuration or a snapshot. Given S, let H(S) be the convex
hull defined by S, let ∂H(S) denote the set of robots on the border of H(S),
and let I(S) the set of robots that are interior of H(S).

Given two points p, q ∈ IR2, we indicate the line segment by pq and
its length by |pq|. Given a snapshot SS, SEC (SS) denotes the smallest
enclosing circle containing P(SS), and the length of its diameter and its
center are denoted by Diam(SS) and CTR(SS), respectively. A longest
distance segment (LDS, for short) in SS is a line segment pq such that
p, q ∈ P(SS) and |pq| = maxx,y∈P(SS)|xy| and a set of the longest distance
segments in SS is denoted by LDS (SS).

We use the following geometric properties about the smallest enclosing
circles and the longest distance segments to obtain a unique longest distance
segments.

Let S be a configuration or a snapshot.

Lemma 1. For any pq ∈ LDS(S), |pq| ≤ Diam(S).

Proof. The two points p and q exist in SEC (S).

Lemma 2. If pq ∈ LDS (S), then p, q ∈ H(S).

4Note that ℓi is not in ALi[pj ], and ALi[pj ] is not defined for pj such that rj is located
at pi under the local-unawareness.
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Proof. Suppose that p or q is not a vertex of H(S). Let p1p2 and q1q2 be the
nearest edges ofH(S) from p and q, respectively. Note that p and/or q can be
on the edges not vertices. Comparing pq and the convex quadrilateral (or the
triangle) composed of p1p2 and q1q2, the longer diagonal (or the longest edge)
is longer than p1p2. It contradicts that pq is the longest distance segment.

Lemma 3. If for any pq ∈ LDS(S), both p and q are located on SEC (S),
for an endpoint p such that pq ∈ LDS(S), |{q|pq ∈ LDS (S)}| ≤ 2.

Proof. Assume that there are three LDS s with the endpoint p and let the
other endpoints be q1, q2 and q3. Since q1, q2 and q3 are located on SEC (S),
SEC (S) must be a circle with the center p, which is contradiction that p is
also on SEC (S).

Lemma 4. If both p and q are endpoints of LDS (pq ∈ LDS(S)) and are
located on SEC (S), then Diam(S)/2 < |pq|.

Proof. Let c = CTR(S) and let a and b be distinct points on SEC (S) such
that△apc and△bpc are equilateral triangles. If Diam(S)/2 ≥ |pq|, all points

in S must exist in the sector consisting of ca and cb and the shorter arc
⌢

ab.
Then SEC (S) is the circle having ab as the diameter. Contradiction.

Lemma 5. If pq, rs ∈ LDS (S) and p, q, r, s are distinct, then pq and rs have
an intersection.

Proof. If pq and rs do not have any intersection, the longer diagonal of the
quadrilateral composed of pq and rs becomes the longest line segment.

Lemma 6. Let p and q1(pq1 ∈ LDS(S)) be located on SEC (S) Assume that
pq1 is not a diameter of SEC (S). Let q2 be the intersection of a circle with
center p and radius |pq1| and SEC (S) and not q1. Then there are no points

on arc
⌢
q1q2 of SEC (S) not containing p except q1 and q2 (see Figure 1).

Proof. If there is a point q( 6= q1, q2) on the arc
⌢
q1q2, |pq| is greater than the

LDS.

Lemma 7. Assume that for any pq ∈ LDS (S), both p and q are located on
SEC (S). If H(S) is not a regular polygon, there exists a point p0 such that
p0q ∈ LDS(S) and p0r 6∈ LDS(S) for any r( 6= q) ∈ P(S). The point p0 is
called a single-endpoint of LDS (Figure 2(a)).
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Figure 1: Proof of Lemma 6.

Figure 2: Proof of Lemma 7.

Proof. If there exists no point p0 such that p0q ∈ LDS (S) and p0r 6∈ LDS (S)
for any r( 6= q), |{q|pq ∈ LDS(S)}| ≥ 2 for any point p on SEC (S). Since
|{q|pq ∈ LDS(S)}| ≤ 2 by Lemma 3, |{q|pq ∈ LDS (S)}| = 2 for any point
p. Let n be the number of points located on SEC (S). For a point p, let pq
and pr be two LDS s having p as the endpoint. Note that q and r are also
located on SEC (S). Let pp′ be the diameter of SEC (S). Then ∠qpp′ = ∠rpp′

(denoted as α). Since this property holds for any point on SEC (S), α must
be (n+2)π/n (Figure 2(b)). Otherwise, it is easily verified that it contradict
that the number of points located on SEC (S) is n. When α = (n + 2)π/n,
the points on SEC (S) constitute a regular polygon and it contradicts the
assumption of this lemma.
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3 Previous Results for Rendezvous and Gath-

ering

Rendezvous is trivially solvable with CENT or FSYNC scheduler. The mul-
tiplicity detection does not help to solve Rendezvous and it is generally un-
solved with SSYNC, even if chirality is assumed.

Theorem 1. [9] Rendezvous is deterministically unsolvable in SSYNC sched-
uler even if chirality is assumed.

If robots have a constant number of colors in their lights, Rendezvous can
be solved shown in the following theorem (see Table 1).

Theorem 2. [10, 12]

(1) Rendezvous is solved in full-light, non-rigid and ASYNC with 2 colors.

(2) Rendezvous is solved in external-light, non-rigid and SSYNC with 3
colors.

(3) Rendezvous is solved in external-light, rigid and ASYNC with 12 colors.

(4) Rendezvous is solved in external-light, non-rigid and ASYNC with 3
colors and knowledge of a minimum distance δ robots move.

(5) Rendezvous is solved in internal-light, rigid and SSYNC with 6 colors.

(6) Rendezvous is solved in internal-light, non-rigid and SSYNC with 3
colors and knowledge of a minimum distance δ robots move.

Impossibility and/or possibility results for Gathering are stated in the
following theorems.

Theorem 3. [5, 9] If we do not assume strong multiplicity detection, the
followings holds.

(1) Gathering is deterministically unsolvable in SSYNC.

(2) Gathering is deterministically unsolvable in 2-BOUNDED and CENT.

(3) Distinct Gathering is deterministically unsolvable in ROUND-ROBIN.

The impossibility holds even if we assume chirality, and rigid movement or
non-rigid movement with knowledge of minimum distance δ.

Theorem 4. [9]
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(1) With strong multiplicity detection, n-Gathering is solved in SSYNC if
and only if n is odd.

(2) In ASYNC, with strong multiplicity detection, distinct n-Gathering is
solved with n(≥ 3) robots.

Multiplicity detection is a strong assumption to solve Gathering. In the
following section, without strong multiplicity detection we consider Gather-
ing algorithms for robots with lights such that the number of colors is the
minimum and additional assumptions are the weakest.

4 Gathering Algorithms in SSYNC

In this section, we show the following four Gathering algorithms with lights
in SSYNC.

(a) Algorithm 1:(2, full, SSYNC, non-rigid),

(b) Algorithm 2:(3, external, SSYNC, rigid),

(c) Algorithm 3:(2, external, SSYNC, rigid; local-awareness), and

(d) Algorithm 4+5+6):(2, internal, SSYNC, non-rigid; 2δ-distant).

The idea of Gathering algorithms shown here is that the algorithm divides
into two steps as follows:

(1) We make a configuration where all robots are located on a line segment
(called onLDS ) from any initial configuration satisfying the correspond-
ing conditions.

(2) We make a gathering algorithm from the configuration onLDS.

Step (1) can be performed with ElectOneLDS [14], that reduces any con-
figuration to one where there is the unique LDS or Gathering is achieved.
This algorithm needs chirality assumption but can be performed in SSYNC
and without lights. Thus, we will have to use lights to implement Step (2)
from the configuration onLDS. It is easily verified that ElectOneLDS can
be modified so that it can be performed in the following assumptions, (a)
non-rigid moving, SSYNC and chirality, (b) non-rigid moving, CENT and
non-chirality.
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Lemma 8. With chirality, an algorithm can be constructed to make onLDS
from any configuration in SSYNC and non-rigid moving without lights, un-
less Gathering is achieved. If CENT is assumed, this algorithm can be im-
plemented without chirality.

Proof. The algorithm ElectOneLDS to make onLDS works in rigid movement
[9]. We show a modified ElectOneLDS to work in non-rigid movement.

The modified ElectOneLDS works as follows: We call a configuration
contractible if (1) its convex hull CH is symmetric and every robot is located
at a vertex of CH or at the center of CH, or (2) CH is not symmetric and there
are no robots inside CH. The algorithm makes a contractible configuration
from the current configuration, unless it already contractible. It can be done
by each active robot that is not at a vertex of CH moves to the center of
CH if it is symmetric, or each active robot that is neither at a vertex of CH
nor on an edge of CH (that is, inside of CH ) moves to a vertex of CH. In
making contractible configurations, since the convex hull is not changed, the
algorithm can work in non-rigid moving. Note that robots may be located
on edges of CH in contractible and non-symmetric configurations but can
not be located on edges of CH in contractible and symmetric ones.

If CH becomes contractible, a unique LDS is obtained by decreasing the
number of edges of CH or the diameter of CH until the configuration has a
unique LDS. If CH is contractible and symmetric, any active robot moves to
the center of CH. In this case, if CH is not changed the number of robots at
vertices of CH decreases via non-contractible configurations. Otherwise, the
configuration becomes one of the following ones unless Gathering is attained;
(1) it remains contractible and symmetric, (2) the number of edges of the
convex hull is decreased and it becomes contractible one via non-contractible
configurations. In the both cases, the diameter of CH is eventually reduced.

If CH is contractible and asymmetric, the number of edges is decreased
by some robots moving so to contract shortest-length edges in CH. Each
robot r on a vertex of CH checks the distance to the clockwise and counter-
clockwise neighboring robots at vertices of CH. If the edge on the left is
a shortest-length edge and the robot is located at the leftmost, this edge
becomes contracting. The leftmost robot and the robots on this edge move
to the the other vertex of the edge until the edge is contracting. Since all non-
contracting robots do not move and the edge remains the shortest-length, this
contraction can be done even in non-rigid moving, In this way, the number
of edges of the convex hull is decreasing.

In SSYNC, chirality is necessary for determining the leftmost robot of the
shortest-length edge. However, since only one robot is activated in CENT,
contracting the shortest-length edge can be done without chirality.
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4.1 Full-light

Algorithm 1 Full-Light-Garher(ri)

Assumptions: full-light, non-rigid, 2 colors(A and B), set-view, SSYNC
Input: configuration onLDS, all robots have color A
1: case L(SSi) of
2: {A}:
3: if |PA(SSi)| = 1 then desi ← pi // gathered!
4: else if |PA(SSi)| = 2 then ℓi ← B; desi ← (pn + pf )/2
5: else //|PA(SSi)| ≥ 3
6: if (pi = pn) then desi ← pi //I am at either endpoint
7: else desi ← pn
8: {B}:
9: if (pi = pn) then ℓi ← A
10: desi ← pi // stay
11: {A,B}:
12: if ℓi = A then

13: if |PA(SS i)| = 1 then desi ← pi // stay

14: else if PA(SSi) = {pn, pf} and PB(SSi) = {
pn+pf

2
} then

15: ℓi ← B
16: desi ← (pn + pf )/2
17: else // ℓi = B
18: if |PA(SS i)| = 1 then desi ← p(∈ PA(SSi))
19: else desi ← (pn + pf)/2 //|PA(SS i)| = 2
20: endcase

Gathering algorithm with full-light uses two colors of full-light and works
in non-rigid movement shown in Algorithm 1. It reduces any configura-
tion of onLDS to a gathering configuration. In the algorithm for robot ri,
endpoints of the LDS are denoted by pn and pf , where pn is the nearest
endpoint from pi and pf is the farthest one from pi. Note that if pi is either
of endpoints, pi = pn and pf is the other endpoint. Since full-light is as-
sumed, robot ri can use colors of other robots in SS i and its own light ℓi in
the algorithm. For snapshot SS i and color A and B, PA(SS i) and PB(SS i)
denote sets of positions on which robots with color A and B are located,
respectively.

Initially all robots are located on the unique LDS and have color A.
Figure 3 shows the transition diagram of Algorithm 1, where nodes denote
configurations and a directed edge denotes transition from a configuration
to a configuration. In Figure 3, labels of directed edges have the following
meanings. L.# means that this transition is shown by Lemma #. “−δ”
(“2δ”) means when the transition occurs, the distance between the endpoints
reduces at least −δ(2δ) and “#A decreases” means the numbers of robots
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Figure 3: Transition diagram for Full-Light-Gather.

with color A at the endpoints decrease. Each configuration is denoted by a
regular-expression-like sequence of colors robots have from one endpoint to
another. Formally we define color-configurations as follows. Let C(t) be a
configuration at time t, p and q be the endpoints of the LDS. Configuration
C(t) has a color-configuration

(1) αβ, if all robots at p have color α, all robots at q have color β (α, β ∈
{A,B}) and there are no robots inside the LDS,

(2) αγβ, if all robots at p have color α, all robots at q have color β (α, β ∈
{A,B}), all robots at the mid-point of the LDS have color γ and there
are no robots except on the three locations, and

(3) αγ+β, if all robots at p have color α, all robots at q have color β
(α, β ∈ {A,B}) and there is at least one location except the midpoint
of the LDS inside the LDS where all robots have color γ.

Note that αγ+β contains configurations that the midpoint of the LDS may
be occupied by some robot(s) with color γ, and αγβ and αγ+β are exclusive.
If either (1) or (3) is satisfied, we denote αγ∗β. Let dis(C(t)) denote the
length of the LDS in the configuration C(t).

The outline of behaviour of Algorithm 1 is explained as follows. Suppose
that all robots become active (FSYNC). From any initial color-configuration
of onLDS (AA∗A or AAA), robots with A located not at endpoints move to
endpoints and robots with A located at endpoints stay(lines 5-7) it becomes
the color-configuration AA. When the color-configuration is AA, each robot
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changes its color to B and move to the midpoint(line 4). If they can reach
to the destination, the gathering is achieved. However, since we assume non-
rigid movement, some of them may stop before reaching the midpoint and
its configuration becomes BB∗B or BBB, where the former is BB if the
locations all robots stop are only two, otherwise BB+B and the latter is
possible when there is a robot moving to the midpoint. In the both cases the
length of its LDS is decreased by at least 2δ (denoted by −2δ on the directed
edge from AA to BB∗B in Fig. 3).

From the color-configuration BB∗B or BBB, the algorithm changes col-
ors of robots at endpoints to A (lines 8-10) and can change the color-
configuration directly to AB+A (from BB+B), AA (from BB), or ABA
(from BBB). If the color-configuration AB+A occurs, robots with B move
to the midpoint (line 19), and robots with A stay until all robots with
B move to the midpoint(lines 14-16). In this case the configuration also
become ABA and robots with A change the color to B and move to the mid-
point (lines 14-16) and Gathering is achieved after repeating the transitions
from ABA to BB∗B, from BB∗B to AB+A, and from AB+A to ABA. If
the color-configuration AA occurs, repeating the above transitions Gathering
attained.

However, since all robots do not become active at every round in general,
the behaviors are complicated and all color-configurations shown in Figure 3
can occur.

Since any cycle in the graph can reduce the length of LDS (denoted by −δ
or −2δ in Fig. 3) or the number of robots with A and located at endpoints
(denoted by #A decreases in Figure 3), we can show that Algorithm 1

solves Gathering from any initial configuration of onLDS.

Lemma 9. If C(t) is a configuration at time t with color-configuration AA∗A
or AAA, there is a time t′(≥ t) such that C(t) →∗ C(t′), C(t′) has a color-
configuration AA, and dis(C(t′)) = dis(C(t)).

Proof. If the color-configuration is AA, the lemma holds as t′ = t. Otherwise,
since robots located inside the LDS move to the nearest endpoint and robots
at the endpoint stay there as long as there is a robot located inside the LDS
(lines 5-7), the color-configuration becomes AA.

Lemma 10. Let C(t) be a configuration at time t with color-configuration
AA. If we consider time t + 1 such that C(t)→ C(t + 1), then

(1) C(t+ 1) is a gathering configuration,

(2) C(t+1) has a color-configuration BB∗B or BBB, and dis(C(t+1)) ≤
dis(C(t))− 2δ,
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(3) C(t+1) has a color-configuration AB∗B or ABB (or BB∗A or BBA),
and dis(C(t+ 1)) ≤ dis(C(t))− δ,

(4) C(t+1) has a color-configuration ABA, and dis(C(t+1)) = dis(C(t)),
or

(5) C(t+1) has a color-configuration AB+A, and dis(C(t+1)) = dis(C(t)).

Proof. There are five cases according to the activeness of robots.

(1) If all robots become active and they can reach the destination (the
midpoint of the LDS ), the gathering is attained.

(2) If all robots become active but they can not reach the destination,
they change their color to B and move at least δ. Thus the color-
configuration becomes BB+B, BB or BBB as shown in the example
above. In any case, since all robots move at least δ, dis(C(t + 1)) ≤
dis(C(t))− 2δ.

(3) If all robots at one endpoint become active but some robots at the other
endpoint are inactive, all active robots change their color to B and all
inactive robots do not change their color and stay there. Since the
color of all robots at the endpoint inactive robots are located is A and
the color of the other robots become B they move at least δ, the color-
configuration becomes AB∗B ABB (or BB∗A or BBA). In this case
since all active robots move at least δ, dis(C(t+ 1)) ≤ dis(C(t))− δ.

(4) If there exist inactive robots at the both endpoints and active robots
can reach the destination, the color-configuration becomes ABA and
dis(C(t+ 1)) = dis(C(t)).

(5) If there exist inactive robots at the both endpoints and some active
robots can not reach the destination, the color-configuration becomes
AB+A and dis(C(t+ 1)) = dis(C(t)).

Lemma 11. If C(t) is a configuration at time t with color-configuration
AB+A, there is a time t′(≥ t) such that C(t) →∗ C(t′), C(t′) has a color-
configuration ABA, and dis(C(t′)) = dis(C(t)).

Proof. In the configuration with color-configuration AB+A, robots with A
do not move until the color-configuration becomes ABA (lines 12-16) robots
with B move to the midpoint of the LDS. Thus it becomes ABA and dis(C(t′)) =
dis(C(t)).
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Lemma 12. If C(t) is a configuration at time t with color-configuration
BB∗B or BBB, there is a time t′(> t) such that C(t) →∗ C(t′) and one of
the followings holds,

(1) C(t′) is a gathering configuration,

(2) C(t′) has a color-configuration AB+A, and dis(C(t′)) = dis(C(t)),

(3) C(t′) has a color-configuration ABA, and dis(C(t′)) = dis(C(t)), or

(4) C(t′) has a color-configuration AA, and dis(C(t′)) = dis(C(t)).

Proof. Assume that all robots become active at time t. If the color-configuration
is BB, then the color-configuration becomes AA at time t′ = t+1 (case (4)).
If the color-configuration is BB+B or BBB, then the color-configuration
becomes AB+A or ABA at time t′ = t + 1, respectively (case (2) or (3)).
These transitions occur from lines 8-10 of the algorithm.

Otherwise, there are two cases, (a) some robots at only one endpoint
become active, and (b) robots at the both endpoints become active. Note that
active robots not located on the endpoints do nothing in these configurations.

(a) In this case, active robots change their color into A at time t + 1 and
since |PA(C(t+1))| = 1, robots with A stay at the positions (lines 12-
13) and robots with B move to the position at robots with A (lines 17-
18) and the gathering is attained (case (1)).

(b) In this case, active robots at the both endpoints change their colors
into A at time t + 1 and since |PA(C(t + 1))| = 2 and robots with A
do not move and robots with B move to the midpoints of the LDS, the
color-configuration eventually becomes ABA (case (3)).

Lemma 13. Let C(t) be a configuration at time t with color-configuration
ABA. If we consider time t′ such that C(t)→∗ C(t′), then

(1) C(t′) is a gathering configuration,

(2) C(t′) has a color-configuration AB∗A, and dis(C(t′)) = dis(C(t)) and
the number of robots at the endpoints and with A is decreased,

(3) C(t′) has a color-configuration AB∗B (or BB∗A), and dis(C(t′)) ≤
dis(C(t))− δ, or

(4) C(t′) has a color-configurationBB∗B orBBB, and dis(C(t′)) ≤ dis(C(t))−
2δ.
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Proof. This lemma can be proved similar to the one of Lemma 9.

Lemma 14. If C(t) is a configuration at time t with color-configuration
AB∗B or ABB (or BB∗A or BBA), there is a time t′(≥ t) such that C(t)→∗

C(t′), C(t′) is a gathering configuration.

Proof. Since |PA(C(t))| = 1, robots with A stay at the position (lines 12-13)
and robots with B move to the position at robots with A (lines 17-18) and
the gathering is attained.

We have the following theorem using Lemmas 8-14.

Theorem 5. Gathering is solvable in full-light of 2 colors, non-rigid, and
SSYNC, with set-view and agreement of chirality.

4.2 External-light

Algorithm 2 Ext-Light-Gather-with-3colors(ri)

Assumptions: external-light, rigid, 3 colors (A,B,C), local-unawareness, set-view, SSYNC
Input: (|P(SSi)| = 3) and (|pfpm| = |pmpn|) or |P(SSi)| = 2, all robots have color A.
1: if |P(SSi)| = 2 then

2: if C ∈ Lpf
(SS i) then ℓi ← C; desi ← pf

3: else if Lpf
(SS i) = {A} then ℓi ← B; desi ← (pn + pf )/2

4: else if Lpf
(SS i) = {B} then ℓi ← C; desi ← pi // stay

5: else if (|P(SS i)| = 3) and (|pfpm| = |pmpn|) then
6: if pi = pm then //I am at the midpoint.
7: ℓi ← B
8: desi ← pm //stay
9: else if Lpf

(SSi) = {B} and Lpm
(SSi) = {B} then

10: ℓi ← C
11: desi ← pi //stay
12: else if Lpf

(SSi) ∩ {A,C} 6= ∅ and Lpm
(SSi) = {B} then

13: ℓi ← B
14: desi ← pm //go to the midpoint

We show two algorithms in external-light. One uses 3 colors in rigid and
SSYNC and the other uses only 2 colors in the same assumption as the former
with the local-awareness. Algorithm 2 shows the external-light algorithm
in rigid and SSYNC with 3 colors and its transition diagram is shown in
Figure 4.

Without loss of generality, the algorithm may begin with a configura-
tion of two-location pn and pf , where all robots have A or three-location
pn, pm, and pf such that (|pfpm| = |pmpn|), where all robots have A. Since
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Figure 4: Transition diagram for Ext-Light-Gather-with-3colors.

we assume the rigid movement, these configurations can be reduced from
onLDS by moving robots to the nearest position among the endpoints and
the midpoint. By using notations of the color-configurations, the former has
color-configuration AA and the latter has AAA in Fig. 4. Once the config-
uration of two- or three-location is obtained, this configuration is preserved
hereafter since we assume the rigid movement.

Algorithm 2 makes configuration with BA (or AB) from the initial
configuration with AAA or AA via configuration with ABA. After the con-
figuration with BA 5, (1) when robots observe color B, they change their
color to C and stay there, where the location becomes the gathering one,
(2) when robots observe color A, they change their color to B and go to the
midpoint. Then, the color-configuration becomes B(A + C) or BB(A + C),
where A+ C denotes the endpoint is occupied by robots with color A or C.
Once the configuration with B(A + C) appears, since robots with A or C
observe color B and change their color to C, and robots with B observe color
C and move to the location having robots with C, Gathering is successful.
The configuration with BB(A + C) becomes one with B(A + C), because
robots with B located at the midpoint stay there, robots with A or C observe
two B’s at the endpoint and the midpoint change their color to C, robots
with B located at the endpoint observe color C at the endpoint and color B
at the midpoint move to the midpoint.

Lemma 15. Configuration with AA moves to one with ABA, AB or BA.
In particular, it moves to the gathering configuration, if all robots become
active.

Proof. All active robots perform line 3. If all robots become active, the

5AB can be treated similarly
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gathering is attained. Otherwise, if all robots at one endpoint only become
active, the configuration moves to AB or BA. Otherwise, it moves to ABA.

Lemma 16. Configuration with AAA moves to one with ABA.

Proof. This case is derived from line 3, lines 6-8, and the fact that robots
at endpoints cannot move until all robots at the midpoint have color B
(line 12).

Lemma 17. Configuration with ABA moves to the two-point configuration
with BA (or AB) unless Gathering is achieved.

Proof. From a configuration with BA, robots at the endpoints change their
color to B and go to the midpoint (lines 12-14), and robots at the midpoint
stay there (lines 6-8). Then if all robots at the both endpoints go to the
midpoint, Gathering is achieved. Otherwise, the two-point configuration with
BA (or AB) is obtained.

Lemma 18. Configuration with BA moves to one with B(A+C) or BB(A+
C).

Proof. Robots with A observing B change their color to C and stay (line 4)
and robots with B observing A change their color to B and move to the
midpoint (line 3). Thus, the color-configuration B(A+C) or BB(A+C) is
obtained.

Lemma 19. Configuration with BB(A + C) moves to one with B(A+ C).

Proof. It can be derived by lines 5-14.

Lemma 20. Configuration with B(A + C) moves to the gathering configu-
ration.

Proof. It can be derived by lines 1-4.

We have the following theorem using Lemma 8 and Lemmas 15-20.

Theorem 6. Gathering is solvable in external-light of 3 colors, rigid, and
SSYNC, if robots have set-view and agreement of chirality.

Although it is unknown whether there exists a 2-color gathering algorithm
in external-light, rigid, and SSYNC, we can construct 2-color gathering algo-
rithm in the same condition if we assume the local-awareness (Algorithm 3).
In Algorithm 2, we make the location having robots with C the gathering
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Algorithm 3 Ext-Light-Gather-with-2-Colors(ri)

Assumptions: external-light, rigid, 2 colors (A,B), local-awareness, set-view, SSYNC.
Input: (|P(SSi)| = 3) and (|pfpm| = |pmpn|) or |P(SSi)| = 2, all robots have color A.
1: if |P(SSi)| = 2 then

2: if B ∈ L(SS i) then ℓi ← B; desi ← p(∈ PB(SS i))
3: else if Lpi

(SSi) = ∅ then no action //I am alone at pi
4: else ℓi ← B; desi ← (pn + pf )/2 //Lpf

(SSi) = {A}
5: else if (|P(SS i)| = 3) and (|pfpm| = |pmpn|)then
6: if A ∈ Lpm

(SSi) and (pi = pm) then ℓi ← B
7: else ℓi ← B; desi ← pm

point. Instead we do not use the third color C, we make configurations with
AB (or BA) such that there are at least 2 robots with B at one endpoint
utilizing the local-awareness. Thus, since robots with A move to the point
having robots with B and robots with B can stay at the point(line 2) using
the local-awareness, Gathering is attained. Such configurations are created
as follows; When the initial color-configuration is AAA, it moves to ABA
(line 6) and reaches to BA (or AB) (lines 7). When one endpoint con-
tains more than one robot in the initial configuration with AA, it moves to
a configuration with ABA (line 4) and reaches to one with BA (or AB)
(lines 5-7). If one endpoint contains only one robot in configuration with
AA, since the robot identifies that it is alone due to the local-awareness, the
robot makes no action. Thus, all the initial configurations can reach to the
desired one with BA (or AB).

Theorem 7. Assume the local-awareness. Gathering is solvable in external-
light of 2 colors, rigid, and SSYNC, if robots have set-view and agreement of
chirality.

4.3 Internal-light

Views of robots in internal-light are the same as those without lights and so
robots must determine their behaviors by these views without colors and their
own colors of lights. Thus Gathering algorithms in internal-light can not seem
to be constructed without additional knowledge such as distance information.
In fact, known Rendezvous algorithms use the minimum distance of moving
δ and/or the unit distance [10].

In our Gathering algorithm in internal-light, we use the minimum distance
of moving δ and assume initial configurations such that if ri and rj do not
occupy the same location, dis(pi, pj) ≥ D, where D is a function of δ. This
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condition is said to be D-distant6. If any initial configuration is D-distant
such that D ≤ 2δ, we can construct a gathering algorithm in internal-light,
non-rigid with knowledge of δ, and SSYNC with 2 colors of lights.

Our Gathering algorithm with internal-light is composed of three parts.

(1) From any D-distant configuration, we make a 2-point configuration
with the distance is at least D/2 (Algorithm 6).

(2) From any 2-point configuration with distance d ≥ D/2, we make a
2-point configuration with D/2 > d ≥ D/4 (Algorithm 5).

(3) From any 2-point configuration with D/2 > d ≥ D/4, we make a
Gathering configuration (Algorithm 4).

We do not use colors to solve (1) and (2) and only use two colors to solve
(3). The output of (i) is the input of (i+1) (i=1,2) and the explanation of
algorithms is stated in reverse order from (3) to (1).

Algorithm 4 solves Gathering in internal-light if initial configurations
satisfy |P(SS i)| = 2 and D

4
≤ |pnpf | <

D
2
. Since D ≤ 2δ, every movement

in Algorithm 4 is the same as the rigid one. The following lemma is easily
verified for Algorithm 4.

Lemma 21. Let C(t) be a configuration at time t appearing inAlgorithm 4.

(1) If C(t) satisfies |P(C(t))| = 2 and D
4
≤ Diam(C(t)) < D

2
and has a

color-configuration AA, then (1-I) C(t+1) is a Gathering configuration,
(1-II) C(t+1) has a color-configuration AB or BA and D

8
≤ Diam(C(t+

1)) < D
4
, or (1-III) C(t + 1) has a color-configuration ABA and D

4
≤

Diam(C(t+ 1)) < D
2
.

(2) If C(t) has a color-configuration ABA and D
4
≤ Diam(C(t)) < D

2
, then

there is a time t′(t′ > t) such that C(t) →∗ C(t′) and (2-I) C(t′) is a
Gathering configuration, or C(t′) has a color-configuration BA or AB
and D

8
≤ Diam(C(t′)) < D

4
.

(3) If C(t) has a color-configuration BA or AB and D
8
≤ Diam(C(t)) < D

4
,

then there is a time t′(t′ > t) such that C(t) →∗ C(t′) and C(t′) is a
Gathering configuration.

Next we make 2-point location with distance d satisfying D/2 > d ≥ D/4
from any 2-point locations with d ≥ D/2. This adjusting task is done by
Algorithm 5.

6This assumption does not imply distinct Gathering.
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Algorithm 4 Int-Light-Gather(ri)

Assumptions: internal-light, 2 colors (A,B), non-rigid with δ, D ≤ 2δ, set-view, SSYNC.
Input: |P(SSi)| = 2 and D

4
≤ |pnpf | <

D
2
, all robots have color A.

1: if
D
4
≤ |pnpf | <

D
2
then

2: if (|P(SSi)| = 2) or ((|P(SSi)| = 3) and (|pfpm| = |pmpn|))then
3: if ℓi = A then

4: ℓi ← B
5: desi ← pm
6: else //D

4
> |pnpf |(≥

D
8
)

7: if ℓi = A then

8: desi ← pf
9: else //ℓi = B
10: desi ← pi// stay

Figure 5: Configurations in A3P and A4P.

In Algorithm 5, A3P and A4P denote the following predicates (Fig-
ure 5). If robots on the both endpoints move, its configuration satisfies A3P
and if robots on only one endpoint move, its configuration satisfies .A4P

A3P : |P(SS i)| = 3, and letting P(SS i) = {pn, pm, pf}, |pnpm| 6= |pmpf |,
min(|pnpm|, |pmpf |) ≤

D
2
and max(|pnpm|, |pmpf |) >

D
4

A4P :|P(SS i)| = 4. And letting P(SS i) = {pn, pm1, pm2, pf},
|pnpm1| = |pm2pf | 6= |pm1pm2|, |pnpm1|, |pm2pf | ≤

D
2
and |pm1pm2| ≥

D
4

In Algorithm 5, expression [p, q] + α − β means the point from point
p with distance α − β on the line segment pq. If D ≤ 2δ, each moving in
Algorithm 5 can reach the destination. In Algorithm 5, the final destina-
tion is a 2-point location such that the length of the 2-point locations is at
least D/8 and less than D/4 from the initial 2-point location via configura-
tions of A3Por A4P. We will show that if any configuration obtained in the
algorithm are not 2-point locations, A3Por A4P holds for the configuration
and therefore, any 3-point configuration appearing in Algorithm 4 does not
appear. That is, Algorithm 4 cannot be performed during the execution of
Algorithm 5. We have the following lemma.
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Algorithm 5 Reduce-Distance-LDS(ri)

Assumptions: non-rigid with δ, D ≤ 2δ.
Input: |P(SSi)| = 2 and D

2
≤ |pnpf |

1: if |P(SSi)| = 1 then no action
2: else if |pfpn| ≥

D
2
then

3: if |P(SSi)| = 2 then

4: if
3D
2

< |pfpn| then desi ← [pn, pf ] +
D
2

5: else if
9D
8
≤ |pfpn| ≤

3D
2

then desi ← [pn, pf ] +
D
12

6: else desi ← [pn, pf ] +
|pfpn|

2
− 3D

16
//|pfpn| <

9D
8

7: else if A3P then

8: if pi = pn and |pipm| < |pmpf | then desi ← pm else desi ← pi
9: else if A4P then

10: if pi = pn then desi ← pm1
else desi ← pi

Lemma 22. Let D ≤ 2δ. Without assuming chirality, Algorithm 5 makes
a configuration with only two positions on which all robots are located and
whose distance d satisfies D

4
≤ d < D

2
from any configuration with only

two positions on which all robots are located and whose distance d is at
least D/2. All configurations appearing in Algorithm 5 do not contain any
3-point location appearing in Algorithm 4.

Proof. Let d be the distance of the two point-location in the initial config-
uration. Note that since we assume D ≤ 2δ, each moving in the algorithm
always reaches the destination. In the case that d > 3D/2, since robots
located on the endpoints move inside by D/2 (line 4), the configuration be-
comes two point-location whose distance reduces by D/2 or D, otherwise it
satisfies A3P or A4P. The configuration of A3P or A4P eventually becomes
two point-location whose distance reduces by D/2 or D (lines 7-10). This
process is called reducing process. Repeating these reducing processes, there-
fore, a configuration of two point-location whose distance d′ is greater than
D/2 and at most 3D/2 is obtained. Also any 3-point location appearing in
Algorithm 4 never appear in these reducing processes.

If 9D
16
≤ d′ ≤ 3D

2
, repeating the reducing processes at most 5 times,

the distance becomes less than 9D
8

and it is at least D
2
at the first time it

becomes less than 9D
8
. Also A3P or A4P is satisfied every time this process is

executed and any 3-point location appearing in Algorithm 4 never appear.
If d < 9D

8
, repeating the redicing processes at most 4 times, the distance

becomes at least D
4
and less than D

2
and A3P or A4P is satisfied every time

line 6 is executed and any 3-point location never appears. Therefore, the
lemma holds.
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Algorithm 6 ElectLDS-Preserving-Distance(ri)

Assumptions: no-light, non-rigid with δ, chirality
Input: D-distant configuration (D ≤ 2δ)
Subroutines: Reduce#LDS, MakeDiameter, MakeEdgeonBorder.
Predicates: AFTER−RP(p), EDGEonBORDER(SSi).

1: if |LDS(SS i)| > 1 then

2: if H(SSi) is a regular f -polygon then

3: if not CLEAN(SSi) then if pi 6∈ ∂H(SSi) then desi ← CTR(SSi)
4: else if Diam(SS i) ≤ D then desi ← CTR(SSi)
5: else if pi ∈ ∂H(SSi) then desi ← [CTR(SSi), pi]−

D
2

6: else // H(SS i) is a non-regular f -polygon
7: if Diam(SSi) ≤ D and AFTER-RP (p) then desi ← p
8: else if EDGEonBORDER(SS i) then
9: if ∃pq ∈ LDS (SSi) s.t. |pq| = Diam(SSi) then
10: if ∀pj∃q(pjq ∈ LDS (SSi)) then Reduce#LDS
11: else if ∀q(piq 6∈ LDS (SSi)) then desi ← CTR(SSi)
12: else if pi is a single-endpoint of LDS then MakeDiameter
13: else if piq ∈ LDS(SSi) and q ∈ SEC(SSi) then MakeEdgeonBorder
14: else // |LDS(SSi)| = 1
15: if pi 6= pn then desi ← pn

Lastly, the problem to be remained is to make the special configuration
preserving the length of its LDS is at least D/2 from any D-distant initial
configuration. Although ElectOneLDS in Lemma 8 makes the unique LDS
from any initial configuration, it does not preserve the length of its LDS with
d ≥ D/2 even if we assume D-distant initial configurations. We will prove
that Algorithm 6 performs this task from any D-distant configuration.

Algorithm 6 is based on ElectOneLDS and produces the unique LDS
with its length at least D/2 unless it produces a Gathering configuration.
If the unique LDS is obtained, it produces a configuration with only two
positions on which all robots are located and its distance d is at least D/2
(lines 14-15).

In Algorithm 6 the following subroutines and predicates are utilized.

Subroutines
• Reduce#LDS : Let q0, . . . , qg−1 be g positions on SEC (SS i) in counter-
clockwise order. Let CS = {qjq(j+1) mod g||qjq(j+1) mod g| = min(|q0q1|, . . . , |qg−1q0|)}
If qjq(j+1) mod g ∈ CS, and pi = qj , then ri moves from pi to q =

q(j+1) mod g on arc

)

piq
7.

7Since robots cannot move on arc, they move on the line segment of length δ repeatedly.
That is, if |pidesi| ≤ δ, then ri moves to the destination. Otherwise, the destination is the
intersection of the circle with center pi and radius δ, and SEC (SSi).
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Figure 6: Subroutine MakeDiameter.

• MakeDiameter : If pi is the single-endpoint of LDS and q is another
endpoint of the LDS, let desi be the intersection of line passing q and
CTR(SS i) and SEC (SS i). Note that the LDS is not a diameter of

SEC (SS i). Robot ri moves from pi to desi on arc

)

pidesi (Figure 6).

• MakeEdgeonBorder : If piq ∈ LDS (SS i) and q ∈ SEC (SS i), let desi
be the intersection of half-line extending the line segment piq from pi
and SEC (SS i).

Predicates

• CLEAN (SS i): All robots are located on CTR(SS i) or SEC (SS i).
This configuration can be reached from Reg.Polygon (line 3).

• AFTER−RP(p): There exists a unique point p such that all robots are
located on p and the circle with center p. This configuration can be
reached after a regular polygon is broken and becomes CLEAN(SS i).

• EDGEonBORDER(SS i): Both endpoints of all LDS s are located on
SEC (SS i).

The outline of Algorithm 6 is shown in Figure 7. There are typical non-
final configurations, Regular Polygon (Reg.Polygon), Edges on the Border
(EDGEonBORDER) and Edges not on the Border (NotEDGEonBORDER),
where Reg.Polygon is a configuration the convex hull is a regular polygon,
EDGEonBORDER is a configuration both endpoints of all LDS s are located
on the smallest enclosing circle and NotEDGEonBORDER is a configuration
both endpoints of some LDS are not located on the smallest enclosing circle.

When |LDS(SS i)| = 1, Algorithm 6 makes 2-point configuration (line
14). Otherwise, if a configuration is Reg.Polygon whose diameter is more
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Figure 7: The outline of ElectLDS-Preseving-Distance.

than D, Algorithm 6 makes a configuration of a regular polygon with di-
ameter D, where robots are located on the corners and the center of the
polygon (CLEAN ). In the process of making the regular polygon with diam-
eter D or after making the regular polygon, it makes a regular polygon with
smaller number of corners, EDGEonBORDER, or NotEDGEonBORDER. If
the regular polygon with diameter D is obtained, the algorithm makes each
robot located on a corner of the polygon move to the center of the SEC and
makes a gathering configuration or a configuration with only one LDS via
configurations satisfying AFTER−RP(p), which is one that some corners are
missing from the regular polygon.

If EDGEonBORDER is obtained and its LDS is the diameter of the SEC
(lines 8-9), the algorithm reduces the number of LDS s after moving each
robot which is located on a vertex of the polygon but is not an endpoint of
any LDS to the center of the polygon (lines 10-11). If EDGEonBORDER
is obtained but its LDS is not the diameter of the SEC, its LDS is changed
into the diameter of the SEC by moving the robot which is a single-endpoint
of LDS (line 12). Existing such robots is guaranteed by Lemma 7.

If NotEDGEonBORDER is obtained, the robot not located on the SEC
is moved on the SEC (line 13).

Let C(t) be a configuration at time t in Algorithm 6. If H(C(t)) is a
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Figure 8: Movements of robots in Lemma 23.

regular f -polygon and CLEAN (C(t)) does not hold, the number of robots
located on CTR(C(t+1)) increased (line 3) and therefore, there exists a time
t′ such that H(C(t′)) is a regular f -polygon and CLEAN (C(t′)) holds.

Lemma 23. IfH(C(t)) is a regular f -polygon, Diam(C(t)) > D and CLEAN (C(t))
holds, one of the followings is satisfied.

1. H(C(t)) = H(C(t+1)) but the number of robots located on SEC (C(t+
1)) decreases.

2. H(C(t + 1)) is the regular f -polygon with Diam(C(t + 1)) = D.

3. H(C(t+1)) is a regular f ′-polygon such that f ′ ≤ f and Diam(C(t)) ≥
Diam(C(t+ 1)) > D.

4. H(C(t+1)) is a non-regular f ′-polygon such that f ′ ≤ f or Diam(C(t)) >
Diam(C(t+ 1)) ≥ D.

Proof. In this case, the destination of robot ri located on ∂H(C(t)) is the
point of distance D

2
from CTR(C(t)) on the line segment piCTR(C(t)) (Fig-

ure 8). If all vertices on ∂H(C(t)) remains, 1. holds. If all robots move to
the destinations, 2. holds. Otherwise, 3. or 4. holds according to movements
of robots. In the both case, the diameter of the polygon decreases but is at
least D.

By Lemma 23, there exists a time t such that H(C(t)) is a regular f -
polygon (f ≥ 2), Diam(C(t)) = D and CLEAN (C(t)) holds. If f = 2, then
LDS (C(t)) = 1 and 2-point configuration is attained with Diam(C(t)) = D
(line 14-15).
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Lemma 24. If H(C(t)) is a regular f -polygon (f ≥ 3), Diam(C(t)) = D and
CLEAN(C(t)) holds, one of the followings is satisfied, and when f 6= 3m(m >
1), 4. and 5. never occur.

1. H(C(t)) = H(C(t+1)) but the number of robots located on SEC (C(t+
1)) decreases.

2. C(t+1) attains Gathering, or LDS(C(t+1)) = 1 such that Diam(C(t+
1)) ≥ D/2.

3. C(t + 1) satisfies AFTER−RP(p) and p = CTR(C(t)).

4. H(C(t + 1)) is an isosceles triangle with base of D/2.

5. H(C(t+1)) is a rhombus with two isosceles triangles with base of D/2.

Proof. In this case, the destination of robot ri located on ∂H(C(t)) is CTR(C(t)).
Since D ≤ 2δ, active robots always reach the destination. If all points on
∂H(C(t)) remains, 1. holds. If all robots, robots located on all points ex-
cept one point, or all points except two points constituting a diameter of
SEC (C(t)) move to the destination, 2. holds.

Otherwise, as long as f 6= 3m(m > 1) or 3, any 2 points on ∂H(C(t)) and
CTR(C(t)) do not constitute an isosceles triangle with base of D/2. Thus,
it is easily verified that 3. holds and 4. and 5. are not satisfied. In the case
that f = 3m(m > 1), if 4. and 5. are not satisfied, it is easily verified that
3. holds.

The following lemmas are easily verified.

Lemma 25. Assume thatH(C(t)) is a non-regular polygon, Diam(C(t)) = D
and AFTER−RP(p) holds. Then one of the followings holds

1. Diam(C(t+1)) = D and AFTER−RP(p) still holds, where p = CTR(C(t)),
but the number of robots located on SEC (C(t+ 1)) decreases.

2. C(t + 1) is a Gathering configuration.

3. |LDS(C(t + 1))| = 1 and Diam(C(t+ 1)) ≥ D
2
.

4. H(C(t+1)) is an isosceles triangle with base of D/2 or a rhombus with
two isosceles triangles with base of D/2.

Lemma 26. IfH(C(t)) is an isosceles triangle with base of D/2 or a rhombus
with two isosceles triangles with base of D/2, there is a time t′ ≥ t such that
C(t′) attains Gathering or |LDS(C(t′))| = 1 and Diam(C(t′)) ≥ D/2.
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The remaining case is thatH(C(t)) is a non-regular polygon andDiam(C(t)) >
D.

Lemma 27. If |LDS(C(t))| ≥ 2, H(C(t)) is a non-regular f -polygon, pq ∈
LDS (C(t)) and |pq| = Diam(C(t)), then there exists a time t′(> t) such
that H(C(t′)) is a non-regular f ′-polygon and Diam(C(t′)) = Diam(C(t)) but
LDS (C(t′)) < LDS(C(t)).

Proof. In this case, Algorithm 6 performs Reduce#LDS after any robot
located on a point which is not an endpoint of LDS moves to CTR(C(t))(line
11). Let CS be a set of the minimum segments defined in Reduce#LDS and
let sj = qjq(j+1) mod g ∈ CS. Robots located on endpoints of sj may be going
to move in parallel if they become active in this round. Since the destinations
of these robots is uniquely determined due to the chirality, the length of sj
decreases by δ. Repeating the process, since sj is a segment that both points
are endpoints of a diameter of SEC (C(t)), |LDS (C(t))| decreases. Thus, the
lemma holds.

Lemma 28. If H(C(t)) is a non-regular polygon, EDGEonBORDER(C(t))
holds and |pq| < Diam(C(t)) for any pq ∈ LDS(C(t)), there exists a time
t′ > t such that there exist p′ and q′ such that |p′q′| = Diam(C(t′)), ED-
GEonBORDER(C(t′)) holds and Diam(C(t′)) = Diam(C(t)).

Proof. In this case, Algorithm 6 performs MakeDiamter. Since there exists
a single-endpoint of LDS whose endpoints are located on SEC (C(t)) and is
not a diameter of SEC (C(t)) by Lemma 7, let p0 be a single-endpoint of such
LDS of p0q0. The destination of the robot ri is located on p0 is the intersection
of line passing q0 and CTR(C(t)) and SEC (C(t)). Since there do not exist

points on the arc

)

p0desi except p0 by Lemma 6, the robot ri can move on the

arc

)

p0desi and can reach the destination. Then desiq0 becomes the diameter
of the SEC. If there is more than one single-endpoint of LDS, these robots on
the single-endpoints can move independently by using Lemma 6. Therefore,
the lemma holds.

Lemma 29. If EDGEonBORDER(C(t)) does not hold, then there exists a
time t′(> t) such that EDGEonBORDER(C(t′)) holds and Diam(C(t′)) =
Diam(C(t)).

Proof. In this case, Algorithm 6 performs MakeEdgeonBorder. It can ver-
ified that there exists a time t′ such that both endpoints of all LDS s are
located on SEC(C(t′)) and Diam(C(t′)) = Diam(C(t))

We obtain the following theorem by Lemma 22-29.
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Theorem 8. Let D ≤ 2δ. Gathering is solvable in internal-light, non-rigid
with δ, and SSYNC, if robots have 2 lights, set-view and agreement of chi-
rality, and the initial configuration is D-distant.

5 Gathering Algorithms in CENT

In this section, we construct Gathering algorithms in CENT scheduler. The-
orem 3 implies that Gathering cannot be solved even in CENT and 2-
BOUNDED, and distinct Gathering cannot be solved even in ROUND-ROBIN
without strong multiplicity. Although it is still open whether distinct Gath-
ering can be solved in ROUND-ROBIN without lights, we show that lights
with two colors are enough to solve Gathering in CENT or ROUND-ROBIN
with weaker assumptions than those of SSYNC as follows.

(e) Algorithm7:(2, external, CENT, non-rigid), and

(f) Algorithm8:(2, internal, ROUND-ROBIN, rigid).

5.1 CENT scehdulers

Algorithm 7 Cent-Ext-Light-Gather(ri)

Assumption: External-light, 2 colors(T and M), non-rigid, set-view, CENT
Input: Any initial configuration and any color of each robot’s light.
1: if T 6∈ L(SS i) then ℓi ← T
2: else if |PT (SSi)| = 1 then ℓi ←M ; desi ← p(∈ PT (SSi))
3: else ℓi ←M

Algorithm 7 is a Gathering algorithm in external-light, non-rigid and
CENT. This algorithm is self-stabilizing and does not use the local-aware
assumption. It uses two colors T (Target) and M(Move). It does not use
ElectOneLDS and makes a configuration where there is just one position
having some robots with T .

Since Algorithm 7 is executed in CENT, if each active robot observes
at least one position having robots with T , the robot changes its color to M
(lines 2-3), and the configuration can reach to a configuration of one posi-
tion (gathering position) having robots with T . Once this configuration is
obtained, the configuration is unchanged and robots with M not located on
the gathering position move to the position, and robots located on the gath-
ering position stay there and change their color to T , since these robots do
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not observe any position having robots with T due to the local-unawareness.
If an initial configuration has no robots with T , the algorithm makes the
light of a robot being active at this round color T ( line 1). Since we assume
external-light, this robot does not know whether its own color is T or M .
However, the color of the robot becomes T in either case. It can be easily ver-
ified this algorithm is performed in non-rigid movement and self-stabilizing.
Thus, we have the following theorem.

Theorem 9. Without chirality and local-awareness, Cent-Ext-Light-Gather
is a self-stabilizing gathering algorithm in external-light, non-rigid and CENT,
with 2 colors and set-view.

If we assume rigid movement and distinct configurations, Algorithm 7

can be transformed into an algorithm performing with arbitrary-view. When
the number of positions having robots with T becomes one and robots observe
the position, they change their color T and move to the position. It can
be easily shown that this modified algorithm solves distinct Gathering with
arbitrary-view since robots with different colors do not occupy the same
location during the execution.

Corollary 1. Without chirality and local-awareness, distinct Gathering is
solvable in external-light, rigid, and CENT with 2 colors and arbitrary-view.

5.1.1 ROUND-ROBIN Scheduler

If ROUND-ROBIN scheduler is assumed, Gathering can be done by Algo-

rithm 8 in internal-light and rigid with 2 colors. In this case, we also use
ElectOneLDS to obtain configuration onLDS. After onLDS, Algorithm 8

makes a configuration of 2 locations pn and pf (denoted by AA) or 3 locations
pn, pm, pf such that (|pfpm| = |pmpn|)) (denoted by AAA), in either case all
robots with A are located on these locations. For these cases that the config-
urations AA or AAA, the following lemmas hold by using ROUND-ROBIN
property.

Lemma 30. Let AA be a 2-point configuration whose locations are p and
q and all robots have color A. For the activation order of robots, let lastp
and lastq be the maximum of orders among robots located on p and q, re-
spectively, and let min = min(lastp, lastq). After n rounds of the executions
of Algorithm 8, the configuration becomes BB, all robots on the location
having the robot with order of min have the orders less than or equal to min
and all robots on the other location have the orders more than min.
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Algorithm 8 RR-Int-Light-Gather(ri)

Assumption: Internal-light, 2 colors(A and B), rigid, set-view, ROUND-ROBIN
Input: onLDS , all robots have color A.
1: case ℓi of
2: A:
3: if (|P(SSi)| = 2) or ((|P(SSi)| = 3) and (|pfpm| = |pmpn|)) then

4: ℓi ← B; desi ←
pn+pf

2

5: else desi ← pn
6: B:
7: if |P(SSi)| = 2 then desi ← pf
8: else desi ←

pn+pf

2
// |P(SSi)| = 3

9: endcase

Proof. Let p′ and q′ be the locations of BB. Consider the case that lastp <
lastq. In this case min = lastp. Since robots with color A move to the
midpoint of p and q (denoted as r) and change their color into B (lines 3-4),
the configuration becomes BA whose locations are r and q after lastp rounds
and the orders of all robots located on r (q) is less than or equal to lastp
(is more than lastp). Then after n − lastp rounds robots located on q are
activated and the configuration becomes BB whose locations are r and the
midpoint of r and q. Thus the lemma holds. The case that lastp < lastq can
be proved similarly.

Lemma 31. Let AAA be a 3-point configuration whose locations are p, r
and q from the leftmost and all robots have color A. For the activation order
of robots, let lastp, lastr and lastq be the maximum of orders among robots
located on p, r and q, respectively, and let min and min2 be the minimum
and the second minimum of lastp, lastr, and lastq, respectively. After n
rounds of the executions of Algorithm 8, the configuration becomes BB or
BBB and the followings hold.

1. In the case of BB, all robots on the location having the robot with
order of min have the orders less than or equal to min and all robots
on the other location have the orders more than min.

2. In the case of BBB, the location having the robot with order of min is
either left side or right side, and all robots on the location having the
robot with order of min have the orders less than or equal to min, all
robots on the other side have the orders between min + 1 and min2,
and all robots on the midpoint have the orders more than min2.

Proof. Consider that case that min = lastp. After lastp rounds from the
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beginning, the configuration becomes (A+B)A 8 whose locations are r and
q and the orders of all robots with color B located on r are less than or equal
to lastp, and the orders of all robots with color A located on r are between
lastp + 1 and min2 (lines 3-4).

If min2 = lastr, since the next activated robots are ones with color A,
after the next lastr − lastp rounds, the configuration becomes BBA where,
these locations are r, the midpoint of r and q (denoted as r′) and q, all
robots located on r have the orders less than or equal to lastp, all robots
located on r′ have the order between lastp + 1 and lastr (lines 3-4). Then
the next activated robots are ones located on q, and after the next n− lastr
rounds, the configuration becomes BB (line 8) whose locations are r and r′

and the lemma holds. Otherwise (min2 = lastq), after the next lastq − lastp
rounds, the configuration becomes (A + B)B whose locations r and r′ and
all robots with color B located on r have the orders less than or equal to
lastp, all robots located on r′ have the order between lastp + 1 and lastq
(lines 3-4). Then since the next activated robots are ones with color A, after
the next n − lastq rounds the configuration becomes BBB whose locations
r, the midpoint of r and r′ (denoted as r′′) and r′ (lines 3-4) and the lemma
holds.

The case that min = lastq can be proved similarly.
Consider the last case that min = lastr. After lastr rounds from the

beginning, the configuration becomes ABA whose locations are p, r and q
and all robots with color B have the orders less than or equal to lastr (lines 3-
4). If min2 = lastp, after the next lastp − lastr rounds, the configuration
becomes BA whose locations are r and q and all robots on the location r have
the orders less than or equal to lastp (lines 3-4). Then after the next n−lastp
rounds, the configuration becomes BB whose locations r and r′ (lines 3-4)
and the lemma holds. The case that min2 = lastq is the symmetrical one
and so can be proved similarly.

We have the following theorem by using Lemmas 30 and 31.

Theorem 10. Without chirality, Gathering is solvable in internal-light, rigid,
and ROUND-ROBIN, if robots have 2 lights and set-view.

Proof. By using Lemmas 30 and 31, the configuration becomes BB or BBB
satisfying the conditions of Lemmas 30 and 31.

In the case of BB, since all robots on the location having the robot with
order of min have the orders at most min and all robots on the other location

8A + B means that robots with color A and robots with color B are located on the
same location.
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have the orders more than min, the configuration becomes a Gathering one
after min rounds from the configuration BB (line 7).

In the case of BBB, let p, q and r be the location having the robot with
order of min, the other endpoint and the midpoint, respectively. since all
robots located at p, q and r have the orders at most min, between min
and min2, and more than min2, respectively, the configuration becomes BB
after min rounds (line 8), from which the Gathering attains after more min2

rounds (line 7).

6 Concluding Remarks

We have shown Gathering algorithms by mobile robots with lights in SSYNC
and CENT schedulers and we have obtained some relationship between the
power of lights (full, external and internal) and assumptions of robots’ moving
(rigid and non-rigid). Interesting open questions are determining the rela-
tionship of precise computational power between external-light and internal-
light and constructing Gathering algorithms in ASYNC. For full-light, since it
is known that any algorithm of robots in full-light of k colors and SSYNC can
be simulated by robots in full-light of 5k colors and ASYNC [4], Gathering is
solvable in full-light, non-rigid, and ASYNC, if robots have 10 colors, set-view
and agreement of chirality by using the result in this paper. Reducing the
number of colors in full-light and Gathering algorithms with external-light
or internal-light in ASYNC remains as interesting open problems.
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