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Abstract

In this paper, we consider generalized domination structure in graphs,
which stipulates the structure of a minimum dominating set. Two cy-
cles of length 0 mod 3 intersecting with one path are the constituents
of the domination structure and by taking every three vertices on the
cycles we can obtain a minimum dominating set. For a cubic graph,
we construct generalized domination structure by adding edges in a
certain way. We prove that the minimum dominating set of a cubic
graph is determined in polynomial time.
MSC : 05C69

1 Notation

In this paper, a graph G is finite, undirected, and simple with the vertex set
V and edge set E. We follow [1] for basic notation. For a vertex v ∈ V (G),
the open neighborhood, denoted by NG(v), is {u ∈ V (G): uv ∈ E(G)},
and the closed neighborhood, denoted by NG[v], is NG(v) ∪ {v}, also for a
set W ⊆ V (G), let NG(W ) =

⋃
v∈W NG(v) and NG[W ] = NG(W ) ∪W . A

dominating set X ⊆ V (G) is such that NG[X] = V (G). For a set S ⊆ V (G),
as is clear from the context, S denotes G[S]. A minimum dominating set,
called a d-set, is a dominating set of minimum cardinality. Two cycles C1

and C2 are said to be connecting without seams if C1∩C2 is one path. For a
graph G, structure H is the union of maximal number of cycles of length 0
mod 3 in G where each cycle of length 0 mod 3 is connecting without seams
for some other cycle of length 0 mod 3, or one cycle of length 0 mod 3 in H,
in addition, if V (G − H) = ∅, we call this structure domination structure.
Let F(G) be the set of all structures in a graph G.
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2 Generalized domination structure in cubic graphs

We consider a connected graph G, otherwise consider each component one
by one. We introduce the construction scheme K as follows.

K: Input a connected graph G.
(1) Let G0 = G and k = 0.
(2) Let v be a cut vertex of Gk. For every pair of components C1 and C2 of
Gk−v and for every pair of vertices v1 ∈ C1∩NGk

(v) and v2 ∈ C2∩NGk
(v),

add an edge v1v2. Increment k.
(3) Let D2 be an induced cycle of length 2 mod 3 in Gk. Take a vertex
w ∈ V (D2), and set ND2(w) = {w1, w2}. Now, add an edge w1w2. Set
w1ww2α ⊆ D2. Now, add two edges w1α and wα. Increment k.
(4) Let D1 be an induced cycle of length 1 mod 3 in Gk. Take a vertex
x ∈ V (D1), and set ND1(x) = {x1, x2}. Now, add an edge x1x2. Set
x1xx2α ⊆ D1. Now, add an edge xα. Increment k.
(5) Repeat (2)-(4).
(6) Return the resulting graph Gk.

The next remark is a basic concept of the following proofs.

Remark 2.1. Let X be a dominating set of G. Every subset D ⊆ X is a
d-set of NG[D] if and only if X is a d-set of G.

Let K(G) be a graph constructed by applying K to G. Note that K(G)
is not unique and constructed from G arbitrarily.

Proposition 2.1. K(G) is domination structure. Moreover, |F(K(G))| =
1.

Proof. From the rules, K(G) is 2-connected. Hence K(G) has an ear de-
composition. Since all induced cycles are of length 0 mod 3, the domination
structure H is obtained by finding 0 mod 3 induced cycles connecting with-
out seams one by one, so that H = K(G). We had the claim.

Suppose that for all v ∈ V (G), dG(v) ≥ 3.

Fact 2.1. For domination structure H = K(G), label every three vertices on
the induced cycles that constitute H in order of connecting without seams.
Note that a certain induced cycle of H is not counted for the labeling, and
may have no labels, where the vertices of the induced cycle are all in other
induced cycles of H. There exist at most |V (G)| cases of labeling. (i) For
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every labeling, the set of all labeled vertices is a dominating set of K(G). (ii)
For at least one labeling, the set of all labeled vertices is a d-set of K(G).

Proof. By the first vertex choice for the labeling, all labeled vertices are
uniquely determined in V (G) since for all v ∈ V (G), dG(v) ≥ 3, and so
there exist at most |V (G)| cases of labeling. The statement (i) is obvious.
The statement (ii) follows from Remark 2.1.

Let Y be a d-set of K(G) that is obtained by applying Fact 2.1. Let Y
be the set of all Y . Let X be a d-set of G. Let X be the set of all X.

Proposition 2.2. For some X ∈ X , and some Y ∈ Y, Y ⊆ X.

Proof. For some Y ∈ Y, if Y is a dominating set of G, then for some
X ∈ X , X = Y . Otherwise, for all Y ∈ Y, Y is not a dominating set
of G. Now, for some v ∈ Y , and some w ∈ V (G) \ Y , vw is an added edge
for K(G) and NG(w) ⊆ V (G) \ Y . Now, we consider such v and w. Let
Z ′ = {w ∈ V (G)\Y : v ∈ Y, vw ∈ E(K(G))\E(G), NG(w) ⊆ V (G)\Y } and
E′ = {vw ∈ E(K(G)) \ E(G): w ∈ V (G) \ Y, v ∈ Y,NG(w) ⊆ V (G) \ Y }.
Let E′′(vw) be an induced cycle of length 0 mod 3 in K(G) such that for
vw ∈ E′, vw ∈ E′′(vw) holds. Let E(vw) be the set of all E′′(vw) for
vw ∈ E′ and let E =

⋃
vw∈E′ E(vw). Let J be the union of all induced

cycles of length 0 mod 3 in K(G) other than the induced cycles in E . By
the definition of Y and Remark 2.1, J ∩ Y is a d-set of NG[J ∩ Y ], and Y
is a d-set of G− Z ′ = NG[Y ]. Let W be a subset of V (G) \ Y of minimum
cardinality such that Y ∪W is a dominating set of G. By the definition of
W , W is a d-set of NG[W ]. Since for all x ∈ V (G), dG(x) ≥ 3, and by Fact
2.1, E(G[Y ]) = ∅, and Y ∪W is a minimal dominating set of G. Therefore,
by Remark 2.1, for some X ∈ X , X = Y ∪W .

Suppose that Y is a d-set of K(G) that satisfies Proposition 2.2.

Fact 2.2. Let G′ be constructed by deleting Y , and for every pair w1, w2 ∈⋃
y∈Y NG(y), adding an edge w1w2 to G. Let Z1 be a d-set of G′. Let

G′′ = G−NG[Y ] and Z2 be a d-set of G′′. If |Z1| < |Z2|, then Y ∪ Z1 is a
d-set of G, and Z1 ∩

⋃
y∈Y NG(y) 6= ∅. If |Z1| ≥ |Z2|, then Y ∪Z2 is a d-set

of G.

Proof. Obviously, Y ∪Z2 is a d-set of G if and only if |Z1| ≥ |Z2|. For a set
A ⊆ V (G), suppose that Y ∪ A is a d-set of G. Let A′ = A \

⋃
y∈Y NG(y).

By Remark 2.1, A′ is a d-set of NG[A′]. Suppose that |Z1| < |Z2|, then A′ is
not a dominating set of G′′, and A∩

⋃
y∈Y NG(y) 6= ∅. Now, A is a minimal
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dominating set of G′. By the definition of G′, Y ∪Z1 is a minimal dominating
set of G, and so it suffices that A = Z1. Thus Z1 ∩

⋃
y∈Y NG(y) 6= ∅.

Suppose that G is cubic.

Theorem 2.1. For some X ∈ X , X is determined in polynomial time.

Proof. By Proposition 2.2, Y ⊆ X for some X ∈ X . Let G0 = G. Let G1 be
constructed by deleting Y , and for every pair w1, w2 ∈

⋃
y∈Y NG(y), adding

an edge w1w2 to G0. Let G2 = G0 −NG0 [Y ]. Let W1 be a d-set of G1 and
W2 be a d-set of G2. Since G0 is cubic and by the definition of G2, each com-
ponent of G2 is path or cycle. Thus W2 is determined in polynomial time.
Suppose that |W1| < |W2|. Let Y1 be a d-set of K(G1) that satisfies Propo-
sition 2.2. By the definition of Y1, it suffices that Y1∩

⋃
y∈Y NG0(y) 6= ∅. Let

G3 be constructed by deleting Y1, and for every pair w1, w2 ∈
⋃

y∈Y1
NG1(y),

adding an edge w1w2 to G1. Let G4 = G1 − NG1 [Y1]. Let W3 be a d-set
of G3 and W4 be a d-set of G4. By the definition of G4, each component
of G4 is path. Thus W4 is determined in polynomial time. Suppose that
|W3| < |W4|. Let Y2 be a d-set of K(G3) that satisfies Proposition 2.2.
By the definition of Y2, it suffices that Y2 ∩

⋃
y∈Y1

NG1(y) 6= ∅. Let G5

be constructed by deleting Y2, and for every pair w1, w2 ∈
⋃

y∈Y2
NG3(y),

adding an edge w1w2 to G3. Let G6 = G3 − NG3 [Y2]. Let W5 be a d-set
of G5 and W6 be a d-set of G6. By the definition of G6, G6 is indepen-
dent. Thus W6 = V (G6). Suppose that |W5| < |W6|. Let Y3 be a d-set
of K(G5) that satisfies Proposition 2.2. By the definition of Y3, it suffices
that Y3 ∩

⋃
y∈Y2

NG3(y) 6= ∅. Now, Y3 is a dominating set of G5 and so it
suffices that W5 = Y3. By Fact 2.2, if |W5| < |W6|, then it suffices that
W3 = Y2 ∪W5, otherwise, it suffices that W3 = Y2 ∪W6. By Fact 2.2, if
|W3| < |W4|, then it suffices that W1 = Y1 ∪W3, otherwise, it suffices that
W1 = Y1∪W4. By Fact 2.2, if |W1| < |W2|, then it suffices that X = Y ∪W1,
otherwise, it suffices that X = Y ∪W2. The proof is complete.
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