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Abstract

The structure of the graph defined by the interactions in a Boolean network can determine
properties of the asymptotic dynamics. For instance, considering the asynchronous dynam-
ics, the absence of positive cycles guarantees the existence of a unique attractor, and the
absence of negative cycles ensures that all attractors are fixed points. In presence of multiple
attractors, one might be interested in properties that ensure that attractors are sufficiently
“isolated”, that is, they can be found in separate subspaces or even trap spaces, subspaces
that are closed with respect to the dynamics. Here we introduce notions of separability
for attractors and identify corresponding necessary conditions on the interaction graph. In
particular, we show that if the interaction graph has at most one positive cycle, or at most
one negative cycle, or if no positive cycle intersects a negative cycle, then the attractors
can be separated by subspaces. If the interaction graph has no path from a negative to a
positive cycle, then the attractors can be separated by trap spaces. Furthermore, we study
networks with interaction graphs admitting two vertices that intersect all cycles, and show
that if their attractors cannot be separated by subspaces, then their interaction graph must
contain a copy of the complete signed digraph on two vertices, deprived of a negative loop.
We thus establish a connection between a dynamical property and a complex network motif.
The topic is far from exhausted and we conclude by stating some open questions.

1 Introduction

A Boolean network (BN) is a finite dynamical system usually defined by a function

f : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x)).

BNs have many applications. In particular, since the seminal papers of McCulloch and Pitts
[21], Hopfield [15], Kauffman [16, 17] and Thomas [31, 33], they are omnipresent in the modeling
of neural and gene networks (see [7, 20] for reviews). They are also essential tools in computer
science, see [2, 12, 8, 9, 13] for instance.

The “network” terminology comes from the fact that the interaction graph of f is often
considered as the main parameter of f : the vertex set is [n] = {1, . . . , n} and there is an arc
from j to i if fi depends on input j. The signed interaction graph of f , denoted G(f), provides
useful additional information about interactions, and is commonly considered in the context of
gene networks: the vertex set is [n] and there is a positive (negative) arc from j to i if there are
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x, y ∈ {0, 1}n that only differ in xj < yj such that fi(y)− fi(x) is positive (negative). Note that
the presence of both a positive and a negative arc from one vertex to another is allowed.

From a dynamical point of view, the successive iterations of f describe the so called syn-
chronous dynamics: if xt is the configuration of the system at time t, then xt+1 = f(xt) is the
configuration of the system at the next time. Hence, all components are updated in parallel at
each time step. However, when BNs are used as models of natural systems, such as gene net-
works, synchronicity can be an issue. This led researchers to consider the (fully) asynchronous
dynamics, where one component is updated at each time step (see e.g. [32, 33, 34, 1]). If xt is the
configuration of the system at time t, then the configuration at time t+ 1 is x if f(x) = x and,
otherwise, a configuration y obtained from x by flipping a component i such that fi(x) 6= xi. The
asynchronous dynamics can be described by the paths of the asynchronous graph of f , denoted
Γ(f): the vertex set is {0, 1}n, and there is an arc from x to y if and only if y is obtained from x

by flipping a component i such that xi 6= fi(x). The asymptotic behaviors are described by the
attractors of Γ(f), which are the inclusion-minimal trap sets, where X ⊆ {0, 1}n is a trap set if
Γ(f) has no arc from a vertex in X to a vertex outside X. In particular, we say that Γ(f) is:

• fixing if all the attractors are of size one,

• converging if there is a unique attractor.

In biological applications, and for gene networks in particular, the first reliable experimental
information often concern the signed interaction graph while the actual dynamics are very dif-
ficult to observe [34, 20]. One is thus faced with the following question: what can be said about
Γ(f) according to G(f)? An influential result is this direction is the following [4, 3]: if G(f) has
no negative cycle, then f has at least one fixed point; and if G(f) has no positive cycle, then f

has at most one fixed point. Soon after, it was realized that “fixed point” can be replaced by
“asynchronous attractor” giving: if G(f) has no negative cycle, then Γ(f) is fixing [26]; and if
G(f) has no positive cycle, then Γ(f) is converging [28].

In this paper, we are interested in conditions on G(f) that imply asymptotic properties in
Γ(f) which are weaker than the fixing and converging properties. To describe them, we need
additional definitions. A subspace is set of configurations X such that, for some I ⊆ [n] and
c : I → {0, 1}, we have x ∈ X if and only if xi = c(i) for all i ∈ I. Hence a subspace is obtained
by fixing some components. Given a set of configurations X, we denote by [X] the smallest
subspace containing X. A trap space is a trap set which is also a subspace. We denote by 〈X〉
the smallest trap space containing X. Obviously, [X] ⊆ 〈X〉. We say that Γ(f) is

• separating if [A] ∩ [B] = ∅ for all distinct attractors A,B,

• trap-separating if 〈A〉 ∩ 〈B〉 = ∅ for all distinct attractors A,B,

• trapping if it is separating and [A] = 〈A〉 for each attractor A.

The trapping property has been introduced in [24] with the following equivalent definition: for
each attractor A, [A] = 〈A〉 and A is the unique attractor reachable from any state in [A].

Arriving at a description of the attractor landscape is important for the identification of
phenomena such as differentiation or stable periodicity, but is in general a hard problem, subject
of ongoing research [19, 30]. On the other hand, trap spaces can be computed more easily, for
instance using logic programming [18]. The number of minimal trap spaces provides a lower
bound on the number of attractors. Moreover, an analysis of published biological models [19]
found that minimal trap spaces are often good approximations of attractors, meaning that each
minimal trap space contains only one attractor (“univocality”), all attractors are found inside
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minimal trap spaces (“completeness”), and oscillating variables in attractors span the minimal
containing trap space in all directions (“faithfullness”). Under these conditions, model analyses
that investigate reachability of attractors or existence of control strategies (see e.g. [10]) can
be greatly facilitated. Of particular interest are structural conditions on the interaction graph
that can guarantee these properties. In this work we look for conditions for the dynamics to be
trap-separating, which implies that minimal trap spaces are complete and univocal, and for the
dynamics to be trapping, which adds faithfulness of the minimal trap spaces, and investigate
the “worst case scenario” where attractors cannot be separated even by subspaces.

One easily check that fixing ⇒ trapping ⇒ trap-separating ⇒ separating. Furthermore,
converging ⇒ trap-separating (but converging 6⇒ trapping). The situation is described at the
top of Fig. 1. We deduce that if Γ(f) is not trap-separating, then it is neither converging nor
fixing, and thus G(f) has at least one positive cycle and at least one negative cycle. But can
something stronger be said? This paper provides partial answers.

In particular, we prove that if Γ(f) is not trap-separating, then G(f) has a path from a
negative cycle to a positive cycle. If Γ(f) is non-separating, we say more:

• G(f) has a positive cycle which intersects a negative cycle, and

• G(f) has at least two negative cycles, and

• at least two vertices must be removed from G(f) to destroy all the positive cycles.

The first point is particularly interesting since little is known about the dynamical influence of
such intersections (see however [11, 22, 25, 5, 27, 23]). Consider the following signed digraph,
called H2 (throughout the paper, green arcs are positive and red arcs are negative):

H2 1 2

This is a minimal signed digraph which satisfies the three conditions given above, and we prove
that if Γ(f) is non-separating then, under some conditions on G(f), the presence of H2 is
unavoidable. To be precise, let us say that a signed digraph H with vertex set V is embedded in
G(f) if there is an injection φ : V → [n] such that, for every positive (negative) arc of H from j

to i, G(f) contains a positive (negative) path from φ(j) to φ(i) whose internal vertices are not in
φ(V ). We prove that, if Γ(f) is non-separating, then either H2 is embedded in G(f), or at least
three vertices must be removed from G(f) to destroy all the cycles. The dynamics associated
to isolated complex motifs has been previously investigated, as well as relationships between
feedback vertex numbers and number of attractors (see e.g. [3, 11, 22, 25, 6, 23]); however, this
is the first time, to our knowledge, that a connection between a dynamical property and the
embedding of such a complex pattern is identified.

A sufficient structural condition for the trapping property is identified in [24]: Γ(f) is trap-
ping if G(f) has a linear cut, that is, if it has no arc from a vertex of out-degree at least two
to a vertex of in-degree at least two and every cycle contains a vertex of in- and out-degree
one. Here, with the tools used to analyse signed digraphs that are non-separating, we provide
a sufficient condition for Γ(f) to be trapping which is rather different: we show that Γ(f) is
trapping when G(f) is strong and has at most one negative cycle. We also provide in the same
vein new sufficient conditions for Γ(f) to be fixing or converging.

We divide the results in statements that concern the intersection of positive and negative
cycles (Section 3), number of positive (Section 4) and negative cycles (Section 5), and graphs
with feedback number two (Section 6). A summary of our results is given in Fig. 1. We conclude
with some conjectures and open questions (Section 7).
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Figure 1: Summary of the main definitions and results of this work, and some known results
(indicated with gray boxes and arrows). A and B stand for attractors of asynchronous dynamics.
Counterexamples are indicated in dashed red arrows.

2 Definitions and background

2.1 Digraphs and signed digraphs

A digraph is a pair G = (V,E) where V is a set of vertices and E ⊆ V 2 is a set of arcs. Given
I ⊆ V , the subgraph of G induced by I is denoted G[I], and G \ I means G[V \ I]. A strongly
connected component (strong component for short) of a digraph G is an induced subgraph which
is strongly connected (strong for short) and maximal for this property. A strong component G[I]
is initial if G has no arc from V \ I to I, and terminal if G has no arc from I to V \ I. A digraph
is trivial if it has a unique vertex and no arc.

A signed digraph G is a pair (V,E) where E ⊆ V 2 × {−1, 1}. If (j, i, s) ∈ E then G has
an arc from j to i of sign s; we also say that j is an in-neighbor of i of sign s and that i is an
out-neighbor of j of sign s. We say that G is simple if it does not have both a positive arc and a
negative arc from one vertex to another, and full-positive if all its arcs are positive. A subgraph
of G is a signed digraph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. Cycles and paths of G are regarded
as simple subgraphs. The sign of a cycle or a path of G is the product of the signs of its arcs. We
say that I is a feedback vertex set if G\I has no cycle. The feedback number of G is the minimum
size of a feedback vertex set of G. Similarly, we say that I is a positive (negative) feedback vertex
set if G \ I has no positive (negative) cycle. The positive (negative) feedback number of G is the
minimum size of a positive (negative) feedback vertex set of G. We say that G has a linear cut
if it has no arc from a vertex of out-degree at least two to a vertex of in-degree at least two
and every cycle contains a vertex of in- and out-degree one. The underlying (unsigned) digraph
of G has vertex set V and an arc from j to i if G has a positive or a negative arc from j to i.
Every graph concept made on G that does not involved signs are tacitly made on its underlying
digraph. For instance, G is strongly connected if its underlying digraph is. In the following, G
always denotes a signed digraph with vertex set V .

2.2 Configurations

The set of maps from V to {0, 1} is denoted {0, 1}V and called set of configurations on V . Given
such a configuration x and i ∈ V , we denote xi the image of i by x and for I ⊆ V , xI is the
restriction of x to I. In examples, we always have V = [n] for some n ≥ 1 and we identify x

and the binary sequence x1x2 . . . xn. We denote by eI the configuration such that (eI)i = 1 if
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i ∈ I and (eI)i = 0 otherwise. We write ei instead of e{i}. Let x, y be two configurations on V .
We denote by x+ y the configuration z on V with zi = xi + yi for all i ∈ V , where the addition
is modulo 2, and by x̄ the configuration x + eV . We denote by ∆(x, y) the set of i ∈ V with
xi 6= yi. The Hamming distance between x and y is d(x, y) = |∆(x, y)|. We equip {0, 1}V with
the partial order ≤ defined by x ≤ y if and only if xi ≤ yi for i ∈ V . We denote by 0 and 1

the all-zero and all-one configurations, that is, the minimal and maximal element of {0, 1}V . If
x ≤ y then [x, y] is the set of configurations z on V such that x ≤ z ≤ y. Let X ⊆ {0, 1}V .
We denote by ∆(X) the set of i ∈ V such that xi 6= yi for some x, y ∈ X. We say that X is a
subspace if X = [x, y] for some configurations x, y on V . We denote by [X] the smallest subspace
of {0, 1}V containing X.

2.3 Boolean networks

A Boolean network (BN) with component set V is a map f : {0, 1}V → {0, 1}V . We denote by
F (V ) the set of BNs with component set V and for n ≥ 1 we write F (n) instead of F ([n]). We
say that f is monotone if x ≤ y implies f(x) ≤ f(y) for all configurations x, y on V . We denote
by G(f) the signed interaction graph of f : it is the signed digraph with vertex set V such that,
for all i, j ∈ V , there is a positive (negative) arc from j to i if there exist a configuration x on
V such that xj = 0 and fi(x + ej) − fi(x) is positive (negative); we can have both a positive
and a negative arc from one component to another. Given a signed digraph G, a BN on G is a
BN with interaction graph equal to G. We denote by F (G) the set of BNs on G. Let x, y be
two configurations on V with x ≤ y. The subnetwork of f induced by [x, y] is the BN h with
component set I = ∆(x, y) defined by h(zI) = f(z)I for all z ∈ [x, y]. Intuitively, h is obtained
from f by fixing to xi = yi each component i ∈ V \ I. One can easily check that G(h) is a
subgraph of G(f)[I].

2.4 Asynchronous graphs

An asynchronous graph Γ on {0, 1}V is a digraph with vertex set {0, 1}V such that, for every arc
x → y, there is exactly one i ∈ V such that xi 6= yi; this component i is the direction of the arc.
We say that x → y is increasing if x ≤ y and decreasing if y ≤ x. Let X be a set of configurations
on V . We say that an arc x → y of Γ leaves X if x ∈ X and y 6∈ X. We say that X is a trap set of
Γ if no arc leaves X. A trap space of Γ is a subspace which is also a trap set. We denote by 〈X〉
the smallest trap space containing X (which exists since {0, 1}V is a trap space). An attractor
of Γ is a terminal strong component of Γ or, equivalently, an inclusion-minimal non-empty trap
set (there is at least one attractor since {0, 1}V is a trap set). Given a BN f ∈ F (V ), we denote
by Γ(f) the asynchronous graph of f , that is, the asynchronous graph on {0, 1}V with an arc
x → y in the direction i if and only if fi(x) 6= xi. It is easy to see that each asynchronous graph
on {0, 1}V is the asynchronous graph of a unique BN with component set V . For a subspace
X of {0, 1}V , we denote by Γ(f)[X] the subgraph of Γ(f) induced by X. Clearly, this is the
asynchronous dynamics of the subnetwork of f induced by X.

An asynchronous graph is:

• fixing if all the attractors are of size one,

• converging if there is a unique attractor,

• separating if [A] ∩ [B] = ∅ for all distinct attractors A,B,

• trap-separating if 〈A〉 ∩ 〈B〉 = ∅ for all distinct attractors A,B,

• trapping if it is separating and [A] = 〈A〉 for all attractor A.
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We abusively say that a signed digraph G is converging (resp. fixing, trapping, trap-separating,
separating) if the asynchronous graph of every f ∈ F (G) is converging (resp. fixing, trapping,
trap-separating, separating). One easily check that fixing ⇒ trapping ⇒ trap-separating ⇒
separating. Furthermore, converging ⇒ trap-separating, but converging 6⇒ trapping, see Exam-
ple 4. Here are some sufficient conditions for G to be fixing, converging or trapping.

Theorem 1. For every signed digraph G,

• if G has no cycle, then G is converging and fixing [29];

• if G has no positive cycle, then G is converging [28];

• if G has no negative cycle, then G is fixing [26];

• if G has a linear cut, then G is trapping [24].

For some proofs in this paper we will rely on the following results, which imply the second
and third points of the previous theorem.

Lemma 1 ([3, 28]). Let f ∈ F (G) and let x, y be two configurations on V such that fi(x) = xi
and fi(y) = yi for all i ∈ ∆(x, y). Then G[∆(x, y)] has a positive cycle C, and if C contains an
arc from j to i then the sign of this arc is (yj − xj)(yi − xi).

Lemma 2 ([26]). Let f ∈ F (G) and suppose that Γ(f) has an attractor A of size at least two.
Then G[∆(A)] has a negative cycle.

By combining the two theorems we can already state a result about non-intersecting positive
and negative cycles in trap-separating networks that have at least two attractors and at least
one cyclic attractor.

Proposition 1. Let f ∈ F (G). If Γ(f) is trap-separating but neither converging nor fixing, then
G has vertex-disjoint cycles of distinct sign.

Proof. Suppose that Γ(f) is trap-separating but neither converging nor fixing. Then it has
two attractors A,B with |A| > 1 and disjoint trap spaces X,Y with A ⊆ X and B ⊆ Y .
Consider configurations x ∈ X and y ∈ Y which minimize d(x, y). Then x and y are fixed
points for the subnetwork of f induced by [x, y]. Hence G[∆(x, y)] has a positive cycle by
Lemma 1. By Lemma 2, G[∆(A)] has a negative cycle. Since ∆(x, y) ∩ ∆(A) = ∅ this proves
the proposition.

The conclusion of the proposition does not hold if we replace trap-separating with separating:
the following presents an example of asynchronous graph that is separating but not converging
nor fixing, while its corresponding signed interaction graph does not have disjoint positive or
negative cycles.

Example 1. The BN f ∈ F (5) defined by f1(x) = x4x5 ∨ x̄4x̄5, f2(x) = x1x̄5 ∨ x5x̄1, f3(x) =
x2x̄5 ∨ x5x̄2, f4(x) = x3x̄5 ∨ x5x̄3, f5(x) = x1x3x̄2 ∨ x1x4x̄3 ∨ x2x̄1x̄3 ∨ x3x̄1x̄4 has two cyclic
attractors A and B, with [A] = {x5 = 0} and [B] = {x5 = 1}. In addition, Γ(f) has an arc
from 00001 to 00000 and an arc from 10100 to 10101. So Γ(f) is separating but not converging,
not fixing and not trap-separating. G(f) does not have a positive and a negative cycle that are
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disjoint.
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If we are interested in graphs that are separating but not converging nor fixing and do not
have disjoint positive or negative cycles, then we can identify examples in smaller dimension.

Example 2. Consider the following signed digraph G, which has exactly one negative and one
positive cycle that intersect:

1 2

It is neither converging nor fixing, but is separating, since all BNs in F (G) are either converging
or fixing. Indeed, the asynchronous graphs of the four BNs in F (G) are as follows:

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2.5 Switches

An isometry on {0, 1}V is a bijection π : {0, 1}V → {0, 1}V such that d(x, y) = d(π(x), π(y))
for all x, y ∈ {0, 1}V . Let Γ,Γ′ be two asynchronous graphs on {0, 1}V . We say that Γ and
Γ′ are isometric if there is an isometry π on {0, 1}V such that x → y is an arc of Γ′ if and
only if π(x) → π(y) is an arc of Γ′. One can easily check that Γ and Γ′ are isometric, then Γ
is converging (resp. fixing, trapping, trap-separating, separating) if and only if Γ′ is converging
(resp. fixing, trapping, trap-separating, separating).

Let I ⊆ V and, for all i ∈ V , let σI(i) = 1 if i ∈ I and σI(i) = −1 if otherwise. The
I-switch of G is the signed digraph GI = (V,EI) with EI = {(j, i, σI (j) · s ·σI(i)) | (j, i, s) ∈ E};
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note that GI = GV \I and (GI)I = G. We say that G is switch equivalent to H if H = GI for
some I ⊆ V . Obviously, G and GI have the same underlying digraph. Note also that C is a
cycle in G if and only if CI is a cycle in GI , and C and CI have the same sign. Thus if G
has no positive (negative) cycles then every switch of G has no positive (negative) cycles: this
property is invariant by switch. The symmetric version of G is the signed digraph Gs = (V,Es)
where Es = E ∪ {(i, j, s) | (j, i, s) ∈ E}. A well-known result concerning switch is the following
adaptation of Harary’s theorem [14].

Proposition 2. A signed digraph G is switch equivalent to a full-positive signed digraph if and
only if Gs has no negative cycle. Furthermore, if G is strong, then Gs has no negative cycle if
and only if G has no negative cycle.

There is an analogue of the switch operation for BNs. Let f ∈ F (V ) and I ⊆ V . The
I-switch of f is the BN h ∈ F (V ) defined by h(x) = f(x + eI) + eI for all configurations x on
V ; note that if h is the I-switch of f then f is the I-switch of h. The analogy comes from the
first point of the following easy property.

Proposition 3. If h is the I-switch of f , then

• G(h) is the I-switch of G(f),

• Γ(h) is isometric to Γ(f), with the isometry x 7→ x+ eI .

3 Intersections between positive and negative cycles

What can we say about non-separating and non-trap-separating signed digraphs? If G is non-
separating or non-trap-separating then it is both non-fixing and non-converging. Hence, by
Theorem 1, G has both a positive and a negative cycle. Can we say something more? In this
section, we provide the following answers: if G is non-separating then it has intersecting cycles
with opposite signs, and if it is non-trap-separating, then it has a path from a negative cycle to
a positive cycle.

Theorem 2. If G has no two intersecting cycles with opposite signs, then G is separating.

Theorem 3. If G has no path from a negative cycle to a positive cycle, then G is trap-separating.

Note the condition of Theorem 3 is stronger than the condition of Theorem 2: if a vertex i

meets both a positive cycle C+ and a negative cycle C−, then the trivial graph with i as single
vertex is a path (of length zero) from C− to C+ (and from C+ to C−). Examples below show
that the condition of Theorem 2 (resp. Theorem 3) is not sufficient to guarantee that G is
trap-separating (resp. trapping).

Example 3. Let f ∈ F (4) be defined by f1(x) = x̄3, f2(x) = x̄1, f3(x) = x̄2 and f4(x) =
x1x2x3 ∨ x4x1 ∨ x4x2 ∨ x4x3. Then Γ(f) is separating and not trap-separating, and G(f) has
exactly two cycles, of opposite signs, which are vertex disjoint hence it satisfies the condition of
Theorem 2.
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1

2 3
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Example 4. Let f ∈ F (4) be defined by f1(x) = x̄3, f2(x) = x̄1, f3(x) = x̄2 and f4(x) = x1x2x3.
Since G(f) has no positive cycle, Γ(f) has a unique attractor A, but [A] is not a trap space:
x4 = 0 for all x ∈ A but Γ(f) has an arc from 1010 to 1011. Hence Γ(f) is converging, and thus
trap-separating, but not trapping. Furthermore, since G(f) has no positive cycle, it satisfies the
condition of Theorem 3.
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2 3
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The strategy to prove Theorem 2 is roughly the following. Suppose that any two intersecting
cycles of G have the same sign. Then, in each strong component H, all the cycles have the same
sign and thus, by Theorem 1, H is fixing or converging, and thus separating. This suggests a
proof by induction on the number of strong components, the base case (G itself is strong) being
given by the above argument. However, if all the strong components of G are separating, then
G is not necessarily separating, as showed by the following examples (note that Example 3 and
Example 4 show that, if all the strong components of G are trap-separating or trapping, then
G is not necessarily trap-separating or trapping).

Example 5. Let f ∈ F (3) be defined by f1(x) = x̄1, f2(x) = x̄1x3∨x2x̄3 and f3(x) = x1x2∨x̄2x3.
Then Γ(f) is non-separating and G(f) has exactly two strong components, G[{1}] and G[{2, 3}],
both converging (the second trivially so, since F (G[{2, 3}]) = ∅).
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Example 6. We give a second example, where the set F (H) is non-empty for all strong com-
ponents H of G. Consider f ∈ F (4) defined by f1(x) = x1x3 ∨ x̄2x3, f2(x) = x2x3 ∨ x̄1x3,
f3(x) = x1x2 ∨ x̄4 and f4(x) = x̄4. Then Γ(f) is non-separating as shown in the figure below.
G(f) has two strong components, G[{4}], which is converging, and G[{1, 2, 3}] which is sepa-
rating by Theorem 6, since it has feedback number two and all of its negative cycles contain all
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three vertices.
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On the other hand, if all the cycles of H have the same sign, then H is more than separating,
it is “robustly” separating (a formal definition will be given below), and it turns out that if each
strong component of G is “robustly” separating, then G is separating and we are done.

Formally, G is robustly separating if, for any non-empty set F of BNs such that G(f) is a
spanning subgraph of G for all f ∈ F , the (joint) union

⋃
f∈F Γ(f) is separating (a spanning

subgraph of G is a subgraph of G with vertex set V ). We define similarly the notions of robustly
converging and robustly trapping.

Example 7. The graph G[{1, 2, 3}] of Example 6 is separating but not robustly separating: the
maps f(x) = (x̄2 ∨ x1x3, x2x̄1 ∨ x3x̄1, x1 ∨ x2) and g(x) = (x1x3 ∨ x3x̄2, x3 ∨ x2x̄1, x1x2) are
fixing, but the union of Γ(f) and Γ(g) is not separating. The asynchronous graphs of f and g

and their union are as follows:
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Below, we prove that if G is strong and has only negative (positive) cycles, then G is robustly
converging (trapping) and thus robustly separating.

Lemma 3. If all the cycles of G are negative, then G is robustly converging.

Proof. Suppose that all the cycles of G are negative. Let F be a set of BNs such that G(f) is a
spanning subgraph of G for all f ∈ F , and let Γ =

⋃
f∈F Γ(f). Suppose that Γ has two distinct

attractors A and B, and let f ∈ F . Since Γ(f) is a subgraph of Γ, A and B are trap sets of Γ(f),
and thus Γ(f) has at least two distinct attractors, one included in A, and the other included in
B. But since G(f) is a subgraph of G, it has only negative cycles. Thus Γ(f) is converging by
Theorem 1, and we obtain a contradiction. This proves that Γ is converging.

To treat the case where all the cycles are positive, we need the following lemma.

Lemma 4. Let f1, . . . , f ℓ be ℓ monotone BNs with component set V . Let

Γ = Γ(f1) ∪ · · · ∪ Γ(f ℓ)

be the joint union of the corresponding asynchronous graphs. Then Γ is trapping.

10



Proof. We need:

(1) If Γ has no decreasing arc starting from a then [a,1] is a trap space, and if Γ has
no increasing arc starting from b then [0, b] is a trap space.

Suppose that [a,1] is not a trap space. Then Γ has an arc x → y leaving [a,1]. Let i
be the direction of this arc. Then xi = ai = 1 and yi = 0. Thus fk

i (x) = 0 for some
1 ≤ k ≤ ℓ, and since fk is monotone and a ≤ x, we have fk

i (a) ≤ fk
i (x) = 0. Since

ai = 1, we deduce that Γ(fk), and thus Γ, has an arc a → a′ with a′i = 0, which is
decreasing. This proves the first assertion, and the second is similar.

Let A be an attractor of Γ.

(2) A has a unique minimal element and a unique maximal element.

Consider a, a′ minimal elements of A. Then Γ has no decreasing arc starting from a

thus, by (1), [a,1] is a trap space, as is [a′,1] with the same proof. Since a′ ∈ A, we
have a′ ∈ [a,1], and therefore a′ ≥ a, and symmetrically a ≥ a′, which proves a = a′.
We prove similarly that A has a unique maximal element.

Let a and b be the minimal and maximal element of A. Then [A] = [a, b] and, by (1), [a,1]
and [0, b] are trap spaces.

(3) [A] is a trap space of Γ.

Suppose that x → y is an arc leaving [A], and let i be the direction of this arc. Then
xi = ai = bi 6= yi. If xi = 1 we deduce that x → y leaves [a,1] and if xi = 0 we
deduce that x → y leaves [0, b], and in both cases we obtain a contradiction.

(4) Γ has a path from every configuration in [A] to A.

For every x ∈ [A] we prove, by induction on d(x, b), that Γ has a path from x to b.
If d(x, b) = 0 then there is nothing to prove. So suppose that d(x, b) > 0. If Γ has
no increasing arc starting from x then, by (1), [0, x] is a trap space, which contains
a but not b. Since a, b ∈ A, Γ has a path from a to b, and thus [0, x] is not a trap
space, a contradiction. Hence Γ has an increasing arc x → y. By (3), [A] is a trap
space, so y ≤ b, and since x ≤ y we have d(y, b) < d(x, b). Thus, by induction, Γ has
a path from y to b, and by adding x → y to this path, we obtain the desired path.

Suppose that Γ has an attractor B 6= A. For X ∈ {A,B}, let R(X) be the set of con-
figurations x such that Γ has a path from x to X. By (3) and (4), we have [A] = 〈A〉 and
[A] ⊆ R(A) and, similarly, [B] = 〈B〉 and [B] ⊆ R(B). Suppose, for a contradiction, that there
is x ∈ [A]∩ [B]. Then x ∈ R(A) and since x ∈ 〈B〉 we have R(A) ⊆ 〈B〉 = [B]. Since A ⊆ R(A)
we have A ⊆ [B] ⊆ R(B), and thus Γ has a path from A to B, which is a contradiction since
A,B are distinct attractors. Thus [A] ∩ [B] = ∅, and thus Γ is trapping.

We deduce:

Lemma 5. If G is strong and has only positive cycles, then G is robustly trapping.

Proof. Suppose that G is strong and has only positive cycles. By Proposition 2 and Proposition 3
we can suppose that G is full-positive. Let F be a set of BNs such that G(f) is a spanning
subgraph of G for all f ∈ F , and let Γ =

⋃
f∈F Γ(f). For every f ∈ F , since G(f) is full-positive,

f is monotone and we deduce from Lemma 4 that Γ is trapping.
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Going back to the proof of Theorem 2, we now know that if any two intersecting cycles of
G have the same sign, then each strong component of G is robustly separating. It remains to
prove that this implies that G is separating. For that, we need a decomposition technique for
non-strong signed digraphs. If G is not strong, then there is a partition (I1, I2) of the vertices
such that G has no arc from I2 to I1. Given f ∈ F (G), we then show that each attractor of
Γ(f) can be regarded as the Cartesian product of an asynchronous attractor of the “restriction”
of f on I1 and a union of asynchronous attractors of BNs whose signed interaction digraph is
a spanning subgraph of G[I2]. (The union involved in the definition of robustly separating is
actually motivated by the union involved in this decomposition.) The details follow.

Let f ∈ F (V ), and (I1, I2) a partition of V , without empty part. We identify {0, 1}V with
{0, 1}I1 × {0, 1}I2 . Thus we regard each configuration x on V has a pair x = (xI1 , xI2). We
denote by f1 the subnetwork of f induced by [(0,0), (1,0)] and set Γ1 = Γ(f1). Hence f1 is
obtained by fixing to 0 each component in I2. Next, for all configurations x on I1, we denote
by fx be subnetwork of f induced by [(x,0), (x,1)]. Hence fx is obtained by fixing to xi each
component i in I1. Let A be an attractor of Γ(f). We set:

A1 = {aI1 | a ∈ A}, A2 = {aI2 | a ∈ A}, Γ2
A =

⋃

x∈A1

Γ(fx).

Lemma 6. Let f ∈ F (V ). Let (I1, I2) be a partition of V without empty part. Suppose that
G(f) has no arc from I2 to I1. For every attractor A of Γ(f):

• A = A1 ×A2,

• A1 is an attractor of Γ1,

• A2 is an attractor of Γ2
A.

Proof. Let x be a configuration on I1 and let a be a configuration on I2. Since G(f) has no arc
from I2 to I1, we have f(x, a)I1 = f(x,0)I1 = f1(x) and we deduce that

(1) x → y is an arc of Γ1 if and only if (x, a) → (y, a) is an arc of Γ(f).

It follows that A1 is an attractor of Γ1. Indeed, let x ∈ A1 and let a be a configuration on
I2 such that (x, a) ∈ A. If x → y is an arc of Γ1 then, by (1), (x, a) → (y, a) is an arc of Γ(f)
and since (x, a) ∈ A we have (y, a) ∈ A and thus y ∈ A1. So A1 is a trap set of Γ1. Let B1 be
a strict subset of A1. Let x ∈ B1, y ∈ A1 \ B1, and let a, b be configurations on I2 such that
(x, a), (y, b) ∈ A. Since A is an attractor of Γ(f), there is a path from (x, a) to (y, b), and this
path contains an arc (z, c) → (z′, c) with z ∈ B1 and z′ ∈ A1 \ B1. Then, by (1), z → z′ is an
arc of Γ1 leaving B1. Hence A1 is an inclusion-minimal trap set of Γ1, as desired.

We now prove that A = A1 ×A2. It is sufficient to prove that A1 ×A2 ⊆ A since the other
direction is clear. Let (y, a) ∈ A1 × A2. Since a ∈ A2, there is x ∈ A1 such that (x, a) ∈ A.
Since A1 is an attractor of Γ1, Γ1 has a path from x to y and we deduce from (1) that Γ(f) has
a path from (x, a) to (y, a), and thus (y, a) ∈ A.

We finally prove that A2 is an attractor of Γ2
A. Suppose that Γ2

A has an arc a → b with
a ∈ A2. There is x ∈ A1 such that a → b is an arc of Γ(fx), and we deduce that (x, a) → (x, b)
is an arc of Γ(f). Since A = A1 × A2, we have (x, a) ∈ A and thus (x, b) ∈ A and we deduce
that b ∈ A2. So A2 is a trap set of Γ2

A. Let B
2 be a strict subset of A2. Let a ∈ B2, b ∈ A2 \B2,

and let x, y be configurations on I1 such that (x, a), (y, b) ∈ A. Since A is an attractor of Γ(f),
there is a path from (x, a) to (y, b), and this path contains an arc (z, c) → (z, c′) with c ∈ B2

and c′ ∈ A2 \ B2. Since z ∈ A1, c → c′ is an arc of Γ(f z), and thus an arc of Γ2
A leaving B2.

Hence A2 is an inclusion-minimal trap set of Γ2
A, as desired.
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We deduce the following which, together with Lemma 3 and Lemma 5, implies Theorem 2.

Lemma 7. If each strong component of G is robustly separating, then G is separating.

Proof. Suppose that every strong component of G is robustly separating. We proceed by induc-
tion on the number of strong components. If G is strong then the result is obvious. Otherwise,
there is a partition (I1, I2) of the vertices of G such that G has no arc from I2 to I1 and such
that G[I2] is a strong component of G. Let f ∈ F (G). Since G(f1) = G[I1], by induction, Γ1 is
separating. Furthermore, for every attractor A of Γ(f) and x ∈ A, G(fx) is a spanning subgraph
of G[I2], which is robustly separating, and we deduce that Γ2

A is separating. Let A,B be distinct
attractors of Γ(f). By Lemma 6, we have A = A1 ×A2 and B = B1 ×B2. If A1 6= B1 then, by
the same lemma, A1, B1 are distinct attractors of Γ1, which is separating, thus [A1] ∩ [B1] = ∅
and we deduce that [A] ∩ [B] = ∅. Suppose now that A1 = B1. Then, by the same lemma,
A2, B2 are distinct attractors of Γ2

A = Γ2
B , which is separating. Thus [A2] ∩ [B2] = ∅ and we

deduce that [A] ∩ [B] = ∅. This proves that Γ(f) is separating.

The proof of Theorem 3 follows the same line and is easier. Let us say that G is perfectly
fixing if each subgraph of G is fixing. Clearly, if all the cycles of G are positive, then G is perfectly
fixing. Suppose now that the conditions of Theorem 3 are satisfied, that is, G has no path from
a negative cycle to a positive cycle. Then each strong component is either perfectly fixing (if
all the cycles are positive) or robustly converging (if all the cycles are negative, Lemma 3), and
there is no arc from a robustly converging component to a perfectly fixing component. We prove
below that this is enough for G to be trap-separating, and this proves Theorem 3.

Lemma 8. Suppose that each strong component of G is either perfectly fixing or robustly con-
verging, and that there is no arc from a robustly converging component to a robustly fixing
component. Then G is trap-separating.

We need the following:

Lemma 9. If each strong component of G is perfectly fixing, then G is perfectly fixing.

Proof. Suppose that every strong component of G is perfectly fixing. We proceed by induction
on the number of strong components. If G is strong then the result is obvious. Otherwise, there
is a partition (I1, I2) of the vertices of G such that G has no arc from I2 to I1 and such that
G[I2] is a strong component of G. Let f ∈ F (G). Since G(f1) = G[I1], by induction, Γ1 is
fixing. Let A be an attractor of Γ(f). By Lemma 6, we have A = A1×A2 and A1 is an attractor
of Γ1. Thus A1 = {a} for some fixed point a of f1. By the same lemma, A2 is an attractor of
Γ2

A1 = Γ(fa). Since G(fa) is a subgraph of G[I2], it is fixing, and thus |A2| = 1. We deduce
that |A| = 1, and thus Γ(f) is fixing. Consequently, G is fixing. Let G′ be a subgraph of G.
Then each strong component of G′ is perfectly fixing and the argument above shows that G′ is
fixing. Consequently, G is perfectly fixing.

Lemma 10. Suppose that there is I2 ⊆ V such that G[I2] is a robustly converging terminal
strong component of G and that G \ I2 is trap-separating. Then G is trap-separating.

Proof. Let f ∈ F (G) and I1 = V \ I2. Since G(f1) = G[I1], Γ
1 is trap-separating. Furthermore,

for every attractor A of Γ(f) and x ∈ A, G(fx) is a spanning subgraph of G[I2], which is
robustly converging, and we deduce that Γ2

A is converging. Let A,B be distinct attractors of
Γ(f). By Lemma 6, we have A = A1 × A2 and B = B1 × B2. If A1 6= B1 then, by the same
lemma, A1, B1 are distinct attractors of Γ1, which is trap-separating, thus 〈A1〉 ∩ 〈B1〉 = ∅.
Consequently, 〈A1〉 × {0, 1}I2 and 〈B1〉 × {0, 1}I2 are disjoint trap spaces of Γ(f) containing A

and B, and thus 〈A〉 ∩ 〈B〉 = ∅. Suppose now that A1 = B1. Then, by the same lemma, A2, B2

are distinct attractors of Γ2
A = Γ2

B, which is converging, a contradiction. This proves that Γ(f)
is trap-separating.
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Proof of Lemma 8. We proceed by induction on the number of strong components. If G is
strong then G is either (perfectly) fixing or (robustly) converging and thus G is trap-separating.
So suppose that G is not strong. If all the strong components of G are perfectly fixing, then, by
Lemma 9, G is fixing and thus trap-separating. So suppose that G has a strong component which
is robustly converging. Since there is no path from a robustly converging strong component to
a perfectly fixing strong component, there is a partition (I1, I2) of the vertices of G such that G
has no arc from I2 to I1 and such that G[I2] is a robustly converging strong component of G. By
induction hypothesis, G[I1] is trap-separating, and thus, by Lemma 10, G is trap-separating.

4 Number of positive cycles

We have proved that if G is non-separating, then it has a positive cycle intersecting a negative
cycle. In this section, we prove the following, which says more concerning positive cycles.

Theorem 4. If the positive feedback number of G is at most one, then G is separating.

Example 3 shows that, in the theorem, separating cannot be replaced by trap-separating.
For the proof we need the following lemma.

Lemma 11. Let f ∈ F (G) and A,B be distinct attractors of Γ(f). For every i ∈ ∆(A), G \ i
has a positive cycle.

Proof. Let i ∈ ∆(A) and b ∈ B. Then there is a ∈ A with ai = bi. Let f ′ ∈ F (V ) defined as
follows: for all configurations x on V , f ′

j(x) = fj(x) for j 6= i and f ′
i(x) = xi. Then Γ(f ′) is the

spanning subgraph of Γ(f) obtained by deleting all the arcs in the direction i. Let A′ and B′ be
attractors of Γ(f ′) which are reachable in Γ(f ′) from a and b, respectively. Then A′ ⊆ A and
B′ ⊆ B thus A′∩B′ = ∅. Furthermore, since ai = bi we have xi = ai = bi for all x ∈ A′∪B′. Let
(α, β) ∈ A′ × B′ with ∆(α, β) minimum. Then f ′

j(α) = αj and f ′
j(β) = βj for all j ∈ ∆(α, β).

By Lemma 1, the subgraph of G(f ′) induced by ∆(α, β) has a positive cycle C ′, which does not
contain i since i 6∈ ∆(α, β). Thus C ′ is a positive cycle of G(f ′) \ i = G \ i.

Proof of Theorem 4. If the positive feedback number of G is zero, then G is converging. So
suppose that there is a vertex i such that G\ i has no positive cycle. Let f ∈ F (G) and let A,B
be distinct attractors of Γ(f). By Lemma 11, we have i 6∈ ∆(A) ∪ ∆(B). Let (a, b) ∈ A × B

with ∆(a, b) minimum. Then fj(a) = aj and fj(b) = bj for all j ∈ ∆(a, b). Hence, by Lemma 1,
G[∆(a, b)] has a positive cycle C. Since C contains i we have ai 6= bi. Since i 6∈ ∆(A) ∪∆(B),
we have [A] ∩ [B] = ∅ and thus Γ(f) is separating.

Hence, if G is non-separating, then G has at least two disjoint positive cycles or at least
three positive cycles. The example below show that if G is non-separating, then G does not
necessarily have two disjoint positive cycles.

Example 8. Consider f ∈ F (3) defined by f1(x) = x2x̄3∨x3x̄1∨x3x̄2, f2(x) = x1x̄3∨x3x̄1∨x3x̄2
and f3(x) = x1x̄2 ∨ x2x̄1 ∨ x2x̄3. Γ(f) is non-separating, and G(f) does not have two disjoint
positive cycles.
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With Lemma 11, we can give new sufficient conditions for G to be trap-separating or con-
verging.

Proposition 4. Suppose that G has a unique positive cycle C, and that every negative cycle
of G intersects C. Then G is trap-separating. If, in addition, G is strong and has at least one
negative cycle, then G is converging.

We need the following lemma.

Lemma 12 ([27]). Suppose that G is strong, has a unique positive cycle, and at least one
negative cycle. Then every f ∈ F (G) has at most one fixed point.

Proof of Proposition 4. Suppose that G has a unique positive cycle C, and that every nega-
tive cycle of G intersects C. Let f ∈ F (G). We prove that Γ(f) is fixing or converging, and thus
G is trap-separating. Suppose that Γ(f) is not converging. Let A,B be distinct attractors of
Γ(f). By Lemma 11, ∆(A) is disjoint from the vertex set of C. Hence, by Lemma 2, if |A| ≥ 2
then G has a negative cycle disjoint from C, a contradiction. Thus |A| = 1, that is, Γ(f) is
fixing. Suppose now that, in addition, G is strong and has at least one negative cycle. If Γ(f)
is not converging, then it is fixing and thus f has at least two fixed points, and this contradicts
Lemma 12. Thus Γ(f) is always converging.

The following example demonstrates that we cannot replace trap-separating with trapping
in the first part of Proposition 4. Example 2 shows that we cannot drop the hypothesis of G
strong in the second part.

Example 9. Consider f ∈ F (3) defined by f1(x) = x̄1x2, f2(x) = x1 ∨ x̄2 and f3(x) = x1x̄2.
G(f) has a unique positive cycle that intersects all cycles. Γ(f) is trap-separating but not trap-
ping.
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What if G is strong and has only one positive cycle? By Theorem 4 we know that G is
separating. The following example shows that G is not necessarily trapping. It also shows
that G is not necessarily trapping if it is strong and has feedback vertex number equal to one.
Whether G is trap-separating in these cases remains an open question.

Example 10. Let f ∈ F (4) be defined by f1(x) = x̄3, f2(x) = x̄1, f3(x) = x̄2x̄4 and f4(x) =
x1x2x3. G(f) is strong, has only one positive cycle and has feedback number one, but is not
trapping.
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5 Number of negative cycles

In this section, we say more about negative cycles in non-separating signed digraphs. There are
non-separating signed digraphs G with negative feedback number one, and even with negative
arc-feedback number one (that is, one arc belongs to every negative cycle), as showed by the
examples below.

Example 11. Let f ∈ F (3) be defined by f1(x) = x1 + x2, f2(x) = x̄1x2 ∨ x3 and f3(x) = x1.
Then Γ(f) is non-separating and {1} is a negative feedback vertex set of G(f).
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Example 12. Let f ∈ F (4) be defined by f1(x) = x2x̄3 ∨ x̄2x3 ∨ x3x̄4, f2(x) = x2x̄3 ∨ x4,
f3(x) = x1 and f4(x) = x3. Then Γ(f) is non-separating and every negative cycle contains the
positive arc from 1 to 3.
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Our main observation concerning negative cycles is then is the following.

Theorem 5. If G has at most one negative cycle, then G is separating. If G is strong and has
at most one negative cycle, then G is trapping.

Example 3 shows that, in the theorem, separating cannot be replaced by trap-separating.
For the proof we need some lemmas.

Lemma 13. Let f ∈ F (G). Suppose that G \ i has no negative cycle for some vertex i and that
Γ(f) has an attractor A of size at least two. Then there are x, y ∈ A with xi 6= yi such that
f(x) = x+ ei and f(y) = y + ei.

Proof. Let f ′ ∈ F (V ) be defined by f ′
i(x) = xi and f ′

j(x)j = fj(x) for all j 6= i. Then Γ(f ′) is a
spanning subgraph of Γ(f), and G(f ′) \ i = G \ i. So G(f ′) has no negative cycle.

Let a ∈ A. Since G(f ′) has no negative cycle, by Theorem 1, Γ(f ′) is fixing and thus it
has a path P from a to a fixed point x of f ′. By the definition of f ′, we have zi = ai for all
the configuration z in P . In particular, xi = ai, and since a ∈ A and P is a path of Γ(f), we
have x ∈ A. Since A is of size at least two, x is not a fixed point of f , thus f(x) = x+ ei. Let
b = x+ ei. We have b ∈ A, and bi 6= ai, and we prove similarly, that there is y with yi = bi such
that f(y) = y + ei.
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Lemma 14. Suppose that all the negative arcs of G have the same terminal vertex i. Let
f ∈ F (G). If xi = 0 and x ≤ f(x) then [x,1] is a trap space, and if xi = 1 and x ≥ f(x) then
[0, x] is a trap space.

Proof. Suppose that xi = 0 and x ≤ f(x). Let z ∈ [x,1]. Then 0 = xi ≤ fi(z) and for all j 6= i

we have xj ≤ fj(x) ≤ fj(z) since fj is monotone and x ≤ z. Thus x ≤ f(z) and we deduce that
[x,1] is a trap space. We prove similarly that [0, x] is a trap space if xi = 1 and x ≥ f(x).

Lemma 15. Suppose that all the negative arcs of G have the same terminal vertex i. Let
f ∈ F (G) and A an attractor of Γ(f) of size at least two. There are x, y ∈ A with xi < yi and
x ≤ y such that [A] = [x, y]. Furthermore, [A], [x,1] and [0, y] are trap spaces.

Proof. By Lemma 13, there are x, y ∈ A with xi < yi such that f(x) = x+ ei and f(y) = y+ ei,
and thus x ≤ f(x) and y ≥ f(y). By Lemma 14, [x,1] and [0, y] are trap spaces. It follows that
x ≤ y and that [A] = [x, y] is a trap space.

Lemma 16. If all the negative arcs of G have the same terminal vertex, then G is trapping.

Proof. Let i be the terminal vertex of every negative arc of G. Let f ∈ F (G) and suppose that
A,B are distinct attractors of Γ(f). By Lemma 15, [A] and [B] are trap spaces, so it remains
to prove that [A] ∩ [B] = ∅. Suppose, for a contradiction, that [A] ∩ [B] 6= ∅. Then at least one
of A,B is of size at least two, say A. By Lemma 15, there are xA, yA ∈ A with xAi < yAi such
that [xA,1] and [A] = [xA, yA] are trap spaces.

Suppose first that B is of size one, that is, consists of a fixed point, say z. Then z ∈ [xA, yA].
If zi = 0 then, by Lemma 14, [z,1] is a trap space. We have yA ∈ [z,1] and since z 6= xA, we
have xA 6∈ [z,1]. We deduce that there is no path in Γ(f) from yA to xA, a contradiction. If
zi = 1 we obtain a contradiction similarly.

Consequently, B is of size at least two. Hence, by Lemma 15, there are xB, yB ∈ B with
xBi < yBi such that [xB ,1] and [B] = [xB , yB ] are trap spaces. If yBj < xAj for some vertex j,

then [A] ∩ [B] = ∅, a contradiction. So xA ≤ yB . Hence yB ∈ [xA,1] and since [xA,1] is a trap
space, we deduce that B ⊆ [xA,1]. In particular, xA ≤ xB . By symmetry we have xB ≤ xA.
Thus xA = xB, a contradiction.

Lemma 17. If G is strong and contains an arc from j to i, or a vertex i, that belongs to every
negative cycle and to no positive cycle, then, up to a switch of G, all the negative arcs have i as
terminal vertex.

Proof. Let G′ be obtained from G by deleting all the in-coming arcs of i. Since G is strong, G′

has a unique initial strong component, which has i has unique vertex, and G has an arc from each
terminal strong component of G′ to i. Since each strong component of G′ only contains positive
cycles, up to a switch we can assume that all the strong components of G′ only contain positive
arcs (using Propositions 2 and 3). Let I1, . . . , Ir be the vertex sets of the strong components of
G′ in the topological order (so I1 = {i}). Let H be the signed digraph on {I1, . . . , Ir} with a
positive (negative) arc from Ip to Iq if G has a positive (negative) arc from some vertex in Ip to
some vertex in Iq. Let s1 = 1 and, for 1 < p ≤ r, let sp = 1 if H has a positive path from I1 to
Ip and sp = −1 otherwise. A consequence of (1) below is that, actually, all the paths from I1 to
Ip have the same sign.

(1) For 1 ≤ p < q ≤ r, the sign of an arc of H from Ip to Iq is sp · sq.

Suppose that H has an arc from Ip to Iq of sign s 6= sp · sq. Since H has a path from
Iq to I1 with internal vertices in {Iq+1, . . . , Ir}, G has a path P from some k ∈ Iq to
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i whose internal vertices are in Iq+1∪ · · · ∪ Ir. Since s 6= sp · sq, H has a positive and
a negative path from I1 to Iq whose vertices are in {I1, . . . , Iq}. Since Iq is strong
and has only positive arcs, we deduce that G has a positive path P+ from i to k

and a negative path P− from i to k whose internal vertices are in I2 ∪ · · · ∪ Iq. Thus
C1 = P+ ∪ P and C2 = P− ∪ P are cycles with different signs.

So i belongs to cycles of different signs. We deduce that i has an in-neighbor j such
that the arc from j to i belongs to all the negative cycles and to no positive cycle.
Thus this arc belongs to C1 or C2, and this means that it is in P , and thus it belongs
to both C1 and C2, and we obtain a contradiction.

Let J be the set of vertices Ip of H with sp = −1. We deduce from (1) that an arc of H is
negative if and only if it leaves J or enters J . Hence the J-switch of H is full-positive. Let J ′

be the union of the sets Ip contained in J . Then the J ′-switch of G′ is full-positive, so, in the
J ′-switch of G, all the negative arcs have i as terminal vertex.

As a consequence:

Lemma 18. If G has an arc or a vertex that belongs to all the negative cycles and to no positive
cycle, then G is separating.

Proof. Suppose that G is a smallest counter example with respect to the number of vertices.
There is f ∈ F (G) and attractors A,B of Γ(f) with [A] ∩ [B] 6= ∅.

(1) For every j ∈ V there is a ∈ A and b ∈ B with aj 6= bj.

Suppose that there is j ∈ V and c ∈ {0, 1} such that aj = bj = c for all a ∈ A and
b ∈ B. Let h be the BN with component set I = V \ j defined by h(xI) = f(x)I for
all x with xj = c. Then G(h) is a subgraph of G \ j. Let A′ = {aI | a ∈ A} and
B′ = {bI | b ∈ B}. Then A′, B′ are distinct attractors of Γ(h) with [A′] ∩ [B′] 6= ∅.
Hence G(h) is non-separating. So, by Theorem 1, G(h) has a negative cycle C. Hence
C contains an arc or a vertex that belongs to all the negative cycles of G and to no
positive cycle of G. Since G(h) is a subgraph of G \ j, this arc or this vertex belongs
to all the negative cycles of G(h) and to no positive cycle of G(h). We deduce that
G(h) is a smaller counter example, a contradiction.

(2) G is strong.

If not there is a partition (I1, I2) of the vertices such that G has no arc from I2 to
I1 and G[I2] is strong. We then use the notations of Lemma 6. Let i be a vertex of
G meeting every negative cycle, which exists by hypothesis.

If i ∈ I1, then G[I1] is separating, since otherwise it is a smaller counter example.
Thus Γ1 is separating. We then deduce from Lemma 6 that if A1 6= B1 then [A1] ∩
[B1] = ∅ and thus [A] ∩ [B] = ∅, a contradiction. So suppose that A1 = B1, which
implies Γ2

A = Γ2
B and A2 6= B2. Since i is in I1, G[I2] has only positive cycles, so by

Lemma 5 it is robustly trapping, and thus Γ2
A is separating. We then deduce from

Lemma 6 that [A2] ∩ [B2] = ∅ and thus [A] ∩ [B] = ∅, a contradiction.

If i 6∈ I1 then G[I1] has only positive cycles. So G[I1] is fixing, and we deduce from
Lemma 6 that there are xA, xB , fixed points of f1, such that A = {xA} × A2 and
B = {xB} × B2. If xA 6= xB then [A] ∩ [B] = ∅, a contradiction. Thus xA = xB so
aI1 = bI1 for all a ∈ A and b ∈ B, which contradicts (1). This proves (2).
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From (2) and Lemma 17, in some switch G′ of G, all the negative arcs have the same terminal
vertex. By Lemma 16, G′ is separating and we deduce that G is separating by Proposition 3, a
contradiction.

Lemma 19 ([27]). If G has a unique negative cycle, then some arc belongs to no positive cycle.

Proof of Theorem 5. Suppose that G has a unique negative cycle C. By Lemma 19, C has
an arc that belongs to no positive cycle. Since this arc obviously belongs to all the negative
cycles of G, we deduce from Lemma 18 that G is separating. Suppose, in addition, that G is
strong. By Lemma 17, in some switch G′ of G, all the negative arcs have the same terminal
vertex. Hence, by Lemma 16, G′ is trapping and, by Proposition 3, G is trapping.

Using the previous tools, we provide a new sufficient condition for G to be fixing.

Proposition 5. If G is strong, has a unique negative cycle C, at least one positive cycle, and
if no cycle of G is disjoint from C, then G is fixing.

We need the following lemma.

Lemma 20. Suppose that G has a unique negative arc, say from j to i, where i is of in-degree at
least two, and suppose that every positive cycle intersects every negative cycle. Then G is fixing.

Proof. Let f ∈ F (G) and suppose, for a contradiction, that Γ(f) has an attractor A of size at
least two. By Lemma 15, there are x, y ∈ A with xi < yi and x ≤ y such that [x,1], [0, y] and
[A] = [x, y] are trap spaces. By Lemma 2, G has a negative cycle C such that xk < yk for every
vertex k in C.

Suppose that x = 0 and y = 1. Then, for every vertex k 6= i in G, k has only positive
in-neighbors. Furthermore, since x, y ∈ A, Γ(f) has a path from 0 to 1 and thus fk is not a
constant. So we have fk(x) = 0 = xk and fk(y) = 1 = yk. We deduce that fi(x) = 1 and
fi(y) = 0 (otherwise x or y would be fixed points, which is not possible since x, y ∈ A). Let z be
any configuration on V . If zj = 0 then we have xj = zj and x ≤ z, and since all the in-neighbors
k 6= j of i are positive, we deduce that 1 = fi(x) ≤ fi(z), thus fi(z) = 1. Similarly, if zj = 1
then we have zj = yj and z ≤ y, and since all the in-neighbors k 6= j of i are positive, we deduce
that fi(z) ≤ fi(y) = 0, thus fi(z) = 0. Consequently, fi(z) = zj +1 for all configurations z. But
this means that j is the unique in-neighbor of i, a contradiction. Consequently, x 6= 0 or y 6= 1.

Suppose first that x 6= 0, that is, I = {k | xk = 1} is non-empty. Let k ∈ I. Since [x,1] is a
trap space, we have x ≤ f(x) thus fk(x) = 1. Since k 6= i (because xi = 0), all the in-coming
arcs of k are positive, so it has an in-neighbor ℓ with xℓ = 1. Hence ℓ ∈ I. Consequently, G[I]
has a cycle, which is positive since i 6∈ I. Since xk = 0 for all vertices k in C, this positive cycle
is disjoint from C, a contradiction. If y 6= 1 we prove with similar arguments that {k | yk = 0}
induces a positive cycle disjoint from C.

Proof of Proposition 5. By Lemma 19, the unique negative cycle C has an arc that belongs
to no positive cycle. Since some positive cycle intersects C, some vertex in C has in-degree at
least two, and we deduce that C has an arc a, say from j to i, which belongs to no positive
cycle and such that i is of in-degree at least two. Hence, since G is strong, by Lemma 17, in
some switch G′ of G, all the negative arcs have i as terminal vertex. Let a′ 6= a be an arc with
terminal vertex i, and let C ′ be a cycle of G′ containing a′, which exists since G is strong. In G′,
all the arcs of C ′ distinct from a′ are positive, and if a′ is negative, then C ′ is a negative cycle
distinct from C, a contradiction. Thus a is the unique negative arc of G′. Since i is of in-degree
at least two, by Lemma 20, G′ is fixing, and so is G.
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Example 2 shows that we cannot drop the hypothesis of G strong in Proposition 5. If G
is strong, has a unique negative cycle C, at least one positive cycle, but some positive cycle is
disjoint from C then G is not necessarily fixing, as showed by Example 13 below. Furthermore,
if G is strong, has two negative cycles and every positive cycle intersect every negative cycle,
then G is not necessarily fixing, as showed by Example 14 below.

Example 13. Let f ∈ F (2) be defined by f1(x) = x̄1 ∨ x2 and f2(x) = x1x2. Then Γ(f) is not
fixing since {00, 10} is an attractor, while G(f) is strong, has a unique negative cycle and two
positive cycles.

00
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10

11

1 2

Example 14. Let f ∈ F (2) be defined by f1(x) = x̄1 ∨ x2 and f2(x) = x1x̄2. Then Γ(f) is not
fixing since {00, 10, 01} is an attractor, while G(f) has a unique positive cycle, which intersects
the two negative cycles.
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11

1 2

6 Non-separating signed digraphs with feedback number two

We can say more on non-separating signed digraphs G when the feedback number of G is exactly
two. Let K±

n be the signed digraph with vertex set [n] and with both a positive and a negative
arc from i to j for any i, j ∈ [n]. It is an easy exercise to prove that K±

2
is the unique non-

separating signed digraph on two vertices, and that F (K±
2
) is exactly the set of BNs in F (2)

with a non-separating asynchronous graph. An example follows.

Example 15. Let f ∈ F (K±
2
) be defined by f1(x) = x1 + x2 and f2(x) = x1 +x2. Γ(f) has two

attractors: A = {00} and B = {01, 10, 11}. Since [B] = {0, 1}2, Γ(f) is non-separating.
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11

1 2

K±
2

Let H2 be obtained from K±
2

by deleting the negative loop on vertex 2.

1 2

H2

We prove below that if G is non-separating and has feedback number two, then G contains
in some way H2. To make this precise we need some definitions. Let H be a signed digraphs
with vertex set U . We say that H is embedded in G if there is an injection φ : U → V such that,
for every positive (negative) arc of H from j to i, G contains a positive (negative) path from
φ(j) to φ(i) whose internal vertices are not in φ(U).
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Theorem 6. If G is non-separating and has feedback number 2, then H2 is embedded in G.

Remark 1. The proof also shows that if G has feedback number 2 and Γ(f) is non-separating for
some f ∈ F (G), then Γ(f) has exactly two attractors, say A and B, with |A| = 1 and |B| ≥ 3.

Note that if G is non-separating and has feedback number 2, then K±
2

is not necessarily
embedded in G, as illustrated by Example 11.

Example 16. The interaction graph G of Example 12 is non-separating and has feedback num-
ber 2. H2 is indeed embedded in G, with φ(1) = 1 and φ(2) = 2, because: 1 → 3 → 1 and
1 → 3 → 1 are positive and negative cycles containing 1 but not 2; 1 → 3 → 2 and 1 → 3 → 4 → 2
are positive and negative paths from 1 to 2; 2 → 1 and 2 → 1 are positive and negative paths
from 2 to 1; and 2 → 2 is a positive cycle containing 2 but not 1.

We will use several times a lemma whose statement needs some definitions. Let P be a
path of an asynchronous graph Γ of length ℓ ≥ 1, with configurations x0, . . . , xℓ in order. For
0 ≤ k < ℓ, let ik be the direction of the arc xk → xk+1. We call i0, . . . , iℓ−1 the direction sequence
of P . We say that P is a geodesic if its direction sequence has no repetition. We say that P is
increasing if all its arcs are increasing. A walk W in a signed digraph G is a sequence of arcs
a0, . . . , aℓ such that for 0 ≤ k < ℓ, the terminal vertex of ak is the initial vertex of ak+1. The
sign of W is the product of the sign of its arcs. For 0 ≤ k < ℓ, let ik be the initial vertex of ak,
and let iℓ be terminal vertex of aℓ. Then i0, . . . , iℓ is the vertex sequence of W , and we say that
W is a walk from i0 to iℓ. A sequence s′ is a subsequence of s if we can obtain s′ by removing
some elements of s (so for instance ii is a subsequence of iji).

Lemma 21 ([26]). Let f ∈ F (G), and let P be a path of Γ(f) of length ℓ ≥ 2, with configurations
x1x2 . . . xℓxℓ+1 in order. Let i be the direction of the arc from xℓ to xℓ+1, and suppose that
fi(x

k) = xki for 1 ≤ k < ℓ. There is a component j with fj(x
1) 6= x1j such that G has a walk W

from j to i of sign (fj(x
1)−x1j)(fi(x

ℓ)−xℓi) such that the vertex sequence of W is a subsequence
of the direction sequence of P . Furthermore, if P is increasing then W is a full-positive path
(its vertex sequence has no repetition, and all its arcs are positive) and j ∈ ∆(x1, xℓ+1).

The following is a well-known result of Robert.

Lemma 22 ([29]). Suppose that G is acyclic and let f ∈ F (G). Then f has a unique fixed point
and Γ(f) has a geodesic from any configuration on V to this fixed point.

Proof of Theorem 6. Let {i1, i2} be a feedback vertex set of G. Let f ∈ F (G), and let A,B
be distinct attractors of Γ = Γ(f) with [A] ∩ [B] 6= ∅. We will prove that H2 is embedded in G.
For c1, c2 ∈ {0, 1}, let Xc1c2 be the set of configurations on V with xi1 = c1 and xi2 = c2.

(1) For every c1, c2 ∈ {0, 1}, there is xc1c2 ∈ Xc1c2 with fj(x
c1c2) = xc1c2j for all

j 6= i1, i2 such that Γ has a geodesic from any configuration in Xc1c2 to xc1c2.

Let f ′ ∈ F (V ) be defined by f ′
i1
(x) = c1, f ′

i2
(x) = c2 and f ′

j(x) = fj(x) for all
j 6= i1, i2. Then G(f ′) is obtained from G by removing all the arcs with i1 or i2 as
terminal vertex, and thus it is acyclic. By Lemma 22, f ′ has a unique fixed point, say
xc1c2 , and Γ(f ′) has a geodesic from any configuration to xc1c2 . Since xc1c2 ∈ Xc1c2 ,
and since Γ(f ′)[Xc1c2 ] = Γ[Xc1c2 ], we deduce that xc1c2 has the desired properties.

We deduce from (1) that A and B cannot intersect the same set Xc1c2 (since otherwise
xc1c2 ∈ A∩B). Suppose that A and B intersect at most two of the four sets X00,X01,X10,X11,
and that A intersects Xc1c2 . If A intersects also X c̄1c̄2 then it must intersects X c̄1c2 or Xc1c̄2 ,
and we obtain a contradiction. We deduce that either A ⊆ Xc1c2 ∪X c̄1c2 and B ⊆ X c̄1c̄2 ∪Xc1c̄2
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or A ⊆ Xc1c2 ∪Xc1c̄2 and B ⊆ X c̄1c̄2 ∪X c̄1c2 . In both cases we have [A] ∩ [B] = ∅. Hence we
can suppose that one of A,B intersects three of the sets, and the other one. Up to a switch of
f , we can suppose that:

x00 = 0, B ⊆ X00 and A ⊆ X01 ∪X10 ∪X11.

From (1) we have 0 ∈ B and x01, x10, x11 ∈ A.

(2) f(0) = 0, f(x01) = x01 + ei1 and f(x10) = x10 + ei2 .

If fi1(0) = 1 then Γ has an arc from 0 to ei1 and we deduce that ei1 ∈ B ∩X10, a
contradiction. Thus fi1(0) = 0 and we prove similarly that fi2(0) = 0. We deduce
from (1) that f(0) = 0. If fi2(x

01) = 0, then Γ has an arc from x01 to x01 + ei2
and we deduce that x01 + ei2 ∈ A ∩ X00, a contradiction. Thus fi2(x

01) = 1, and
since x01 is not a fixed point, we deduce from (1) that f(x01) = x01 + ei1 . We prove
similarly that f(x10) = x10 + ei2 .

(3) G \ i2 has a full-positive cycle containing i1, and G \ i1 has a full-positive cycle
containing i2.

Let f ′ ∈ F (V ) be defined by f ′
i2
(x) = 0 and f ′

j(x) = fj(x) for all j 6= i2. Then

G(f ′) \ i2 = G \ i2. By (2), we have f ′(x10) = x10. Since f ′(0) = 0 and x10i2 = 0, we
deduce from Lemma 1 that G(f ′) \ i2 = G \ i2 has a full-positive cycle C. Since i1
is a feedback vertex set of G \ i2, we deduce that C contains i1. We prove similarly
that G \ i1 has a full-positive cycle containing i2.

(4) G has a full-positive path from i1 to i2, and from i2 to i1.

We prove that G has a full-positive path from i1 to i2; for the other path the argument
is similar. If fi2(ei1) = 1 then, since fi2(0) = 0, G has a positive arc from i1 to i2
and we are done. Suppose fi2(ei1) = 0. Let P be a geodesic of Γ from ei1 to x10

which exists by (1), and which is increasing since ei1 ≤ x10. Let x be the first vertex
of P with fi2(x) = 1, which exists by (2), and which is not the first vertex of P , by
hypothesis. Let P ′ be obtained by adding the arc from x to x + ei2 to the subpath
of P from ei1 to x. Then P ′ is increasing and, by Lemma 21, there is j 6= i1, i2 such
that fj(ei1) 6= (ei1)j and such that G has a full-positive path from j to i2 (which
does not contain i1). So fj(ei1) = 1 and, since fj(0) = 0, G has a positive arc from
i1 to j, and thus G has a full-positive path from i1 to i2.

(5) If fi1(x
11) = 0 then G has a negative cycle containing i1 but not i2, and if

fi2(x
11) = 0 then G has a negative cycle containing i2 but not i1.

Suppose that fi1(x
11) = 0. By (2) we have f(x01) = x01 + ei1 , and since x01 ∈ A,

we have x01 + ei1 ∈ A ∩X11. By (1), Γ has a geodesic path from x01 + ei1 to x11.
Hence it has a shortest geodesic path P from x01 + ei1 to a state x ∈ X11 such that
fi1(x) = 0. Let P ′ be obtained from P by adding the arc from x01 to x01 + ei1 and
from x to x+ ei1 . By Lemma 21, G \ i2 has a negative walk from i1 to itself. Hence
G\ i2 has a negative cycle and since i1 is a feedback vertex set of G\ i2, this negative
cycle contains i1. We prove similarly the second assertion.

(6) If fi1(x
11) = 0, then G has a negative path from i2 to i1, and if fi2(x

11) = 0,
then G has a negative path from i1 to i2.
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Suppose that fi1(x
11) = 0. By (2) we have f(x10) = x10 + ei2 , and since x10 ∈ A,

we have x10 + ei2 ∈ A ∩X11. By (1), Γ has a geodesic path from x10 + ei2 to x11.
Hence it has a shortest geodesic path P from x10 + ei2 to a state x ∈ X11 such that
fi1(x) = 0. Let P ′ be obtained from P by adding the arc from x10 to x10 + ei2
and from x to x + ei1 . By Lemma 21, G has a negative walk W from i2 to i1 such
that, denoting j1, . . . , jℓ the vertex sequence of W (thus j1 = i2 and jℓ = i1), we
have i1, i2 6∈ {j2, . . . , jℓ−1}. Since G \ {i1, i2} is acyclic, the vertex sequence has no
repetition. Hence W corresponds to a path. We prove similarly the second assertion.

Since x11 is not a fixed point, by (1) we have fi1(x
11) = 0 or fi2(x

11) = 0. If fi1(x
11) = 0

and fi2(x
11) = 0 then, by (3)-(6), K±

2
is embedded in G and so is H2. So suppose, without

loss, that fi2(x
11) = 1, and thus fi1(x

11) = 0 (since otherwise, by (1), x11 is a fixed point, a
contradiction). By (3)-(6), it only remains to prove that G has a negative path from i1 to i2.

Suppose, for a contradiction, that all the paths from i1 to i2 are positive. Let I be the
vertices that belong to a path from i1 to i2; by (4) there is at least one path from i1 to i2 thus
I is not empty and i1, i2 ∈ I. Let H be obtained from G[I] by removing all the incoming arcs
of i1 and all the out-going arcs of i2.

(7) There is L ⊆ I \ {i1, i2} such that the L-switch of H is full-positive.

Let H ′ be obtained from H by adding a positive arc from i2 to i1. Let j1, j2 be two
vertices in H ′. Then H has a path from i1 to j2 and a path from j1 to i2. Since H ′

has an arc from i2 to i1, it has a path from j1 to j2. So H ′ is strongly connected.
Suppose that H ′ has a negative cycle C. Since G \ {i1, i2} is acyclic, H is acyclic,
and thus C contains the positive arc from i2 to i1. Hence the path of C from i1 to
i2 is negative, and since it is in G we obtain a contradiction. Hence H ′ has only
positive cycles. Since H ′ is strong, by Proposition 2, there is L ⊆ I such that the
L-switch of H ′ is full-positive, and the (I \ L)-switch of H ′ is also full-positive. If
i1, i2 6∈ L then we are done. Otherwise, since the arc from i2 to i1 is positive in H ′,
we have i1, i2 ∈ L, and we are done with (I \ L) instead of L.

Hence, up two a L-switch of G and f with i1, i2 6∈ L, we can suppose that H is full-positive,
and since i1, i2 6∈ L, B still intersects X00 and A still intersects X01,X10,X11 (but x00 is no
longer necessarily equal to 0). Let R be the set of vertices reachable from i1 in G; so I ⊆ R.
Let J = R \ I and K = V \R. Note that G has no arc from J to I \ i1 (if there is an arc from
j ∈ J to I \ i1, then j is in a path from i1 to i2 so it belongs to I, a contradiction). Let � be
the partial order on {0, 1}V defined by x � y if and only if xI\i1 ≤ yI\i1 and xK = yK .

(8) If x � y and xi1 ≤ yi1 then f(x) � f(y).

Suppose that x � y and xi1 ≤ yi1 . Since ∆(x, y) ⊆ R and G has no arc from R to
K we have f(x)K = f(y)K . Let z be the configuration on V defined by zI = yI and
zV \I = xV \I . We have ∆(x, z) ⊆ I and x ≤ z. Given any i ∈ I \ i1, since every arc of
G from a vertex in I to i is positive, we deduce that fi(x) ≤ fi(z). Since ∆(z, y) ⊆ J

and G has no arc from J to i, we have fi(z) = fi(y) and thus fi(x) ≤ fi(y).

Since Γ[A] has a path from X01 to X10, it has a path P from X01 to X10 whose internal
configurations are all in X11. Let y0, . . . , yℓ+1 be the configurations of P in order, and let
j0, . . . , jℓ be the direction sequence of P . Since yk ∈ X11 for 1 ≤ k ≤ ℓ, we have y0 ∈ X01 and
y1 ∈ X11 thus j0 = i1. Similarly, since yℓ ∈ X11 and yℓ+1 ∈ X10, we have jℓ = i2.
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Let x0 = y0 and, for 1 ≤ k ≤ ℓ + 1, let xk = xk−1 + ejk if Γ has an arc from xk−1 in
the direction jk, and xk = xk−1 otherwise. Hence Γ has a path from x0 to xℓ whose direction
sequence is a subsequence of j1, . . . , jℓ.

We have x0i1 = y0i1 = 0 and y1i1 = 1. Since i1 6∈ {j1, . . . , jℓ}, we deduce that xki1 < yk+1

i1

for all 0 ≤ k ≤ ℓ. Hence we have xk � yk+1 for all 0 ≤ k ≤ ℓ. Indeed, for k = 0 we have
x0 = y0 � y0 + ei1 = y1, and if xk−1 � yk for some 1 ≤ k < ℓ, then, since xk−1

i1
< yki1 , we

have f(xk−1) � f(yk) by (8) and we deduce that xk � yk+1. In particular xℓ � yℓ+1. Since
yℓ+1 ∈ X10, we have xℓi2 = 0 and thus xℓ ∈ X00 because xℓi1 = 0. Since Γ has a path from x0 to

xℓ and x0 ∈ A, we have xℓ ∈ A ∩X00, a contradiction. This proves that G has a negative path
from i1 to i2.

If G has feedback number at least 3, then H2 is not necessarily embedded in G as illustrated
by the following example.

Example 17. Let f ∈ F (3) be defined by f1(x) = x̄3x1 ∨ x̄3x2, f2(x) = x̄1x2 ∨ x̄1x3 and
f3(x) = x̄2x3 ∨ x̄2x1. Then Γ(f) is non-separating, and H2 is not embedded in G(f) since all
the paths from 1 to 3 are positive, all the paths from 3 to 2 are positive and all the paths from 2
to 1 are positive.
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Note that the signed digraph of the example has positive feedback number equal to three.
Example 5 shows that when G is non-separating and has positive feedback number equal to
two then H2 is not necessarily embedded in G. The following example shows that this is not
necessarily the case even when adding the requirement that G is strongly connected.

Example 18. Consider f ∈ F (4) defined by f1(x) = x3∨x1x̄2, f2(x) = x4∨x2x̄1, f3(x) = x2x̄3
and f4(x) = x1. Then Γ(f) is non-separating as shown in the figure below. G(f) is strongly
connected, has feedback number three and positive feedback number two. H2 is not embedded
in G(f): vertices 1 and 2 are the only vertices that belong to disjoint positive cycles, and all
negative cycles that contain one of them contain both.
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7 Open problems

In this work we introduced notions of “separation” for asynchronous attractors of Boolean
networks. The mildest notion of separation requires that the minimal subspaces containing
different attractors do not intersect. If the minimal subspaces are also closed with respect to
the dynamics, we speak of trap-separation.

Previous results examined the cases of interaction graphs with no cycles, no positive cycles,
or no negative cycles. In all cases, the attractors have strong separation properties, in particular
they can always be separated using trap spaces. Here we showed that the existence of at most one
positive cycle (Theorem 4) or at most one negative cycle (Theorem 5) is sufficient for separation
but not for trap-separation (Example 3). Separation is also guaranteed if there is no intersection
between positive or negative cycles (Theorem 2), and trap-separation if there are no paths from
negative to positive cycles (Theorem 3).

If we add the requirement that the graph is strongly connected, then trap-separation holds
if there is at most one negative cycle (Theorem 5). The theorem actually shows that a stronger
property holds: the minimal subspaces containing attractors are trap spaces. Informally, we can
say that the attractors are well approximated by minimal trap spaces. Whether the existence
of at most one positive cycle in a strongly connected graph also implies conditions stronger
than separation remains an open question. Example 10 shows that under these conditions the
attractors are not necessarily well approximated by minimal trap spaces.

We also looked at how the existence of several attractors affects the existence of separate
cycles of opposite signs. We saw that if a network has multiple attractors, and at least one of
them is not a fixed point, if it is trap-separating then its interaction graph must have disjoint
positive and negative cycles (Proposition 1), but this is not necessarily true if the dynamics is
only separating (Example 1). For non-separating dynamics, all the examples we provided have
disjoint positive and negative cycles, and at least one positive cycle with all vertices belonging
to a negative cycle. We formulate the following conjecture.

Conjecture 1. Suppose that G is non-separating. Then

• G has a negative and a positive cycle that are disjoint, and

• G has a positive cycle C such that every vertex of C belongs to a negative cycle.

We saw that non-separating graphs have feedback number at least two (Theorem 4), and that
if the feedback number is exactly two then the graph contains H2 (in the sense of Theorem 6).
Starting fromH2 we can construct a non-separating strongly connected graph with n ≥ 3 vertices
by replacing the positive arc from 1 to 2 with a full-positive path with n − 2 internal vertices
(for instance, the signed digraph in Example 11 is obtained by replacing the positive arc from 1
to 2 with a full-positive path with one internal vertex).

Example 19. For each n ≥ 3, let f ∈ F (n) be defined by

f1(x) = x1 + x2, f2(x) = x̄1x2 ∨ xn, f3(x) = x1, fk(x) = xk−1 for k = 4, . . . , n.

The interaction graph of f is as follows (the dotted green arrow represents a full-positive path).

1 2

3 4 n
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It is strongly connected, has n+ 5 arcs and 7 cycles, of which 4 are positive and 3 are negative.
This signed digraph is non-separating since Γ(f) is non-separating. Indeed, 0 is the unique fixed
point of f . Furthermore, the set T of configurations x with x1 = 1 or x2 = 1 is a trap set which
thus contains an attractor A. We can easily check that Γ(f) has a path from any configuration in
T to 1, and thus 1 ∈ A. Since Γ(f) has a path from 1 to e2 (with direction sequence 1, 3, 4 . . . , n)
and a path from from e2 to e1 (with direction sequence 1, 2), we have e1, e2,1 ∈ A, and thus
[A] = {0, 1}n, so Γ(f) is not separating.

Non-separating signed digraphs that do not contain H2 do exist (Example 17); however we
conjecture that signed digraphs derived from H2 provide lower bounds for strongly connected
non-separating signed digraphs in terms of number of arcs and number of cycles.

Conjecture 2. Every non-separating strongly connected signed digraph with n ≥ 3 vertices has
at least n+5 arcs and at least 7 cycles. At least 4 cycles are positive and at least 3 are negative.

For signed digraphs that are separating but not trap-separating we can suggest stricter
bounds, based on the following example.

Example 20. For each n ≥ 4 let f ∈ F (n) be defined by

f1(x) = x̄n−1x̄n, fn(x) = xn ∨ x1x̄2x3, fk(x) = xk−1 for k = 2, . . . , n− 1.

The interaction graph of f is as follows (the dotted green arrow represents a full-positive path).

1

2

3

n− 1 n

It is separating since it has feedback number two ({1, n} is a feedback vertex set) and no embedding
of H2. It is strongly connected, has n + 5 arcs and 5 cycles, of which 2 are positive and 3 are
negative. However, it is not trap-separating since Γ(f) is not trap-separating. Indeed, en is a
fixed point of f and Γ(f) has an attractor A whose configurations are

∑k
i=1

ei and 1+
∑k

i=1
ei

for k = 1, . . . , n−1. Thus [A] = {xn = 0}, and since Γ(f) has an arc from e1+e3 to e1+e3+en
we have 〈A〉 = {0, 1}n, and thus Γ(f) is not trap-separating.

Conjecture 3. If a strongly connected signed digraph with n ≥ 4 vertices is separating but not
trap-separating, then it has at least n + 5 arcs and at least 5 cycles, of which at least 2 are
positive and at least 3 are negative.
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