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Abstract
For an undirected graph G, a pair of vertex disjoint subsets pA, Bq is a pair of perfectly matched
sets if each vertex in A (resp. B) has exactly one neighbor in B (resp. A). In the above, the size
of the pair is |A| (“ |B|). Given a graph G and a positive integer k, the Perfectly Matched
Sets problem asks whether there exists a pair of perfectly matched sets of size at least k in G.
This problem is known to be NP-hard on planar graphs and W[1]-hard on general graphs, when
parameterized by k. However, little is known about the parameterized complexity of the problem in
restricted graph classes. In this work, we study the problem parameterized by k, and design FPT
algorithms for: i) apex-minor-free graphs running in time 2Op

?
kq

¨ nOp1q, and ii) Kb,b-free graphs.
We obtain a linear kernel for planar graphs and kOpdq-sized kernel for d-degenerate graphs. It is
known that the problem is W[1]-hard on chordal graphs, in fact on split graphs, parameterized by k.
We complement this hardness result by designing a polynomial-time algorithm for interval graphs.
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1 Introduction

Matching is one of the very classical polynomial-time solvable problems in Computer
Science with varied applications. Finding a matching with additional structure, such as an
induced matching has been well studied both in classical complexity as well as parameterized
complexity, see, for instance, [4, 9, 18, 20, 24, 24, 27, 28] (list is only illustrative, and not
comprehensive). In this article, we are interested in a matching that is slightly weaker than
the structure of an induced matching but still more structured than a matching.

For a graph G, a pair of vertex disjoint subsets, pA, Bq is a pair of perfectly matched sets
in G if each vertex in A has exactly one neighbor in B and each vertex in B has exactly
one neighbor in A; the size of the pair is |A| (“ |B|). Note that there can be edges between
vertices of A (resp. B), which is forbidden in the case of induced matching. We study the
problem called Perfectly Matched Sets, which is defined below.

Perfectly Matched Sets Parameter: k

Input: An undirected graph G and an integer k.
Question: Does there exist a pair of perfectly matched sets of size at least k in G?
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2:2 Parameterized Complexity of Perfectly Matched Sets

This problem was first introduced in [27] where it was named as Maximum TR-matching
problem (Transmitter- Receiver problem). The paper showed that this problem is NP-
complete when restricted to graphs having degree 3. Evan, Goldreich, and Tong in [13]
showed that TR-matching is NP-complete on bipartite graphs. This problem was revisited
by Aravind and Saxena in 2021, [1] where they called the problem as Perfectly Matched
Sets. They designed FPT algorithms for this problem parameterized by the structural
parameters such as distance to cluster, distance to co-cluster, and treewidth. They also prove
that the problem is NP-hard on planar graphs and W[1]-hard parameterized by the solution
size k, when restricted to bipartite graphs and split graphs.

The Perfectly Matched Sets problem is also closely related to the problem Perfect
Matching Cut where we want edge cuts of size k, such that the vertices participating
in these edges induce a matching and a perfect matching, respectively. We remark that in
Perfectly Matched Sets, we do not insist that the edges between the pair of perfectly
matched sets pA, Bq is a cut in the graph. The Matching Cut and Perfect Matching
Cut problems have been investigated in the literature even when restricted to well-studied
graph classes, see, for instance, [2, 6, 7, 21, 22, 25].

Our Results. In this paper, we investigate the parameterized complexity of the Perfectly
Matched Sets problem when the input graph is from a structured graph family, for several
choices of well-studied graph families. The starting point of our work is the result by Aravind
and Saxena [1]. The paper showed that the problem is W[1]-hard even on split graphs, which
is an important subclass of chordal graphs. Inspired by this negative result, we turn to
interval graphs, which is arguably the most well-studied subclass of chordal graphs. We
obtain the following result by using a dynamic programming based algorithm.

▶ Theorem 1. Perfectly Matched Sets on interval graphs admits an algorithm running
in time Opn5q.

Aravind and Saxena [1] showed that Perfectly Matched Sets is NP-complete even
when the input graph is planar. Inspired by this we design an FPTalgorithm for a strictly
more general class of apex-minor-free graphs. A graph H is an apex graph if there is v P V pHq,
such that H ´ tvu is planar. Consider any finite set H of graphs that contains at least one
apex graph, and let FH be the family of graphs that do not contain any graph from H as a
minor. The H-Minor Free PMS problem is the Perfectly Matched Sets problem with
an additional guarantee that the input graph belongs to FH. Note that for H “ tK5, K3,3u,
FH is the family of planar graphs. We obtain the following result:

▶ Theorem 2. For any (fixed) finite set H of graphs that contains at least one apex graph,
H-Minor Free PMS has an FPT algorithm running in time 2Op

?
kq ¨ nOp1q.

We remark that the same approach used in obtaining the above result can be used to
obtain an FPT algorithm on bounded genus graphs, due to bidimensionality [10]. We remark
that having a pair of perfectly matched sets of size at least k is expressible in MSO (actually,
even in FO). So, there is an FPT algorithm on the much more general nowhere dense classes
(admittedly with a worse running time)[16].

For b P N, a graph is Kb,b-free if it does not contain a bi-clique with b vertices on each
side as a subgraph. We obtain the following result by using an approach similar to random
separation [3], in combination with a result of Dabrowski et al. [9].

▶ Theorem 3. For any fixed b P N, Perfectly Matched Sets on Kb,b-free graphs admits
an FPT algorithm, when parameterized by k.
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Kanj et al. [18] and Erman et al. [20] independently designed Opkcq kernels for the
Induced Matching problem for graphs of arboricity bounded by c . The authors [18]
also showed that any twinless graph of average degree d and bounded chromatic number
contains an induced matching of size Ωpn1{dq. The core of their proof is the system of
strong representatives of a set family. This combinatorial tool also forms the backbone of our
following result.

▶ Theorem 4. Perfectly Matched Sets admits a kOpdq-sized kernel on d-degenerate
graphs.

As planar graphs are 5-degenerate, the theorem above directly gives us a polynomial
kernel for Perfectly Matched Sets on these graphs. Following an approach by Kanj et
al. [18] for obtaining a linear kernel for Induced Matching on planar graphs, we obtain
a linear kernel (improving upon the already obtained polynomial kernel) for Perfectly
Matched Sets on this graph class.

2 Preliminaries

Sets and graph notations. We use N “ t1, 2, . . .u to denote the set of natural numbers.
We use rks as a shorthand for t1, 2, . . . , ku and use rks0 for rks Y t0u, where k P N. In this
article, we only consider simple undirected graphs. Given a graph G, we denote the vertex
set and edge set of G by V pGq and EpGq respectively. Unless specified, n and m denote the
number of vertices and edges of the graph G. Two vertices u, v are said to be adjacent if
there is an edge (denoted by tu, vu) between u and v in G. For X Ď V pGq, GrXs denotes the
induced subgraph of G with vertex set X and edge set ttu, vu | u, v P X and tu, vu P EpGqu,
G ´ X denotes the subgraph GrV pGqzXs. For an edge set E1 Ď E, V pE1q denotes the set of
all the vertices of G having at least one edge in E1 incident on it. EpA, Bq denotes the set
of edges with one endpoint in A and the other in B. The open neighborhood of a vertex
v, denoted by NGpvq, is the set of vertices adjacent to v. The closed neighborhood of v is
defined as NGrvs “ NGpvq Y tvu. The subscript in the notation for neighborhood is omitted
if the graph under consideration is clear. For X Ď V pGq, N rXs denotes the set of vertices
Ť

vPX N rvs. Two distinct vertices u, v is said to be a pair of false twins if NGpuq “ NGpvq

and true twins if NGrus “ NGrvs. A clique in graph G is a set of vertices such that there
is an edge between every pair of vertices in the set. An independent set in the graph G is
a set of vertices such that there is no edge between any pair of vertices in the set. Kn,m

is the complete bipartite graph, also known as a biclique, with partitions of size n and m.
A k-biclique is a 2k-vertex complete bipartite graph. A subset D Ď V pGq is said to be a
dominating set of G if N rDs “ V pGq. A vertex cover of a graph is a set of vertices that
includes at least one endpoint of every edge of the graph. The cardinality of the smallest
size dominating set is called as domination number of G. D is said to be a 2-dominating set
if N rN rDss “ V pGq. Gze denotes the graph obtained by contracting the edge e in G. The
contraction of an edge tu, vu in the graph involves the deletion of vertices u and v from G

and the addition of a new vertex w, which is adjacent to all the vertices of Npuq Y Npvq. For
two graphs G1 and G2, we denote G1 Ď G2 if G1 is an induced subgraph of G2.

Graph classes. A graph is planar if it can be drawn in the plane without edge intersections
except at the endpoint). A graph G is a d-degenerate graph if every induced subgraph of G

contains a vertex of degree at most d. A Kb,b-free graph is a graph that does not contain
biclique Kb,b as a subgraph (not necessarily induced). An apex graph is a graph that can
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2:4 Parameterized Complexity of Perfectly Matched Sets

be made planar by removing one of its vertices. Apex-minor-free graphs are basically those
graphs that exclude a fixed apex graph as a minor. More precisely, C is apex-minor-free
graph class if there exists some apex graph H such that no graph from C admits H as a
minor. An interval graph is an undirected graph formed from a set of intervals on the real
line, with a vertex for each interval and an edge between vertices whose intervals intersect. It
is the intersection graph of the intervals. [5]. For standard graph definition and notations, we
refer to the graph theory book by R. Diestel [11]. For parameterized complexity terminology,
we refer to the parameterized algorithms book by Cygan et al. [8].

Treewidth. A tree decomposition of a graph G “ pV, Eq is a pair pT, Xq where T is a tree
on vertex set V pT q. The vertices of V pT q are called nodes. Also, X “ ptXi| i P V pT quq is a
collection of subsets of V such that -
1. Every vertex of G is contained in at least one bag. YiPV pT qXi “ V ,
2. For every edge tu, vu P E, there exists a node i P V pT q such that bag Xi contains both u

and v.
3. For each u P V , the set of nodes whose bags contain u, Tu “ ti P V pT q : i P Xiu forms a

connected subtree of T .
The width of a tree decomposition pT, ptXi| i P V pT quq is equal to the maximum size of its
bag minus 1, maxi PV pT qt|Xi| ´ 1u. The treewidth of a graph G, twpGq is the minimum width
of a tree decomposition over all tree decompositions of G.

Perfectly matched sets. A matching in a graph G is a set of edges M such that no two
edges in M share the same endpoint. A matching M is maximal if G ´ V pMq is edge less. A
matching M is said to be an induced matching if the subgraph induced by the vertices in M

contains only the edges of M . If M is maximal then V pMq is a vertex cover of G, and it
is easy to verify that twpGq ď |V pMq|. For a pair pA, Bq of disjoint subsets of vertices of
V pGq, we say pA, Bq is a pair of perfectly matched sets if every vertex in A (resp. B) has
exactly one neighbor in B (resp. A). The size of the pair is |A| “ |B|.

Parameterized problems and kernels. A parameterized problem Π is a subset of Γ˚ ˆ N
for some finite alphabet Γ. An instance of a parameterized problem consists of pX, kq, where
k is called the parameter. The notion of kernelization is formally defined as follows. A
kernelization algorithm, or in short, a kernelization, for a parameterized problem Π Ď Γ˚ ˆN
is an algorithm that, given pX, kq P Γ˚ ˆ N, outputs in time polynomial in |X| ` k a pair
pX 1, k1q P Γ˚ ˆ N such that (a) pX, kq P Π if and only if pX 1, k1q P Π and (b) |x1|, |k| ď gpkq,
where g is some computable function depending only on k. The output of kernelization
pX 1, k1q is referred to as the kernel and the function g is referred to as the size of the kernel.
If gpkq P kOp1q , then we say that Π admits a polynomial kernel. We refer to the monographs
[12, 14, 26] for a detailed study of the area of kernelization.

3 Polynomial-time Algorithm for Interval Graphs

Recall that Perfectly Matched Sets is W[1]-hard when parameterized by the solution
size k even when restricted to split graphs (and thus, chordal graphs). Interval graphs
belong to the class of chordal graphs. In this section, we present a polynomial-time dynamic
programming algorithm that computes a maximum-sized pair of perfectly matched sets for
any given interval graph.
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Let G be an interval graph with vertex set V pGq “ tv1, v2, . . . , vnu. Since G is an interval
graph, there exists a corresponding geometric intersection representation of G, where each
vertex vi P V pGq is associated with an interval Ii “ rℓpIiq, rpIiqs in the real line, where
ℓpIiq and rpIiq denote left and right endpoints, respectively in Ii. Two vertices vi and vj

are adjacent in G if and only if their corresponding intervals Ii and Ij intersect with each
other. We can also assume that along with the graph, we are also given the corresponding
underlying intervals on the real line, as there are well-known linear-time algorithms that
compute such a representation [19]. We use I to denote the set tIi : vi P V u of intervals
and P to denote the set of all endpoints of these intervals, i.e., P “ YIPItℓpIq, rpIqu. In the
remaining section, we will use vi and Ii interchangeably. Note that we can assume that the
endpoints of all the intervals in the interval representation are distinct ´ otherwise, we can
slightly perturb the endpoints of the intervals to obtain a new interval representation of the
graph in which this is true.

▶ Proposition 5. Let G be a connected interval graph. There exists an ordering, ă, of V pGq

such that for u, v, w P V pGq if u ă v ă w and tu, wu P EpGq then tv, wu P EpGq.

We remark that such an ordering in Proposition 5 can be obtained based on the right
endpoints of intervals, more specifically the set trpIiqu and the ordering is as follows: for any
two vertices vi and vj , we have vi ă vj if and only if rpIiq ă rpIjq. We call such an ordering,
the right-end ordering of V pGq.

▶ Lemma 6. Let G be an interval graph with a right-end ordering, ă, of V pGq. Consider
any distinct pair of edges tu, vu and tu1, v1u in a pair of perfectly matched sets pA, Bq where
u ă v and u1 ă v1. If u ă u1, then v ă u1.

Proof. Towards a contradiction suppose there are edges tu, vu, tu1, v1u in the pair of perfectly
matched sets pA, Bq, where u ă v, u1 ă v1, u ă u1 and u1 ă v. Then, either u ă u1 ă v1 ă v,
or u ă u1 ă v ă v1. In either of these cases, by Proposition 5, v is adjacent to both u1 and v1

which is a contradiction to the fact that pA, Bq is perfectly matched sets in G. ◀

Lemma 6 directly implies the following remark.
▶ Remark 7. Let ttui, viu : 1 ď i ď ku be a set of k edges in a pair pA, Bq of perfectly matched
sets in G with u1 ă u2 ă . . . ă uk and ui ă vi, for each i P rks. Then, u1 ă v1 ă u2 ă v2 ă

. . . ă uk ă vk.

Algorithm and its Correctness. We define a table for our dynamic-programming algorithm.
Let v1 ă v2 ă . . . ă vn be the right-end ordering of the vertex set of G. For every tuple
pvi, vj , tq, where tvi, vju P EpGq, i, j P rns, i ă j and t P rtn{2us, we define two Boolean values:
(i) PM

“

pvi, Aq, pvj , Bq; t
‰

and (ii) PM
“

pvi, Bq, pvj , Aq; t
‰

.1 The entry PM
“

pvi, Aq, pvj , Bq; t
‰

is
true if there exists a pair pA, Bq of perfectly matched sets of size t such that vi P A,
vj P B and for all the vertices v P pA Y Bqztvi, vju, we have v ă vi. Similarly the entry
PM

“

pvi, Bq, pvj , Aq; t
‰

is true if there exists a pair pA, Bq of perfectly matched sets of size t

such that vi P B, vj P A and for all the vertices u P pA Y Bqztvi, vju, we have u ă vi.
In the base case, both PM

“

pvi, Aq, pvj , Bq; 1
‰

and PM
“

pvi, Bq, pvj , Aq; 1
‰

are true for every
possible pair vi and vj (note because of the way the entry is defined, tvi, vju must be an
edge in G). We will use the convention that empty OR is 0. In the lemma below, we give a
recursive formula for computing the values PM

“

pvi, Aq, pvj , Bq; t
‰

for t ą 1.

1 A and B in these entries are just symbols, added for extra clarity.
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2:6 Parameterized Complexity of Perfectly Matched Sets

▶ Lemma 8. For every integer t P rtn{2uszt1u, and every pair of adjacent vertices vi, vj in
G where i ă j, the following recurrence holds:

PM
“

pvi, Aq, pvj , Bq; t
‰

“
Ž

tx,yuPEpGq
xăyăvi

´´

PM
“

px, Aq, py, Bq; t ´ 1
‰

^ rtx, vju R EpGqs ^ rty, viu R

EpGqs

¯

Ž

´

PM
“

px, Bq, py, Aq; t ´ 1
‰

^ rtx, viu R EpGqs ^ rty, vju R EpGqs

¯¯

Proof. In the forward direction let us assume that PM
“

pvi, Aq, pvj , Bq; t
‰

“ true. So according
to the definition of our dynamic-programming table, tvi, vju P EpGq and there exists a pair
pA, Bq of perfectly matched sets of size t such that vi P A, vj P B and for all the vertices
v P pA Y Bqztvi, vju, we have v ă vi. Now consider the pair pA1 “ Aztviu, B1 “ Bztvjuq.
It is easy to see that this pair is a perfectly matched sets of size t ´ 1 and all the vertices
v in the pair having the property that v ă vi. Consider the last vertex in the right-end
ordering of V pGq which occures in the vertex set A1 Y B1. Let this vertex be y and x be its
(only) neighbour in B1. Note that x ă y and for any vertex v P pA1 Y B1qztx, yu, it must
hold that v ă x (see Remark 7). If y P B1, then clearly, tx, vju R EpGq, ty, viu R EpGq, and
PM

“

px, Aq, py, Bq; pt´1q
‰

“ true. Otherwise, y P A1, and then tx, viu R EpGq, ty, vju R EpGq,
and PM

“

px, Bq, py, Aq; pt ´ 1q
‰

“ true.
In the reverse direction, assume that there exists a pair of vertices x ă y, tx, yu P EpGq

such that PM
“

px, Aq, py, Bq; pt ´ 1q
‰

“ true and tx, vju R EpGq, ty, viu R EpGq. (The case
when PM

“

px, Bq, py, Aq; t ´ 1
‰

“ true and tx, viu R EpGq, ty, vju R EpGq can be argued
symmetrically.) The above means that there is a pair of perfectly matched sets pA1, B1q with
t´1 edges such that: tx, yu P EpGq, x P A1, y P B1, and for each v P pA1 YB1qztx, yu, we have
v ă x. Let A “ A1 Ytviu and B “ B1 Ytvju. Note that we have x ă y ă vi ă vj , and thus, for
each v P A1 Y B1, we have v ă vi ă vj . For a contradiction suppose that we have v P B1, such
that tv, viu P EpGq. Note that v ă x ă y ă vi, as ty, vju R EpGq (see Remark 7). But then
from Lemma 6, we can obtain that tv, xu P EpGq, which contradicts that pA1, B1q is a pair of
perfectly matched sets. Similarly, towards a contradiction suppose that we have v P A1, such
that tv, vju P EpGq. Then, v ă x ă y ă vj , and thus, ty, vu P EpGq, which is a contradiction.
From the above discussions, we can conclude that PM

“

pvi, Aq, pvj , Bq; t
‰

“ true. ◀

Similarly, we have a recursive formula for computing the values PM
“

pvi, Bq, pvj , Aq; t
‰

for
t ą 1. The correctness proof is similar to that of Lemma 8.

▶ Lemma 9. For every integer t P rtn{2uszt1u, and every pair of adjacent vertices vi, vj in
G where i ă j, the following recurrence holds:

PM
“

pvi, Bq, pvj , Aq; t
‰

“
Ž

tx,yuPEpGq
xăyăvi

´´

PM
“

px, Aq, py, Bq; t ´ 1
‰

^ rty, vju R EpGqs ^ rtx, viu R

EpGqs

¯

Ž

´

PM
“

px, Bq, py, Aq; t ´ 1
‰

^ rtx, vju R EpGqs ^ rty, viu R EpGqs

¯¯

We can compute all the entries of our dynamic programming table using the recurrence
relations given by Lemma 8 and Lemma 9.

Time Complexity. For a pair of adjacent vertices vi, vj , where i ă j, the time required to
compute PM

“

pvi, Aq, pvj , Bq; t
‰

and PM
“

pvi, Bq, pvj , Aq; t
‰

, once we have computed the entries
till the values at most t ´ 1, is bounded by Opn2q. As t ă n, the number of entries we have
to compute is bounded by Opn3q, thus bounding the total running time of our algorithm by
Opn5q. This proves Theorem 1.
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4 FPT Algorithm for Apex-Minor-Free Graphs

Consider any (fixed) finite set H of graphs that contains at least one apex graph; we will
work with this fixed family throughout this section. Recall that FH is the family of graphs
that do not contain any graph from H as a minor, and the H-Minor Free PMS problem is
the same as the Perfectly Matched Sets problem with an additional guarantee that the
input graph belongs to FH. In this section, we prove Theorem 2 by designing a simple FPT
algorithm with the desired running time. Let pG, kq be an instance of H-Minor Free PMS.
Our algorithm will begin by greedily trying to construct a solution, if we succeed then the
algorithm halts. Otherwise, we will be able to bound the size of a 2-dominating in G by Opkq.
This together with a result of Fomin [15]) will imply that the treewidth of G is bounded by
Op

?
kq. Now we can use the algorithm of Aravind and Saxena [1] for Perfectly Matched

Sets parameterized by treewidth to obtain the proof of the theorem. We begin by stating
the two useful results.

▶ Proposition 10 (Lemma 2, [15]). For an H-minor free graph G, if ℓ is the size of a
minimum 2-dominating set of G, then the treewidth of G is bounded by cH ¨

?
ℓ, where cH is

a constant depending on H.

▶ Proposition 11 (Theorem 7, [1]). There exists an algorithm that calculate maximum perfectly
matched sets for an n vertex graph with treewidth at most w in time Op12w ¨ polypnqq.

The next lemma gives the procedure that either resolves the instance or obtains a small
2-dominating set in G.

▶ Lemma 12. There is a polynomial time algorithm that either correctly concludes that
pG, kq is a yes-instance of H-Minor Free PMS, or outputs a 2-dominating set Q of G

where |Q| ď 2 ¨ pk ´ 1q.

Proof. Let pG, kq be an instance of the problem. If G has an isolated vertex, then such a
vertex is not part of any perfectly matched set, and thus we remove it. We will next create
a sequence of perfectly matched sets S0 Ă S1 Ă ¨ ¨ ¨ Ă Sq and graphs G0 Ě G1 Ě ¨ ¨ ¨ Ě Gq,
which, intuitively speaking, will be constructed by greedily adding an edge (one at a time)
to form a perfectly matched set.

Initialize S0 “ H and G0 “ G. Iteratively do the following: if there is an edge ei “

tui, viu P EpGiq, then set Si`1 “ Si Y teu and Gi`1 “ Gi ´ pNGrus Y NGrvsq. The q be an
integer where the above procedure stops, which is the case when Gq has no edges. Notice that
for any i P rqs0, each S P tSjzSi | j P ti ` 1, i ` 2, ¨ ¨ ¨ , quu is a pair of perfectly matched sets
in Gi. The above in particular implies that Sq is a pair of perfectly matched sets in G “ G0.
Also, for each i P rqs0, |Si| “ i. If q ě k, then we have obtained a pair of perfectly matched
sets in G of size at least k, and thus we can conclude that the instance is a yes-instance.
Otherwise q ď k ´ 1, and we let Q “ tui, vi | i P rqsu. Consider any vertex u P V pGqzNGrQs.
Since G has no isolated vertices, u must have a neighbor v in G. Note that v R Q, as
u P V pGqzNGrQs. Also, if v R NGpQq, then tu, vu is an edge in Gq, which contradicts that
Gq has no edges. The above discussions imply that Q is a 2-dominating set in G of size at
most |Q| ď 2 ¨ pk ´ 1q. ◀

We are now ready to prove Theorem 2.

Proof of Theorem 2. Consider an instance pG, kq of H-Minor Free PMS. If Lemma 12
returns that the instance is a yes-instance, then we are done. Otherwise, it returns a 2-
dominating set in G of size at most 2 ¨ pk ´ 1q. From Proposition 10, the treewidth of G is
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bounded by cH ¨
a

2 ¨ pk ´ 1q, where cH is a constant depending on the family H. Now using
Lemma 7.4 of [8], we compute a nice tree decomposition of width at most cH ¨

a

2 ¨ pk ´ 1q

in time bounded by Opnkq . Now we can use Proposition 11 to resolve the instance. ◀

5 FPT Algorithm for Kb,b-free Graphs

The goal of this section is to prove Theorem 3. Consider any fixed number b P N. Recall that
a graph is Kb,b-free if it does not contain a subgraph isomorphic to Kb,b. We obtain an FPT
algorithm for Perfectly Matched Sets on Kb,b-free graphs by using an approach similar
to random separation [3], in combination with the below-stated result of Dabrowski et al. [9].

▶ Proposition 13 (Lemma 2, [9]). For any natural numbers s, t and p, there is a number
N 1ps, t, pq such that every graph with a matching of size at least N 1ps, t, pq contains either
a clique Ks, an induced bi-clique Kt,t or an induced matching of size p. Here, N 1ps, t, pq “

R ps, R ps, N pt, pqqq where R ps, tq is the non-symmetric Ramsey number.

Let pG, kq be an instance of Perfectly Matched Sets, where G is a Kb,b-free graph
with n vertices. We color the vertices of V pGq independently and randomly using two colors,
red and blue (with equal probability). This forms a random partition VR Z VB of the vertices
of G, where VR and VB are the set of vertices colored with red and blue color, respectively.
We call these two partitions as color classes. Next, we obtain the graph G1 from G by
removing all the edges between the vertices of the same color class. Thus, the edges in G1

have endpoints of differing colors, and thus it is bipartite. We compute (in polynomial time)
a maximum sized matching M in G1 [23]. We will next argue that either M has at most
N 1p3, b, kq edges, or we can conclude that pG, kq is a yes-instance.

Case 1. Firstly suppose that M has at least N 1p3, b, kq edges. Recall that G is bipartite, so
it does not have any K3. Moreover, as G is Kb,b-free, we can obtain that G1 has no induced
Kb,b. As the size of a maximum matching in G1 is at least N 1p3, b, kq, using Proposition 13
we can obtain that G1 has an induced matching MI of size at least k. Now using the next
observation we can conclude that pG, kq is a yes-instance of the problem.

▶ Observation 14. pVR X V pMIq, VB X V pMIqq is a pair of perfectly matched sets in G of
size at least k.

Proof. Consider x P VR X V pMIq, where x has a neighbor y P VB X V pMIq and tx, yu is an
edge in MI . Let z ‰ y be another neighbor of x in VB X V pMIq. Then since x is colored
with red and z is colored with blue, the edge px, zq P EpG1q. But this is a contradiction to
the fact that MI is an induced matching. From the above discussions, we can obtain that
each vertex in VR X V pMIq has exactly one neighbor in VB X V pMIq and vice-versa. ◀

Case 2. Now suppose that in G1 the matching M has less than N 1p3, b, kq edges, and thus,
twpG1q ď 2 ¨ N 1p3, b, kq. Now in G1, we look for a pair of perfectly matched sets pX, Y q where
X Ď VR and Y Ď VB. Let us denote this version of Perfectly Matched Sets as the
colored-Perfectly Matched Sets problem. Aravind et al. [1] designed an FPT algorithm
for Perfectly Matched Sets parameterized by the treewidth of the given graph. They
use a nice tree decomposition of the graph, where in each bag βptq, X X βptq and Y X βptq

play a crucial role in the construction of their algorithm. To adapt their algorithm for
colored-Perfectly Matched Sets, we only need to enforce that X X βptq and Y X βptq are
selected from VR and VB , respectively. Precisely in Section 5.3 of their draft [1], AXβptq “ At
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and B X βptq “ Bt can be replaced by A X pβptq X VRq “ At and B X pβptq X VBq “ Bt),
respectively, to obtain an algorithm for the colored version. Notice that they denote the
desired perfectly matched sets by pA, Bq while we do it by pX, Y q. Hence we have an
FPT algorithm running in time 2OptwpG1

qq ¨ nOp1q to obtain a pair of perfectly matched sets
pX, Y q of G1 of size k where X Ď VR, Y Ď VB. We remark that the algorithm given by [1]
can actually compute such a set by the standard backtracking technique, and thus even for
our colored case, we can compute a pair of perfectly matched sets in G1. Now we claim the
following.

▶ Observation 15. pX, Y q is also a pair of perfectly matched sets of G.

Proof. Suppose pX, Y q is not a pair of perfectly matched sets of G. Notice that EpG1q Ď EpGq

and hence there is a vertex v in X with more than one neighbor in Y or there is a vertex u

in Y with more than one neighbor in X. Without loss of generality let such a vertex v be in
X. Let two of its neighbors in Y be y1 and y2. But the edges tv, y1u and tv, y2u are also in
G1 as they have endpoints with differing colors. But this contradicts the fact that pX, Y q is
a pair of perfectly matched sets of G1. ◀

In the construction of G1 from G, we delete edges with endpoints in the same color classes.
Hence a pair of perfectly matched sets of G may not remain a pair of perfectly matched sets
of G1. But in the claim below, we show that for a fixed size of perfectly matched sets, the
chances of such an event happening stays low.

▶ Observation 16. Any k-sized perfectly matched sets pX, Y q of G is also a perfectly matched
sets of G1 with probability at least 2´2k.

Proof. The probability that all vertices of X are colored red and all vertices of Y are colored
blue is at least 2´2k. Thus we can obtain that with probability at least 2´2k pX, Y q is also a
perfectly matched sets of G1. ◀

The proof of the following lemma follows from Observations 14, 15 and 16 with the
standard trick of making independent runs of the discussed algorithm.

▶ Lemma 17. There exists a randomized FPT algorithm running in time 2OpN 1
p3,b,kq`kq ¨nOp1q

that, given a Perfectly Matched Sets instance pG, kq on Kb,b-free graphs, either reports
a failure or finds a pair of perfectly matched sets in G of size at least k. Moreover, if the
algorithm is given a yes-instance, it returns a solution with constant probability.

We now explain the derandomization procedure for the above algorithm. It involves
deterministically constructing a family F of coloring functions f : rns Ñ r2s rather than
selecting a random coloring χ : rns Ñ r2s such that it is assured that one of the functions from
F colors one set from a pair of perfectly matched sets of size k (when pG, kq is a yes-instance)
with color 1 and the other set with color 2. To this end, we will use the following.

▶ Definition 18 (Definition 5.19, [8]). An pn, kq-universal set is a family U of subsets of rns

such that for each S Ď rns of size k, the family tA X S : A P Uu contains all 2k subsets of S.

▶ Proposition 19 (Theorem 5.20, [8]). For any n, k ě 1, we can construct an pn, kq-universal
set of size 2kkOplog kq log n in time 2kkOplog kqn log n.

We assume that V pGq “ rns (otherwise we can relabel the vertices). We first construct an
pn, 2kq-universal set, U , using the above proposition. Now we construct a family of function
F from rns to t1, 2u as follows, where F is initialized to H. For each U P U , add the function

IPEC 2022



2:10 Parameterized Complexity of Perfectly Matched Sets

fU : rns Ñ r2s, where f´1p1q “ U . Note that if G has a pair of perfectly matched sets pA, Bq

of size k, then there is U P U , such that pA Y Bq X U “ A. Thus at least one function in F
is the correct coloring for us. We can iterate over each of the colorings given by F , and this
leads us to the following result.

▶ Theorem 20. Perfectly Matched Sets on Kb,b-free graphs admits a deterministic
FPT algorithm running in time kOplog kq ¨ 2OpN 1

p3,b,kq`kq ¨ nOp1q.

6 Kernelization for Perfectly Matched Sets on d-degenerate
graphs

In this section, we design a polynomial kernel for d-degenerate graphs, and thus prove The-
orem 4. We design our kernel using the strong systems of distinct representatives [17] (to
be defined shortly). Recall that a graph G is d-degenerate if every induced subgraph of it
contains a vertex of degree at most d. We start by stating the definition of strong systems of
distinct representatives and a useful result regarding it.

▶ Definition 21 (Strong systems of distinct representatives, [18]). A k-tuple px1, x2, . . . , xkq

is a system of distinct representatives for sets S1, S2, . . . , Sk, if for each i P rks, xi P Si.
Moreover, it is strong if additionally, for each i P rks and j P rksztiu, xi R Sj .

▶ Proposition 22 (Theorem 8.12 [17]). Consider any family F with more than
`

r`k
k

˘

distinct
sets of sizes at most r. Then, at least k ` 2 sets in this family have a strong system of distinct
representatives.

The following property of a d-degenerate graph follows directly from the definition.

▶ Proposition 23. A d-degenerate graph on n vertices has at most dn edges.

Next, we give a lower bound on the number of low-degree vertices in a d-degenerate
graph.

▶ Lemma 24. Let G be d-degenerate graph with n ě 6 vertices. Then G has strictly more
than 5n{6 vertices of degree at most 12d.

Proof. Let G be d-degenerate graph with n vertices. By Proposition 23, the number of
edges in G is at most dn. So the sum of the degrees of the vertices in G is bounded by 2dn.
Assume that, there are at most 5n{6 vertices of degree at most 12d in G. Then we have a
set U Ď V pGq of at least n{6 ě 1 vertices of degree strictly more than 12d. Now the sum
of the degrees of the vertices in U is strictly more than pn{6q ¨ 12d “ 2dn, a contradiction.
Hence there are strictly more than 5n{6 vertices of degree at most 12d in G. ◀

▶ Observation 25. In a pair of perfectly matched sets pA, Bq of a graph G, there are at most
two non-adjacent vertices x, y P A Y B such that Npxq “ Npyq.

Proof. Let x, y, z P A Y B be three pairwise non-adjacent vertices such that Npxq “ Npyq “

Npzq. At least two of these vertices are either in A or B. Without loss of generality let
x, y P A. But then x and y, both have the exactly same neighbors in B, which contradicts
that A Y B is a pair of perfectly matched sets of G. ◀

With Observation 25, we obtain the following reduction rule.

▶ Reduction Rule 1. Let u, v, w be three distinct vertices in V pGq such that Npuq “ Npvq “

Npwq, then reduce pG, kq to pG ´ w, kq.



A. Agrawal, S. Bhattacharjee, S. Jana, and A. Sahu 2:11

▶ Lemma 26. Reduction Rule 1 is safe.

Proof. Consider an application of Reduction Rule 1 in which a vertex, say w P V pGq was
deleted because there are two distinct vertices u and v other than w such that Npuq “

Npvq “ Npwq. We will prove that pG, kq is a yes-instance of Perfectly Matched Sets if
and only if pG ´ w, kq is a yes-instance of Perfectly Matched Sets.

If pG ´ w, kq is a yes-instance, any pair of perfectly matched sets in G ´ w is also a
pair of perfectly matched sets in G, thus pG, kq must also be a yes-instance. For the other
direction suppose that (G, k) is a yes-instance of the problem, and we have two disjoint sets
A, B Ď V pGq such that every vertex in A has exactly one neighbor in B and vice-versa. If
w R A Y B, then pA, Bq is a pair of perfectly matched sets in G ´ w of size k, and we are
done. Else, exactly one of A and B must contain w. Without loss of generality we assume
that w P A. From Observation 25, we know that |pA Y Bq X tu, v, wu| ď 2. Now neither v

nor u belongs to A. If B X tu, vu “ H, then pAztwu Y tuu, Bq is a pair of perfectly matched
sets in G ´ w of size k. Else, exactly one of v or u belongs to B, say u P B (the other case is
symmetric). Then, pAztwuYtvu, Bq is a pair of perfectly matched sets in G´w of size k. ◀

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let pG, kq be an instance of Perfectly Matched Sets where G

is a d-degenerate graph. If Reduction Rule 1 on pG, kq is applicable, then we apply it
in polynomial time and reduced the number of vertices. When the reduction rule is no
longer applicable, we do the following. Let X be the set of vertices of with degree at
most 12d, and let t “ |X|. Consider the family F “ tNpuq | u P Xu (with repetitions
removed). By the non-applicability of Reduction Rule 1 and Lemma 24, we can obtain that
| F | ě t{2 ě p5n{6q{2 “ 5n{12. Also note that each set in F has size at most 12d.

If | F | ď
`12d`k

k

˘

, then 5n{12 ă F ď
`12d`k

k

˘

. Therefore n, i.e., the number of vertices in
G is bounded by kOpdq. Otherwise, | F | ą

`12d`k
k

˘

, and we argue that pG, kq is a yes-instance.
From Proposition 22, at least k ` 2 of these sets form F have a strong system of distinct rep-
resentatives, say these sets are Npv1q, Npv2q, ¨ ¨ ¨ , Npvk`2q and pu1, u2, ¨ ¨ ¨ , uk`2q is its strong
system of distinct representatives. Let A “ tv1, v2, ¨ ¨ ¨ , vk`2u and B “ tu1, u2, ¨ ¨ ¨ , vu`2u.
Note that for each i P rk ` 2s, we have tvi, uiu P EpGq. For any i P rk ` 2s and j P rksztiu,
tvi, uju R EpGq, as uj R Npviq by the definition of a strong system of distinct representatives.
Thus, pA, Bq is a pair of perfectly matched sets of size at least pk ` 2q in G. ◀

As planar graphs are 5-degenerate, the above result directly gives us a polynomial kernel
(which is not linear!) for planar graphs. We next obtain a linear kernel for planar graphs.

Linear Kernel on Planar Graphs. We describe a procedure to obtain a linear-sized vertex
kernel for planar graphs. To this end, we state the following useful result.

▶ Proposition 27 (Theorem 4.11, [18]). A twinless planar graph with n ě 2 vertices contains
an induced matching of size at least n{40.

From Proposition 27, we have the following observation.

▶ Observation 28. Let G be a planar graph on n ě 4 vertices such that there are no three
vertices that are pairwise false twins. Then G contains a pair of perfectly matched sets of
size at least n{80.
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Proof. From G, we can construct a twinless planar graph G1 by keeping exactly one of the
false twins i.e. for any two false twins u and v, we delete exactly one of them. Hence G1 is a
twinless planar graph with size at least n{2 ě 2 vertices. From Proposition 27, G1 has an
induced matching of size at least n{80, which is also an induced matching in G. But such an
induced matching gives us a pair of perfectly matched sets of size n{80. ◀

▶ Theorem 29. Perfectly Matched Sets on planar graphs admits an Opkq-sized kernel.

Proof. Consider an instance pG, kq of the problem, where G is a planar graph with n vertices.
Apply Reduction Rule 1 as long as it is applicable. If |V pGq| ă 2, then we are done.
Otherwise, from Observation 28, G has a pair of perfectly matched sets with size at least
n{80. If k ď n{80, then the given instance is a yes-instance, and otherwise |V pGq| ă 80k. ◀
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