Generalized domination structure in cubic graphs

Misa Nakanishi *

Abstract

In this paper, we consider generalized domination structure in graphs, which stipulates the structure of a minimum dominating set. Two cycles of length $0 \bmod 3$ intersecting with one path are the constituents of the domination structure and by taking every three vertices on the cycles we can obtain a minimum dominating set. For a cubic graph, we construct generalized domination structure by adding edges in a certain way. We prove that the minimum dominating set of a cubic graph is determined in polynomial time.

MSC : 05C69

1 Notation

In this paper, a graph G is finite, undirected, and simple with the vertex set V and edge set E. We follow [1] for basic notation. For a vertex $v \in V(G)$, the open neighborhood, denoted by $N_{G}(v)$, is $\{u \in V(G): u v \in E(G)\}$, and the closed neighborhood, denoted by $N_{G}[v]$, is $N_{G}(v) \cup\{v\}$, also for a set $W \subseteq V(G)$, let $N_{G}(W)=\bigcup_{v \in W} N_{G}(v)$ and $N_{G}[W]=N_{G}(W) \cup W$. A dominating set $X \subseteq V(G)$ is such that $N_{G}[X]=V(G)$. For a set $S \subseteq V(G)$, as is clear from the context, S denotes $G[S]$. A minimum dominating set, called a d-set, is a dominating set of minimum cardinality. Two cycles C_{1} and C_{2} are said to be connecting without seams if $C_{1} \cap C_{2}$ is one path. For a graph G, structure H is the union of maximal number of cycles of length 0 $\bmod 3$ in G where each cycle of length $0 \bmod 3$ is connecting without seams for some other cycle of length $0 \bmod 3$, or one cycle of length $0 \bmod 3$ in H, in addition, if $V(G-H)=\emptyset$, we call this structure domination structure. Let $\mathcal{F}(G)$ be the set of all structures in a graph G.

[^0]
2 Generalized domination structure in cubic graphs

We consider a connected graph G, otherwise consider each component one by one. We introduce the construction scheme \mathbf{K} as follows.

K: Input a connected graph G.
(1) Let $G_{0}=G$ and $k=0$.
(2) Let v be a cut vertex of G_{k}. For every pair of components C_{1} and C_{2} of $G_{k}-v$ and for every pair of vertices $v_{1} \in C_{1} \cap N_{G_{k}}(v)$ and $v_{2} \in C_{2} \cap N_{G_{k}}(v)$, add an edge $v_{1} v_{2}$. Increment k.
(3) Let D_{2} be an induced cycle of length $2 \bmod 3$ in G_{k}. Take a vertex $w \in V\left(D_{2}\right)$, and set $N_{D_{2}}(w)=\left\{w_{1}, w_{2}\right\}$. Now, add an edge $w_{1} w_{2}$. Set $w_{1} w w_{2} \alpha \subseteq D_{2}$. Now, add two edges $w_{1} \alpha$ and $w \alpha$. Increment k.
(4) Let D_{1} be an induced cycle of length $1 \bmod 3$ in G_{k}. Take a vertex $x \in V\left(D_{1}\right)$, and set $N_{D_{1}}(x)=\left\{x_{1}, x_{2}\right\}$. Now, add an edge $x_{1} x_{2}$. Set $x_{1} x x_{2} \alpha \subseteq D_{1}$. Now, add an edge $x \alpha$. Increment k.
(5) Repeat (2)-(4).
(6) Return the resulting graph G_{k}.

The next remark is a basic concept of the following proofs.
Remark 2.1. Let X be a dominating set of G. Every subset $D \subseteq X$ is a d-set of $N_{G}[D]$ if and only if X is a d-set of G.

Let $\mathbf{K}(G)$ be a graph constructed by applying \mathbf{K} to G. Note that $\mathbf{K}(G)$ is not unique and constructed from G arbitrarily.

Proposition 2.1. $\mathbf{K}(G)$ is domination structure. Moreover, $|\mathcal{F}(\mathbf{K}(G))|=$ 1.

Proof. From the rules, $\mathbf{K}(G)$ is 2-connected. Hence $\mathbf{K}(G)$ has an ear decomposition. Since all induced cycles are of length $0 \bmod 3$, the domination structure H is obtained by finding $0 \bmod 3$ induced cycles connecting without seams one by one, so that $H=\mathbf{K}(G)$. We had the claim.

Suppose that for all $v \in V(G), d_{G}(v) \geq 3$.
Fact 2.1. For domination structure $H=\mathbf{K}(G)$, label every three vertices on the induced cycles that constitute H in order of connecting without seams. Note that a certain induced cycle of H is not counted for the labeling, and may have no labels, where the vertices of the induced cycle are all in other induced cycles of H. There exist at most $|V(G)|$ cases of labeling. (i) For
every labeling, the set of all labeled vertices is a dominating set of $\mathbf{K}(G)$. (ii) For at least one labeling, the set of all labeled vertices is a d-set of $\mathbf{K}(G)$.

Proof. By the first vertex choice for the labeling, all labeled vertices are uniquely determined in $V(G)$ since for all $v \in V(G), d_{G}(v) \geq 3$, and so there exist at most $|V(G)|$ cases of labeling. The statement (i) is obvious. The statement (ii) follows from Remark 2.1

Let Y be a d-set of $\mathbf{K}(G)$ that is obtained by applying Fact 2.1. Let \mathcal{Y} be the set of all Y. Let X be a d-set of G. Let \mathcal{X} be the set of all X.

Proposition 2.2. For some $X \in \mathcal{X}$, and some $Y \in \mathcal{Y}, Y \subseteq X$.
Proof. For some $Y \in \mathcal{Y}$, if Y is a dominating set of G, then for some $X \in \mathcal{X}, X=Y$. Otherwise, for all $Y \in \mathcal{Y}, Y$ is not a dominating set of G. Now, for some $v \in Y$, and some $w \in V(G) \backslash Y$, $v w$ is an added edge for $\mathbf{K}(G)$ and $N_{G}(w) \subseteq V(G) \backslash Y$. Now, we consider such v and w. Let $Z^{\prime}=\left\{w \in V(G) \backslash Y: v \in Y, v w \in E(\mathbf{K}(G)) \backslash E(G), N_{G}(w) \subseteq V(G) \backslash Y\right\}$ and $E^{\prime}=\left\{v w \in E(\mathbf{K}(G)) \backslash E(G): w \in V(G) \backslash Y, v \in Y, N_{G}(w) \subseteq V(G) \backslash Y\right\}$. Let $E^{\prime \prime}(v w)$ be an induced cycle of length $0 \bmod 3$ in $\mathbf{K}(G)$ such that for $v w \in E^{\prime}, v w \in E^{\prime \prime}(v w)$ holds. Let $\mathcal{E}(v w)$ be the set of all $E^{\prime \prime}(v w)$ for $v w \in E^{\prime}$ and let $\mathcal{E}=\bigcup_{v w \in E^{\prime}} \mathcal{E}(v w)$. Let J be the union of all induced cycles of length $0 \bmod 3$ in $\mathbf{K}(G)$ other than the induced cycles in \mathcal{E}. By the definition of Y and Remark 2.1, $J \cap Y$ is a d-set of $N_{G}[J \cap Y]$, and Y is a d-set of $G-Z^{\prime}=N_{G}[Y]$. Let W be a subset of $V(G) \backslash Y$ of minimum cardinality such that $Y \cup W$ is a dominating set of G. By the definition of W, W is a d-set of $N_{G}[W]$. Since for all $x \in V(G), d_{G}(x) \geq 3$, and by Fact 2.1, $E(G[Y])=\emptyset$, and $Y \cup W$ is a minimal dominating set of G. Therefore, by Remark 2.1, for some $X \in \mathcal{X}, X=Y \cup W$.

Suppose that Y is a d-set of $\mathbf{K}(G)$ that satisfies Proposition 2.2.
Fact 2.2. Let G^{\prime} be constructed by deleting Y, and for every pair $w_{1}, w_{2} \in$ $\bigcup_{y \in Y} N_{G}(y)$, adding an edge $w_{1} w_{2}$ to G. Let Z_{1} be a d-set of G^{\prime}. Let $G^{\prime \prime}=G-N_{G}[Y]$ and Z_{2} be a d-set of $G^{\prime \prime}$. If $\left|Z_{1}\right|<\left|Z_{2}\right|$, then $Y \cup Z_{1}$ is a d-set of G, and $Z_{1} \cap \bigcup_{y \in Y} N_{G}(y) \neq \emptyset$. If $\left|Z_{1}\right| \geq\left|Z_{2}\right|$, then $Y \cup Z_{2}$ is a d-set of G.

Proof. Obviously, $Y \cup Z_{2}$ is a d-set of G if and only if $\left|Z_{1}\right| \geq\left|Z_{2}\right|$. For a set $A \subseteq V(G)$, suppose that $Y \cup A$ is a d-set of G. Let $A^{\prime}=A \backslash \bigcup_{y \in Y} N_{G}(y)$. By Remark 2.1, A^{\prime} is a d-set of $N_{G}\left[A^{\prime}\right]$. Suppose that $\left|Z_{1}\right|<\left|Z_{2}\right|$, then A^{\prime} is not a dominating set of $G^{\prime \prime}$, and $A \cap \bigcup_{y \in Y} N_{G}(y) \neq \emptyset$. Now, A is a minimal
dominating set of G^{\prime}. By the definition of $G^{\prime}, Y \cup Z_{1}$ is a minimal dominating set of G, and so it suffices that $A=Z_{1}$. Thus $Z_{1} \cap \bigcup_{y \in Y} N_{G}(y) \neq \emptyset$.

Suppose that G is cubic.

Theorem 2.1. For some $X \in \mathcal{X}, X$ is determined in polynomial time.
Proof. By Proposition 2.2, $Y \subseteq X$ for some $X \in \mathcal{X}$. Let $G_{0}=G$. Let G_{1} be constructed by deleting Y, and for every pair $w_{1}, w_{2} \in \bigcup_{y \in Y} N_{G}(y)$, adding an edge $w_{1} w_{2}$ to G_{0}. Let $G_{2}=G_{0}-N_{G_{0}}[Y]$. Let W_{1} be a d-set of G_{1} and W_{2} be a d-set of G_{2}. Since G_{0} is cubic and by the definition of G_{2}, each component of G_{2} is path or cycle. Thus W_{2} is determined in polynomial time. Suppose that $\left|W_{1}\right|<\left|W_{2}\right|$. Let Y_{1} be a d-set of $\mathbf{K}\left(G_{1}\right)$ that satisfies Proposition 2.2. By the definition of Y_{1}, it suffices that $Y_{1} \cap \bigcup_{y \in Y} N_{G_{0}}(y) \neq \emptyset$. Let G_{3} be constructed by deleting Y_{1}, and for every pair $w_{1}, w_{2} \in \bigcup_{y \in Y_{1}} N_{G_{1}}(y)$, adding an edge $w_{1} w_{2}$ to G_{1}. Let $G_{4}=G_{1}-N_{G_{1}}\left[Y_{1}\right]$. Let W_{3} be a d-set of G_{3} and W_{4} be a d-set of G_{4}. By the definition of G_{4}, each component of G_{4} is path. Thus W_{4} is determined in polynomial time. Suppose that $\left|W_{3}\right|<\left|W_{4}\right|$. Let Y_{2} be a d-set of $\mathbf{K}\left(G_{3}\right)$ that satisfies Proposition 2.2. By the definition of Y_{2}, it suffices that $Y_{2} \cap \bigcup_{y \in Y_{1}} N_{G_{1}}(y) \neq \emptyset$. Let G_{5} be constructed by deleting Y_{2}, and for every pair $w_{1}, w_{2} \in \bigcup_{y \in Y_{2}} N_{G_{3}}(y)$, adding an edge $w_{1} w_{2}$ to G_{3}. Let $G_{6}=G_{3}-N_{G_{3}}\left[Y_{2}\right]$. Let W_{5} be a d-set of G_{5} and W_{6} be a d-set of G_{6}. By the definition of G_{6}, G_{6} is independent. Thus $W_{6}=V\left(G_{6}\right)$. Suppose that $\left|W_{5}\right|<\left|W_{6}\right|$. Let Y_{3} be a d-set of $\mathbf{K}\left(G_{5}\right)$ that satisfies Proposition 2.2. By the definition of Y_{3}, it suffices that $Y_{3} \cap \bigcup_{y \in Y_{2}} N_{G_{3}}(y) \neq \emptyset$. Now, Y_{3} is a dominating set of G_{5} and so it suffices that $W_{5}=Y_{3}$. By Fact 2.2 , if $\left|W_{5}\right|<\left|W_{6}\right|$, then it suffices that $W_{3}=Y_{2} \cup W_{5}$, otherwise, it suffices that $W_{3}=Y_{2} \cup W_{6}$. By Fact 2.2, if $\left|W_{3}\right|<\left|W_{4}\right|$, then it suffices that $W_{1}=Y_{1} \cup W_{3}$, otherwise, it suffices that $W_{1}=Y_{1} \cup W_{4}$. By Fact 2.2, if $\left|W_{1}\right|<\left|W_{2}\right|$, then it suffices that $X=Y \cup W_{1}$, otherwise, it suffices that $X=Y \cup W_{2}$. The proof is complete.

References

[1] R. Diestel: Graph Theory Fourth Edition. Springer (2010)

[^0]: *E-mail address : nakanishi@2004.jukuin.keio.ac.jp

