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String Compression in FA–Presentable Structures

Dmitry Berdinsky ∗ Sanjay Jain † Bakhadyr Khoussainov ‡

Frank Stephan §

Abstract

We construct a FA–presentation ψ : L → N of the structure (N; S) for
which a numerical characteristic r(n) defined as the maximum number
ψ(w) for all strings w ∈ L of length less than or equal to n grows
faster than any tower of exponents of a fixed height. This result leads
us to a more general notion of a compressibility rate defined for FA–
presentations of any FA–presentable structure. We show the existence
of FA–presentations for the configuration space of a Turing machine and
Cayley graphs of some groups for which it grows faster than any tower of
exponents of a fixed height. For FA–presentations of the Presburger arith-
metic (N; +) we show that it is bounded from above by a linear function.
Keywords FA–presentation, FA–presentable structure, successor func-
tion, Presburger arithmetic, compressibility rate

1 Introduction

A FA–presentable structure is a relational structure A = (D;R1, . . . , Rk) admitting
presentations by finite automata. In brief, for a FA–presentable structure A there
should exist a surjective map ψ : L → D between some regular language L and the
domain D of the structure A such that each relation Ri, i = 1, . . . , k is recognized
by a multi–tape synchronous finite automaton and the equality relation {(u, v) ∈ L2 :
ψ(u) = ψ(v)} is recognized by a two–tape synchronous automaton. The language L
can be thought of as a language of normal forms (not necessarily unique) for elements
of D. The map ψ : L → D is called a FA–presentation of the structure A.

FA–presentable structures are often referred to as automatic structures in the lit-
erature. The term automatic structure is also used in the theory of automatic groups
[10], but with the different meaning. In order to avoid misinterpretation, in this pa-
per we use the term FA–presentable structure. The field of FA–presentable structures
can be traced back to the pioneering works by Hodgson [12, 13]. The systematic
study of FA–presentable structures was initiated independently by Khoussainov and
Nerode [19] and Blumensath and Grädel [4, 5]. For survey articles in FA–presentable
structures the reader is referred to [11, 18, 23, 24].

Each FA–presentable structure admits infinitely many FA–presentations which can
differ from each other significantly or may exhibit unexpected behaviour compared to
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natural FA–presentations. For example, in [1] the authors construct a FA–presentation
of (Z[1/p]; +) for which the subgroup of integers Z 6 Z[1/p] is not regular and in
[22] the authors construct FA–presentations of (Z2; +) for which none of the cyclic
subgroups is regular.

In this paper we look at FA–presentations from a numerical perspective. We
define a numerical characteristic of a FA–presentation ψ : L → N of the structure
(N; S) as follows. Let r(n) be the maximum ψ(w) for all strings w ∈ L of length
less than or equal to n. For example, for a unary presentation of (N; S) the function
r(n) has a linear growth while for a binary presentation it grows like an exponential
function. For infinitely many positive integers n, those for which r(n − 1) < r(n),
the value r(n)

n
can be thought of as a compression ratio – for these integers n the

number r(n) is represented by a string of length exactly n. We first notice that for
each FA–presentation of the Presburger arithmetic (N; +) the growth of r(n) is at
most exponential, see Lemma 2. Then we show that in general it is not true for
FA–presentations of (N; S) which comprise all FA–presentations of (N; +). Namely,
we construct a FA–presentation of (N; S) for which r(n) grows at least as fast as the
function T (n) defined recursively by the identity T (n+ 1) = 2T (n) for n > 0 and the
initial condition T (0) = 1, see Theorem 12. In particular, r(n) grows faster than any
tower of exponents of a fixed height (see Corollary 13)1.

These results lead to a natural notion of a compressibility rate s(n) of one FA–
presentation ψ : L → D relative to another ψ0 : L0 → D for any given FA–presentable
structure A with the domain D. The function s(n) is defined as the maximal length
of a shortest normal form with respect to ψ0 for elements of the domain D having
normal forms of length less than or equal to n with respect to ψ, see Definition 14.
Then Theorem 12 means that there exists a FA–presentation of (N; S) for which the
compressibility rate s(n) relative to a unary presentation of (N; S) grows at least as fast
as the function T (n). We give more examples of FA–presentable structures, including
the configuration spaces of one–tape Turing machines and Cayley graphs, for which
there are FA–presentations ψ0 and ψ such that the compressibility rate of ψ relative to
ψ0 grows at least as fast as the function T (n). However, for the Presburger arithmetic
(N; +) we show that the compressibility rate is always bounded from above by a linear
function, see Theorem 15.

The rest of the paper is organized as follows. In Section 2 we briefly recall neces-
sary definitions from the field of FA–presentable structures. In Section 3 we discuss
a numerical characteristic r(n) for FA–presentations of (N; S) and construct a FA–
presentation for which r(n) grows at least as fast as the function T (n). In Section 4
we introduce a more general notion of compressibility rate s(n) for FA–presentations
of any FA–presentable structure and show that s(n) is bounded from above by a linear
function for FA–presentations of the Presburger arithmetic (N; +). In Sections 5 and 6
we show examples of FA–presentations for the configuration space of a Turing machine
and Cayley graphs of some Cayley automatic groups for which the compression rate
grows at least as fast as the function T (n). Section 7 concludes the paper.

2 Preliminaries

In this section we recall necessary definitions and notations from the field of FA–
presentable structures. We assume that the reader is familiar with the basics of finite
automata theory.

1The original motivation for considering such FA–presentations of (N; S) came from the
study of a so–called Cayley distance function [3, 7] defined for FA–presentations of Cayley
graphs of Cayley automatic groups [17]. In particular, Corollary 13 implies the existence of a
FA–presentation of a Cayley graph for which the Cayley distance function grows faster than
any tower of exponents [9, Remark 6.3].
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Let Σ be an alphabet. For a given string w ∈ Σ∗ we denote by |w| the length of w.
We write Σ⋄ for the alphabet Σ⋄ = Σ ∪ {⋄}, where the padding symbol ⋄ is not in Σ.
For a k–tuple of strings (w1, . . . , wk) ∈ Σ∗k the convolution w1 ⊗ · · · ⊗ wk ∈ Σk∗

⋄ is a
string of length |w| = max{|wi| : i = 1, . . . , k} defined as follows. For the jth symbol
(σ1, . . . , σk) of w, the symbol σi for i = 1, . . . , k is the jth symbol of wi if j 6 |wi| and
σi = ⋄, otherwise.

For a given relation R ⊆ Σ∗k we denote by ⊗R the language ⊗R = {w1 ⊗· · ·⊗wk :
(w1, . . . , wk) ∈ R} ⊂ Σk∗

⋄ . The relation R is called FA–recognizable if the language ⊗R
is regular. A FA–recognizable relation is also often referred to as an automatic relation.
Alternatively, R can be thought of as a relation recognized by a synchronous k–tape
finite automaton – a one–way Turing machine with k input tapes.

For a k–ary function f : Dk → D we define the Graph f to be the relation:

Graph f = {(a1, . . . , ak, f(a1, . . . , ak)) : (a1, . . . , ak) ∈ Dk} ⊆ Dk+1.

Similarly, we say that a k–ary function f : Dk → D, where D ⊆ Σ∗, is FA–recognizable
if the relation Graph f is FA–recognizable. A FA–recognizable function is also often
referred to as an automatic function.

A structure A = (D;R1, . . . , Rℓ, f1, . . . , fm) consists of a countable domain D,
relations R1, . . . , Rℓ and functions f1, . . . , fm on D. Let ψ : L → D be a surjective
mapping from a language L ⊆ Σ∗ to the domain D. For a given relation R ⊆ Dn we
denote its preimage with respect to ψ by R̃:

R̃ = {(w1, . . . , wn) ∈ Ln : (ψ(w1), . . . , ψ(wn)) ∈ R}.

We say that ψ : L → D is a FA–presentation of the structure A if L is a regular lan-
guage and the relations R̃1, . . . , R̃ℓ and ˜Graph f1, . . . , ˜Graph fm are FA–recognizable
and the equality relation {(u, v) ∈ L2 : ψ(u) = ψ(v)} is FA–recognizable. We say that
the structure A is FA–presentable if it admits a FA–presentation. FA–presentable
structures, for example, include (N; +), (Zn; +), the configuration spaces of Turing
machines and Cayley graphs of Cayley automatic groups2.

3 Compressing Natural Numbers

In this section we introduce a numerical characteristic r(n) for FA–presentations of
the structure (N; S). We first show that r(n) is bounded from above by an exponen-
tial function for each FA–presentation of the Presburger arithmetic (N; +). Then we
construct a FA–presentation of the structure (N; S) for which r(n) grows faster than
any tower of exponents of a fixed height.

We denote by N the set of natural numbers which includes zero and by S a successor
function defined on N by the identity S(x) = x + 1. Let L ⊆ Σ∗ be a language and
ψ : L → N be a FA–presentation of the structure (N; S). For a given integer n > 0 we
define L6n to be the set of strings of the language L of length less than or equal to n:
L6n = {w ∈ L : |w| 6 n}.

Definition 1. For a given FA–presentation ψ : L → N of the structure (N; S) we
denote by r the function r : N → N defined by the identities r(n) = max{ψ(w) : w ∈
L6n} if L6n 6= ∅ and r(n) = 0 if L6n = ∅.

2Recall that a finitely generated group G is called Cayley automatic if its Cayley graph
Γ(G, S) for some finite set of generators S ⊂ G is a FA–presentable structure. A FA–
presentation ψ : L → G of the Cayley graph Γ(G, S) is called a Cayley automatic represen-
tation of the group G. Cayley automatic groups [17] naturally extend the class of automatic
groups [10] studied in geometric group theory.
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The function r(n) is a numerical characteristic of a FA–presentation ψ : L → N

showing how large the number ψ(u) ∈ N can be for a string u ∈ L of length at most
n. For given nondecreasing functions r : N → N and s : N → N we say that s > r
(a function s is greater than or equal to a function r) if there exists an integer N for
which s(n) > r(n) for all n > N . The following proposition shows that if ψ : L → N

is a FA–presentation of the structure (N; +), then r is less than or equal to some
exponential function.

Lemma 2. Let ψ : L → N be a FA–presentation of the structure (N; +). There exists
a constant σ > 0 such that the exponential function σn is greater than or equal to r(n).

Proof. Without loss of generality we can assume that ψ : L → N is bijective. Indeed,
let L′ = {u ∈ L : ∀v [ψ(u) = ψ(v) =⇒ u 6llex v]} and ψ′ : L′ → N be the restriction
of ψ onto L′ ⊆ L, where 6llex is a length–lexicographic ordering. The mapping
ψ′ : L′ → N is a bijective FA–presentation of the structure (N; +). Furthermore, the
function r′(n) = max{ψ′(w′) : w′ ∈ L′6n} is equal to r(n) = max{ψ(w) : w ∈ L6n}.

Now we notice that there exists a constant c > 0 such that for every triple u, v, w ∈
L for which ψ(u)+ψ(v) = ψ(w) the inequality max{|u|, |v|} 6 |w|+c holds. This can be
shown as follows. Since the relation R = {(u, v, w) ∈ L3 : ψ(u)+ψ(v) = ψ(w)} ⊆ Σ3∗

⋄

is 3–tape FA–recognizable, there exists a finite automaton M recognizing the language
⊗R = {u ⊗ v ⊗ w |ψ(u) + ψ(v) = ψ(w)}. Let c be the number of states in M. If
max{|u|, |v|} > |w| + c, then by the same argument as in the pumping lemma there
exist x, y, z ∈ Σ3∗

⋄ for which u ⊗ v ⊗ w = xyz, |x| > |w| and |y| 6 c such that every
string xynz, n > 0 is in the language ⊗R. This implies that there are infinitely many
u′, v′ ∈ L for which ψ(u′) + ψ(v′) = ψ(w). As ψ : L → N is bijective, we immediately
get a contradiction. Therefore, max{|u|, |v|} 6 |w| + c.

Let m = ψ(w) and k = |w| + c. There exist exactly m+ 1 pairs u, v ∈ L for which
ψ(u) + ψ(v) = m obtained from the m + 1 identities: 0 + m = m, 1 + (m − 1) =
m, . . . ,m + 0 = m. On the other hand, the number of such pairs is bounded from
above by 1 + µ+ · · · + µk

6
µk+1−1

µ−1
6 µk+1, where µ = #Σ is the number of symbols

in the alphabet Σ. It is assumed that µ > 1 as there exists no FA–presentation of the
structure (N; +) over a unary alphabet (this can be proved using the pumping lemma).
Therefore, m 6 m + 1 6 µk+1 which implies that ψ(w) 6 µc+1µ|w|. Therefore, for
every w ∈ L6n we have: ψ(w) 6 µc+1µn. This implies that for any σ > µ, the function
σn is greater than or equal to r(n).

Remark 3. We note that the proof of Lemma 2 cannot be generalized for the structure
(Z; +) as for every m ∈ Z there exist infinitely many m1,m2 ∈ Z for which m1 +m2 =
m. Recall that the problem whether there exists a FA–presentation of (Z; +), for which
the set of all nonnegative integers {z ∈ Z : z > 0} is not regular, is open, see [15, 16].
For an example of a FA–presentation of (Z; S) for which the set of all nonnegative
integers {z ∈ Z : z > 0} is not regular see [20]. So the question whether the function
r̃(n), defined as r̃(n) = max{|ψ(w)| : w ∈ L6n} if L6n 6= ∅ and r̃(n) = 0 if L6n = ∅,
is bounded from above by an exponential function for each FA–presentation ψ : L → Z

of (Z; +) cannot be trivially reduced to Lemma 2.

Below we show that Lemma 2 fails to hold for some FA–presentations of the struc-
ture (N; S) by constructing a concrete example for which the function r(n) grows faster
than any tower of exponents of an arbitrary height, see Corollary 13.

Let V be a set of all tuples v = (a, b, c, d) for which a, b, c and d are integers such
that the following three conditions are satisfied:

I) a > 0, b > 0, c ∈ {2k : k > 0} and d ∈ {0, 1};

II) if a > 0 and b = 0, then c > 1;

III) if a = 0, then c = 1.
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We define the function f : V → V according to the following six rules:

1) if d = 0, a > 0 and b > 0, then f : (a, b, c, 0) 7→ (a, b− 1, 2c, 0);

2) if d = 0, a > 0 and b = 0, then f : (a, 0, c, 0) 7→ (a− 1, c, 1, 0);

3) if d = 0, a = 0, then f : (0, b, 1, 0) 7→ (0, b+ 1, 1, 1);

4) if d = 1, c > 1, then f : (a, b, c, 1) 7→ (a, b+ 1, c
2
, 1);

5) if d = 1, c = 1 and b ∈ {2k : k > 0}, then f : (a, b, 1, 1) 7→ (a+ 1, 0, b, 1);

6) if d = 1, c = 1 and b /∈ {2k : k > 0}, then f : (a, b, 1, 1) 7→ (a, b, 1, 0).

For example, let us consecutively apply the function f twenty three times to the tuple
(0, 0, 1, 1). We obtain:

(0, 0, 1, 1)
6
−→ (0, 0, 1, 0)

3
−→ (0, 1, 1, 1)

6
−→ (0, 1, 1, 0)

3
−→ (0, 2, 1, 1)

5
−→ (1, 0, 2, 1)

4
−→

(1, 1, 1, 1)
6
−→ (1, 1, 1, 0)

1
−→ (1, 0, 2, 0)

2
−→ (0, 2, 1, 0)

3
−→ (0, 3, 1, 1)

6
−→ (0, 3, 1, 0)

3
−→

(0, 4, 1, 1)
5
−→ (1, 0, 4, 1)

4
−→ (1, 1, 2, 1)

4
−→ (1, 2, 1, 1)

5
−→ (2, 0, 2, 1)

4
−→ (2, 1, 1, 1)

6
−→

(2, 1, 1, 0)
1
−→ (2, 0, 2, 0)

2
−→ (1, 2, 1, 0)

1
−→ (1, 1, 2, 0)

1
−→ (1, 0, 4, 0)

2
−→ (0, 4, 1, 0),

where each of the numbers above the arrows indicates one of the six rules defining the
function f . Note that the tuple (0, 0, 1, 1) does not have a preimage with respect to f .

Proposition 4. The function f : V → V is correctly defined.

Proof. In order to verify that f : V → V is correctly defined one needs to check that
for each of the six rules: if v ∈ V , then f(v) ∈ V . That is, if the conditions I, II and III
hold for the tuple v, then they hold for the tuple f(v) as well. Clearly, the condition
I holds for all f(v), v ∈ V .

Let us check it for the condition II. For the rule 1 we have f(v) = (a, b− 1, 2c, 0),
so 2c > 1; therefore, the conclusion of the condition II holds for f(v). For the rule 2 we
have f(v) = (a−1, c, 1, 0) for c > 0, so the assumption of the condition II is not valid for
f(v). For the rule 3 we have f(v) = (0, b+ 1, 1, 1), so the assumption of the condition
II is not valid for f(v) as b + 1 > 0. For the rule 4 we have f(v) = (a, b + 1, c

2
, 1),

so the assumption of the condition II is not valid for f(v) as b + 1 > 0. For the
rule 5 we have f(v) = (a + 1, 0, b, 1) for b ∈ {2k : k > 0}, so b > 1; therefore, the
conclusion of the condition II holds for f(v). For the rule 6 we have f(v) = (a, b, 1, 0)
for b /∈ {2k : k > 0}. If a > 0 and b = 0, then v = (a, b, 1, 1) cannot be in V as the
condition II is not satisfied for v.

Now let us check it for the condition III. For the rule 1 we have f(v) = (a, b−1, 2c, 0)
for a > 0, so the assumption of the condition III is not valid for f(v). For the rule 2
we have f(v) = (a−1, c, 1, 0), so the conclusion of the condition III holds for f(v). For
the rule 3 we have f(v) = (0, b + 1, 1, 1), so the conclusion of the condition III holds
for f(v). For the rule 4 we have f(v) = (a, b+ 1, c

2
, 1). If c

2
> 1, then c > 1. Therefore,

if a = 0, then v = (a, b, c, 1) cannot be in V as the condition III is not satisfied for
v. For the rule 5 we have f(v) = (a + 1, 0, b, 1), so the assumption of the condition
III is not valid for f(v) as a+ 1 > 0. For the rule 6 we have f(v) = (a, b, 1, 0), so the
conclusion of the condition III is valid for f(v).

Proposition 5. The function f : V → V is one–to–one.

Proof. In order to verify that f : V → V is a one–to–one correspondence one needs to
check that for each pair of rules i and j, where i, j = 1, . . . , 6, for all u ∈ V and v ∈ V
for which the ith and jth rules are applied to u and v, respectively, if f(u) = f(v),
then u = v. Clearly, this holds if i = j. Also, if i and j belong to the different sets of
rules {1, 2, 6} and {3, 4, 5}, then f(u) 6= f(v) because the fourth components of f(u)
and f(v) are different.
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Let i, j ∈ {1, 2, 6}. If i = 1 and j = 2 or j = 6, for u = (a, b, c, 0) the equation
f(u) = f(v) implies that 2c = 1 which is impossible. If i = 2 and j = 6, for u =
(a1, 0, c1, 0) and v = (a2, b2, 1, 1) the equation f(u) = f(v) implies that c1 = b2. By
the condition II we have that c1 > 1, so c1 ∈ {2k : k > 0}. However, b2 /∈ {2k : k > 0},
so the equation c1 = b2 is impossible.

Let i, j ∈ {3, 4, 5}. If i = 5 and j = 3 or j = 4, the equation f(u) = f(v)
is impossible because the second component of f(u) is equal to 0 while the second
component of f(v) is equal to b + 1 > 0 in both cases. If i = 3 and j = 4, for
v = (a, b, c, 1) the equation f(u) = f(v) implies that a = 0. By the condition III we
have that c = 1. However, in the assumption of the rule 4 we have that c > 1.

For a given integer h > 0 we define T (h) recursively by the formula T (h+1) = 2T (h)

and the initial condition T (0) = 1. Let T be a set of towers of exponents T = {T (h) :

h > 0}; that is, T = {1, 2, 4, 16, . . . , 22...
2

, . . . }.

Lemma 6. For each tuple of the form v = (0, 2m, 1, 1) for which 2m /∈ T there is an
integer n > 0 for which fn(v) = (0, 2m+1, 1, 1).

Proof. Since m > 1 (otherwise 2m ∈ T ), we have that 2m ∈ {2k : k > 0}. Applying
the rule 5 to v we obtain that f(v) = (1, 0, 2m, 1). Applying repeatedly the rule 4 to
(1, 0, 2m, 1) we obtain the tuple (1,m, 1, 1). If m ∈ {2k : k > 0}, we continue applying
the rules 5 and 4 to obtain (2, log2 m, 1, 1). Continuing this process one gets a tuple
(ℓ + 1, r, 1, 1), where ℓ > 0 and r = log2(. . . (log2 m) . . . ) /∈ {2k : k > 0} is obtained
recursively from m by applying the operator log2 exactly ℓ times. Moreover, it follows

from 2m /∈ T that r > 1. We have (ℓ+ 1, r, 1, 1)
6
−→ (ℓ+ 1, r, 1, 0). Applying repeatedly

the rules 1 and 2 to the tuple (ℓ+ 1, r, 1, 0) we obtain the tuple (0, 2m, 1, 0). Then we

have that (0, 2m, 1, 0)
3
−→ (0, 2m + 1, 1, 1). Applying repeatedly the rules 6 and 3 to

(0, 2m + 1, 1, 1) one finally gets the tuple (0, 2m+1, 1, 1).

Lemma 7. For each tuple of the form v = (0, 2m, 1, 1) for which 2m ∈ T there exists
an integer n > 0 for which fn(v) = (a, 1, 1, 0), where a is defined by the equation
T (a) = 2m.

Proof. For the case 2m = 1 we have: (0, 1, 1, 1)
6
−→ (0, 1, 1, 0). Now let 2m > 1. Since

2m ∈ T , m = T (ℓ) for some ℓ > 0. Applying repeatedly the rules 5 and 4 to v one gets

a tuple (ℓ + 1, 1, 1, 1). Finally we have (ℓ + 1, 1, 1, 1)
6
−→ (ℓ + 1, 1, 1, 0). The identity

m = T (ℓ) implies that 2m = T (ℓ+ 1).

Lemma 8. For every integer m > 0 there exists an integer n > 0 for which fn(m, 1, 1, 0) =
(m+ 1, 1, 1, 0).

Proof. If m = 0, we have: (0, 1, 1, 0)
3
−→ (0, 2, 1, 1)

5
−→ (1, 0, 2, 1)

4
−→ (1, 1, 1, 1)

6
−→

(1, 1, 1, 0). Let m > 0. Applying repeatedly the rules 1 and 2 one gets a tuple
(0, T (m), 1, 0). Applying to this tuple the rule 3 one gets a tuple (0, T (m)+1, 1, 1). The
rules 6 and 3 should be then applied repeatedly to obtain a tuple (0, 2T (m−1)+1, 1, 1).
By Lemma 6 applying repeatedly the function f to the tuple (0, 2T (m−1)+1, 1, 1) one
gets a tuple (0, 2T (m), 1, 1). Since 2T (m) = T (m + 1) ∈ T , by Lemma 7 apply-
ing repeatedly the function f to the tuple (0, 2T (m), 1, 1) one finally gets a tuple
(m+ 1, 1, 1, 0).

Lemma 9. For every v = (a, b, c, d) ∈ V there exist integers m,n > 0 for which
fn(v) = (0, 2m, 1, 1).
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Proof. Let us consider first the case when d = 0. If a > 0, then applying repeatedly
the rules 1 and 2 to v one gets a tuple of the form (0, b′, 1, 0). Therefore, it is enough

to analyze the case when a = 0. If b = 0 in a tuple (0, b, 1, 0), we have (0, 0, 1, 0)
3
−→

(0, 1, 1, 1). Therefore, we can assume that b > 0. Applying to v the rule 3 one gets a
tuple (0, b + 1, 1, 1). If b + 1 = 2k for some k > 0, then we are done. Otherwise, the
rules 6 and 3 should be repeatedly applied until one gets a tuple (0, 2k, 1, 1) for some
k > 0.

Now let us assume that d = 1. If c > 1, then applying repeatedly the rule 4
one gets a tuple (a, b′, 1, 1). Therefore, it is enough to analyse the case c = 1. If
b /∈ {2k : k > 0}, then applying to v the rule 6 one gets a tuple (a, b, 1, 0). The lemma
is already proved for the case d = 0. If b ∈ {2k : k > 0}, the rules 5 and 4 should be
repeatedly applied until one gets a tuple (a′, b′, 1, 1) for b′ /∈ {2k : k > 0} – the case
that we already analyzed.

Theorem 10. The structure (V ; f) is isomorphic to (N; S).

Proof. It follows from Proposition 5 that V can be decomposed into disjoint compo-
nents Vi ⊆ V, i ∈ I for which

⋃
i∈I

Vi = V , f(Vi) ⊆ Vi and each structure (Vi, f |Vi
) is

isomorphic to either (N; S), (Z; S) or (Zn; S), where for a cyclic group Zn the successor
function is given by S(x) = x+ 1 mod n for x ∈ Zn. Suppose that there exist at least
two disjoint components Vi and Vj . It follows directly from Lemmas 6–9 that for every
u ∈ Vi and v ∈ Vj there exist integers r, s and m such that fr(u) = fs(v) = (m, 1, 1, 0).
Since fr(u) ∈ Vi and fs(v) ∈ Vj we obtain that Vi ∩Vj 6= ∅, so we get a contradiction.
Therefore, there is only one component. So (V ; f) is either isomorphic to (N; S) or
(Z; S) as V is infinite. Because (0, 0, 1, 1) does not have a preimage with respect to f ,
(V ; f) must be isomorphic to (N; S).

For a given nonnegative integer n let n =
∑k

i=0
βi2i be its binary decomposition,

where βi ∈ {0, 1} for i = 0, . . . , k−1 and βk = 1. We denote by n the string β0β1 . . . βk,
i.e., the standard binary representation of n written in the reverse order. Similarly, for
a given 4–tuple of nonnegative integers v = (a, b, c, d) we denote by v the convolution
of strings a ⊗ b ⊗ c ⊗ d. Let L be the language of strings v representing all 4–tuples
v ∈ V : L = {v : v ∈ V }. We denote by ϕ : L → V a bijection which for every v ∈ V
sends the string v ∈ L to v.

Proposition 11. The map ϕ : L → V is a FA–presentation of the structure (V ; f).

Proof. To prove the proposition one needs to show that L is a regular language and
the function fL = ϕ−1 ◦ f ◦ ϕ is automatic. For the reverse binary representation of
nonnegative integers that we use, the set {2k : k > 0} corresponds to the language 0∗1
which is regular. So it is easy to see that for the presentation given by ϕ : L → V each
of the conditions I, II and III defining the set V can be verified by a finite automaton.
As the class of regular languages is closed under intersection, the language L is regular.
Similarly, for each of the six rules defining f the assumption can be verified by a finite
automaton. Moreover, for the presentation of an integer n > 0 by n the functions:
n 7→ n+ 1, n 7→ n− 1, n 7→ 2n and n 7→ n

2
are FA–recognizable. This implies that the

function fL : L → L is FA–recognizable.

By Theorem 10 there is an isomorphism of the structures (V ; f) and (N; S) mapping
the tuple (0, 0, 1, 1) ∈ V to 0 ∈ N. We denote this isomorphism by τ : V → N. Let
ψ be the composition ψ = τ ◦ ϕ. By Proposition 11 the bijection ψ : L → N is a
FA–presentation of the structure (N; S). Let r : N → N be the function corresponding
to ψ : L → N as it is given in Definition 1: r(n) = max{ψ(w) : w ∈ L6n} if L6n 6= ∅

and r(n) = 0 if L6n = ∅.

Theorem 12. The function r(n) is greater than or equal to T (n).
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Proof. For a given n > 2, let un ∈ {0, 1}∗ be the string un = 2n−1, that is, un =
0n−11. Let m = 2n−1. The string wn = un ⊗ 1 ⊗ 1 ⊗ 0 represents a tuple (m, 1, 1, 0):
ϕ(wn) = (m, 1, 1, 0). By Lemma 8, there exists ℓ > 0 for which fℓ(m, 1, 1, 0) = (m +

1, 1, 1, 0). In particular, we have: (m, 1, 1, 0)
f
−→ . . .

f
−→ (1, T (m− 1), 1, 0)

f
−→ . . . . . .

f
−→

(1, 0, T (m), 0)
f
−→ . . .

f
−→ (m+ 1, 1, 1, 0), where in the subsequence (1, T (m− 1), 1, 0)

f
−→

. . . . . .
f
−→ (1, 0, T (m), 0) the function f is applied exactly T (m − 1) times. Therefore,

ℓ > T (m−1). Now let vn = 2n−1 + 1 = 10n−21 and w′
n = vn ⊗1⊗1⊗0. The string w′

n

represents the tuple (m+ 1, 1, 1, 0): ϕ(w′
n) = (m+ 1, 1, 1, 0). Clearly, |wn| = |w′

n| = n.
Therefore, r(n) > ψ(w′

n) > ℓ > T (m− 1). So, r(n) > T (2n−1 − 1) for all n > 2. Since
2n−1 − 1 > n for n > 2, we have that: r(n) > T (n) for all n > 2 which implies that r
is greater than or equal to T .

For a given integer h > 0 let th(n) be the function defined recursively by the formula
th+1(n) = 2th(n) and the initial condition t0(n) = n; that is, t1(n) = 2n, t2(n) =

22n

, t3(n) = 222n

and etc.

Corollary 13. For each h > 0, r > th. That is, the function r grows faster than any
tower of exponents of a fixed height.

Proof. This immediately follows from Theorem 12 and a simple observation that the
function T is greater than or equal to th for every h > 0.

4 Compressibility Rate

In this section we extend the notion of a numerical characteristic r(n) defined for
FA–presentations of (N; S) to a more general notion of a compressibility rate s(n) of
one FA–presentation relative to another for any given FA–presentable structure. We
show that for each pair of FA–presentations of the Presburger arithmetic (N; +) the
compressibility rate is bounded from above by a linear function.

Let A = (D;R1, . . . , Rℓ, f1, . . . , fm) be a FA–presentable structure and ψ0 : L0 →
D be a FA–presentation of A. Let ψ : L → D also be a FA–presentation of A. We
define ξ : L → N to be a function which maps a given string w ∈ L to

ξ(w) = min{|v| : ψ0(v) = ψ(w), v ∈ L0}.

The value ξ(w) for w ∈ L is the minimal length of a representative of the element
ψ(w) ∈ D with respect to the FA–presentation ψ0 : L0 → D.

Definition 14. For a given FA–presentation ψ : L → D of the structure A let s :
N → N be a function defined as follows. For a given n ∈ N, if L6n = ∅, then s(n) = 0
and, if L6n 6= ∅, then s(n) = max{ξ(w) : w ∈ L6n}.

For infinitely many n the quotient s(n)
n

is a compression ratio achieved for some
strings in L0. We will call the function s(n) compressibility rate of the FA–presentation
ψ : L → D relative to the FA–presentation ψ0 : L0 → D.

Let Σ0 = {0} be a unary alphabet and u0 : Σ∗
0 → N be a unary FA–presentation of

the structure (N; S) which sends a string over the alphabet Σ0 to its length. Theorem
12 implies that there exists a FA–presentation of the structure (N; S) for which the
compressibility rate relative to the FA–presentation u0 is greater than or equal to
T (n). In particular, it grows faster than any tower of exponents of a fixed height,
see Corollary 13. In Sections 5 and 6 we provide more examples of FA–presentable
structures and their FA–presentations for which compressibility rate grows faster than
any tower of exponents.

However, not every FA–presentation admits compression. We will say that a FA–
representation ψ0 : L0 → D is incompressible if for every FA–presentation ψ : L → D
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of the structure A the compressibility rate s(n) is bounded from above by a linear
function cn for some constant c > 0 which depends on the FA–presentation ψ : L → D.

Theorem 15. Every FA–presentation of the structure (N; +) is incompressible.

Proof. Let ψ0 : L0 → N and ψ : L → N be FA–presentations of the structure (N; +).
Similarly to the proof of Lemma 2, without loss of generality, we can assume that both
FA–presentations ψ0 and ψ are bijective. Then the function s(n) can be defined in a
more simple way: s(n) = max{|v| : ψ0(v) = ψ(w), w ∈ L6n}.

Now we notice that there exist constants c0, d0 > 0 such that the inequality ψ0(v) 6
2n implies that |v| 6 c0n + d0 for all n ∈ N. To see this, let vk ∈ L0, k = 0, 1, 2, . . .
be the representative of 2k with respect to ψ0: ψ0(vk) = 2k. Since the relation
R0 = {(u, v, w) ∈ L3

0 : ψ0(u) + ψ0(v) = ψ0(w)} ⊆ Σ3∗
⋄ is 3–tape FA–recognizable, the

relation R′
0 = {(u, w) ∈ L2

0 | 2ψ0(u) = ψ0(w)} is 2–tape FA–recognizable. Therefore,
there exists a finite automaton M recognizing the language ⊗R′

0 = {u⊗w | 2ψ0(u) =
ψ0(w)}. Let c0 be the number of states in M. If |vk+1| − |vk| > c0, then by the same
argument as in the pumping lemma there exist x, y, z ∈ Σ2∗

⋄ for which vk ⊗vk+1 = xyz,
|x| > |vk| and |y| 6 c0 such that every string xynz, n > 0 is in the language ⊗R′

0.
This implies that there are infinitely many v′ ∈ L0 for which 2ψ0(vk) = ψ0(v′). Since
ψ0 : L0 → N is bijective, we get a contradiction. Therefore, |vk+1| − |vk| 6 c0. Let
d′

0 = |v0|. Then we have |vk| 6 c0k+d′
0 for all k. The relation 6 is first–order definable

in (N; +), so it is FA–recognizable. Again, by using the pumping lemma argument one
can show that if ψ0(v) 6 ψ0(u), then |v| 6 |u| + d′′

0 for some constant d′′
0 . Therefore,

if ψ0(v) 6 2n, then |v| 6 c0n+ d′
0 + d′′

0 = c0n+ d0, where d0 = d′
0 + d′′

0 .
By Lemma 2, there exists a constant σ > 0 for which the function r(n) =

max{ψ(w) : w ∈ L6n} is less than or equal to σn: r(n) 6 σn. Therefore, r(n) 6 σn
6

2⌈log2 σ⌉n. This implies that s(n) 6 c0⌈log2 σ⌉n + d0. Let c = c0⌈log2 σ⌉ + 1. Then
finally we have s(n) 6 cn.

5 Compressing Configurations of a One–Tape

Turing Machine

In this section we consider a FA–presentable structure defined by the set of all possible
configurations of a one–tape Turing machine. A standard encoding of these configura-
tions gives a FA–presentation of this structure. We will show that there exists another
FA–presentation of the same structure (encoding of configurations of a Turing ma-
chine) for which the compressibility rate s(n) relative to the standard encoding is
greater than or equal to T (n).

Let Γ be a finite set of symbols of cardinality at least two which contains a blank
symbol ⊔ and Q be a finite set of states containing a distinguished symbol q0 ∈
Q; it is assumed that Γ ∩ Q = ∅. A deterministic one–tape Turing machine M
over the alphabet Γ with a set of states Q and the initial state q0 is defined by the
set of commands PM . A configuration (instantaneous description) of M is a string
X1 . . .Xi−1qXiXi+1 . . .Xn, where X1 . . .Xn ∈ Γ∗ is the content written on the tape
and q ∈ Q with the head pointing at Xi. This way to present configurations is standard
regardless whether the tape is infinite or semi–infinite, see, e.g., [14]; in the latter case
X1 is the content of the leftmost cell. We denote by CΓ,Q ⊆ (Γ ∪Q)∗ the language of
configurations for all possible Turing machines over the alphabet Γ and a set of states
Q. Clearly, the language CΓ,Q is regular. Furthermore, the relation

RM = {(α, β) ∈ CΓ,Q × CΓ,Q : there exists a command in PM transforming α to β}

is FA–recognizable for every Turing machine M over the alphabet Γ with the set of
states Q [19]. So the structure (CΓ,Q;RM ) is FA–presentable and the identity map
ψ0 : CΓ,Q → CΓ,Q is a FA–presentation.
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We construct a new FA–presentation ψ : L → CΓ,Q of the structure (CΓ,Q;RM )
as follows. Let γ be a nonblank symbol from Γ. Any configuration ξ ∈ CΓ,Q can be
written as a concatenation ξ = γkµ of strings γk for some k ∈ N and µ, where the first
symbol of µ is not γ. Now let uk be the string representing k with respect to the FA–
presentation of (N; S) constructed in Section 3; it is assumed that Γ does not contain
any symbol from the alphabet of this FA–presentation. We encode the configuration
ξ by a string w = ukµ which is the concatenation of strings uk and µ. Let L be the
collection of all such strings w encoding all possible configurations from CΓ,Q. Clearly,
a mapping ψ : L → CΓ,Q which sends a string w to the configuration ξ is a bijection.
Moreover, for this mapping ψ and each Turing machine M over the alphabet Γ with
the set of states Q the relation R̃M is FA–recognizable.

Theorem 16. The compressibility rate s(n) of ψ relative to ψ0 is greater than or
equal to T (n).

Proof. First we notice that since ψ0 is the identity map and ψ is bijective, the com-
pressibility rate s(n) of ψ relative to ψ0 takes a form: s(n) = max{|ψ(w)| : w ∈ L6n}
if L6n 6= ∅ and s(n) = 0 if L6n = ∅. Let q ∈ Q. For a given k > 0 we denote
by ξk the configuration ξk = γkq⊔. Let wk = ukq⊔ ∈ L be the string representing
ξk with respect to ψ, i.e., ψ(wk) = ξk. We have: |ξk| = k + 2 and |wk| = |uk| + 2.
Therefore, s(n + 2) > r(n) + 2 for all n > 0. Now we note that in Theorem 12 we
actually proved a stronger inequality: r(n) > T (2n−1 − 1) for all n > 2. Therefore,
r(n)+2 > T (2n−1 −1)+2 > T (n+2) for all n > 3; the latter inequality follows from a
simple observation that 2n−1 −1 > n+2 for all n > 3. Thus, s(n) > r(n−2)+2 > T (n)
for all n > 5.

Remark 17. Each bijective FA–presentation ψ : L → CΓ,Q of the structure (CΓ,Q;RM )
defines an encoding of configurations of a Turing machine M by strings from the lan-
guage L. Moreover, if for strings u ∈ L and v ∈ L encoding configurations α = ψ(u)
and β = ψ(v), respectively, there exists a command in PM transforming α to β, the
string v can be computed on some deterministic one–tape position–faithful Turing ma-
chine (see [6] for the formal definition of a one–tape position–faithful Turing machine)
from the input string u in linear time. This is because being an automatic function is
equivalent to being one computed on a deterministic one–tape position–faithful Turing
machine in linear time [6].

6 Compressing Elements in Cayley Automatic

Groups

In this section we consider FA–presentations of Cayley graphs for Cayley automatic
groups. Such FA–presentations are referred to as Cayley automatic representations.
The groups G considered in this section are free abelian groups, free groups, Baumslag–
Solitar groups and semidirect products. We start with fixing some known FA–presentations
ψ0 : L0 → G of these groups. Then we construct new FA–presentations ψ : L → G
for which the compressibility rate s(n) relative to ψ0 is greater than or equal to T (n).
That is, we show the result analogous to Theorem 16. All FA–presentations that
we consider in this section are bijective, so the compressibility rate takes a form:
s(n) = max{|v| : ψ0(v) = ψ(w), w ∈ L6n} if L6n 6= ∅ and s(n) = 0 if L6n = ∅.

Throughout this section for a given integer k > 0 we will denote by uk the string
representing the integer k with respect to the FA–presentation of (N; S) constructed
in Section 3.
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6.1 Free Abelian Groups

We first consider a natural Cayley automatic representation of the infinite cyclic group
Z = 〈a〉 defined as follows. Let Σ0 = {a, a−1} and L0 = {ak : k ∈ Z} ⊆ Σ∗

0. We
define ψ0 : L0 → Z to be a map sending a string ak ∈ L0 to the group element ak ∈ Z.
Now we define L to be a language consisting of the strings ak for k < 0 and uk for
k > 0. Let ψ : L → Z be a map which sends a string ak ∈ L for k < 0 and a string
uk ∈ L for k > 0 to the group element ak ∈ Z. It can be seen that the mapping
ψ : L → Z is a Cayley automatic representation. Let s(n) be the compressibility rate
of ψ : L → Z relative to ψ0 : L0 → Z. The inequality s(n) > T (n) immediately follows
from Theorem 12 as ψ0(ak) = ψ(uk) and |ak| = k for all k > 0.

Now let us consider a general case – a free abelian group Zm = 〈a1, . . . , am | [ai, aj ] =
e, i 6= j〉. Let Σ0 = {a1, a

−1
1 , . . . , am, a

−1
m }, L0 = {ak1

1 . . . akm
m : ki ∈ Z, i = 1, . . . ,m}

and ψ0 : L0 → Zm be a Cayley automatic representation of the group Zm sending a
string ak1

1 . . . akm
m ∈ L0 to the group element ak1

1 . . . akm
m ∈ Zm. We define L to be a lan-

guage consisting of the strings ak1

1 ak2

2 . . . akm
m for k1 < 0 and uk1

ak2

2 . . . akm
m for k1 > 0.

Let ψ : L → Zm be a map which sends a string ak1

1 ak2

2 . . . akm
m ∈ L for k1 < 0 and a

string uk1
ak2

2 . . . akm
m ∈ L for k1 > 0 to the group element ak1

1 ak2

2 . . . akm
m ∈ Zm. The

mapping ψ : L → Zm is a Cayley automatic representation. Similarly, s(n) > T (n)
for the compressibility rate of ψ relative to ψ0.

6.2 Free Groups

In this part we consider a free group over m generators Fm = 〈a1, . . . , am〉. Recall
that Fm as a set consists of all reduced words over the alphabet {a1, a

−1
1 , . . . , am, a

−1
m }.

Let Σ0 = {a1, a
−1
1 , . . . , am, a

−1
m } and L0 ⊆ Σ∗

0 be the language of reduced words over
Σ0. We define ψ0 : L0 → Fm to be a Cayley automatic representation identifying
a reduced word from L0 with the corresponding element in Fm. Each reduced word
w ∈ L0 can be written as a concatenation w = ak

1w
′, where k ∈ Z, w′ ∈ L0 and the

first symbol of w′ is not a1 or a−1
1 . Now we define L to be the language consisting

of all concatenations ak
1w

′ for k < 0 and ukw
′ for k > 0. Let ψ : L → Fm be a

map which sends a string ak
1w

′ ∈ L for k < 0 and ukw
′ ∈ L for k > 0 to the group

element w = ak
1w

′ ∈ Fm. Clearly, ψ : L → Fm is a Cayley automatic representation.
As ψ0(ak

1) = ψ(uk) and |ak
1 | = k for all k > 0, the inequality s(n) > T (n) for the

compressibility rate s(n) of ψ relative to ψ0 is a straightforward corollary of Theorem
12.

6.3 Baumslag–Solitar Groups

In this part we consider the family of Baumslag–Solitar groups BS(p, q) = 〈a, t :
tapt−1 = aq〉 for 1 6 p < q. Recall that each group element g ∈ BS(p, q) can be
uniquely written as a reduced word wℓt

εℓ . . . w1t
ε1am, where εi ∈ {+1,−1}, wi ∈

{ε, a, . . . , ap−1} if εi = −1, wi ∈ {ε, a, . . . , aq−1} if εi = +1 and m ∈ Z. The reader
can look up a general result about normal forms in HNN extensions of groups in, e.g,
[21]. We represent an element g = wℓt

εℓ . . . w1t
ε1am as a concatenation of a string

w̃ = wℓt
εℓ . . . w1t

ε1 and a string z, which is a q–ary representation of an integer m.
Let L0 be the language of all such concatenations u = w̃z and ψ0 : L0 → BS(p, q) be
a bijection which sends a string u = w̃z ∈ L0 to a group element g = w̃am ∈ BS(p, q).
This bijection ψ0 : L0 → BS(p, q) is a Cayley automatic representation of the group
BS(p, q) [2]. We denote by τ the maximal prefix of the string u which is of the
form τ = tk for k > 0. That is, u = τω = tkω and the first symbol of the suffix
ω is not t. Now we define L to be the language consisting of all concatenations
ukω. Let ψ : L → BS(p, q) be a map which sends a string ukω ∈ L to a group
element g = w̃am ∈ BS(p, q). It can verified that ψ : L → BS(p, q) is also a Cayley
automatic representation. As ψ0(tk) = ψ(uk) and |tk| = k for all k > 0, the inequality
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s(n) > T (n) for the compressibility rate s(n) of ψ relative to ψ0 follows from Theorem
12.

6.4 Semidirect Products Z
2 ⋊A Z

In this part we consider a family of semidirect products Z2 ⋊A Z for A ∈ GL(2,Z).
Let us consider any FA–presentation ψ′ : L′ → Z2 of the structure (Z2; fA), where
fA : Z2 → Z2 is an automorphism mapping

(
z1

z2

)
∈ Z2 to A

(
z1

z2

)
∈ Z2. Let a be

a generator of the subgroup Z 6 Z2 ⋊A Z. We denote by L0 the language of all
concatenations akv for k ∈ Z and v ∈ L′; it is assumed that the alphabet of L′ does
not contain the symbols a and a−1. Let ψ0 : L0 → Z2 ⋊A Z be a bijection which
sends a string akv to the group element

(
ak,

(
z1

z2

))
∈ Z2 ⋊A Z, where

(
z1

z2

)
= ψ′(v).

This bijection ψ0 : L0 → Z2 ⋊A Z is a Cayley automatic representation of the group
Z2 ⋊A Z; see [8] where such Cayley automatic representations are used. We define L
to be a language consisting of all concatenations akv for k < 0 and ukv for k > 0. Let
ψ : L → Z2 ⋊A Z be a map which sends a string akv ∈ L for k < 0 and ukv ∈ L
for k > 0 to the group element

(
ak,

(
z1

z2

))
∈ Z2 ⋊A Z, where

(
z1

z2

)
= ψ′(v). Let us

additionally assume that the empty string ε ∈ L′; if ε /∈ L′ one can always change
any element of L′ to the empty string ε – this will give a new FA–presentation of
the structure (Z2; fA). As ψ0(ak) = ψ(uk) and |ak| = k for all k > 0, the inequality
s(n) > T (n) for the compressibility rate s(n) of ψ relative to ψ0 follows from Theorem
12.

7 Conclusion and Open Questions

The key result of this paper is a construction of a FA–presentation of the structure
(N; S) such that for every n > 0 there is a string of length at most n from the domain
of this FA–presentation which encodes an integer that is greater than or equal to T (n),
where T (n) is defined recursively by the identities T (n + 1) = 2T (n) and T (0) = 1.
In particular, T (n) grows faster than any tower of exponents of a fixed height. This
result naturally leads to the notion of a compressibility rate defined for a pair of
FA–presentations for any FA–presentable structure. We show examples when this
compressibility rate grows at least as fast as T (n). We show that for FA–presentations
of the Presburger arithmetic (N; +) it is bounded by a linear function. We leave the
following questions for future consideration.

• Is it true that the compressibility rate for FA–presentations of the structure
(Z; +) is always bounded from above by a linear function?

• Is it true that for every FA–presentation ψ0 of (N; S) there exists a FA–presentation
ψ for which the compressibility rate of ψ relative to ψ0 is bounded from below
by the function T (n)?

• The notion of a compressibility rate is valid for semiautomatic structures [15, 16].
Is it true that for semiautomatic presentations of the Presburger arithmetic
(N; +) the compressibility rate is bounded from above by a linear function?
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