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Abstract

We observe message-e�cient distributed algorithms for the SetCover Problem. Given a ground set U of

n elements and m subsets of U , we aim to �nd the minimal number of these subsets that contain all elements.

In the default distributed distributed setup of this problem, each set has a bidirected communication link with

each element it contains. Our �rst result is a Õ(log2(∆))-time and O(
√

∆)(n + m))-message algorithm with

expected approximation ration of O(log(∆)) in the KT0 model. The value ∆ denotes maximal cardinally

of each subset. Our algorithm is almost optimal with regard to time and message complexity. Further, we

present SetCover algorithm in the Beeping model that only relies on carrier-sensing and can trade runtime

for approximation ratio similar to the celebrated algorithm by Kuhn and Wattenhofer [PODC ’03].

2012 ACM Subject Classification Theory of computation→ Distributed algorithms; Mathematics of com-

puting→ Probabilistic algorithms

Keywords and phrases Set Cover, Approximation Algorithms, Beeping Model, KT0 Model

1 Introduction

SetCover is a well-understood problem in both the centralized and distributed setting. Given a

collection of elements U := {e1, . . . , en} and sets S := {s1, . . . , sm} with si ⊆ U the goal is to

cover all elements with as few sets as possible. SetCover has a wide variety of applications in

many areas of computer science. On the one hand, it plays an essential role in the analysis of large

data sets, which is often needed in �elds like operations research, machine learning, information

retrieval, and data mining (see [5] and the references therein). On the other hand, it is also used

in purely distributed domains like ad-hoc sensor networks. An essential task in these networks is

to determine a minimum set of nodes, a so-called DominatingSet, such that all nodes are sensor

range of this set. This set can then ful�ll particular tasks like routing, collecting sensor data from

neighbors, and various other tasks. Note that DominatingSet is a special case of SetCover where

all sets are also elements.

In the centralized setting, a simple greedy algorithm that always picks the set that covers most

elements has a logarithmic approximation factor, which is the best we can hope for a polynomial-

time algorithm unless P = NP . There are several randomized algorithms in the distributed

Congest model that match the optimal approximation ratio, w.h.p., and have a near-optimal

runtime of O(log(∆)2) where ∆ is the maximum degree of a set [6, 8]. For distributed algorithms,

an instance of SetCover is ususally modeled as a so-called problem graph GP := {VU ∪ VS , E}.
Each set and each element corresponds to a node in this graph and for each set si ∈ S there is

a bidirected edge {ej , Si} ∈ E to each element ej ∈ U it contains. Each of these edges models

a bidirected communication channel between the nodes representing the set and element in the

default distributed setup. Each set and element in each round of communication can send a distinct
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message of size O(log(n)) over each communication edge. Although there are numerous results

concerning the runtime of algorithms in the CONGEST model, there are only a few that consider

the message complexity, i.e., how many messages are needed to compute a distributed solution to

SetCover. To the best of our knowledge, in all popular solutions to set cover, all sets/elements

extensively communicate with their neighborhood and send (possibly distinct) messages to all

of their neighboring set and elements. This setup implies a message complexity of O(|E|) per

round and Õ(|E|) overall. From a practical standpoint, a high message complexity makes these

algorithms less suitable for dense networks where sending a single message is considered costly.

For example, in ad-hoc networks, one needs to take special care of the limited battery life of the

nodes. In particular, sending messages should be reduced to a minimum due to the high energy

requirements of the radio module. Thus, a distributed message-e�cient algorithm for SetCover

can therefore greatly reduce this energy consumption. Therefore, our �rst question is:

(Q.1) Can we �nd a SetCover algorithm that sends o(|E|) messages?

However, even if we �nd message-e�cient algorithms in the CONGEST model, they do not necessar-

ily translate well to ad-hoc networks where they are needed. In practical ad-hoc networks, however,

it is much more energy-e�cient to only send a single signal, a so-called Beep, to all neighboring

nodes. Further, nodes can only distinguish if at least one or none of their neighbors beeped, i.e., they

only rely on carrier sensing. This has recently been formalized in the so-called Beeping model[1].

To the best of our knowledge there no SetCover or DominatingSet algorithm for general graphs

in this model. Thus, our second question is:

(Q.2) Can we �nd a SetCover algorithm in the BEEPING model?

We answer both questions a�rmative and provide fast and e�cient algorithms for SetCover in the

KT0-model (a variant of the CONGEST model for analyzing message-e�cient algorithms) and the

Beeping model. Our KT0 algorithm has polylogarithmic runtime and approximation ratio while

sending only Õ(
√

∆(n + m))1
messages, w.h.p

2
. Although we cannot prove that this message

complexity is optimal for this particular approximation ratio, we give evidence that one cannot

hope for far better results as we show that there are instances that require O(
√

∆n) messages

for a constant approximation. Second, our Beeping algorithm runs in O(k3) rounds and has

an approximation ratio of O(log(∆)2 k/3
√

∆) and thus — similar to [8] — can trade runtime for

approximation ratio. This tradeo� makes it particularly practical as the topology of sensor networks

is often rapidly changing, and our algorithm can quickly react to these changes by computing a

new solution in constant time. Existing solutions ([12, 13]) have a far better approximation ratio

(as they are designed for UDGs), but have at least logarithmic runtime, which cannot trivially be

reduced. Note that the focus of this work is to prove feasibility and not optimize logarithmic factors

in message complexity and approximation ratios, i.e., we explicitly do not claim our factors to be

optimal.

Our main technical contribution is an adapted version of Jia et al.’s. DominatingSet algorithm

from [6] that will be the basis for both our contributions. We adapt this algorithm in two major ways:

First, we massively reduce the messages that need to be exchanged by replacing all instances where

nodes are counted through randomized approximation that only use a fraction of the messages

and — perhaps more importantly — completely replacing the mechanism that lets nodes decide to

join the solution. For the latter, we use geometrically distributed starting times where nodes add

1 Õ(·) hides polylogarithmic factors.

2

As usual, an event holds with high probability, if it holds with prob. 1− o(nc) for some c > 1
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themselves when their time has come, and they have a certain threshold of uncovered neighbors.

This approach does not require any additional messages. Note that the independent work of [4]

which only recently came to our attention, uses a very similar technique
3
, but their analysis does

not provide all the properties we need for our problems, at least not without non-trivial extensions.

This paper is structured as follows: First, we present some related work in the remainder of this

section. Then, we present the algorithm for the Beeping model in Section 3 and in Section 4 the

message-e�cient KT0 algorithm and an almost matching lower bound. We provide more details on

the models in the respective sections.

1.1 Related Work

There are only a few works on the message complexity of SetCover, however the space complexity

of SetCover in streaming models is an active research topic with exciting results for several variants

of the problem. In the streaming model, the edges of the problem graph, i.e., the information on

which element belongs to which set, arrive sequentially. An algorithm can store each edge for later

use and iterate over the whole input several times. The goal is to solve SetCover using as few

passes and as few space as possible. Note that a trivial algorithm can just iterate over the input once,

store all edges, and then solve the problem using an o�ine algorithm. Demaine et al. further showed

that randomization is crucially needed for a space complexity of o(mn) as it is impossible for a

deterministic algorithm. In addition to this distributed model, Indyk et al. also successfully used the

ideas and primitives from streaming algorithms in the area of Sublinear Algorithms [5]. The goal is

to �nd an algorithm that makes as few queries as possible and computes a good approximate solution.

As we will see, this model has a lot in common with our distributed model. In this case, the number

of queries should be o(mn) , i.e., sublinear in the number of edges. Indyk et al. present a polynomial-

time algorithm that makes Õ(m+
√
mn) queries and computes aO(log2(n))-approximate solution.

With exponential runtime, the approximation ratio even reduces to O(log2(n)), but the algorithm

still needs to make Õ(m +
√
mn) queries. Furthermore, Indyk et al. gave strong evidence that

Ω(nmε) queries are indeed necessary to achieve good approximation ratios. Finally, we review

some fully distributed approaches for SetCover and related Optimization Problems. As mentioned

in the introduction Jia et al.[6] as well as Kuhn and Wattenhofer[8] have presented fast distributed

algorithms to solve the DominatingSet problem in time in O(log(n)2). The goal is to �nd the

minimal set of nodes adjacent to all nodes in the graph G := (V,E). DominatingSet is a special

case of SetCover where each node is both an element and a set. Kuhn et al. further presented

an algorithm to solve SetCover (and any covering and packing LP) in O(log(n)2) rounds in the

CONGEST model[7]. This is close to the optimal runtime of O(log(n)), which is also proven in that

paper. Roughgarden et al. presented an distributed algorithm for convex optimization problems

(which includes SetCover) that works on any eventually connected communication network [10].

In particular, it works on dynamic communication networks that can change from round to round.

Even though this algorithm is fully distributed, it heavily relies on sequential calculations to cope

with these general communication networks. Therefore, its runtime and message complexity are

polynomial in the number of nodes. Finally, many works consider the DominatingSet-problem in

models tailored to ad-hoc networks. First, there is a paper by Scheideler et al.[12] that observes the

SINR model where the nodes are modeled as points in the euclidean plane. Finally, there already is

a solution to the DominatingSet-problem in the Beeping-model for unit-disk graphs[13]. Their

algorithm bears some similarities with ours but is not applicable to general graphs.

3

Instead of using geometric starting times they continuously increase a set’s probability to join until it joins or does

cover enough elements. From a probabilistic point of view this is (almost) equivalent to picking geometric starting

times.
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2 Preliminaries

In addition to some textbook probability distributions, in this work, we use the following version of

the Cherno� Bound:

I Lemma 1 (Cherno� Bound). Let X :=
∑
Xi be the sum of independent random variables with

Xi ∈ {0, 1}.Then it holds that for any 0 < δ,

Pr[X ≥ (1− δ)E[X]] ≤ e−
δ2E[X]

3 and Pr[X ≤ (1− δ)E[X]] ≤ e−
min{δ,δ2}E[X]

3 . (1)

3 An E�icient SetCover-Algorithm for the Beeping-Model

We will now describe our �rst algorithm, which we dub the Beep-And-Sleep algorithm, as most

sets and elements will be idle during the execution. Before we go into the details of our result and

the algorithm, let us �rst present the model. In this section, we use the following (standard) variant

of the Beeping model [1, 2]:

1. We observe a �xed communication graph G := (VS ∪ VU , E) with VS = n and VU = m. Each

set s ∈ VS has a bidirected edge {s, e} ∈ E to each element e ∈ VU it contains. Each node can

only communicate with its neighbors in G. Further, all nodes know ∆, the maximal degree

of G. This assumption can be replaced by a polynomial upper bound, which would slow the

algorithm down by a constant factor. Note that the nodes do not know their exact degree, and

nodes have no identi�ers.

2. Time proceeds in so-called slots. In each slot, a node can either beep or listen. If a node listens and

any subsets of its neighbors beeps, the listening node receives a Beep. It can neither distinguish

which neighbors beeped nor how many neighbors beeped, i.e., it only relies on carrier sensing.

Further, a node cannot simultaneously beep and listen but must choose one of the two options.

3. All nodes wake up in the same slot, i.e., we observe the Beeping model with simultaneous

wake-up. We believe that our algorithm can also be extended for arbitrary wake-up as each

node only needs to be in sync with neighboring nodes. If nodes do not wake up in the same

round, their internal counters only di�er by 1 as each node wakes up one slot after its earliest

neighbor. In this case, there are some standard tricks to simulate a single slot of a simultaneous

wake-up algorithm within 3 slots [1, 2].

Given this model, we show the following:

I Theorem 2. There is an algorithm in the Beeping model that solves SetCover in time O(k3) with
approximation ratio O(log2(∆) · k

√
∆

3
) where k > 3 is parameter known to all nodes.

Thus, even for a constant k, our algorithm achieves a non-trivial approximation ratio, which is

close to the optimal one as Kuhn et al. showed than any distributed algorithm with only local

communication needs O(k) for an approximation ratio of O( k
√

∆) [8]. We will now describe the

algorithm promised by the theorem: The core idea is that all nodes that cover the most neighbors

add themselves to the set similar to the sequential greedy algorithm. The main di�culty stems from

the fact that we need to estimate the number of uncovered neighbors correctly and to avoid that too

many sets that cover the same elements concurrently add themselves to the solution. The algorithm

runs in k phases, where in phase i all sets that cover approximately ∆i = ∆
k
√

∆
i elements try to

add themselves to the solution. Each phase is structured in 4k rounds. Further, each round again

consists of 4k+ 1 slots, which brings the total runtime to O(k3). The pseudocode for the algorithm

is given in Figure 1, on a high level, it works as follows:
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1. At the beginning of phase j, i.e., before the �rst round of that phase, the sets and elements do the

following: Each set s draws a geometric random variable Xs with parameter 1− 1/ k
√

∆. Values

bigger than 4k are rounded down to 4k, so X ∈ [0, 4k] always. Then, the set waits for 4k −Xs

rounds and neither beeps or listens, it just stays idle. Each uncovered element marks itself as

active with probability
4k
∆j

:= 4k
k
√

∆
j

∆ .

Thus, each set with ∆j (or more) uncovered elements has at least 4k active elements in expecta-

tion. Each active element further picks a slot number au ∈ [0, 4k] uniformly at random.

2. In each round i of phase j, the sets and elements do the following: Each set s that wakes up

in this round listens to Beeps for the �rst 4k slots of this round. Further, it counts all slots in

which it received a Beep. Otherwise, it remains idle for this round. Each active element that

has not yet been covered, beeps only in the slot au is has drawn in the beginning and remains

idle otherwise. Note that, by our choice of active elements, this implies that all sets that have at

least ∆j uncovered elements, therefore, hear one Beep per slot in expectation.

3. In the last slot of a round, i.e., in slot 4k + 1, the sets and elements do the following: Each set

that received a Beep in at least 3k slots adds itself to the solution and beeps. Each uncovered

element (active or not) listens and considers itself covered if a neighbor joined the solution, i.e.,

if it hears a Beep. If an element is covered, it does not need to send or receive messages for the

remainder of the algorithm.

Note that the last step of each round where the sets add themselves is the main di�erence to the

classical algorithm by Jia et al. [6]. In their work, each candidate locally computed a probability to

join the solution. This used information from its 2-neighborhood. This approach seems not to be

trivially doable with only Beeps. Finally, note that this algorithm can also be used to compute a

DominatingSet, we provide the details at the end of this section.

3.1 Analysis

We will now prove Theorem 1 and show that our algorithm indeed ful�lls the promised bounds.

Since the runtime is deterministic, we will only prove the expected approximation ratio.

I Lemma 3. The algorithm outputs a O

(
log2(∆) ·

(
k
√

∆
)3
)
-approximate solution in expectation.

Since the algorithm, for the most part, follows the LRG algorithm by Jia et al.[6], a generalized

version of their core lemma also holds in this case. However, we need to "parameterize" it further to

account that we cannot precisely count the uncovered elements. For each element covered by our

algorithm, we de�ne the random variables η(u) and µ(u). We de�ne η(u) to be ratio between the

best set in u’s neighbor and the worst set picked by the algorithm, i.e., the ratio by which the choice

of our algorithm di�ers from the greedy solution. Further, let µ(u) be the random variable that

denotes the number of candidates covering u ∈ V in the round where it is �rst covered. Finally, we

de�ne η and µ the corresponding variables of the elements that maximize their expected values,

i.e.,:

E[µ] = max
u∈U

E[µ(u)] and E[η] = max
u∈U

E[η(u)] (2)

Given these de�nitions, the following modi�ed version of Jia et al.’s algorithm[6] holds:

I Lemma 4. Let S be the size of the set output by our algorithm. Then, it holds.

E[S] ≤ E [η] · E [µ] · log(∆) · |SOPT | (3)
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Algorithm 1 Beep-and-Sleep (based on [6])

procedure Sets(s,Ns, k,∆) . Executed by the sets s ∈ VS
for i := ∆,∆/ k√∆, . . . , 0 do . k phases.

Pick Xs ∼ Geo(1− 1
k
√

∆
). . Geo(p) is the geometric distribution with success prob. p.

Round Xs down to Φ := 4k if necessary.

Wait Φ−Xs rounds.

for ` = 1, . . . , 4k do . 4k slots.

Listen for Beeps

end for

if s receives more than 3k Beeps then

Add s to S. . Last slot of the round

Announce to neighbors via Beep. . Each round takes 4k + 1 slots.

end if

Wait Xs rounds until end of phase. . Note that Φ = (Φ−Xs) +Xs.

end for . Each phase takes k rounds.

end procedure

procedure Elements(e,Ne, k,∆) . Executed by the elements e ∈ VU
for i := ∆,∆/ k√∆, . . . , 0 do . k phases.

Ye ∼ B( 4k
∆i

) . B(p) returns 1 with prob. p

ae ∼ Uni(1, . . . , 4k) . Uni(a, . . . , b) picks an integer in [a, b] uniformly at random

for j := 0, . . . , 4k do . 4k rounds.

for ` = 1, . . . , 4k do . 4k slots.

if (Ye = 1) and (ae = `) and (e is uncovered) then

Send BEEP to all neighboring sets.

end if

end for

Listen if a neighbor added itself. . Last slot of the round

Set e as covered, if it received a Beep . Each round takes 4k + 1 slots.

end for

end for . Each phase takes 4k rounds.

end procedure

Proof. Before we go into the details of the proof, we de�ne the functions cmin(u) and cmax(u)
for each covered element u ∈ VU . Suppose u is covered by sets s1, . . . , sm, i.e., these sets add

themselves simultaneously. Further, let d(s1), . . . , d(sm) be spans of s1, . . . , sm, i.e., the number of

uncovered elements neighboring s1, . . . , sm. Based on this, we de�ne cmax based on the set with

fewest uncovered elements,i.e, the set that devaites the most from whatever set the greedy solution

would have picked. The value cmin on the other hand is determined by the set in u’s neighborhood

with biggest possible span, i.e., the set that the greedy solution would have picked. Note that this

set may not be part of s1, . . . , sm. Formally, we have:

cmax(u) = max
vi∈{s1,...,sm}

1
d(si)

and cmin(u) = min
s∈Nu

1
d(s) (4)

Further, by the analysis of that greedy algorithm, it holds that:∑
u∈VU

cmin(u) ≤ H∆|SOPT | (5)
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On the other hand, by the de�nition of η(u), it holds:

cmax(u) = η(u) · cmin(u) (6)

Given these de�nitions, we now consider a single round i. In the following, let Si be set of candidates

that add themselves to S in round i. Let Vi denote the set of elements that are uncovered at the

start of round i. We have:

|Si| ≤
∑
v∈Si

d(v)
d(v) ≤

∑
v∈S
|C(v)| 1

d(v) (7)

≤
∑
v∈S

∑
u∈C(v)

cmax(u) (8)

=
∑
u∈Vi

cmax(u)µ(u) ≤
∑
u∈Vi

cmin(u) · η(u) · µ(u) (9)

For the expected value of Si, this implies:

E [|Si|] ≤
∑
u∈Vi

cmin(u)E[η(u) · µ(u)] (10)

≤
∑
u∈Vi

cmin(u) · E[η(u)] · Pr [µ(u) > 0]E[µ(u) | µ(u) > 0] (11)

≤
∑
u∈Vi

cmin(u) · E[η(u)] · E[µ(u) | µ(u) > 0] (12)

The second line follows from the fact that the random events that determine η(u) and µ(u) are

independent. Finally, we can use the linearity of expectation to sum over all k2
rounds and get:

E [|S|] =
k2∑
i=1

E[|Si|] ≤
∑
u∈V

E[η(u)] · E[µ(u) | t(u) > 0]cmin(u) ≤ E[η] · E[µ] ·H∆|SOPT |

(13)

This proves the lemma. J

Given this lemma, it remains to bound E[η] and E[µ]. We begin with the latter. Our goal is to

use a result by Miller et al. [9] (which needs to be adapted for geometric values). They showed

that the number of candidates that pick the earliest possible wake-up time is
k
√

∆ in expectation.

Similarly, we can show the following result
4
.

I Lemma 5. For any value t > 1 and node u ∈ V , it holds Pr [µu > t] ≤ (1− 1/ k
√

∆)t

Proof. For each node u ∈ V we de�ne the random variable P that denotes the phase in which u is

covered. Recall that every element is always covered because in the last round of the last phase,

all remaining sets that cover at least one element simply add themselves to the solution. Thus,

the variable P takes values in 0, . . . , 4k. In the remainder, we will focus only on a single phase.

Throughout this proof, we divide the sets into two subsets. First, let Nu be the set of sets in u’s

neighborhood, i.e., the sets that can cover u. We call these the neighboring candidates. Second, let

NN := VS \Nu be all other sets. We call these the non-neighboring candidates. Further, we de�ne

the wakeup time Φs of each s ∈ VS as Φs := 4k −Xs. Now we observe the round in whcih u is

covered and see:

4

Note that that the analysis in [4] only bounds this term in expectation (and not exact probability) and does not

parameterize it on the number of phases as we do. We need both these aspects for our problem. Adding these

two aspects to their analysis does not seem to be straightforward as they use a rather complex term to bound the

expectation, whereas we can just exploit the fundamental properties of the geometric distribution.



8 Beep-And-Sleep: Message and Energy E�icient Set Cover

I Lemma 6. Suppose gets u gets covered in the �rst round of phase j, then

Pr[µj ≥ t | u is coverd in round 0] ≤
(

1− 1
k
√

∆

)t
(14)

Proof. In this case, the values Xs of all candidates that cover u are bigger than or equal to 4k.

Otherwise, they would have added themselves later. We call these the early candidates. For a single

candidate s ∈ Nu, the probability to be early is at most

Pr[s is early] =
∞∑
i=0

1
k
√

∆

4k+i
= 1

∆4

∞∑
i=0

1
k
√

∆

i

≤ 2
∆4 (15)

This follows directly from the de�nition of the geometric distribution. As there are at most ∆
neighboring candidates that cover u, the expected number of early candidates is at most

2
∆3 as it

holds that:

E[Early sets that cover u] =
∑
s∈Nu

Pr[s is early] =
∑
s∈Nu

2
∆4 ≤

2∆
∆4 = 2

∆3 (16)

As ∆ ≥ 2 this further simpli�es to
1

∆2 . Since all candidates pick their wakeup time independently

and µu is the exactly the number of early candidates, we can use Cherno� to show that:

Pr[µj ≥ t | u is coverd in round 0] = Pr

[
µu ≥ t∆2 1

∆2

]
≤ Pr

[
µu ≥ t∆2E[µu]

]
(17)

≤ e
−t∆2

3 ≤ e−t ≤
(

1− 1
k
√

∆

)t
(18)

This was to be shown. J

The interesting stu� happens, if u gets covered in any other round of phase i. This part is more

complex than the previous one as it requires a more careful analysis of the starting times. First, we

will �x all of the random decisions made the algorithm except the decision of the neighboring sets.

In particular, we condition on the following three variables:

1. The wakeup times of the non-neighboring sets ZNN . It holds ZNN := (φ1, . . . , φ
′
m). For

each l ∈ [0,m′], the non-neighboring set sl wakes up in round φl.

2. The Beeps by all uncovered elements ZU .

This random variable contains all random choices made by the uncovered elements, i.e, ZU :=
{(Ye, ae) | e ∈ VU}. Here, the variable Ye denotes whether e is active and beeps and ae denotes

the slot in which e beeps. Based on this, we can de�ne the number of slots in which a set s

receives a Beep from an element in subset U ⊆ VU as follows:

Slots(s, U) := |{i ∈ [0, 4k]|∃e ∈ U ∩Ns : Ye = 1 ∧ ae = i}| (19)

.

3. The initial set of uncovered elements U0.

This is the set of uncovered elements in round 0 of phase j.

If we �x all these choices, the decision if a neighboring candidate of u adds itself to the solution

that depends on solely its wake-up time. More precisely, the random choices of the other nodes

de�ne the last possible round in which a candidate may add itself to the solution. If it wakes up

before this round, the concrete round is only determined by the geometric distribution. If it wakes

up after this round, it will not add itself.

Now we claim the following
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B Claim 7. Given (ZNN , ZU ,U0) for each neighboring set s ∈ Nu there is a value ρs ∈ [0, 4k]
that denotes the last round in which s can cover u, i.e., Pr[s covers u �rst | Φs ≥ ρs] = 0

The idea behind the construction is that the �xed values U0, ZNCC , and ZU can clearly de�ne the

sets A0 ⊂ VS that add themselves to the solution in round 0. Given ZNN , we see which sets wake

up and count the Beeps of their uncovered elements. These Beeps are based on U0 and ZU , so we

see if enough elements beep in distinct slots. In particular, the set must receive a Beep in at least 3k
slots, so it must hold that

A0 := {s 6∈ Nu | φi = 0 ∧ (|Slots(s,U0)|≥ 3k)} (20)

Given A0, i.e., the sets that add themselves in round 0, we can then compute U1 ⊆ U0, i.e., all

uncovered elements in round 1. Then, by repeating the construction, we can use U1, ZNCC , and ZU
to determine A1 and therefore U2 and so on. This can be continued until round τ by the following

recursive formulas:

At = {s 6∈ Nu | φi = 0 ∧ (|Slots(s,Ut)|≥ 3k)} (21)

and

Ut =
{
e ∈ U \ {u} | ∃s ∈

t−1⋃
i=0
Ai

}
(22)

This yields the uncovered elements U0, . . . ,Uτ . For each candidate s ∈ Nu, we can then clearly

identify the �rst round ρs where s does not receive enough Beeps to add itself:

ρs := arg max
0≤τ≤4k

Slots(s,Uτ ) ≥ 3k (23)

Given this observation, we can map each outcome of ZNCC , ZU , and U0 to a collection of

thresholds ρ := (ρ1, . . . , ρ∆u
) with the properties above. If we now condition on ρ and P = j, we

get — similar to Miller et al. in [9] — that:

I Lemma 8. For any possible realization of thresholds ρ it holds: Pr[µj ≤ t | ρ] ≤
(

1− 1/ k
√

∆
)t

Proof. For each neighboring set s` ∈ Nu de�ne the adapted wakeup time as:

Φ′` :=
{

(Φ−X`) if (Φ−X`) ≥ ρ`
∞ else

(24)

Here X` is the geometric random variable drawn to determine the wake-up time.

We can now order the these adapted wakeup times Φ′(1), . . . ,Φ′(m) such that Φ′(1) is the earliest

wakeup and Φ′(∆u) is the last. For each of these ordered wakeup times Φ(i) we de�ne c(1) to be the

candidate that achieves this time, X(i) is the variables drawn by this set, and ρ(i) is the threshold.

Given that Φ(i) ≤ ∞, it holds:

Φ′(i) := Φ−X(i) (25)

So the variable X(1) is not be the smallest variable that any neighboring candidate drew, but instead

the smallest variable by any neighboring candidate with �nite wake-up time.

Given this de�nition, we claim the following:

B Claim 9. The candidate c(1) archiving Φ′(1) covers u if and only if Φ′(1) ≤ ∞.
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Proof. This claim can easily be veri�ed, by observing the two possibilities. If Φ′(1) ≤ ∞, then

Φ′(1) is earliest round where some neighborhood candidate tries to itself and is still a candidate.

This follows directly from the de�nition of Φ′(1). Thus, c(1) must cover u as no candidate could

have done it before. Otherwise, if Φ′(1) =∞, then it must holds that Φ−X(1) ≥ ρ(1). Moreover,

this implies that Φ−X(i) ≥ ρ(i) for all other candidates as well. This follows from the fact that

Φ′(1) is the smallest wake-up time by de�nition, so all others must be in�nity, too. In this case, all

potential candidates do not cover enough elements when they wake up. This follows directly from

the de�nition of each ρ(i). Thus, in this case, u is not covered by any candidate in this phase. J

Thus, for µu = t the t smallest values must all be equal and non-in�nity. Formally:

Pr[µj = t] = Pr

[
Φ′(1) = · · · = Φ′(t) | Φ(1) ≤ ∞

]
(26)

What follows are some fundamental calculations based on Miller et al.’s proof for exponential

random variables. However, we need to adapt them to geometric variables. First, we observe that it

holds:

Pr[(Φ−X`) ≤ ρ` − x] = Pr[−X` ≤ ρ` − Φ− x] = Pr[X` ≥ (Φ− ρ`) + x] (27)

And therefore, for any x ≤ ρ` we see that the wakeup time is only determined by the parameter of

the geometric distribution, namely

Pr[Φ′` < x | Φ′` ≤ x] = Pr[(Φ−X`) ≤ x) | Φ′` ≤ x] = Pr[X` > Φ− x | Φ′` ≤ x] (28)

= Pr[X` > Φ− x | Xk ≥ Φ− x] (29)

Now we can use the fact of the geometric distribution is memoryless and see:

Pr[Φ′` < x | Φ′` ≤ x] = Pr[X` > y | X` ≥ y] BSubstituting y := Φ− x (30)

= Pr[X` > 0] =
(

1
k
√

∆
)
)

(31)

Therefore, we can conclude the following for two consecutive Φ(i) and Φ(i+1) that it holds:

Pr

[
Φ′(i) < x|Φ′(i+1) = x

]
= Pr

[
Φ(i) ≤ x+ 1|Φ(i+1) = x

]
(32)

= Pr

[
X(i) ≥ Φ− x+ 1|X(i) ≥ Φ− x

]
(33)

= Pr

[
X(i) ≥ 1

]
=
(

1
k
√

∆
)
)

(34)

And thus, for the opposite event it holds:

Pr

[
Φ′(i) = x|Φ′(i+1) = x

]
=
(

1− 1
k
√

∆
)
)

(35)

Finally, we condition on Φ′(t) = τ for a round 0 ≤ τ ≤ 4 log(∆). Using the chain rule of conditional

probability, we see that:

Pr

[
Φ′(1), . . . ,Φ′(t) = τ

]
=

t∏
i=1

Pr

[
X(i) = τ | X(i+1) = τ

]
≤

t∏
i=1

(
1− 1

k
√

∆
)
)

=
(

1− 1
k
√

∆
)
)t

(36)
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Note that this is independent of the actual round, the law of total probability yields the the result. It

holds:

Pr[µu ≥ t] :=
∆∑
τ=1

Pr

[
Φ′(t) = τ

]
Pr

[
Φ′(1), . . . ,Φ′(t) = τ

]
(37)

=
∆∑
τ=1

Pr

[
Φ′(t) = τ

](
1− 1

k
√

∆
)
)t

=
(

1− 1
k
√

∆
)
)t

(38)

J

As the concrete value of the ρi’s and the phase is immaterial, by the law of total probability and the

lemma follows for a single phase. J

Thus, the geometric series implies E [µ] ≤
∑∞
t=1(1− 1/2)t = 1

1−1/ k
√

∆
= k
√

∆. Further, we show

that:

I Lemma 10. For k ≥ 3 it holds E[η] ≤ 25 · log(∆) ·
(
k
√

∆
)2

Proof. In the following, we �x an element u ∈ U . To proof the lemma, we observe the event that

there is any set with span bigger than 6 · log(∆) · k
√

∆ ·∆i and any set smaller than
∆i

4·
k
√

∆
joins

the solution. Denote this event as B. Given that Pr[B] ≤ 1/∆, the law of total expectation implies:

E[η(u)] = Pr[B] · E[η(u) | B] + Pr[¬B] · E[η(u) | ¬B] (39)

≤
(

1− 1
∆

)
24 · log(∆) ·

(
k
√

∆
)2

+ 2
∆ ·∆ (40)

≤ 25 · log(∆) ·
(
k
√

∆
)2

(41)

Thus, in the following, we show that Pr[B] is at most
1
∆ . Let Hi

u ⊆ Nu denote all neighbors that

span 20 · log(∆) · k
√

∆ ·∆i uncovered elements at any point in phase i and likewise let Liu ⊆ Nu
denote all neighbors that span less than

∆i

4·
k
√

∆
at any point in the phase. Then, it holds via union

bound that:

Pr[B] ≤ Pr[∃s ∈ Hu] + Pr[∃s ∈ Lu : s adds itself to the solution] (42)

First, we observe that Hi
u is empty with prob. 1/∆. The proof is straightforward: Suppose there is a

set with c · log(∆) · k
√

∆ ·∆i uncovered neighbors in phase i. Then it had at least c · log(∆) ·∆i−1
uncovered neighbors when it woke up in phase i− 1. The probability that in a �xed slot (of the 4k
slots of that round), no elements beeps is:

Pr[No Beep in slot j] ≤
(

1− 1
4k ·

4k
∆i−1

)c·log(∆)·∆i−1

≤ e−c log(∆) = 1
∆c

(43)

If c ≥ 6, a union bound over all 4k slots then yields that all that with probability higher than

1− 1
∆2 , there was at least one beeping element in every slot when s woke up. In particular, there

was beeping element in more than 3k slots. Thus, the set in question must have added itself to the

solution in phase i− 1 and it holds:

Pr

[
s ∈ Hi

u : s was not added in phase i− 1
]
≤

4k∑
j=1

Pr[No Beep in slot j] ≤ 1
∆c−4 ≤

1
∆2 (44)
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Now consider a set s ∈ Liu. The probability that s has 3k beeping neighbors on wake-up is bounded

as follows:

Pr[s has ≥ 3k beeping neighbors] ≤
∆∑

i=3k

( ∆i

4
k
√

∆
i

)(
4k
∆i

)3k
≤ ∆

( ∆i

4
k
√

∆
3k

)(
4k)
∆i

)3k
(45)

≤ ∆
(

e ·∆i

4 k
√

∆ · 3k

)3k 4k3k

∆3k
i

≤ 1
∆2 (46)

Thus, the probability that s has beeping neighbors in 3k distinct slots (and therefore adds itself to

the solution) can only be smaller. Therefore, it holds

Pr[B] ≤ Pr[∃s ∈ Hu] + Pr[∃s ∈ Lu : s adds itself to the solution] (47)

≤ Pr[∃s ∈ Hu] + Pr[∃s ∈ Lu : s has 3k beeping neighbors] (48)

≤
∑
s∈Hs

Pr[s was not added in phase i− 1] +
∑
s∈Ls

Pr[s has 3k beeping neighbors] (49)

≤ 2∆ 1
∆2 = 2

∆ (50)

This is what we wanted to show. J

This proves the theorem as E[η · µ] ∈ O
(

log(∆)2 k
√

∆
3)

.

3.2 Extension to DominatingSet

Note that the algorithm can also be extended to the DominatingSet problem, where each set is

also an element. At �rst glance, all elements could simply also execute the code for the sets. Note,

however, that a node cannot simultaneously beep and listen, which causes some problems with a

direct simulation. In particular, an active uncovered elements cannot also listen for Beeps in all slots.

To solve this, we simply add all active elements to the solution. In phase i, each set that is added

to the solution covers Ω(log(n)∆i−1) elements, w.h.p.
5

Suppose there are Ui uncovered elements,

then optimal solution must at least be of size Θ(log(n) Ui
∆i−1

) As in phase i there are — by Cherno�

— only O(log(n) Ui∆i
) active elements, w.h.p. we can just add to the solution without (asymtotically)

a�ecting the approximation ratio. Note that this also implies that for k = log(∆) the total number

of Beeps is Õ(|SOPT |).

4 A Low-Message KT0 Algorithm

We now move away from the Beeping model and present our low-messageKT0-Congest algorithm.

In this section, we make the following less restrictive assumptions about the model:

1. Again, we observe a �xed communication graph G := (VS ∪ VU , E) with VS = n and VU = m

with bidirected communication edges {s, e} ∈ E between a set an its elements. Sets and elements

can locally distinguish between their edges through port numbers, but no global identi�ers

uniquely identify a node. To simplify the presentation, all nodes know ∆ and log(n+m).

2. Time proceeds in synchronous rounds. Each round, an element or set can send a distinct message

of size O(log(n)) to any subset of its neighbors. Messages are received in the next round.

3. All nodes wake up in the same round.

5

If we simply choose c big enough in Equation 43, we see that all sets with log(n)∆i elements are gone, w.h.p)
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In other literature, this model is sometimes referred to as the clean network model[11]. Note that

this model does not intend to represent ad-hoc networks faithfully but instead is used to analyze the

message e�ciency of distributed algorithms (see .e.g., [3] for an overview). Similar to the Beeping

model, it starts with limited knowledge of its neighborhood and must learn everything it needs to

solve the given problem. Given this model, we will show the following theorem:

I Theorem 11. There is an algorithm in the KT0-Congest model that solves SetCover in time

O(log2(∆)), expected approximation ratio of O(log(∆)), and sends only Õ(
√

∆(n+m)) messages,

w.h.p., given that all nodes know ∆ and an approximation of log(n).

As it turns out, we will only need a few changes to our already established algorithm to prove

this theorem. Every Beeping-Algorithm also works in the KT0-Congest-Model mentioned above,

as the model is less restricted. To obtain a message e�cient algorithm, we only need to make a

few minor changes to our algorithm: First, to simplify the presentation, we do not parameterize

the algorithm with k. Instead, we �x k = log(∆) and only consider this case. Second, we do not

require the notion of slots anymore as a node can simply count how many of its neighbors beeped

in a single round as the messages arrive via distinct channels. Each round now only consists of

precisely one slot. In particular, an active element does not pick a slot number anymore, but directly

sends its Beep. Further, instead of beeping all neighbors with probability
2i
∆ , each element picks

log(n)2i
∆ neighbors uniformly at random and sends a Beep. Finally, the most signi�cant change to the

algorithm is the following: Instead of executing all phases of the algorithm, we only execute it until

phase
log(∆)

2 , i.e., until the active degree of all sets is around O(
√

∆). We call this the �rst stage

of the algorithm. Then, all uncovered elements notify their respective set that they are uncovered.

Denote these elements as U ′. Finally, the algorithm continues (almost) as usual for the remaining

log(∆)
2 phases, but each set that joins the solution noti�es only the elements in U ′ that they are

covered. We call this the second stage of the algorithm.

We will now prove Theorem 2. One can easily verify that most lemmas from our previous

analysis are still correct. The �rst stage does not di�er from our previous algorithm at all. Further,

all nodes that do not receive any message in the second stage of the algorithm (but would have in

the original algorithm) are already covered. Thus, they would be idle regardless. Thus, we only

need to show that E[η] is still small to prove the approximation ratio.

Before we start, we need the following auxiliary lemma that tightly bound the sets that add

themselves to the solution in a phase i.

I Lemma 12. Suppose each elements picks c · 8 · log(n) 2i
∆ active edges uniformly and independently

at random. Further, each set with at least c · 4 log(n) active edges adds itself on wake-up. Then the

following two statements hold w.h.p:

1. At the end of phase i there is no set with ∆
2i uncovered elements.

2. Any set that adds itself in round i covers at least ∆
8·2i elements.

Both statements follow through an elementary application of the Cherno� Bound. Note that this

lemma directly implies that E[η] ∈ O(1) as it bounds the worst and best set in each rounds, w.h.p.

Therefore expected approximation ratio is O(log(∆)), which is as good as the sequential greedy

solution.

Proof. Both statement follow from Cherno�, we prove them both separatly.

1. Let s be a set with
∆
2i uncovered element on wake-up, then the expected number on active edges

is

E[Ais] = ∆
2i · c8 log(n) · 2i

∆ = c8 log(n) (51)
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Thus, the probability that only c4 log(n) edges are active is

Pr[Ais ≤ c4 log(n)] ≤ Pr[Ais ≤ (1− 1
2)E[Ais]] ≤ e

c8 log(n)
2·22 = 1

nc
(52)

Since with more uncovered elements, the probability can only be smaller, the statement follows.

2. Let s be a set with
∆

8·2i uncovered element on wake-up, then the expected number on active

edges is

E[Ais] = ∆
8 · 2i · c8 log(n) · 2i

∆ = c log(n) (53)

Thus, the probability that at least c4 log(n) edges are active is

Pr[Ais ≤ c4 log(n)] ≤ Pr[Ais ≤ (1 + 3)E[Ais]] ≤ e
32c log(n)

3+2 ≤ 1
nc

(54)

Since with fewer uncovered elements, the probability can only be smaller, the statement follows.

J

Thus, it only remains to analyze the message complexity. We prove the message bound for each

stage of the algorithm. We begin with the �rst stage and show that for it holds:

I Lemma 13. Until phase
log(∆)

2 , the nodes send at most Õ(n
√

∆) messages.

Proof. As each element picks (up to) c8 log(n)2i/∆ edges for some constant c > 0 in phase i,

the lemma follows immediately. The corresponding bound for the sets is less trivial as it does not

directly follow from the algorithm. Here, we need to consider that only sets that add themselves

to the solution send messages. In particular, each set that adds itself sends at most ∆ messages

and remains silent otherwise. Thus, we show that at most Õ( n√
∆

) sets add themselves w.h.p. Note

that every set that adds itself covers (at least)

√
∆/8 uncovered elements, w.h.p, otherwise it would

not have added itself. This follows from the second statement in Lemma 12. On the other hand,

each uncovered element is covered by at most O(log(n)) sets, w.h.p. This follows from choosing

t ≥ c log(n) for some c > 0 in Lemma 5. Let Si ⊂ VS be the solution in phase i and Ci be the

covered elements, then it must hold:

|Si|·
√

∆/8 ≤ c log(n)|Ci| ⇔ |Si|≤
8c log(n)|Ci|√

∆
⇔ |Si|≤

8c log(n)n√
∆

∈ Õ( n√
∆

) (55)

In other words, if there are more Õ( n√
∆

) sets that added themselves, then there must exist an

element covered by more than c log(n) sets. This is a contradiction, which implies the lemma J

This lemma concludes the analysis of the algorithm’s �rst stage. Finally, we need to observe the

second stage. In this stage, the algorithm only uses communication edges adjacent to the set of

uncovered elements in phase log(∆)/2. Thus, to determine the message complexity, we only need

to count these edges. Formally, we show:

I Lemma 14. In phase
log(∆)

2 , each set has at most O(
√

∆) uncovered elements.

Proof. The lemma follows directly from the �rst statement of Lemma 12 as all sets that have more

than O(
√

∆) uncovered elements must have added themselves in an earlier round w.h.p. J

Thus, in the remaining O(log2(∆)) rounds of the algorithm, all communication will only take place

via these O(m
√

∆) edges. Since at most one message passes each edge in every round, this implies

that at most O(m
√

∆ log2(∆)) messages are sent, which proves Theorem 2.



Gö�e et al. 15

Lower Bound

In this section, we prove a lower bound on the number of messages needed to approximate a solution.

The proof works via a reduction to the sequential case. Here, it is well known that a large portion of

the input, i.e., the connections between the nodes, must be revealed to the algorithm. In particular,

it is known that the following holds:

I Lemma 15 (Lower bound from [5]). Consider a sequential computation model that allows the

following two queries

EltOf(i,j) - Returns the jth element of Set Si or ⊥ if there is no such element.

SetOf(i,j) - Returns the jth set which contrains ei or ⊥ if there is no such set.

Then, every algorithm that yields O(1)-approximation for SetCover needs at least Ω̃(m
√
n) queries

on certain graphs.

In particular, the lower bound graph in [5] has maximal degree n and it holds m = n. Therefore,

the bound can be rewritten as Ω̃((m + n)
√

∆), which is exactly the message complexity of our

algorithm. Now we show that if there is a distributed algorithm with less than Ω̃(m
√
n) messages,

it can be turned into a sequential algorithm with less than Ω̃(m
√
n) queries. This is, of course,

a contradiction to the lemma above. The proof’s main ingredient is the observation that every

message that is sent from v along its jth channel can be emulated as looking up SetOf(v, j). Other

than that, the proof is quite technical. The main result is as follows:

ILemma 16. Any algorithm that yields anO(1)-approximation for SetCover needs at least Ω̃(m
√
n)

messages on certain graphs inKT0 model.

Proof. The lemma follows from the fact that any KT0 algorithm that sends O(x) messages can be

simulated with O(x) queries in the sequential model. First, we create (m+ n) objects that store the

internal variables of each set and element. These objects are stored in two arrays AS and AE , s.t.,

the object for ei can be accessed through AE [i]. Analogously, each set sj can be accessed through

AS [j]. Consider a single round of a CONGEST algorithm: First, we iterate over all objects and

perform the local computations that the set or element would execute in the CONGEST algorithm.

Now for each message mij that ei sends to its jth set, we use the query SetOf(i, j) to obtain its

index j′ and then add the message to AS [j′]. The same is done vice versa for messages from sets

to elements. After all messages have been handled, AE and AS contain the nodes’ states and all

received messages. With this information, each node’s action in the distributed algorithm can

�awlessly be simulated. Thus, the sequential algorithm again iterates over AE and AS to compute

the next round’s messages according to the algorithm. Therefore, any distributed algorithm sending

O(x) messages can be transformed into a sequential algorithm with O(x) queries. Therefore, any

lower bound on the queries is also a lower bound on the messages. J

5 Conclusion and Future Work

In this work, we presented two di�erent message- and energy-e�cient distributed algorithms for

SetCover for the Beeping model and the KT0 model. In future work, it would be interesting to see

whether the existence of unique identifers known to all nodes can improve the message complexity

or if similar bounds hold.
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