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Abstract

The tree-depth problem can be seen as finding an elimination tree of minimum height
for a given input graph G. We introduce a bicriteria generalization in which additionally
the width of the elimination tree needs to be bounded by some input integer b. We are
interested in the case when G is the line graph of a tree, proving that the problem is NP-
hard and obtaining a polynomial-time additive 2b-approximation algorithm. This particular
class of graphs received significant attention in the past, mainly due to a number of potential
applications, e.g. in parallel assembly of modular products, or parallel query processing
in relational databases, as well as purely combinatorial applications, including searching in
tree-like partial orders (which in turn generalizes binary search on sorted data).

Keywords: elimination tree, graph algorithms, graph ranking, parallel assembly, parallel pro-
cessing, tree-depth

1 Introduction

The problem of computing tree-depth has a long history in the realm of parallel computations
as it emerged from different applications and under different names. It was considered for the
first time under the name of minimum height elimination trees where it played an important
role in parallel factorization of (sparse) matrices [21]. Although the sparsity assumption is not
necessary from the graph-theoretic standpoint in this application, this is the scenario where
using the parallel (or distributed) approach to factorization provides a speed-up.

Then, the problem re-appeared under the name of vertex ranking [2]. More applications have
been brought up, including parallel assembly of multi-part products, where tree-like structures
have been mostly considered. In this particular scenario, an extension of this problem called
c-edge ranking [30] has been introduced to model two sources of parallelism — both the one that
is captured by the tree-depth and the one that can be simulated by more powerful multi-arm
robots, i.e., the robots that may perform c operations at once as opposed to doing one at a time.
Another application in this realm includes parallel query processing in relational databases [23].
Here, the graph G constructed on the basis of a database query does not need to be a tree but
it turns out that in order to design an efficient parallel schedule for performing the query, a
vertex ranking of a line graph of a certain spanning tree of G is computed along the way. As has
been pointed out in [23], this scenario can be seen as a special case of a more general process of
information retrieval in an arbitrary network G: suppose that each node initially holds a piece of
information and one wants to merge/collect all the data at one site, i.e., one node. Similarly as
in database query processing above, where a single query could not participate in two different
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join operations simultaneously, we assume in this scheme that the data of a particular node
cannot participate in more than one merging process at the same time. This may be e.g. due to
integrity reasons. On the other hand, two data merging processes can occur in parallel as long as
they comprise of pairwise disjoint node sets. Under such assumptions, the minimum number of
parallel steps (as well as the corresponding merging schedule) required to gather all data at one
node can be computed by finding an optimal vertex ranking of a line graph of a certain spanning
tree of G. The above applications, by nature, primarily stimulate research on algorithms for line
graphs of trees. In fact, the typical approach was either to work, i.e., compute its tree-depth,
on a line graph of a tree that models the parallel process, or to work on a spanning tree of the
input graph that models the process.

Later on, the same problem has been introduced under different names in a number of other
applications: it has been called LIFO-search [14] in the area of graph pursuit-evasion games; it is
a problem of searching in tree-like partial orders, which naturally generalizes the classical binary
search problem on sorted arrays; it has been also named as ordered coloring and more recently as
tree-depth [26]. Through the connection to searching partial orders, it is worth pointing out that
computing tree-depth (or equivalently, a search strategy for the corresponding partial order) can
be used to finding, in an automated way, software bugs [1]. In this application, again, the line
graphs of trees and their tree-depth are of interest. To intuitively see the link between tree-
depth and parallel processing, we may see the graph-theoretic problem from two perspectives.
One perspective that is the driving approach e.g. in parallel matrix factorization or in software
testing, looks at the tree-depth in a ‘top-down’ fashion: find a good separator in the graph,
process the workload that corresponds to the separator and then recurse (in parallel) on the
connected components. What is powerful regarding the tree-depth problem is that it balances
the ratio between the sizes of such separators and the recursion depth, providing the minimum
overall computation time. It is worth noting that neither focusing on small separators (and
hence pay with larger recursion depth) nor finding the computation scheme with the minimum
recursion depth (but perhaps using some larger separators) is an efficient approach for such
applications. The other perspective is to see the tree-depth of a line graph of a tree in a
‘bottom-up’ fashion: find a matching in a tree, contract its edges in parallel, and repeat this
step until you reach a state where there is a single vertex left. This interpretation lies behind
the above-mentioned applications in databases, parallel assemblies, and information retrieval
(see Figure 1 for an illustration of this scheme). Intuitively, these two processes are two sides of
the same coin: the edges of the matching selected in the i-th step correspond to the i-th lowest
level in the recursion tree.

1.1 Related work

From the complexity standpoint, we remark that the tree-depth problem is NP-complete for
arbitrary line graphs [19]. Since in our work we focus on trees and their line graphs, we review
here mostly works that relate to this class of graphs. The minimum known superclass of graphs
that generalizes trees and for which the problem is known to be NP-complete is the family of
chordal graphs [11]. For the trees themselves, there has been a few papers dealing with computing
optimal tree-depth, concluding in a linear-time algorithm in [28]. The problem turned out to
be much more challenging and interesting for line graphs of trees (a proper subclass of block
graphs). A number of papers have been published, see e.g. [30, 31, 32], that were gradually
reducing the complexity from O(n4 log3 n) in [1] and O(n3 log n) in [7] to the final linear-time
algorithms in [20, 25], where n is the order of the input tree.∗

Mostly motivated by the applications, there are some variants of the tree-depth problem
of line graphs of trees introduced in the literature. One of them considers weighted trees [8]

∗We remark that this research has been independently progressing as a tree-like partial order search problem
and as an edge ranking problem until it was observed in [9] that the two are equivalent.
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Figure 1: The process of parallel merging, in each step of which one is allowed to select a
matching and contract its edges. See (a) for a tree with labels denoting consecutive matchings
(the edges labeled i are contracted in step i), and (b)-(d) for the results after the first three
steps.

(equivalent to multitrees when weights are integral). The weights naturally represent the number
of time units required for performing particular operation (in the earlier mentioned applications,
we took a silent assumption that all operations have unit duration). Once we introduce the
weights, the problem becomes strongly NP-hard even for some restricted classes of trees [5, 6,
8]. For algorithmic results on weighted paths see e.g. [5, 18]. Note that even such a simple
structure as paths is practically interesting in this context since our problem generalizes binary
search. For weighted trees, there is a number of works improving on possible approximation ratio
achievable in polynomial-time [5, 6, 8], with the best one to date having an approximation factor
of O(

√
log n) [10], and it is unknown whether this is best possible—in particular, a challenging

open question regarding this line of research is whether a constant-factor approximation is
feasible for weighted trees. Also, many intriguing problems remain open in the area of online
competitiveness that has been considered, e.g., for line graphs of specific star-like graphs [3] or
just for vertex variant on trees [24].

Another variant of the problem is the c-edge ranking mentioned above, for which an optimal
solution can be found efficiently for an unweighted line graph of a tree [30]. Yet another relax-
ation of vertex ranking, studied for several classes of graphs, including trees, has been recently
introduced in [16].

We remark that there is a number of searching models that generalize searching in (rooted)
tree-like partial orders to more general classes of partial orders see e.g. [4, 9, 27]. Yet even more
general query models have been introduced recently for graphs [13]. These generalizations lose
their connection to the tree-depth notion. Interestingly, these general graph-theoretic models
find applications in some machine learning algorithms [12].

We finish by mentioning that the tree-depth generalization that we consider in this work for
line graphs of trees has been introduced and studied for trees in [29] under the name of vertex
ranking with capacity. It has been shown in [29] that there exists a O∗(2.5875n)-time optimal
algorithm for general graphs, and that an f(n)-approximate solution to vertex ranking can be
transformed to an (f(n) + 1)-approximate solution to vertex ranking with capacity. For trees,
this problem admits an absolute O(log b)-approximation in polynomial time [29].
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1.2 Problem statement and our results

In this section we introduce a generalization of the concept of the classical elimination tree by
considering elimination forests with level functions explicitly defined on their vertex sets. In this
context a rooted forest is meant as a disjoint union of rooted trees. We start with a notion of the
classical elimination tree that we call here a free elimination tree. For the sake of correctness we
point out that all graphs G = (V,E) considered in this paper are finite, simple and undirected,
with vertex set V and edge set E.

Definition 1.1. A free elimination tree for a connected graph G is a rooted tree T defined
recursively as follows:

1. let V (T ) = V (G) and let an arbitrary vertex r ∈ V (T ) be the root of T ,

2. if |V (G)| = 1, then let E(T ) = ∅. Otherwise, let

E(T ) =
k⋃
i=1

(
E(Ti) ∪ {ei}

)
where k is the number of connected components of G− r, and Ti stands for an elimination
tree for the i-th connected component of G−r with the root r(Ti) joined by the edge ei with
the root r of T , i.e., ei = {r(Ti), r}.

Definition 1.2. Let G be a graph with k connected components. A free elimination forest for G
is the disjoint union of k free elimination trees, each of which is determined for distinct connected
component of G.

Before the definition of elimination forest we point out that the notions of ancestor, parent
and child are used in their usual sense. Namely, given two vertices u and v of a rooted forest F ,
we say that v is an ancestor of u if v belongs to the path with the end-vertices in u and the root
of the connected component of F that contains u. If v is an ancestor of u and {v, u} ∈ E(F ),
then v is the parent of u while u is a child of v.

Definition 1.3. Let F be a free elimination forest for a graph G, and let f : V (F ) → Z+ be
a level function, i.e. a function such that f(u) < f(v) whenever v is an ancestor of u. A free
elimination forest F with a level function f is called an elimination forest for G and it is denoted
by Ff .

For an elimination forest Ff its height h(Ff ) is defined as max{f(v) | v ∈ V (Ff )}. Clearly,
the maximum can be attained only for the roots of the connected components of Ff . Now, for
every i ∈ {1, . . . , h(Ff )} we define the i-th level Li(Ff ) of Ff as the set of those vertices v in
V (Ff ) for which f(v) = i (notice that the definition of a level function allows empty levels).
In a natural way the width w(Ff ) of elimination forest Ff is defined as maxi |Li(Ff )|, where
i ∈ {1, . . . , h(Ff )}.

We point out that the above definitions do not impose the placement of the roots of all k
connected components of Ff at the highest level. In fact, each root can be placed at an arbitrary
level. Moreover, it is also not required that adjacent vertices of an elimination forest occupy
consecutive levels—there may be a gap of arbitrary size between the numbers of levels they
belong to.

It is also worth mentioning that though the definition of the classical elimination tree (recall
that we call it free elimination tree) does not explicitly give any level function, one of the possible
functions can be, and usually is, implicitly deduced by assuming that each level is formed by a
single recursive step in Definition 1.1.
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Definition 1.4. Let G be a graph and let b be a positive integer. The bounded-width tree-depth
btd(G, b) of a graph G is the minimum k for which there exists an elimination forest Ff for a
graph G such that h(Ff ) = k and w(Ff ) ≤ b.

Note that for every G and b > 0 there always exists some elimination forest of width bounded
by b. Since in what follows the level function f is always clear from the context, we omit f in
the symbol of an elimination forest.

We can now formulate our main problem.

Bounded-Width Tree-Depth (BTD)
Input: A graph G, positive integers k and b.
Question: Does btd(G, b) ≤ k hold?

The above seemingly small differences in the classical and our definitions (e.g. dropping the
assumption on connectivity of a graph G, relaxing the requirements on level function) play an
important role both in our NP-completeness reduction and in our algorithm. They significantly
affect the bounded-width tree-depth problem complexity thus making it different than that of
the classical tree-depth. The classical tree-depth problem (a variant without the bound b) can
be solved in linear time for line graphs of trees [20, 25]. The generalization we consider turns
out to be NP-complete.

Theorem 1.1. BTD problem is NP-complete for line graphs of trees.

The proofs given in Section 3 reveal that bounded-width tree-depth behaves differently than
the original tree-depth problem strongly depending on the connectivity of the graph. Specifically,
for tree-depth, only connected graphs are of interest since tree-depth of a non-connected graph
is just the maximum tree-depth taken over its connected components. In the bounded-width
tree-depth problem, the connected components interact. En route of proving Theorem 1.1, we
first obtain hardness of the problem for line graphs of forests and then we extend it to get the
NP-completeness of BTD for line graphs of trees.

On the positive side, we develop an approximation algorithm for line graphs of trees. Here,
the fact that minimum height elimination tree (or equivalently an optimal tree-depth) can be
found efficiently [20, 25] turns out to be very useful—our approach is to start with such a tree
(with some additional preprocessing) and squeeze it down so that its width becomes as required.
The squeezing-down is done in a top-down fashion, by considering the highest level that is too
wide, i.e., contains more than b vertices, and moving the excess vertices downwards. Note that
the algorithm needs to choose which vertices should go down—we move those vertices that are
the roots of the subtrees of the smallest height. This leads to polynomial-time approximation
algorithm with an additive error of 2b.

Theorem 1.2. There exists a polynomial-time additive 2b-approximation algorithm for BTD
problem for line graphs of trees.

The worst-case guarantee of our algorithm is similar to the one presented in [29] for trees.
However, we point out two differences: finding balanced vertex separators for trees can be done
easily and this is the foundation of the algorithm in [29]. In contrast, for line graphs of trees such
balanced separators do not exist in general, which is the reason for initializing the algorithm
using a minimum height elimination tree. This step is important, for otherwise applying very
involved bottom-up dynamic programming ideas from [20, 25] seems unavoidable. The second
difference lies in the fact that it remains unknown if there exists an optimal polynomial-time
algorithm for trees, as no hardness argument is known.
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2 Preliminaries

For the sake of clarity and to avoid involved notation and argument, necessary when carrying
the proofs directly on line graphs, we use EG to denote an elimination forest for the line graph
L(G) of a graph G. Consequently, since by the definitions of line graph and elimination forest,
there is a natural one-to-one correspondence between the edges of a graph G and the vertices of
its line graph and hence the vertices of an elimination forest EG, for each edge of G we shortly
say that it corresponds to the appropriate vertex v of EG and that it belongs to the level of EG
that contains v. Notice that with a small abuse of notation the above one-to-one correspondence
allows the use of any level function `, determined for an elimination forest EG, as if it was defined
on E(G). Thus for every edge e in E(G) we say that `(e) = p if for the corresponding vertex v
of EG it holds v ∈ Lp(EG).

↓ levels
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Figure 2: (a) a graph G with 4 connected components; (b) a minimum height elimination forest
EG when b = 3; (c) a minimum height elimination forest EG when b ≥ 7 (here, an elimination
tree for each connected component of G has minimum height).

Concerning the properties of level functions in the above-mentioned common context of a
graph G and elimination forest EG, we note that if two distinct edges e1, e2 are adjacent in G,
then they cannot belong to the same level of EG, i.e., `(e1) 6= `(e2). Similarly, it is not hard
to see that in the recursive elimination process performed on the vertices of L(G) (according to
Definition 1.1) all vertices eliminated at the same recursive step belong to distinct components
of the processed graph, and for each of them the value of a level function is greater than for
the vertices eliminated in further steps. In other words, for distinct edges e1, e2 of G such that
`(e1) = `(e2) every path with end-edges e1, e2 contains an edge e′ such that `(e′) > `(e1). It
is worth mentioning that if we consider ` as a function defined on E(G) and satisfying both of
the above-mentioned properties, then ` can be equivalently seen as an edge ranking of a graph
G (see e.g. [15]). An example in Figure 2 serves as an illustration of the above concepts as well
as those introduced in Section 1.2.

We use the same common context to define the visibility of a level from a vertex in G.
Namely, for a vertex v in G we say that the p-th level is visible in G from v if there exists an
edge e = {u1, u2} with `(e) = p and G contains a path with end-vertices v, u, where u ∈ {u1, u2}
and for each edge e′ of the path `(e′) ≤ p. The set of levels visible in G from v is denoted by
vis(G, v). When determining the levels admissible for a given edge in a graph G (or for the
corresponding vertex in elimination forest EG) we need to consider and forbid all levels visible
from both end-vertices of that edge, i.e., the level p is admissible for e = {u1, u2} if neither
p ∈ vis(G− e, u1) nor p ∈ vis(G− e, u2).
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3 NP-completeness of BTD

Technically, in order to proveNP-completeness of BTD we perform a polynomial-time reduction
from the classical version of the Minimum hitting set (MHS) problem.

Minimum Hitting Set (MHS)
Input: A set A = {a1, . . . , an}, a family A1, . . . , Am of subsets of A, an integer t ≥ 0.
Question: Does there exist A′ ⊆ A such that |A′| ≤ t and A′ ∩Aj 6= ∅, j ∈ {1, . . . ,m}?

In what follows we use the following example instance of MHS: let n = 6, m = 4, t = 2 and let
A = {a1, . . . , a6}, A1 = {a1, a2, a6}, A2 = {a2, a4, a5, a6}, A3 = {a1, a3, a5}, A4 = {a3, a4}.

3.1 Construction and terminology

In this section, on the basis of the input to the MHS problem, we construct an appropriate
forest F consisting of the tree T , called the main component, and some number of additional
connected components created on the basis of ’template’ trees T d that we define later on.

In what follows we extensively use specific star subgraphs. By Sn we denote an n-vertex
star, while for a vertex v in G we use S(v) to denote the subgraph of G induced by v and its
neighbors u for which dG(u) = 1. An important parameter in our construction is an integer
M that we calculate at the end of this section such that it is ’large enough’—the role of M is
explained in the next section.

First, we focus on the structure of the main component T . The tree T can be obtained
by the identification of distinguished vertices ri of the trees T (ai) carefully constructed for the
corresponding elements ai ∈ A, i ∈ {1, . . . , n}. The resulting common vertex, denoted by r,
becomes the root of T . Next, we add M + 3(m − 1) + 4 edges incident to r and hence S(r) is
a star SM+3(m−1)+5. As the building blocks of T (ai) we need graphs Gα with α ≥ M + 1 and
G(ai). The structure of these graphs, with distinguished vertices called connectors, is presented
in Figure 3. The graph Gα has one connector denoted by w1 and G(ai) has two connectors ri
and vi. The ‘loop’ at a vertex depicts the star with the distinguished central vertex.

ri

ui

vi

Sk−2i+1

Sk−2i+1

(a) u′i

(c)

..
.

Sϕ(1)+1

Sϕ(2)+1

Sϕ(m)+1

ui

X

v′i

G(ai)

Y (ai)

w1

(b)

Sα+1

w2

SαSα+2

w3

Sα Sα+1

Gα
w′1 w′3 w′2

S(w2)

r

...

xd+1 xk

SkSd+1

P2M
T d ..

.

X

... vi

zk−2i

zϕ(m)+4Sϕ(m)+4

Sϕ(m)+5

Sk−2i
Y (ai)

Figure 3: The graphs used in Construction: (a) G(ai), (b) Gα, (c) T d, where M ≤ d < α.

From a slightly informal perspective, we can describe T (ai) as a ’star-shaped’ structure
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formed with m+ 1 graphs T0, . . . , Tm, where T0 = G(ai) and Tj = Gϕ(j) with

ϕ(j) = M + 3(j − 1) + 1

for every j ∈ {1, . . . ,m}. More formally, T (ai) is formed by the identifications of appropriate
connectors, i.e., the connector w1 of each Tj with j ∈ {1, . . . ,m} is identified with the connector
vi of T0. In order to complete the construction of T (ai), for every Aj such that ai ∈ Aj we take
a copy of an 2M -vertex path P2M and identify an end-vertex of the path with a leaf of S(w2) of
the corresponding tree Tj in T (ai) (we say that P2M is attached at Tj).

At this point, fixing M , we remark on the structure of T . Concerning the structure of
G(ai), we stress out that this depends on ai which determines the degrees of u′i, v

′
i as well as

the degree of vi and hence the number of vertices in {zϕ(m)+4, . . . , zk−2i} (see Figure 3(a)).
Also note that for a given ai ∈ A the trees T1, . . . , Tm in T (ai) are pairwise different and their
structure depends on j. On the other hand the trees T1, . . . , Tm are independent of ai. However,
for distinct elements ai1 , ai2 ∈ A the structure of T (ai1) and T (ai2) is different, which follows
from the aforementioned differences between G(ai1) and G(ai2) as well as varying ’attachment
patterns’ of paths P2M .

In order to complete the construction of the forest F we need the aforementioned trees T d
with d ≥ M , defined as in Figure 3(c) (for the distinguished path P2M we say that it is attached
at T d). Namely, the forest F is composed of a single copy of T , 2n− |Aj |+ 1 copies of Tϕ(j)−1
for j = 1, and n − |Aj | + 1 copies of Tϕ(j)−1 for each j ∈ {2, . . . ,m}, as well as n − 1 copies

of Tϕ(j) and n copies of Tϕ(j)+1 both templates taken for each j ∈ {1, . . . ,m}. Consequently,
with reference to our example of the MHS problem (recall n = 6, m = 4) we get, in order, a
unique copy of T , 10 copies of TM , 3 copies of TM+3, 4 copies of TM+6 and 5 copies of TM+9, 5
copies of TM+4, TM+7 and TM+10, 6 copies of TM+5, TM+8 and TM+11. The role of particular
components we explain in the next section.

In what follows, referring to a path P2M we always mean one of the paths P2M used in this
construction. For each j ∈ {1, . . . ,m} the set of all paths P2M corresponding to the set Aj (i.e.
attached at Tj in some T (ai) or at an additional component T d with d ∈ {ϕ(j)−1, ϕ(j), ϕ(j)+1})
is denoted by P(Aj). Let P∗ = P(A1) ∪ · · · ∪ P(Am) and let m denote the size of the set W
consisting of the edges of the forest F excluding the edges of paths in P∗. More formally

m = |W | = |E(F ) \
⋃
E(P2M )|, where the sum runs over all P2M in P∗. (1)

We remark that m depends on k because the construction of F depends on k. For the BTD
problem, we set the input parameters b and k to be:

k = M + 1 + 3m+ 2n+ t, (2)

b = n2M +m, (3)

where M is chosen as a minimum integer satisfying

M ≥ 2dlog2me+ 1. (4)

Note that (4) can be rewritten as a bound 2M > 4m2 (we will use this form in the proof). We
remark that the above parameters can be set in such a way that their values are polynomial
in m,n and t. It follows from the construction that m is polynomially bounded in k, that is,
m ≤ c1k

c for some constants c1 and c. Take M and k so that M ≥ 2c log2 k + 2 log2 c1 + 3.
This can be done in view of (2). Note that this fixes the values of m and b. The right hand
side of (4) is upper bounded by 2c log2 k + 2 log2 c1 + 3, which implies that the required bound
in (4) holds. This bound on M in particular implies k = O(m + n + t) and thus m, 2M and b
are polynomial in m,n and t.
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3.2 The idea of the proof

First of all, we note that the vast majority of edges in the forest F belongs to the additional
components, which due to their structure fit into precisely planned levels of an elimination forest
EF , thus leaving exactly the right amount of capacity on those levels where the main component
gadgets come into play. The positioning of elimination subtrees corresponding to appropriate
paths P2M is determined in Lemma 3.7; also see Figure 4 where we sketch a pattern of fitting
elimination subtrees into appropriate levels. Though most of the capacity consumed by the main
component can be attributed to the paths P2M (attached at leaves of respective instances of the
gadget Gα) the role of just a few edges of G(ai) and Gα cannot be overestimated. As we will see,

2n− (|A1| − 1)

...

|A1| − 1

...

n− 1

...

n

...

...

...

1

2

3

M = ϕ(1)− 1

M + 1 = ϕ(1)

M + 2 = ϕ(1) + 1

...

Figure 4: Positioning of elimination subtrees corresponding to the paths P2M in the main and
additional components (dashed and solid lines, resp.) of the forest F . A snapshot for j = 1.

the assignment of the edge {ui, vi} to the level k − 2i+ 2 is equivalent to including the element
ai in the solution A′. Due to the sensitivity of the gadget Gα to what levels are visible from
its connector w1 ’outside’ Gα (see Lemmas 3.2 and 3.3) we get a coupling between the level of
{ui, vi} and the highest level that can be occupied by the so called ’root edge’ of the path P2M

attached at Gα, when particular instance Gϕ(j) of the gadget in T (ai) corresponds to the set Aj
containing ai. More specifically, if `({ui, vi}) = k − 2i + 2, then the root edge of such a path
P2M can be moved to ϕ(j) from ϕ(j) − 1 allowing all of its other edges to be moved one level
up, thus gaining the increase of the free space at the level that has been previously occupied by
roughly half of its edges.

The bound t on the size of solution A′ is met by attaching appropriate number of edges
pending at the root r of the main component T . The number of such edges depends on t and
it is calculated in such a way that in at most t of n subgraphs T (ai) the edge {r, ui} will be
allowed at level not exceeding k− 2n. In Lemma 3.4 we show that either {r, ui} or {ui, vi} must
occupy the level k − 2i + 2 and hence there will be at most t subgraphs T (ai) with the edge
{ui, vi} assigned to the level k − 2i+ 2 and triggering the above-mentioned process of lifting.

3.3 Proof of NP-completeness

We start with a simple lemma on the low levels of elimination trees that corresponds to one of
the known basic properties of edge rankings.

Lemma 3.1. Let G be a connected graph. For every elimination tree EG there exists an elimi-
nation tree E ′G with h(E ′G) = h(EG) such that for each S(v) in G the edges of S(v) belong to the
levels in {1, . . . , |E(S(v))|}.

Now, we present several lemmas on properties of the gadgets defined in Section 3.1. We
always treat the gadgets as if they were subgraphs of the forest F , e.g., in the proofs of the next
two lemmas, when analyzing admissibility of levels for particular edges of Gα, we use vis(F ′, w1)
to refer to the levels visible from w1 in F ′, where F ′ is a graph induced by V (F ) \ V (Gα − w1)
(see Figure 5). Moreover, in what follows, both lemmas are used in the context in which the
levels α + 4, . . . , k belong to vis(F ′, w1). However, since that context is not required for their
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proofs, we just mention this fact and proceed with more general statements. Depending on
vis(F ′, w1), the following two lemmas characterize the cases encountered upon construction of
elimination trees EGα .

(b)(a)

α+ 2α

α+ 1

α+ 2

α+ 3w1 w2

1, . . . , α− 1

w3

1, . . . , α+ 1 1, . . . , α

α+ 1 or α+ 2
α+ 1 or αα+ 2

α+ 1 is visible but

is visible from

α+ 2 or α+ 1

α+ 3

neither α+ 2 nor α+ 3

1, . . . , α1, . . . , α− 11, . . . , α+ 1

1, . . . , α 2, . . . , α+ 1

1, . . . , α− 1 1, . . . , α− 1

w′2w′3w′1
w1 in F ′

F ′

w1 w2

w3
none of

is visible from

α+ 1, α+ 2, α+ 3

w′2w′3w′1
w1 in F ′

F ′

Figure 5: An illustration of the proofs: (a) for Lemma 3.2, (b) for Lemma 3.3.

Lemma 3.2. If α+2 or α+3 belongs to vis(F ′, w1), then for every elimination tree EGα it holds
h(EGα) > α+ 3. If neither α+ 2 nor α+ 3 belongs to vis(F ′, w1) and α+ 1 ∈ vis(F ′, w1), then
in every elimination tree EGα of height α + 3 the levels admissible for S(w2) are in {1, . . . , α},
and the only levels visible from w1 in Gα are α+ 2 and α+ 3.

Proof. Let H ′ and H be the subgraphs induced by V (F ′) ∪ {v | {w′1, v} ∈ E(Gα)} and V (H ′) ∪
{w3}, respectively.

Suppose that, contrary to our claim, there exists an elimination tree EGα with h(EGα) ≤ α+3.
Let D = {1, . . . , α+ 3} be a set of levels admissible for EGα and let p ∈ {α+ 2, α+ 3} be a level
visible from w1 in F ′. Clearly, the levels of adjacent edges {w1, w

′
1} and {w1, w3} cannot be the

same, and due to visibility restrictions have to be different from p. It is not hard to see that by
Lemma 3.1 independently of whether p equals α + 2 or α + 3, the levels visible from w1 in H ′

form the following set {a, . . . , α+ 3}, where a = `({w1, w
′
1}). Thus, the set of levels admissible

for {w1, w3} is D \ {a, . . . , α+ 3} and hence `({w1, w3}) < a. Therefore, `({w1, w
′
1}) as well as

p and `({w1, w3}) are visible in H from w3, which means that there are at most |D| − 3 levels
admissible for the edges in U = {{w3, v} | v /∈ V (H)}. Since edges in U are pairwise adjacent
and |U | = α + 1, at least one edge in U has to be assigned to a level higher than α + 3, which
contradicts our assumption on the height of EGα .

The proof of the second claim, consists of two parts. First, we prove that the highest level
α+3 must be occupied by an edge of the subgraph G′′ induced by {w1}∪V (S(w3))∪V (S(w′3))∪
V (S(w′1)). Since the highest level is always a singleton, we will deduce that the height of an
elimination tree EG′ is at most α + 2, where G′ is a subgraph induced by {w3} ∪ V (S(w2)) ∪
V (S(w′2)). Next, restricting our attention to G′ we show that in every EG′ the levels admissible
for the edges of S(w2) are in {1, . . . , α}.

Suppose that there exists EG′′ such that h(EG′′) ≤ α+ 2. We start with an observation that
`({w1, w

′
1}) = α+ 2, for otherwise if `({w1, w

′
1}) ≤ α (recall visibility of level α+ 1 from w1 in

F ′), then at least one edge of S(w′1) would have to occupy level α + 3, which contradicts our
assumption. Similarly, `({w1, w3}) > α, for if not, at least 3 levels would be visible from w3

in H and hence α pairwise adjacent edges in the set U = {{w3, v} | v /∈ V (H)} would have to
be assigned to at most α − 1 admissible levels. Hence `({w1, w3}) > α, and since the levels in
{α+ 1, α+ 2} are visible from w3 in H ′, we get `({w1, w3}) = α+ 3, a contradiction. Therefore
since |Lα+3(EGα)| = 1, it holds h(EG′) ≤ α + 2. Note that we also proved the statement on
visibility of α+ 2 and α+ 3 from w1 in Gα.

Now, for the second part we focus on G′ and observe that α+ 2 edges incident to w2 have to
occupy distinct levels in {1, . . . , α+ 2}. Thus, the levels visible from w3 in G′ form the following
set {a, . . . , α + 2}, where a = `({w2, w3}). Consequently, there are at most a levels admissible
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for α + 1 pairwise adjacent edges in U ′ = {{w3, v} | v /∈ V (G′)}, which implies a ≥ α + 1. It
remains to observe that if a = α + 1, then the level α + 2 cannot be occupied by an edge of
S(w2), for if not, both α+ 1 and α+ 2 would be visible from w′2 and hence forbidden in S(w′2)
leaving just α levels for α+1 edges incident to w′2. The argument for a = α+2 is analogous.

Lemma 3.3. If neither α + 1, α + 2 nor α + 3 belongs to vis(F ′, w1), then there exists an
elimination tree EGα of height α+ 3 with all edges of S(w2) at levels in {2, . . . , α+ 1} and such
that only the levels α+ 1, α+ 2 and α+ 3 are visible from w1 in Gα. Moreover, there does not
exist an elimination tree EGα with h(EGα) < α+ 3.

Proof. Concerning the first claim, an assignment of the edges in E(Gα) to appropriate levels of
EGα is presented in Figure 5(b). For the second claim suppose that, on the contrary, there exists
an elimination tree EGα such that h(EGα) ≤ α+2. The argument is analogous to that in the proof
of Lemma 3.2. For H ′ and H denoting the graphs induced by V (F ′)∪{v | {w′1, v} ∈ E(Gα)} and
V (H ′)∪{w3}, respectively, we easily observe that if a stands for `({w1, w

′
1}), then a set of levels

visible from w1 in H ′ is {a, . . . , α+ 2} and hence `({w1, w3}) < a. Clearly, due to the visibility
from w3 in H there are at most α levels admissible for the edges in U = {{w3, v} | v /∈ V (H)}.
Therefore since |U | = α + 1, at least one edge in U has to be assigned to a level higher than
α+ 2, a contradiction.

The two lemmas that follow are devoted to the description of the mutual interaction of the
distinguished edges of G(ai), which manifests as a ’switching property’ of the gadget and allows
’lifting’ of appropriate elimination subtrees preserving the bound b on the level size.

Lemma 3.4. If ET is an elimination tree of height k, then for each i ∈ {1, . . . , n}

either `({r, ui}) = k − 2i+ 2 or `({ui, vi}) = k − 2i+ 2,

and each level p ∈ {k− 2i+ 1, . . . , k} is visible from r in the subgraph induced by the vertices of
T (a1), . . . , T (ai),

Proof. For i = 1 we consider an elimination tree EH , where H = T (a1). Considering the
visibility of levels from v1 in the subgraph induced by V (S(v′1)) ∪ {v1}, by Lemma 3.1 we
conclude that there is no loss of generality in assuming that the levels assigned to the edges of
S(v′1) belong to {1, . . . , k−2} and `({v1, v′1}) = k−1. Similarly, `({r, u′1}) = k−1. Thus, either
`({r, u1}) > k − 1 or `({u1, v1}) > k − 1. Consequently, h(EH) = k and both k − 1 and k are
visible from r in H. Now, suppose our lemma holds for EH , where H is a subgraph of T induced
by the vertices of T (a1), . . . , T (ai−1). In order to extend EH to EH′ , where H ′ is a subgraph
induced by the vertices of T (a1), . . . , T (ai) we use an analogous argument as for i = 1. Thus,
`({vi, v′i}) = `({r, u′i}) = k − 2i+ 1 and hence at least one of the edges {ui, vi}, {r, ui} must be
assigned to a level p > k−2i+1. Therefore since by assumption all levels p ∈ {k−2i+3, . . . , k}
are visible in H from r, either {ui, vi} or {r, ui} must be assigned to the level k − 2i+ 2. Thus
h(EH′) = k, and all levels p ∈ {k − 2i+ 1, . . . , k} are visible in H ′ from r.

Corollary 3.1. If ET is an elimination tree of height k, then each level in {k − 2n + 1, . . . , k}
is visible in T from r and if `({ui, vi}) = k − 2i+ 2, then `({r, ui}) ≤ k − 2n, i ∈ {1, . . . , n}.

In fact, the above lemma tells a little bit more. Namely, if T [v] denotes the subtree of T
rooted at v and induced by v and all vertices having v as an ancestor, then whenever the edge
{r, ui} (the edge {ui, vi}) gets assigned to the level k − 2i+ 2, then the levels k − 2i+ 2, . . . , k
become visible from ui even in the subgraph induced by V (T ) \ (V (T [ui]) \ {ui}) (from vi in the
subgraph induced by V (T )\ (V (T [vi])\{vi})) and hence become forbidden for the edges of T [ui]
(the edges of T [vi]). Accordingly, in our next lemma we assume that {1, . . . , k− 2i+ 1} is a set
of levels admissible for T [ui] and T [vi]. It is also worth mentioning that if `({r, ui}) = k−2i+2,
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then due to the visibility of particular levels, the edge {ui, vi} must be assigned to a level p
satisfying p < M , which is crucial in our reduction. In fact, pushing {ui, vi} to a low level
triggers the above-mentioned ’switching’ by making certain levels in the subgraph X visible
from the vertex vi. In particular, for each j ∈ {1, . . . ,m} the level ϕ(j) + 1 becomes visible in
X from the vertex w1 ∈ V (Gϕ(j)) which by Lemma 3.2 results in impossibility of ’lifting’ an
elimination tree EP

2M
, where P2M is attached at Gϕ(j).

ri

ui

vi

(a)
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v′i

Y (ai)
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..
.

...

..
.
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Figure 6: An illustration for the proof of Lemma 3.5. The two major cases of visibilities. The
arrows point to the levels visible from vi.

Lemma 3.5. Let ET be an elimination tree of height k. For every i ∈ {1, . . . , n}:

(a) if `({r, ui}) = k − 2i + 2, then in every ET [ui] of height k − 2i + 1 for each Tj with
j ∈ {1, . . . ,m} it holds `(e) ∈ {1, . . . , ϕ(j)}, where e is an edge of S(w2) in Tj.

(b) if `({ui, vi}) = k − 2i+ 2, then there exists an elimination tree ET [vi] of height k − 2i+ 1
such that in each Tj with j ∈ {1, . . . ,m} it holds `(e) ∈ {2, . . . , ϕ(j) + 1}, where e is an
edge of S(w2) in Tj. Moreover `(e) ≤ ϕ(j) + 1 in every ET [vi].

Proof. First we prove (a). As we have already mentioned, the levels higher than k−2i+2 are not
admissible for T [ui]. Hence, if `({r, ui}) = k− 2i+ 2, then `({ui, vi}) /∈ {k− 2i+ 1, k− 2i+ 2},
since following the argument in the proof of Lemma 3.4 both levels are already occupied by
{vi, v′i} and {r, ui}, the edges adjacent to {ui, vi}. Similarly, considering the visibility of levels
from vi in the subgraph induced by V (S(zϕ(m)+4)) ∪ · · · ∪ V (S(zk−2i)) ∪ {vi}, from Lemma 3.1
it follows that we can assume `({vi, zp}) = p, where p ∈ {ϕ(m) + 4, . . . , k − 2i} and that none
of these levels is admissible for {ui, vi}. Summarizing, we get

`({ui, vi}) ≤ ϕ(m) + 3. (5)

Now, in order to prove `({ui, vi}) ≤ ϕ(1), we use induction on j going downwards from m
to 1. The argument for the base case, i.e., j = m and for the inductive step is the same. So
let us take an arbitrary j ∈ {m − 1, . . . , 1} and assume that the inductive hypothesis holds for
m, . . . , j + 1. More precisely, for each parameter l ∈ {j + 1, . . . ,m} it holds `({ui, vi}) ≤ ϕ(l)
and all levels in {ϕ(l) + 1, ϕ(l) + 2, ϕ(l) + 3} are visible from vi in the subgraph induced by
V (T ) \ (V (Gϕ(1))∪ · · · ∪V (Gϕ(l))) (in fact, an argument similar that we used for (5) shows that
each level p ≥ ϕ(l) + 1 is visible).
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For an inductive step suppose that, on the contrary, `({ui, vi}) > ϕ(j). Naturally, `({ui, vi}) 6=
ϕ(j)+1, since there is an edge at level ϕ(j)+1 visible from ui in X. Hence, it remains to consider
the assignment of {ui, vi} either to ϕ(j) + 2 or ϕ(j) + 3. However, in both cases by Lemma 3.2
we get h(EGϕ(j)) > ϕ(j) + 3 which means that there is at least one edge of Gϕ(j) at level higher
than ϕ(j) + 3 and visible in Gϕ(j) from vi. A contradiction, since by the inductive assumption
no level in {ϕ(j + 1), . . . , k} is admissible for the edges of Gϕ(j). Thus `({ui, vi}) ≤ ϕ(j). An
important consequence of `({ui, vi}) ≤ ϕ(j) is that ϕ(j) + 1 is visible from vi in X. More-
over, h(Gϕ(j)) = ϕ(j) + 3 (by assumption and the lower bound in Lemma 3.3). Thus we are
allowed to use Lemma 3.2 from which it follows that the levels admissible for the edges of
S(w2) in Gϕ(j) belong to {1, . . . , ϕ(j)} and that both ϕ(j) + 2 and ϕ(j) + 3 are visible in Gϕ(j)
from vi. Hence, each level p ∈ {ϕ(j) + 1, . . . , k} is visible from vi in the subgraph induced by
V (T ) \ (V (Gϕ(1)) ∪ · · · ∪ V (Gϕ(j))).

Next, we prove (b). Similarly as for part (a) the analysis of visibilities from the vertex vi
conducted for particular subgraphs of T and Lemma 3.4 let us conclude that {ϕ(m) + 4, . . . , k}
is a set of levels visible from vi in the subgraph induced by V (T ) \ (V (Gϕ(1))∪ · · · ∪ V (Gϕ(m))).
The proof is completed by Lemma 3.2 applied to each Gϕ(j) with j ∈ {1, . . . ,m}.

Lemma 3.6. For every tree T d with d ≥ M , there exists an elimination tree ET d of height k such

that for each edge e of P2M attached at T d it holds `(e) ≤ d. Moreover, if ET d is of minimum
height k, then `(e) ≥ d−M + 1.

Proof. As we already know from Lemma 3.1 there is no loss of generality in assuming that for
every p ∈ {d+ 1, . . . , k} we have `({r, xp}) = p and hence the levels in {d+ 1, . . . , k} are visible
from r in T d. Consequently, no edge of P2M can be assigned to a level higher than d. It remains
to note that the minimum height elimination tree of the line graph of 2M -vertex path is the
M -level full binary tree (see, e.g., [17]).

Before the proof of Theorem 3.1 we need to consider several properties of the forest F when
elimination tress are assumed to be b-bounded. Let r(P2M ) denote the root edge of P2M , i.e. the
edge assigned to the highest level of EP

2M
and let

R = {r(P2M ) |P2M ∈ P(Aj) for j ∈ {1, . . . ,m}}.

We will also need a partition (Rm, Ra) of R with Rm and Ra being the sets of the root edges of
the paths attached at the main and additional components, respectively.

Concerning the role of Lemmas 3.5 and 3.6 we note that they provide the highest possible
levels at which the root edges of paths P2M in F can be placed in EF . However, they may be
placed potentially at much lower levels. We rule, to some extent, this possibility in the next
lemma.

Lemma 3.7. Let F be the forest corresponding to an instance of the MHS problem and let EF
be b-bounded. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} the following properties hold.

(a) If P2M is attached at Tj of T (ai), then `(r(P2M )) ∈ {ϕ(j)− 1, ϕ(j)}.
(b) If P2M is attached at T d with d = ϕ(j)− 1, then r(P2M ) ∈ Ld(EF ).

(c) |Lϕ(j)−1(EF ) ∩R| ≤ η, where η = 2n if j = 1, and η = n for each j ∈ {2, . . . ,m}.

Proof. We prove by a contradiction that (c) holds. We first consider j = 1. So suppose that
|LM (EF ) ∩ R| ≥ 2n + 1. For every P2M whose root edge is assigned to level M , it holds that
EP

2M
has height M and thus it is a full binary tree having in particular 2M−1 vertices at level 1

in EF . Thus we count the total number of such vertices at level 1 resulting from 2n + 1 paths
P2M . By (4) and (3), we get (2n+ 1)2M−1 = n2M + 2M−1 = b −m+ 2M−1 > b, a contradiction
(there is more than b vertices at level 1 in EF ).
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Consider a level s ≥ 1. We will argue that at levels in Q = {1, . . . , s+ M − 1} there may be
at most n+ns vertices from R in total. For proving this we use the following observation. Take
an arbitrary P2M . Since any EP

2M
is a binary tree, the number of vertices of EP

2M
within levels

1, . . . , p, for any p ∈ {1, . . . , h(EP
2M

)}, is minimized when EP
2M

is a full binary tree. So suppose
that each EP

2M
in EF is a full binary tree (we will drop this assumption in a moment) and, on

the contrary, assume that the levels in Q contain at least n + ns + 1 vertices from R. If every
level in Q \ {1, . . . ,M } contains n roots from R and the level M contains 2n roots from R, then
such a placement of the roots is called even. Considering an even placement and the one extra
P2M (recall our assumption for a contradiction) having its root in Q, we obtain that the overall
number of vertices in EF in the levels 1, . . . , s is at least sn2M + 2M−1, where 2M−1 comes from
the extra path P2M .

The placement of the vertices in R does not have to be even. However, we argue that it
cannot ’drift’ too much from an even placement. In the even placement: if P2M is attached
to T d, then without loss of generality `(r(P2M )) = d. However, by Lemma 3.6, we have in
this case `(r(P2M )) ≤ d in an arbitrary placement of the roots. Hence, when going from even
to an arbitrary placement, the level of r(P2M ) may only decrease. In the even placement: if
P2M is attached at Tj of T (ai), then `(r(P2M )) ∈ {ϕ(j) − 1, ϕ(j)}. By Lemma 3.5, for such
a P2M the upper bound holds for an arbitrary placement but in the worst case we may have
`(r(P2M )) = ϕ(j) for all such paths. We do consider the situation when all such P2M ’s have
`(r(P2M )) = ϕ(j) (we call them 1-lifted) because we aim at providing a lower bound on the
number of vertices in the levels 1, . . . , s in EF . Thus for each j ∈ {1, . . . ,m}, in worst case, at
most n paths P2M with `(r(P2M )) = ϕ(j)− 1 in the even placement have their roots at the level
ϕ(j) in an arbitrary assignment, i.e., there are at most n 1-lifted paths. Taking into account
that relaxing the property that each P2M corresponding to a full binary tree in EF increases the
number of edges in the levels 1, . . . , s we obtain a lower bound on their number in this range:

s∑
s′=1

|Ls′(EF )| ≥ sn2M −
∑
p≥0

2M−3−p + 2M−1 ≥ sn2M − 2M−2 + 2M−1 = sn2M + 2M−2,

where we additionally used a property that the highest level s + M − 1 does not contain any
1-lifted paths P2M . (The reason we make this restriction is to ensure that there are no n 1-lifted
paths at the level s + M + 2 (they would be moved from the level s + M + 1 with respect to
an even assignment) in order to account for the sum

∑
p≥0 2M−3−p.) Therefore, the average

number of vertices within levels 1, . . . , s is at least

n2M +
1

s
2M−2 = b −m+

1

s
2M−2 > b −m+

1

m
2M−2 ≥ b,

where we have used s ≤ m. Also, the latter inequality is due to 2M ≥ 4m2 that follows from (4).
Thus, we have proved that the average number of edges in a level of the selected range exceeds
b and by the property of the average, some level does contain at least this average number of
vertices—a contradiction.

Recall that the above reasoning is restricted to the levels s+ M − 1 that do not have 1-lifted
paths P2M , i.e., it applies to each level ϕ(j) + 1 and ϕ(j) − 1. Taking s + M − 1 = ϕ(j) − 1
together with (due to Lemmas 3.5 and 3.6) the fact that the overall number of roots at the levels
ϕ(j′) − 1, ϕ(j′), ϕ(j′) + 1, for j′ < j, is 3(j − 1)n + n, we conclude that |Lϕ(j)−1(EF ) ∩ R| ≤ n,
which completes the proof of (c).

By taking s+ M − 1 = ϕ(j) + 1 and combining it with Lemma 3.6, we have that none EP
2M

for the paths P2M attached to T d with d = ϕ(j)− 1 can be rooted at a lower level, i.e, it cannot
be `(r(P2M )) < ϕ(j)− 1. This proves (b) for d = ϕ(j)− 1.

We finally prove (a). The right hand side inequality in (a) follows from Lemma 3.5. In fact,
the lemma implies a stronger bound: Lemma 3.5(a) upper-bounds `(r(P2M )) by ϕ(j) − 1 and
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Lemma 3.5(b) upper-bound `(r(P2M )) by ϕ(j) in any elimination forest EF . The left hand side
inequality in (a) follows from the same reasoning as in the preceding paragraph for s+ M − 1 =
ϕ(j) + 1 (dropping r(P2M ) of a P2M attached at Tj+1 would give the necessary number of roots
within levels 1, . . . , ϕ(j) + 1 to have our contradiction).

Theorem 3.1. The Bounded Tree-Depth problem is NP-complete for line graphs of forests.

Proof. Let A, t and A1, . . . , Am form an instance of the MHS problem, and let F and b be the
forest and positive integer obtained for that instance according to the Construction described
in Section 3.1 (recall that k = M + 3m+ t+ 2n+ 1).

(⇒) We are going to argue that if there exists a b-bounded elimination forest EF such that
h(EF ) ≤ k, then there exists a solution A′ to the MHS problem such that |A′| ≤ t. A solution
to the MHS problem is defined as follows:

ai ∈ A′ if and only if `({ui, vi}) = k − 2i+ 2, (6)

for each i ∈ {1, . . . , n}. First we prove that |A′| ≤ t. Let H be a connected component of the
graph obtained from F by the removal of all edges e for which in EF it holds `(e) > k− 2n and
such that the root r of F belongs to H. Clearly,

h(EH) ≤ k − 2n. (7)

On the contrary, suppose that |A′| > t. By Corollary 3.1 we know that if `(ui, vi) = k−2i+2 (i.e.,
when by (6) ai ∈ A′), then {r, ui} ∈ E(H). Moreover, by the Construction |E(S(r))| = k−2n−t
and hence E(S(r)) ⊆ E(H). Thus dH(r) ≥ |E(S(r))|+ |A′| = k− 2n− t+ |A′| > k− 2n, which
in turn implies h(EH) > k − 2n, contrary to (7).

At this moment, we remark that the edges of subgraph H can be simply assigned to the
levels in {1, . . . , k − 2n}. We use this fact in the second part of the proof.

Now, we prove a ’hitting property’, i.e., A′∩Aj 6= ∅ for each Aj with j ∈ {1, . . . ,m}. By the
Construction and Lemma 3.7(b) we know that η−|Aj |+1 elements in Ra belong to Lϕ(j)−1(EF ).
If |Aj | elements in Rm were additionally contained in Lϕ(j)−1(EF ), then |Lϕ(j)−1(EF ) ∩ R| > η,
which contradicts Lemma 3.7(c). Therefore at least one element in Rm, say the one related to
P2M attached at Tj of T (ai∗), must be assigned to a level different from ϕ(j)−1 which by Lemma
3.7(a) is exactly the level ϕ(j). Consequently, following Lemma 3.5(a) the edge {r, ui∗} cannot
be assigned to the level k− 2i∗ + 2 and hence by Lemma 3.4 we have `({ui∗ , vi∗}) = k− 2i∗ + 2
which by (6) results in ai∗ ∈ A′.

(⇐) Now, we show that if there exists a solution A′ to the MHS problem such that |A′| ≤ t,
then there exists a b-bounded elimination forest EF such that h(EF ) ≤ k. Given A′, on the
edge set of F we define a function ` with maximum at most k. We start with the edges {ui, vi}
and {r, ui} for all i ∈ {1, . . . , n}. Namely, if ai ∈ A′, then we set `({ui, vi}) = k − 2i + 2 and
`({r, ui}) = k − 2i + 2 otherwise. As we already know the choice of the edge for the above
assignment is crucial for the visibility of levels from the vertex vi (recall the two major variants
depicted in Figure 6). Moreover, from Lemmas 3.5 and 3.7(a) we know that this decides on the
possibility of assigning appropriate elements in Rm to the level ϕ(j) instead of ϕ(j) − 1 which
results in ’lifting’ appropriate elimination subtrees, thus preserving the bound b on the level
size.

Let ` be defined as in Lemmas 3.2–3.6 and as we remark in the first part of this proof (for an
illustration see Figures 5–6). It remains to consider ` for paths P2M attached at subgraphs Tj of
the main component T . By assumption, for each j ∈ {1, . . . ,m} there exists ai∗ ∈ A′ ∩ Aj and
hence we set `({ui∗ , vi∗}) = k − 2i∗ + 2. Consequently, according to Lemma 3.5(b) the levels in
{2, . . . , ϕ(j) + 1} are admissible for the edges of S(w2) in each Tj of T (ai∗). Let `(e) = ϕ(j) + 1,
where e is an edge of S(w2) sharing an end-vertex with the P2M attached at Tj of T (ai∗). This
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allows r(P2M ) to be assigned to the level ϕ(j) (with the other edges of the P2M assigned to levels
ϕ(j) −M + 1, . . . , ϕ(j) − 1). For the remaining |Aj | − 1 paths P2M , their root edges we assign
to the level ϕ(j) − 1. Considering the elements in Ra, independently, for each j ∈ {1, . . . ,m}
we get η − |Aj | − 1, n − 1 and n root edges (of the paths P2M attached at components T d
with d ∈ {ϕ(j)− 1, ϕ(j), ϕ(j) + 1}) that accordingly to Lemma 3.7(b) we have already assigned
the levels ϕ(j) − 1, ϕ(j) and ϕ(j) + 1, respectively. Thus summing the elements in Rm and
Ra for each level p ∈ {ϕ(j) − 1, ϕ(j), ϕ(j) + 1} we obtain |Lp(EF ) ∩ R| ≤ η. The proof is
completed by showing that in each level, EF contains at most b elements. Namely each level p
contains 2s vertices corresponding to the edges of a path P2M rooted at a level p + s for each
s ∈ {0, . . . ,M − 1}. Therefore

|Lp(EF )| ≤ η
M−1∑
s=0

2s + |W ∩ Lp(EF )|
(1)

≤ n2M +m
(3)
= b.

Proof of Theorem 1.1. We give a polynomial-time reduction from the BTD problem whose NP-
completeness for line graphs of forests we settled in Theorem 3.1.
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Figure 7: An illustration for the construction in the proof of Theorem 1.1.

Let forest F and positive integers k, b form an instance of BTD obtained according to
the construction presented in Section 3.1. Moreover, let F1, . . . , Fp stand for the connected
components of F with the roots denoted by r1, . . . , rp, respectively. Given such an instance we
construct a tree T (see Figure 7) and calculate the following related parameters:

bT = b + p(p− 1)/2 + 1,

kT = k + p.

The tree T is obtained by taking the components F1, . . . , Fp, joining their roots with a new
vertex q (the root of T ) and adding k new edges such that they become incident to q (i.e., we
get S(q) being a star Sk+1), and then for each root rs with s ∈ {2, . . . , p} adding s−1 new stars
Sk+2, . . . , Sk+s and identifying a single non-central vertex of each star with the root rs. The
centers of the stars corresponding to the vertex rs are denoted by vs,1, . . . , vs,s−1, respectively.

In order to argue that if there exists a b-bounded elimination forest EF of height k, then
there exists a bT -bounded elimination tree ET with h(ET ) = kT , we define a level function ` on
the vertex set of the tree T such that the maximum of ` does not exceed kT . In fact, we also
show that each edge {q, rs} with s ∈ {1, . . . , p} must be assigned to the level k + s.
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Consider the components Fs with s ∈ {1, . . . , p}. The level functions ` defined in the pre-
ceding lemmas can be directly used to obtain appropriate elimination trees EFs of height k with
the property that all levels in {1, . . . , k} are visible in Fs from its root rs. Consequently, taking
into account s − 1 stars with the centers vs,1, . . . , vs,s−1 adjacent to rs, we use Lemma 3.1 to
infer that for each s ∈ {1, . . . , p} all levels in {1, . . . , k + s− 1} are visible from rs in T . This in
turn implies `({q, rs}) ≥ k+ s for all s ∈ {1, . . . , p}. Since by assumption h(ET ) ≤ k+ p, we get
`({q, rp}) = k + p. Now, simple induction going downwards on s shows the desired equalities
`({q, rs}) = k + s for all s in concern. The values of the level function for the remaining edges
follow easily by Lemma 3.1.

Since by assumption EF is b-bounded, concerning the width of ET it is enough to estimate
the contribution of the edges of T that do not belong to E(F ). Observe that the set of such
edges can be partitioned into p(p− 1)/2 + 1 subsets each of which constitutes the edge set of a
star with the center either in q or vs,1, . . . , vs,s−1, where s ∈ {2, . . . , p}. Now, the claim follows
by the fact that each edge of an arbitrary star contributes to a different level, and because each
of the above-mentioned p(p− 1)/2 + 1 stars must contribute to the first level.

The proof that given a bT -bounded elimination tree ET of height kT it is possible to find a
b-bounded elimination forest EF of height at most k is based on analogous properties.

4 The approximation algorithm

We start with a few additional definitions. For an elimination tree ET and its vertex v, we denote
by ET [v] the subtree of ET induced by v and all its descendants in ET . By lowering a vertex v we
mean a two-phase operation of moving all vertices in ET [v] one level down in ET (i.e., decreasing
`(u) by 1 for each u ∈ V (ET [v])) and if for the resulting function there is a vertex u ∈ V (ET [v])
with `(u) ≤ 0, then incrementing `(w) for each w ∈ V (ET ). (The former ‘normalization’ is
to ensure that levels are positive integers.) Note that this is always feasible, however it may
produce an elimination tree whose height is larger than that of the initial tree. We say that an
elimination tree ET is compact if every subtree of ET occupies a set of consecutive levels in ET .
This condition can be easily ensured in linear time. Namely, for each {v, u} ∈ E(ET ) such that
`(v) < `(u)− 1, increment the level of v and all its descendants.

Given an elimination tree ET , we distinguish a specific type of the root-leaf paths. Namely,
by a trunk we mean a path (v1, . . . , vk) from the root vk to an arbitrary leaf v1 at level 1 of
ET (note that only leaves at level 1 are admissible). We use trunks to define branches at the
vertices vi with i ∈ {2, . . . , k} of the trunk (v1, . . . , vk), where for particular vertex vi a branch
is understood as a subtree ET [v] with v being a child of vi such that v 6= vi−1. Since elimination
trees we consider are binary trees, a branch with respect to a given trunk is uniquely determined.
For any elimination tree ET , the b highest levels are called its prefix. We also say that a subtree
of ET is small if it has at most b vertices; otherwise it is large. A subtree of ET is thin if in each
level it has at most one vertex. A level of an elimination tree is full if it has at least b vertices.

4.1 Preprocessing steps

In this section we introduce operations of stretching and sorting of elimination trees that con-
stitute two major steps of the preprocessing phase of our algorithm.

We start with an operation of stretching a subtree ET [v]. If the subtree is thin or its height is
at least b, then stretching leaves the subtree unchanged. Otherwise, as we will see later on, it is
enough to consider the case in which a vertex v at level l has two children u1 and u2 at level l−1
such that both ET [u1] and ET [u2] are thin and compact. Let li denote the lowest level occupied
by a vertex of ET [ui], i ∈ {1, 2}, so the levels occupied by the vertices of ET [ui] are li, . . . , l − 1.
Then, stretching ET [v] is realized by lowering l− l1 times the vertex u2 so that it is placed at the
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level l1 − 1. Consequently, ET [v] becomes thin and occupies at most 2l − l1 − l2 + 1 levels with
the root v at level l, the vertices of ET [u1] remaining at levels in l1, . . . , l − 1 and the vertices
of ET [u2] moved to the levels in l1 − l + l2, . . . , l1 − 1. (For simplicity of description, we refered
here to the levels of all vertices according to the level function of the initial elimination tree, i.e.,
before it has been subject to the ‘normalization’ applied after each lowering of a vertex.) For
an elimination tree ET , a stretched elimination tree E ′T is obtained by stretching each subtree
ET [v] of ET , where the roots v are selected in postorder fashion, i.e., for each v we stretch the
subtrees rooted at the children of v before stretching ET [v]. Clearly, the transition from ET to
E ′T can be computed in linear time.

Observation 4.1. If E ′T is a stretched elimination tree obtained from a compact elimination
tree ET , then h(E ′T ) ≤ h(ET ) + 2b and E ′T is compact. Moreover, if for a vertex v, ET [v] is large,
then E ′T [v] has height at least b.

Proof. Consider an arbitrary vertex ET [v] for which stretching performs a modification. Thus,
the subtrees rooted at the children of v are thin and both are of height at most b−2 because the
height of ET [v] is at most b − 1. Then, stretching ET [v] gives a new subtree rooted at v whose
height equals the number of vertices of ET [v], which is at most 1 + 2(b − 2) = 2b − 1.

Suppose that ET is an elimination tree with a vertex z1 and its child z2. A switch of z1 and
z2 is the operation performed on ET as shown in Figure 8 (intuitively, the switch presented in the
figure results in exchanging the roles of the subtrees ET [z3] and ET [z4] while the aim of switching
is to obtain a type of ordering of the subtrees). We note that this concept has been used on a
wider class of non-binary elimination trees under the names of tree rotations or reorderings; we
refer the reader e.g. to [22]. At this point we define switching with no connection to whether
z1 and z2 belong to a given trunk or not. Later on, we will use this operation with respect
to the location of particular trunks. It is not hard to see that if the above switch operation is
performed on an elimination tree for graph G, then the resulting tree is also an elimination tree
for that graph.

We say that ET is sorted along a trunk (v1, . . . , vk) (recall that vk is the root) if the height
of the branch at vi is not larger than the height of the branch at vi+1, where i ∈ {2, . . . , k − 1}.
Now, we say that ET is sorted if for each vertex v of ET , the subtree ET [v] is sorted along each
of its trunks. It is important to note that the notion of a trunk pertains to any elimination tree
and hence can be equally applied not only to ET but also to any of its subtrees.

Lemma 4.1. For each tree T , there exists a sorted ET of minimum height and it can be computed
in polynomial time.

Proof. For an elimination tree of minimum height, consider the number of vertices z1 such that
the branch at z1 has smaller height than the branch at its child z2. Call it a reversed pair. (We
use the symbols from the definition of the switch; see also Figure 8). For each reversed pair
consider the distance i of the vertex z1 from the root and consider a parameter that we call the
level count that is the sum of i’s for all the reversed pairs.

Take the lowest vertex z1 that constitutes a reversed pair with z2. The switch shown in
Figure 8 results in the situation that z1 and z2 are no longer a reversed pair. Note that z1
may form a new reversed pair with its child. However, the level count increases by at least one.
The final level count for any elimination tree is O(n2). Moreover, we start with any elimination
tree of minimum height, which can be computed in linear time [20, 25]. Thus, sorting takes
polynomial time.

4.2 Formulation of the algorithm

Informally, the algorithm proceeds as follows. It starts with a minimum height elimination tree
that is stretched and sorted. In each iteration of the main loop of the algorithm the following
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Figure 8: A switch of z1 and z2: (a) ET ; (b) the levels shown on the tree T , where each vertex
zi in ET corresponds to the edge ei in T ; (c) ET after the switch; (d) the corresponding levels in
T .

takes place. If the current elimination tree is b-bounded, then the algorithm finishes by returning
this tree. Otherwise, the algorithm finds the highest level that has more than b vertices and
takes the lowest subtree rooted at a vertex v of this level. Then, v is lowered.

Algorithm BTD: bounded-width tree-depth approximation for L(T )

1 Let ET be a minimum height compact elimination tree for L(T )
2 Obtain E0T by first making ET stretched and then sorted
3 t← 0
4 while E tT is not b-bounded do
5 Find the highest level lt such that |Llt(E tT )| > b
6 v ← arg minu h(E tT [u]), where u iterates over all vertices in Llt(E tT )

7 Obtain E t+1
T by lowering v in E tT and increment t

8 return E tT

4.3 Analysis

Since lowering any vertex results in an elimination tree, the final tree EτT is an elimination tree.
In each iteration of the main loop the width of the currently highest level lt of size larger than
b decreases. Thus, the number of iterations can be trivially bounded by O(n2). Hence, EτT is a
b-bounded elimination tree for L(T ). It remains to upper-bound its height. An outline of the
argument is as follows.

First, we introduce a structural property of an elimination tree: if we iterate over the con-
secutive levels, starting at the level at distance b from the root and going ‘downwards’, then
we keep processing full levels for a number of steps and once we reach a level l that is not full,
all the remaining levels below l are not full as well. More formally, let l1 < l2 < · · · < ld be
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the full levels of an elimination tree ET , except for the highest b − 1 levels. We say that ET is
structured if either all full levels belong to the prefix or ld = h(ET )− b + 1 and li = li−1 + 1 for
each i ∈ {2, . . . , d}. In other words, in a structured elimination tree the full levels that are not
in the prefix form a consecutive segment that reaches the lowest level of the prefix minus one.
In this context we prove that E0T obtained at the beginning of Algorithm BTD has the above
property (cf. Lemma 4.2).

Next, it is important that we keep another invariant along the iterations of the main loop
(i.e., when we transform E t−1T to E tT ). Namely, if some level h(E tT )− l becomes full, then the level
right above it (i.e., h(E tT )− l + 1) should be also full at this point, and both levels should stay
full in the future iterations: the levels h(E t′T )− l and h(E t′T )− l + 1 are full for each t′ ≥ t. This
is proved in Lemma 4.3 and essentially means that starting with a structured E0T , subsequent
trees E tT , t > 0, remain structured.

Finally, in Lemma 4.4 we prove that in the final elimination tree EτT , if its height increased
with respect to E0T , then at most b levels are not full. Moreover, in the case when h(EτT ) = h(E0T ),
due to Observation 4.1 the height is additively at most 2b from btd(L(T ), b). Altogether, the
above properties ensure the required approximation bound.

Lemma 4.2. E0T is structured.

Proof. We may assume that E0T is large as otherwise the lemma follows. Note that E0T is compact
due to Observation 4.1 and the fact that ET computed at the beginning of Algorithm BTD is
compact. We describe the following process of constructing a subset D of vertices of E0T . Let
initially D consist of the root only. Suppose that there exists v ∈ D such that E0T [v] is not thin
and v has two children u and u′ such that both E0T [u] and E0T [u′] have vertices at the lowest level
of the prefix. Then do the following: remove v from D and add u and u′ to D; call it a split of
v. Repeat this modification splitting the vertices in D as long as D contains a vertex v that can
be split. Note that no vertex v at the lowest level of the prefix admits splitting, since v has no
child in the prefix and hence the process of subsequent splits will not continue for vertices below
the level h(E0T )− b+ 2. Observe also that the split of v implies that u and u′ are one level lower
than v because E0T [v] is not thin. Hence, by construction, v has two children that have not been
lowered during stretching. For any two vertices in D, they are not related in E0T , i.e., one is not
the ancestor/descendant of the other.

As the first case consider |D| ≥ b. This implies that the lowest level of the prefix is full
because each vertex in D provides a unique vertex that belongs to the lowest level h(E0T )− b + 1
of the prefix. Let l ≤ h(E0T ) − b + 1 be the lowest level such that all levels between l and
h(E0T ) − b + 1 are full. Thus, in order to prove that E0T is structured it is enough to show that
no level below l is full. We will say that a subtree E0T [u], for any vertex u, is simple if E0T [u] has
a trunk such that each of its branches is thin. (Informally, such a subtree is a leaf-root path
with thin subtrees attached to the vertices of the path.) Consider any v ∈ Ll(E0T ) at level l. We
will argue by contradiction that E0T [v] is simple. If E0T [v] is not simple, then both children of v
are roots of large subtrees. But since E0T is sorted, each ancestor of v has two children that are
large. Since l ≤ h(E0T )−b +1, i.e., v does not belong to the prefix, v has at least b−1 ancestors.
This however implies that, considering v and its b − 1 immediate ancestors, at least b pairwise
different subtrees intersect level l− 1. Thus, level l− 1 is full — a contradiction with the choice
of l. Then, using the fact that E0T [v] is simple, we have that for each v ∈ Ll(E0T ) there exists
its farthest ancestor a(v) such that E0T [a(v)] is simple (note that a(v) = v is allowed thus a(v)
exists). Moreover, the vertices a(v) are pairwise different by the definition of a simple tree. For
each v ∈ Ll(E0T ), since E0T [a(v)] is sorted,

|V (E0T [a(v)]) ∩ Ll′−1(E0T )| ≤ |V (E0T [a(v)]) ∩ Ll′(E0T )| (8)

for each level l′ ≤ l. (Intuitively and informally, as we go down along the tree, the sizes of the
levels decrease.) Using this inequality for each individual simple tree E0T [a(v)] for v ∈ Ll(E0T )
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and taking a union of all of them, we have |Ll−1(E0T )| ≥ |Ll−2(E0T )| ≥ · · · ≥ |Ll′(E0T )| for each
l′ ≤ l − 2. Using |Ll−1(E0T )| < b (level l − 1 is not full because of the choice of l), we have that
|Ll′(E0T )| < b for each l′ < l, which proves that E0T is structured in case when |Ll(E0T )| ≥ b.

Suppose now that |D| < b. First observe that no vertex in D belongs to the lowest level
of the prefix because otherwise a split of each ancestor of v has occurred, which would mean
that |D| ≥ b. The latter is true because each split by definition increments the size of D. For
each v ∈ D, the subtree E0T [v] is simple, since otherwise v has two children whose subtrees are
large. By construction, these children are located at level directly below v. Since the subtrees
are large, they intersect the lowest level of the prefix. Moreover, we argued that v is not at the
lowest level of the prefix and hence v is admissible for a split, which gives a contradiction. Since
E0T [v] is sorted (because E0T is sorted), the lengths of the branches do not increase as we go from
the root of E0T [v] towards the leaf of the trunk. This means that for each level l ≤ h(E0T )− b + 1,

|V (E0T [v]) ∩ Ll(E0T )| ≥ |V (E0T [v]) ∩ Ll−1(E0T )|.

This inequality crucially depends on the fact that the branch at v (which is the longest branch)
does not intersect the lowest level of the prefix, and on the fact that no vertex in D is at the
lowest level of the prefix. (Note that the branch at v does not intersect the lowest level of the
prefix for otherwise there would be a split at v.) Thus, the inequality implies that if the lowest
level of the prefix has less than b vertices, then each level that is not in the prefix has less than
b vertices, which is argued similarly as on the basis of Inequality (8) in case of |D| ≥ b, which
completes the proof.

Lemma 4.3. Consider an arbitrary t ≥ 0 and the sizes st−1 and st of the levels at the same
fixed distance d′ from the roots in E t−1T and E tT , respectively. If st−1 ≥ b, then st ≥ b. If st−1 < b
and st ≥ b, then the level at distance d′ − 1 from the root in E tT is full.

Proof. Denote by lt−1 = h(E t−1T )−d′ and lt = h(E tT )−d′ the two levels of E t−1T and E tT at distance
d′ from the root, respectively. Let d be the level at which there is the root of the subtree of
E t−1T that is lowered in the t-th iteration. Denote by v1, . . . , vp the vertices of the level d in E t−1T

sorted so that h(E t−1T [v1]) ≥ · · · ≥ h(E t−1T [vp]). In the t-th iteration, p = |Ld(E t−1T )| > b. The
lowered vertex is vp because the algorithm selects the subtree of minimum height.

If st−1 = st, then the lemma follows so assume that st−1 6= st. Thus, it holds d ≥ lt−1
because if level d is below the level lt−1, then lowering the subtree E t−1T [vp] with vp at level d
would not change the sizes of levels above level d, in particular the size of level lt−1, which would
imply st−1 = st and contradict our assumption. By the same argument, the subtree E t−1T [vp]
intersects the level lt in E tT .

Since E0T is compact, the subtree E t−1T [vp] is compact. If E t−1T [vp] is small, then we use the
following argument: E t−1T [vp] is thin and thus in particular has a one-vertex intersection with
the level lt in E tT and, since st−1 6= st, it does not intersect the level lt−1 in E t−1T . Since it is
compact, it intersects all levels lt−1 + 1, . . . , d in E t−1T . Moreover, st = st−1 + 1, which completes
the proof. Also, if st ≥ b, then p subtrees intersect the level lt−1 in E tT , which proves the second
claim from the lemma because p > b.

If all p subtrees rooted at the level d in E t−1T are large, then due to the ordering of them and
since E0T is compact, all of these subtrees intersect the level lt. Hence st ≥ b.

Lemma 4.4. Let EτT be the elimination tree returned by Algorithm BTD. If h(EτT ) > h(E0T ), then
at most b levels of EτT are not full.

Proof. The levels that may not be full in EτT are b − 1 highest levels and level 1. The argument
follows by an induction on the number of iterations. The base case is covered by Lemma 4.2,
and the inductive step is due to Lemma 4.3. More precisely, if the height of the elimination tree
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increases in a particular iteration, then level 2 must be full, and consequently all the other levels
except for the highest b − 1 and level 1 are full.

Proof of Theorem 1.2. The complexity follows from Lemma 4.1.
Suppose first that h(EτT ) = h(E0T ). By Observation 4.1, h(E0T ) ≤ h(ET ) + 2b because sorting

does not increase the height of an elimination tree. Hence in this case the theorem follows
because btd(L(T ), b) ≥ h(E0T ). Suppose now that h(EτT ) > h(E0T ). By Lemma 4.4, at most b
levels of EτT are not full. Thus, h(EτT ) ≤ b + m

b , where m is the number of edges of T . The lower
bound of btd(L(T ), b) ≥ m

b completes the proof.
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