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—— Abstract

Temporal graphs have been recently introduced to model changes to a given network that occur
throughout a fixed period of time. The TEMPORAL A CLIQUE problem, that generalizes the well
known CLIQUE problem to temporal graphs, has been studied in the context of finding nodes
of interest in dynamic networks [TCS ’16]. We introduce the TEMPORAL A INDEPENDENT SET
problem, a temporal generalization of INDEPENDENT SET. This problem is e.g. motivated in the
context of finding conflict-free schedules for maximum subsets of tasks, that have certain (changing)
constraints on each day they need to be performed. We are specifically interested in the case where
each task needs to be performed in a certain time-interval on each day and two tasks are in conflict
on a certain day if their time-intervals on that day overlap. This leads us to considering both
problems on the restricted class of temporal unit interval graphs, i.e., temporal graphs where each
layer is a unit interval graph.

We present several hardness results as well as positive results. On the algorithmic side, we
provide constant-factor approximation algorithms for instances of both problems where 7, the total
number of time steps (layers) of the temporal graph, and A, a parameter that allows us to model
conflict tolerance, are constants. We develop an exact FPT algorithm for TEMPORAL A CLIQUE
with respect to parameter T + k. Finally, we use the notion of order preservation for temporal unit
interval graphs that, informally, requires the intervals of every layer to obey a common ordering.
For both problems we provide an FPT algorithm parameterized by the size of minimum vertex
deletion set to order preservation.
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1 Introduction

The analysis of contact patterns between individuals in day-to-day life contexts can deliver
great value in research areas such as social sciences or epidemiology of infectious diseases.
Various studies have used wearable sensors to record human interaction data in high-schools
and hospitals [18, 47]. These records typically contain data in the form of a stream, a series
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of discrete time steps for each participant, each specifying a set of other participants with
whom they interacted. The collection of streams of all participants can be regarded as a
temporal binary relation, one that specifies for every moment whether any two participants
were in each other’s proximity. Naturally this can be modelled as a temporal graph [49].
Temporal graphs generalize static graphs by adding a discrete temporal dimension to
their edge set. Formally, a temporal graph G = (V,&,7) is an ordered triple consisting
of a set V of vertices, a set £ C (‘2/) x {1,2,...,7} of time-edges, and a maximal time
label 7 € N. A temporal graph can be regarded as a set of 7 consecutive time steps, in
which each step is a static graph. For t € {1,...,7}, we define the ¢t-th layer as G; = (V, E}),
where E; = {{u,v} : ({u,v},t) € £}. We refer to Casteigts et al. [8], Flocchini et al. [16],
Kostakos [35], Latapy et al. [36] and Michail [41] for a more detailed background on temporal

graphs.

Temporal cliques. In the analysis of the contact patterns between humans, it is natural
to look for important groups of people that commonly interact with each other. When
a group of participants come together for a continuous time interval, it is fair to assume
that during this time, these have participated in a discussion or a meeting. Viard et al.
introduced the notion of A-cliques to find such find events and groups [3, 5, 29, 48, 49)].
Given a temporal graph G = (V, £, 7) and an integer A, we say that a vertex set V' C V is
a A-clique in G if it is a clique in the edge-union graph of every A consecutive time steps
of G. That is, for any pair of distinct vertices v # u € V' and ¢t € {1,..,7 — A + 1}, there
exists a ¢’ € {t,..,t + A — 1} such that {u,v} € Ey. We call this intersection graph of all A
consecutive edge-union graphs

T—A+1 i+A-1

¢=v, | U E)
i=1 =i

the A-association graph of G. With this notion in mind, we can now define the problem of
TEMPORAL A CLIQUE (see Figure 1).

TEMPORAL A CLIQUE

Input: A temporal graph G = (V, &, 7) and an integer k € N.

Question: Is there set V' C V of vertices such that |[V'| > k and V' is a clique in the
A-association graph G of G?

Temporal independent set. The natural “dual” of TEMPORAL A CLIQUE is the TEM-
PORAL A INDEPENDENT SET problem. In the scenarios consider above, one might look
for a group of people which are mutually non-interactive. This is natural when one wishes
to schedule shared resources such as school lab or hospital ward among different human
participants.

Given a temporal graph G = (V, £, 1), we say a vertex set V' is a A-independent set in G
if V’ is an independent set in the edge-intersection graph of every A consecutive time steps
of G. That is, for any pair of distinct vertices u #v € V' and ¢t € {1,...,7 — A + 1}, there
exists a t’ € {¢,...,t + A — 1} such that {u,v} ¢ E,. We call this edge-intersection graph
of every A consecutive time steps

T—A+1 i+A-1

G=(V, U ﬂ Ej)
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Figure 1 An example a temporal graph G with three layers, along with its A-association graph
and A-conflict graph, for A = 2. The vertex subset {v1,v2,vs} is a maximum sized clique for this
instance, while the subset {va, v3,v4} is a maximum sized independent set.

the A-conflict graph of G. With this notion in mind, we can now introduce the second
problem we deal with in this paper (see Figure 1).

TEMPORAL A INDEPENDENT SET

Input: A temporal graph G = (V, €, 7) and an integer k € N.

Question: Is there set V' C V of vertices such that |[V’| > k and V’ is an independent set in
the A-conflict graph G of G?7

Temporal interval graphs. Recall our problem of analysing contact patterns between hu-
man participants. Observe that in this setting, each daily conflict graph G; (corresponding
to layer t of the input temporal graph) can also be represented by a set of n intervals, where
each each interval indicates the time-interval of the student attendance in the given study
room. As first defined by Hajoés [26], a graph belongs to the class of interval graphs if there
exists a mapping of its vertices to a set of intervals over a line such that two vertices are ad-
jacent if and only if their corresponding intervals overlap. Interval graphs are used to model
many natural phenomena which occur along the line of a one-dimensional axis, and have
various applications in scheduling [4], computational biology [32], and many other areas.
An important subclass of interval graphs is the class of unit interval graphs: A graph G
is a wunit interval graph if it has an interval representation where all intervals are of the
same length. It is well-known that this graph class is equivalent to the class of proper
interval graphs, graphs with interval representation where no interval is properly contained in
another [43]. The restriction to unit interval graphs is quite natural for our contact pattern
analysis problem, since in many cases one can assume that all participants attend their
meeting place for roughly the same time. We will therefore mostly focus on the TEMPORAL A
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CLIQUE and TEMPORAL A INDEPENDENT SET problems restricted to temporal unit interval
graphs, that is temporal graphs where each layer is a unit interval graph.

Order-preserving temporal interval graphs. Considering our example of TEMPORAL A
CLIQUE, it may be a reasonable assumption that some participants generally prefer to meet
in the morning while others prefer to meet in the evenings. In this scenario, we have a
natural ordering on the time-intervals of the participants that stays the same or at least
does not change much over the time period of 7 days. We use the notion of order-preserving
temporal graphs to formalize this setting.

Order preservation on temporal interval graphs was first introduced by Fluschnik et
al. [17]. A temporal interval graph is said to be order-preserving if it admits a vertex order-
ing <y such that each of its time steps can be represented by an interval model such that
both the right-endpoints and left-endpoints are ordered by <y . Fluschnik et al. [17] show
that the recognition of order-preserving temporal unit interval graphs can be done in linear
time, and also offer a metric to measure the distance of a temporal interval graph from
being order-preserving, which they call the “shuffle number”. It measures the maximum
pairwise disagreements in the vertex ordering of any two consecutive layers. We propose an
alternative metric to measure the distance to order preservation. Our distance is simply the
minimum number £ of vertices to be deleted in order to obtain an order-preserving temporal
interval graph, and we call it the order-preserving vertex deletion (OPVD) metric.

1.1 Our results

We present both positive and negative results regarding TEMPORAL A CLIQUE and TEM-
PORAL A INDEPENDENT SET in temporal (unit) interval graphs.

We begin with TEMPORAL A CLIQUE in Section 3, by first reviewing previously known
results that carry over from 7-track interval graphs. We then present an approximation
algorithm for the unit interval case with a factor of (2A)"2%! and an FPT algorithm for
this case with respect to the parameter 7+ k. As the problem is known from previous results
to be polynomial-time solvable for A = 7 = 2, and NP-hard for A = 7 = 3, we complement
these two results with an NP-hardness result for the case where A =2 and 7 = 11. We also
give a W[1]-hardness proof for parameter k + 7, when the intervals are not necessarily of
unit length.

We proceed to study TEMPORAL A INDEPENDENT SET in Section 4. We show that
the simple greedy algorithm achieves an approximation factor of 22 (7 — A 4 1) for the unit
interval case. We then show that previous results on 7-track interval graphs limit any further
positive results, as the problem is known to be both APX-hard and W[1]-hard even when
there are only two time steps (i.e. 7 = 2).

As both problems are already hard in quite restrictive settings, we turn to discuss order-
preserving temporal unit interval graphs in Section 5. We show that computing the OPVD
set (i.e., the set of vertices whose removal leaves an order-preserving graph) of a unit interval
temporal graph is NP-hard. We complement this result by providing an FPT algorithm
for computing an OPVD set when parameterized by the solution size. This leads to an
FPT algorithm for both TEMPORAL A INDEPENDENT SET and TEMPORAL A CLIQUE on
temporal unit interval graphs when parameterized by minimum OPVD set.
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1.2 Related Work

By now, there is already a significant body of research related to temporal graphs in gen-
eral [8, 16, 35, 41, 27], as well as graph problems cast onto the temporal setting [2, 5, 17, 29,
39, 40, 49]. There also has been previous work considering special temporal graph classes,
mostly for the temporal separator problem [17, 37].

To the best of our knowledge, the problem of TEMPORAL A INDEPENDENT SET has not
been studied previously, but our definition is highly inspired by the TEMPORAL A CLIQUE
problem [5, 29, 49]. Viard et al. [49] give an exponential-time algorithm for TEMPORAL A
CLIQUE. Himmel et al. [29] have shown that TEMPORAL A CLIQUE is in FPT when para-
meterized by the so-called A-slice degeneracy. Bentert et al. [5] generalized the result by
Himmel et al. [29] for temporal s-plexes, a generalization of temporal cliques.

The classical static problems INDEPENDENT SET and CLIQUE are clearly special cases
of TEMPORAL A INDEPENDENT SET and TEMPORAL A CLIQUE when 7 = 1. While both
are NP-complete for general undirected graphs [19, 20], both are solvable in polynomial
time on interval graphs and some of their generalizations [11, 19, 21, 30, 44]. Thus, both
TEMPORAL A INDEPENDENT SET and TEMPORAL A CLIQUE on temporal interval graphs
are polynomial time solvable when 7 = 1.

Moreover, for arbitrary values of 7, the TEMPORAL 1 INDEPENDENT SET and TEM-
PORAL 7 CLIQUE problem are special cases of INDEPENDENT SET and Clique on 7-track
interval graphs [24]. Bar-Yehuda et al. [4] presented a 27 approximation algorithm for INDE-
PENDENT SET in 7-track graphs, while Fellows et al. [14] and Jiang [31] studied this prob-
lem from the perspective of parameterized complexity. Konig [34] showed that CLIQUE is
polynomial-time solvable on 2-track interval graphs. Francis et al. [19] showed NP-hardness
on 3-track unit interval graphs. as well as APX-hardness on T-track graphs. Butman et al. [7]
presented a (72 — 7 + 1)/2-approximation for its containing graph class of 7-interval graphs.
However, they do not rule out the existence of a constant factor approximation.

The problems TEMPORAL 7 INDEPENDENT SET and TEMPORAL 1 CLIQUE are special
cases of INDEPENDENT SET and CLIQUE on intersection graphs of 7-dimensional hyper-
rectangles. Marx [38] showed that INDEPENDENT SET is NP-complete and W[1]-hard with
respect to the solution size when restricted to the intersection graphs of axis-parallel unit
squares in the plane. Chlebik and Chlebikovd [10] proved, for instance, that MAXIMUM
INDEPENDENT SET is APX-hard for intersection graphs of d-dimensional rectangles, yet on
such graphs the optimal solution can be approximated within a factor of d [1]. On inter-
section graphs of d-dimensional squares MAXIMUM INDEPENDENT SET admits a polynomial
time approzimation scheme (PTAS) for a constant d [9, 28, 33]. Rosgen et al. [45] showed
that on hyperrectangles intersection graphs, Clique has an XP algorithm with respect to the
dimension d.

2 Preliminaries

In this section, we first introduce all temporal graph notation and terminology used in this
work, including basic concepts on interval graphs and unit interval graphs. In the final part
of the section we also discuss a geometric representation of a A-association and a A-conflict
graph of a given temporal interval graph.
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2.1 Basic notation and definitions.

Let a,b € N such that a < b. We denote the set of all integers z with a < x < b by [a : b].
As a shorthand, we use [b] when a = 1. We also [a,b] C R to denote the set of real numbers
between a and b.

Let G = (V, E)) denote an undirected graph, where V' denotes the set of vertices and E C
{{v,w} | v,w € V, v # w} denotes the set of edges. For a graph G, we also write V(G)
and E(G) to denote the set of vertices and the set of edges of G, respectively. We de-
note n := |V|. Given an ordering <y over the vertices V of a graph G = (V, E) in which v;
is the i-th vertex in the ordering, we denote by Vjq. the set {v; | i € [a : b]} and by G4y
the graph induced by Vi,.;). We use the notation index., (v) for the ordinal position of v
in <y.

An undirected temporal graph G = (V,€,7) is an ordered triple consisting of a set V'
1%
2

temporal graph G = (V, £, 1), we denote by E; the set of all edges that are available at time ¢,
that is, Ey := {{v,w} | {v,w},t) € £} and by G; the t-th layer of G, that is, G; := (V, E}).
For two graphs G; and G5 over the same vertex set V', we denote by:
G1 N Gy the edge-intersection graph of Gy and Ga, formally G1 NGy := (V, Ey N Es),
G1 U G2 the edge-union graph of G; and Ga, formally G1 U Gy := (V, E1 U E»), and
G — V' the temporal graph induced by V\ V', formally G — V' := (V\V' &' 1) with £ =
{{v,u},t) |v,u e VA\V'A ({v,u},t) € E}.

of vertices, a set € C (3) x [7] of time-edges, and a maximal time label 7 € N. Given a

2.2 Geometric intersection graphs

An undirected graph is an interval graph if there exists a mapping from its vertices to
intervals on the real line so that two vertices are adjacent if and only if their intervals intersect
[22]. Such a representation is called an intersection model or an interval representation.
Formally, given an interval graph G = (V| E), an interval representation for G is a mapping
of each vertex v € V' to an interval p(v) C R such that E = {{v,u} C V| p(v) N p(u) # &}.
We denote by right,(u) and by left,(u) the real value of the right and left endpoints of
v’s associated interval on the interval representation p; the subscript p will be omitted if it
is clear from the context to which representation we refer. We let p(G) denote the entire
representation of G. If the length of all intervals in p(G) are equal, then p(G) is a unit
interval representation, and G is an unit interval graph [43].

An important generalization of (unit) interval graphs in our context is the class of ¢-
track interval graphs [24], for some integer ¢ > 1. A graph G = (V, E) is said to be a
t-track interval graph if there are 7 interval graphs G; = (V, E1),...,Gy = (V, E;) such
that £ = U?:l E;. A t-track interval graph G has a useful geometric representation as
well. Formally, a t-track interval representation for a t-track interval graph G = (V, E) is a
mapping of each vertex v € V to a set of ¢ disjoint intervals p(v) = {p1(v), ..., pe(v)} such
that {u,v} € E iff p;(u) N p;(v) # 0 for some i € {1,...,¢}. In this way, one can think of
the real line as partitioned into ¢ disjoint segments (tracks) such that the i’th interval of all
vertices are contained strictly in segment ¢. If all intervals in p(G) are of the same length,
we call G a T-track unit interval graph.

Another important generalization of (unit) interval graphs in is the class of d-dimensional
hyperrectangle graphs, for a given integer d > 1. These are no more than intersection graphs
of axis-parallel hyperrectangles in R¢. A hyperrectangle representation of a d-dimensional
hyperrectangle graph G = (V, E) is a mapping of each vertex v € V to an axis-parallel
hyperrectangle p(v) C R? such that {u,v} € E iff p(u) N p(v) # O for some i € {1,...,t}.
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It is well known that G is a d-dimensional hyperrectangle graph iff there exist d interval
graphs G1 = (V, E1),...,Gq = (V, E;) such that E = ﬂ?zl E;.

2.3 Geometric interpretation of association and conflict graphs

We next consider geometric representations of A-association and A-conflict graphs that
will prove useful throughout the paper. Let G = (V,&,7) be a temporal interval graph,
and let Fq,...,FE; be the edge sets corresponding to the 7 time-steps of G. Moreover,
let p; = p(G;)) be the interval representation of G; = (V, E;), for each i € {1,...,7}.

A-association graph: Let G = (V, E) be the A-association graph of G. Consider first the
case of A = 1. In this case we have that E = (\_; E;, and so G is formed by taking
the intersection of 7 interval graphs. Thus, G is a 7-dimensional hyperrectangle graph
by definition, and each vertex v € V can be represented by the hyperrectangle formed
by p1(v),...,pr(v). If A = 7, then E = (J]_, E;, implying that G is a 7-track interval
graph, where in p(G), each vertex v is mapped to the interval set {p1(v),...,p-(v)}.

Next consider the case of 1 < A < 7. In this case, we get a hybrid of both cases above, and
we need to consider several hyperrectangles that are associated with each vertex. Observe
that each “A-window" of G is formed by taking the union of A consecutive time-steps, and
S0 it corresponds to a A-track interval graph. Moreover, the number of A-windows in G
is T— A+ 1, and G is formed by taking the intersection of these A-windows. Thus, one
can think of each A-track interval graph as existing on a different axis, and a vertex is now
associated with a set of A7~A*! hyperrectangles, a hyperrectangle for each combination of
one of the A intervals on each of the 7 — A 4+ 1 axis (see Figure 2). The dimension of each
of these hyperrectangles is 7 — A + 1. An edge exists between two vertices in G if any two
of their (7 — A 4 1)-dimensional hyperrectangles intersect. Hence, G belongs to the class
of AT"A*1track (1 — A + 1)-dimensional hyperrectangle graphs.

» Corollary 1. The A-association graph of any temporal interval graph is a AT~ -track
(1 — A + 1)-dimensional hyperrectangle graph.

A-conflict graph: The A-conflict graph G = (V| E) of G has a useful geometric interpret-
ation as well. For the cases of A =1 and A = 7, the situation is flipped. When A =1, we
have E = [J]_, E;, and so G is 7-track interval graph. Indeed, a 7-track interval representa-
tion of G can be obtained by taking p(v) to be the set of disjoint 7 intervals p1 (v), ..., p,(v).
When A = 7, we have EF = ﬂ;l E;, and so G is 7-dimensional hyperrectangle graph, where
each vertex v can be represented by the 7-dimensional formed from p;(v), ..., pr(v).

For 1 < A < 7, we again get a hybrid of both cases above. In this case, each A-
window of G is formed by taking the intersection of A consecutive time-steps, and so it
corresponds to a A-dimensional hyperrectangle graph. Moreover, the number of A-windows
inGis7T—A+1, and G is formed by taking the union of these A-windows. In this way, G
is a (T — A + 1)-track A-dimensional hyperrectangle graph. As shown in Figure 3, an edge
exists between two vertices in G iff any two of their (7 — A 4 1)-dimensional hyperrectangles
intersect in some track.

» Corollary 2. The A-conflict graph of any temporal interval graph is a (1 — A + 1)-track
A-dimensional hyperrectangle graph.
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V2
V1

v |

. |_| I—| o p(G2U G3)

Figure 2 Geometric representation of the A-association graph from Figure 1. There exist an
edge between any v,u € V if and only if there exist a rectangle of v and a rectangle of u which

intersect, p(v) (] p(u) # @.

3 Temporal A Clique

In this section we present our results for TEMPORAL A CLIQUE on temporal interval and
unit interval graphs. Recall that TEMPORAL A CLIQUE generalizes CLIQUE, and is therefore
NP-hard on general graphs, and so there are plausible special cases of TEMPORAL A CLIQUE
on temporal interval graphs. We therefore begin by exploring tractable cases of this problem,
and then proceed to describe some hard basic cases.

3.1 Algorithms

The first tractable case of TEMPORAL A CLIQUE on temporal interval graphs is due to a
result by Konig [34] who showed that CLIQUE is polynomial time solvable on 2-track graphs.
In our terms, this result can be stated as follows:

» Proposition 3 ([34]). TEMPORAL A CLIQUE on temporal interval graphs is polynomial-
time solvable when A =71 = 2.

The second tractability result for TEMPORAL A CLIQUE on temrpoal interval graphs is
due Rosgen and Stewart [45]. They present a polynomial time algorithm for intersection
graphs of axis parallel rectangles in a fixed dimension. Since the l-association graph of a
temporal interval graph is an intersection graph of axis-parallel hyperrectangles, this result
yields the following:

» Proposition 4 ([45]). TEMPORAL A CLIQUE on temporal interval graphs with A =1 is
solvable in O(n") time.

We complement both results above by presenting a linear time algorithm for TEM-
PORAL A CLIQUE on unit interval graphs when A, 7,k = O(1). This algorithm can also be
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— p(Ga2) — p(G2)
i i
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Figure 3 The A-conflict graph from Figure 1, geometrically represented as the union of two
square intersection graphs. There exist an edge between any v,u € V if and only if there exist a
rectangle of v and a rectangle of u which intersect, p(v) (] p(u) # 2.

viewed as an FPT-time algorithm with respect to parameter 7+ k. To obtain this result, we
exploit the geometric properties of the association graphs which were discussed in Section 2.

» Theorem 5. TEMPORAL A CLIQUE on temporal unit interval graphs with is solvable
in O2Kk=2EA 0y time.

Proof. Let G be an input temporal unit interval graph for TEMPORAL A CLIQUE. As
discussed in Section 2, the A-association graph G of G can be represented as an intersection
of AT~A+1 hypercubes of dimension (7 — A + 1), and these hypercubes can be computed
in O(An) time, given the unit interval representation of G.

Clearly, if any corner of a hypercube is included in at least kK —1 hypercubes, the instance
is a yes-instance, since all these hypercubes form a clique of size at least k£ in G. Therefore, let
us assume that no corner of any hypercube intersects more than k& — 2 hypercubes. Observe
that in this case, the maximum degree of a vertex in G is (k—2)(2A)7 2% as every vertex v
is associated with a set of A7"2*! hypercubes of dimension (7 — A + 1) which has 27~4+1
corners, and every neighbor of v has an associated hypercube that contains some corner of a
hypercube associated with v. Since CLIQUE on graphs of maximum degree § can be solved
in O(2°n) time, we get the running time stated in the theorem. |

We next consider approximation algorithms for TEMPORAL A CLIQUE on temporal
interval graphs. Butman et al. [7] give an approximation algorithm for CLIQUE on t-interval
graphs, a graph class that contains t-track graphs. This result directly carries over directly
to TEMPORAL A CLIQUE.

» Proposition 6 ([7]). TEMPORAL A CLIQUE on temporal interval graphs can be approzim-
ated within a factor of (A2 — A +1)/2 whenever A = 7.

We complement the above algorithm by proving the following:

» Theorem 7. TEMPORAL A CLIQUE on temporal unit interval graphs can be approximated
within a factor of (2A)7~A+L,

Proof. Let G be a temporal unit interval graph given as input to TEMPORAL A CLIQUE.
Our algorithm exploits the the geometric representation of the A-association graph G of G.
Specifically, the algorithm iterates over all vertices, and picks for each vertex a candidate
solution by taking the largest clique formed on any corner of any hypercube associated with
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the vertex. The largest candidate solution is then returned as output. We argue that this
algorithm has an approximation ratio of (2A)7~A+1,

Consider some vertex v of G which included in a maximum clique of G, and let k
denote the size of the candidate solution of v. Recall that v is associated with a set of
AT+ hypercubes, each having 27211 corners. Since any neighbor of v has an associated
hypercube that contains some corner of a hypercube associated with v, the maximum size

T—A+1

clique of G (which by assumption includes v) has size less then k - (2A) Since our

algorithm returns a solution of size k, the approximation ratio follows. |

3.2 Hardness results

We next consider intractable cases of TEMPORAL A CLIQUE on temporal interval graphs.
Francis et al. [19] extended the hardness result of Butman et al. [7] and showed that CLIQUE
is NP-hard on 3-track unit interval graphs. In our terms, this can be stated as follows:

» Proposition 8 ([19]). TEMPORAL A CLIQUE on temporal unit interval graphs is NP-hard
even if A =1 =3.

Note that this result should be compared to Proposition 3 which states that the problem
is polynomial-time solvable when A = 7 = 2. However, the case of A = 2 and large 7
remains open by these two results. We partially close this gap by proving the following:

» Theorem 9. TEMPORAL A CLIQUE on temporal unit interval graphs is NP-hard, even
if A=2and 7T =11.

For the proof of Theorem 9, we need the following lemma.

» Lemma 10. Let G = (V, E) be such that M := (‘2/) \ E is a matching. Then G is an edge
union of 2 unit interval graphs (i.e., a 2-track unit interval graph).

Proof of Lemma 10. Let M = {{a1,01},...,{ar,b.}} and V\ UM = {c1,...,¢q}. The
representation is obtained by taking for each i € [r] the intervals I} = (i,i + n), 12 =
(i-n—1,i—1), I} = (i—n—1,i—1), I} = (i,i+n) and for each i € [g] the intervals I}, = (0, n)
and I, 3 = (0,n). Obviously all the intervals are of the same length, it remains to show that
they indeed represent G.

As r < %, the start point of the interval Il = (i,i 4+ n) as well as the endpoint of
the interval I} = (i —n — 1,7 — 1) are contained in the interval Iclj = (0,n) and, hence,
both a; and b; are connected to ¢; for every i € [r] and j € [¢]. Moreover, all ¢;’s share
the same interval (in both graphs), hence they form a clique as required. If ¢ < ¢’ then the
interval I = (i,i 4 n) intersects both the interval I;w = (i',i' + n) and the interval I} =
(¢ = n — 1,7 — 1) and, hence, a; is connected to both a; and by. Next, if i > 4, then
the interval Iy = (i’,i’ + n) intersects both the interval I} = (i,i + n) and the interval
Igi = (i—n—l,li—l) and, hence, b;s is connected to both a; and b;. It follows that {a1,...,a,}
and {b1,...,b.} are cliques in the union of the interval graphs and a; is connected to b if
i #i'. Finally, the interval I} = (i,i+n) does not intersect the interval I, = (i—n—1,i—1)
and the interval IZ, = (i —n —1,i—1) does not intersect the interval I = (i,i+n). Hence
a; and b; are not adjacent for every i € [r] as required, finishing the proof. <

Proof of Theorem 9. We reduce the problem INDEPENDENT SET IN CUBIC GRAPHS [15].
Let (G = (V,E),k), where G is a cubic graph and k is an integer, be an instance of
INDEPENDENT SET IN CUBIC GRAPHS. Graph G can be edge colored by 4 colors; let
FE = FL W Fy W F3 W Fy be a partition of the edges corresponding to such a coloring. Note
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that each F; is a matching. By Lemma 10, graph (V, (‘2/) \ F};) can be represented as an edge
union of 2 unit interval graphs. Let us denote these 2 graphs as (V, E3;_2) and (V, E3;_1).
Let By; = (%) for every i € [3)].

We claim that ((V, Ey,...,E11),k,2) is a yes-instance of TEMPORAL A CLIQUE if and
only if (G,k) is a yes-instance of INDEPENDENT SET IN CUBIC GRAPHS. For the “if”
direction, let S be an independent set of size k in G. Let ¢t € [10], we should show that S
forms a clique in (V,Ey U Egyq). This is clear if {¢,t + 1} N {3,6,9} # 0. Thus, let us
assume that ¢ = 3¢ — 2 for some ¢ € [4]. Since S is independent in G = (V| E), it is a clique
in (V, (‘2/) \ E) and, as F; C E, also in (V, (‘2/) \ F;) which equals (V, F5;_o U Fs5;_1) by the
construction.

For the “only if” part assume that .S is a clique of size k in (V, E:UE} 1) for every t € [10].
We claim that S is an independent set in (G. Suppose not and let e € E have both endpoints
in S. Then there is an ¢ € [4] such that e € F;. But then the edge e is not contained
in (V, E3;_oUFEs3;_1) contradicting that S is a clique in this graph. This concludes our proof,
and so the theorem holds. <

We continue to the special case of TEMPORAL A CLIQUE on temporal interval graphs
when A = 1. In this case our association graph is an intersection graph of 7-dimensional
hyperrectangles. As any graph can be represented with a hyperrectangles intersection model
provided its dimensionality is high enough, TEMPORAL 1 CLIQUE is NP-hard on temporal
interval graphs for sufficiently large 7. In the following we show that the problem is W[1]-hard
when parameterized by 7 + k. This complements nicely both Proposition 4 and Theorem 5,
as it shows that one most likely cannot remove 7 from the exponent in the running time of
Proposition 4, nor the unit restriction from Theorem 5.

» Theorem 11. TEMPORAL A CLIQUE on temporal interval graphs is NP-hard and W[1]-
hard with respect to T + k, even if A = 1.

Proof. We provide a parameterized reduction from the MULTICOLORED CLIQUE problem [14].

Let (G, k,c), where G = (V, E) is a graph, k is a positive integer and ¢ : V' — [k] is a (not
necessarily proper) coloring of the vertices, be an instance of MULTICOLORED CLIQUE. We
assume without loss of generality, that there are no edges between vertices of the same color.
For1 <i<j<kletE ={{uv} € E|c(u) =iVel) =i}and E; = E\E;. We
construct the temporal graph G' = (V/, EY,... E}) as follows. First, we let V' = E. Then,
for every i € [k], we start by letting E] = {{e, f} | e € E;,f € E}. Then for every v € V
we add to E7 ) the edges {{e, f} | e, f € E,en f = {v}}.

We claim that each (V’, EY) is an interval graph. Indeed, let the vertices of color i € [k]
be numbered {v € V | ¢(v) =i} = {v},... v} }. Then the graph (V’, E}) can be represented
by assigning to each e € E; the interval (1,2r;) and to each e € E; assigning the inter-
val (2¢ — 1,2q), where vé € e. Note that this is well defined, since each edge in E; contains
exactly one vertex with color i.

We claim that (' = (V',Ef,... E}), (5),1) is a yes-instance of TEMPORAL A CLIQUE
if and only if (G, k,¢) is a yes-instance of MULTICOLORED CLIQUE. For the “if” direction
let S = {v1,...,v;} be a multicolored clique in G such that c(v;) = ¢ for every i € [k]. The
set C = {{v;,v;} |1 <i<j <k} CV’ hassize (’2“) Therefore we only have to show that
it forms a clique in every (V', EY), i € [k]. Let i € [k]. The edges in C' N E; are adjacent to
all other edges by construction, while edges in C'\ E;” = C' N E; are adjacent to each other
since they all contain the vertex v;, finishing this implication.

For the “only if” direction let us assume that there is a set C' of size (’;) which is a clique
in every (V', El), i € [k]. For every i € [k], since the edges in CN E; form a clique, every two
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edges in C'N E; must share a vertex of color i. Since each edge contains at most one vertex
of color i, there is at most one vertex of color i contained in the edges of C. As |C| = (’;),
and there are k colors, it follows that there is exactly one vertex of each color contained in
the edges of C' and every two such vertices are connected by an edge in G. This concludes
our proof, and so the theorem holds. |

Note that Theorem 11 is equivalent to the statement that CLIQUE is W[1]-hard when
parameterized by the solution size and the boxicity of the input graph; that is, the minimum
dimension of boxes which can be used for an intersection representation of a graph.

4 Temporal A Independent Set

In this section we consider the TEMPORAL A INDEPENDENT SET problem restricted to
temporal interval graphs. We begin by presenting an approximate algorithm akin to the
one presented in Section 3. We then we proceed to discuss some intractable cases for the
problem.

4.1 Approximation Algorithms

The first approximation algorithm we mention is due to Erlbach et al. [13] who considered the
INDEPENDENT SET problem on intersection graphs of “disk-like" objects. For TEMPORAL A
INDEPENDENT SET, this result can be stated as follows:

» Proposition 12 ([13]). TEMPORAL A INDEPENDENT SET on temporal unit interval graphs
a PTAS whenever 7 = A = O(1).

We next show that the simple greedy algorithm for INDEPENDENT SET also performs
relatively well when both 7 and A are small (but not necessarily equal). The following
lemma helps in showing this.

» Lemma 13. Let G be the conflict graph of TEMPORAL A INDEPENDENT SET on temporal
unit interval graphs. For each vertex v of G it holds that any independent set in the graph
induced by v and its neighbors is of size at most 2°(1 — A + 1).

Proof. Consider the 7—A+1-track A-dimensional hypercube family representation of G (see
Figure 4). Each vertex v in G is represented by 7 — A 4+ 1 hypercubes, each of dimension A.
Altogether, all these hypercubes corresponding to v have a total of 22 (7—A+1) corners. Any
neighbor of v is represented by some 7 — A + 1 hypercubes, one of which must include some
corner of a hypercube of v. Moreover, no two independent (i.e. non-adjacent) neighbors of
v can include the same corner. The lemma thus follows. <
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Figure 4 A set of 7 axis parallel A-hypercubes cannot be intersected by more than 227 disjoint
axis parallel A hypercubes.

» Theorem 14. TEMPORAL A INDEPENDENT SET on temporal unit interval graphs can be
approzimated within a factor of (T — A +1) - 2% in linear time .

Proof. Let G be the input temporal unit interval graph of TEMPORAL A INDEPENDENT
SET, and let G be the A-conflict graph of G. Our algorithm is simply the greedy algorithm
the picks an arbitrary vertex of G into the solution, and then removes all its neighbors from
the graph. Clearly, the solution returned by this algorithm is an independent set. Moreover,
in each step we add one vertex to our solution while removing at most (1 — A + 1) - 24
vertices of the optimal solution, according to Lemma 13. The theorem thus follows. |

4.2 Hardness results

We next describe some intractable cases for TEMPORAL A INDEPENDENT SET on temporal
unit interval graphs. We begin with the case that A = 1. Here the conflict graph is simply
the union of all layers of G. Thus, as mentioned in Section 1, the class of all possible 1-
conflict graphs is precisely the class of 7-track unit interval graphs. We therefore directly
get the following hardness result from the known hardness results for INDEPENDENT SET in
2-track unit interval graphs [4, 14, 31].

» Proposition 15 ([4, 14, 31]). TEMPORAL A INDEPENDENT SET on temporal unit interval
graphs is NP-hard, APX-hard, and W[1]-hard with respect to the solution size k for T > 2
and A =1.

Next we consider the case where A = 7, by which the class of all A-conflict graphs is a
subset of the class of 7-dimensional axis-parallel hypercube (intersection) graphs. Marx [38]
showed that INDEPENDENT SET is W[1]-hard for dimension 2 when parameterized by the
solution size k. For our setting, this result can be stated as follows.

» Proposition 16 ([38]). TEMPORAL A INDEPENDENT SET on temporal unit interval graphs
is NP-hard and WI[1]-hard with respect to the solution size k for 7 = A > 2.

Note however, that the problem admits a PTAS in this case, see Proposition 12.

5 Order-Preserving Temporal Interval Graphs

In this section, we investigate the computational complexity of TEMPORAL A CLIQUE and
TEMPORAL A INDEPENDENT SET on so-called order-preserving temporal interval graphs [17].
In Section 5.1, we show that both problems can be solved in linear-time on order-preserving
temporal graphs. In Section 5.2, we show how to solve our problems on non-order-preserving
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temporal interval graphs via a “distance-to-triviality” parameterization [23]. To this end, we
also give an FPT algorithm to compute a minimum vertex deletion set to order preservation
with the set size as a parameter. Finally in Section 5.3, we show that computing a minimum
vertex deletion set to order preservation is NP-hard.

5.1 Linear-Time Algorithms assuming Order Preservation

We say an interval graph agrees on or is compatible with a total order if has an interval
intersection model where the right endpoints of the intervals agree with the total order.
Formally, an interval graph G agrees on <y if there exists an interval representation p for G
such that for every two vertices Vv,u € V whose ranking fulfills v <y w, it holds that
right,(v) < right,(u). We call such ordering right-endpoints (RE) orderings. Clearly, any
right-endpoints ordering is also a left-endpoints ordering of the mirrored intersection model.

» Definition 17. A temporal interval graph is order-preserving if all of its layers agree on
a single RE ordering.

Order-preserving temporal unit interval graphs can be recognized in linear time and a cor-
responding vertex ordering can be computed in linear time as well [17]. The computational
complexity of recognizing order-preserving temporal interval graphs remains open.

In the following, we show that RE orderings are preserved under both intersection and
union of interval graphs. This means that the conflict graph of an RE order-preserving tem-
poral graph is an interval graph that as well agrees on the RE ordering. We demonstrate this
claim for interval graphs in Lemmas 18 and 19. We start with showing that the intersection
of two interval graphs that agree on an RE ordering is again an interval graph that agrees
on the ordering.

» Lemma 18. Let G and G be interval graphs that agree on the total ordering <y .
Then G1 N Gs is an interval graph that agrees on <y .

Proof. Given two interval graphs which agree on an RE ordering, we can normalize their
representations such that for each vertex, the right endpoints in both representations are
the same. To compute an intersection model for their intersection graph, we can map each
vertex to the intersection of their intervals in both representations. We then show that this
mapping is an interval representation of the edge intersection graph.

Let V be a vertex set of size n and let <y be a total ordering on V such that for
all 4,5 € [n] it holds j < i © v;<y v;. Since both G; and G2 agree on <y, we can
normalize their interval representations so that the right endpoint of the interval associated
with each vertex lies on a natural number between 1 and n according to its ordinal position
in <y, formally index.,, (v;) = i. Alternatively, we can say that for an interval graph G
an interval representation p; exists such that each v € V' is mapped to an interval of the
form p;(v) = [ay,index<, (v)] with a, € R. In this normalized representation, the left
endpoint of the interval lies on the real line between two natural numbers and is by definition
smaller than the right endpoint, that is, a, < index,, (v).

Let p be a mapping from the vertex set V' to a set of points on R such that it holds p(v) = p1(v) N p2(v).

To show that p is an interval representation of G; NGy we first show that p(v) is a continuous
interval for any v € V, and that for any two vertices v,u € V it holds that p(v) N p(u) #
@ < p1(v) N p1(u) # DA pa(v) N pa(u) # 2.

By definition p;(v) and pa(v) are both intervals on the real line, they are therefore convex
sets. As the mapping p(v) is an intersection of two convex sets, it must as well be a convex
set and therefore it is interval on the real line.
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Let v; <y v;, we show that provided p(v;) N p(v;) # @ then both pi(v;) N p1(v;) # @
and pa(v;) N pa(v;) # @ must hold. As the interval representations p; and py are both
normalized, it immediately follows that right, (v;) = right,, (v;) = i. Since both are closed
intervals we know that either p;(v) C pa(v) or pa(v) C p1(v). Without loss of generality,
let pi(v) C pa(v); it follows that p(v) = p1(v). This means that if ps(v;) N p2(v;) = @,
then also pi(v;) N p1(v;) = @ and therefore p(v;) N p(v;) = @. Regardless, it must hold
that j € p1(v;) Np2(v;) as both interval representations of v; have j as the right endpoint; it
follows that j € p(v;). This shows that if j € p(v;) then j € p1(v;) and j € pa(v;). Therefore,
for any v; <y v, if p(vs) N plv;) # B, then both pu (v;) 1 pa (vy) # @ and pa(v) N pa(v;) # 2.

Suppose that p(v;) N p(v;) = @, but both p1(v;) N p1(v;) # @ or pa(vi) N pa(v;) # D.
This contradicts that v; <y v; because if p1(v;) contains any point a € pq(v;) with a < j,
then it must contain also j because p1(v;) is convex.

We have therefore an interval representation p which represents the graph G; N Go
because p(v) N p(u) & {v,u} € E1 A {v,u} € Es for any v,u € V. Notice that G; N Ga
agrees on <y because right ,(v;) = i. <

Next, we show that the union of two interval graphs agreeing on an RE ordering yields
an interval graph that also agrees on the ordering.

» Lemma 19. Let Gy and Gy be interval graphs that agree on the total ordering <y . The
union G = G1 U Gy is an interval graph that agrees on <y .

Proof. The main concept of the proof is analogous to the one for Lemma 18. Given two
interval graphs which agree on an RE ordering, we can normalize their representations
such that for each vertex, the right endpoints in both representations are the same. To
compute an intersection model for their union graph, we can map each vertex to the union
of their intervals in both representations. We then show that this mapping is an interval
representation of the edge-union graph.

Let p be a mapping from the vertex set V' to a set of points on R such that it holds p(v) = p1(v) U p2(v).
To show that p is an interval representation of G; U Gy we first show that p(v) is a con-
tinuous interval for any v € V, and that for any two vertices v,u € V it holds that
p(v) N p(u) # @ < p1(v) N p1(u) # SV p2(v) N p2(u) # .

By definition p;(v) and pa(v) are both closed and normalized intervals on the real line
such that right, (v;) = right, (v;) =i. As we observed in Lemma 18, since both intervals
have the same right endpoint it holds that either p;(v) C pa(v) or p2(v) C p1(v). Without
loss of generality, assume that pa(v) C p1(v), it follows that p(v) = p1(v) = p1(v) U pa(v).

Suppose that p(v;) N p(v;) # &, but both pi(v;) N p1(v;) = @ or pa(v;) N p2(v;) = 2.
This contradicts that v; <y v; because if p(v;) contains any point a € p(v;) with a < j,
then it must contain also j because p(v;) is convex. If j € p(v;) then trivially j € p1(v;).

If p(v;) N p(vj) = @ but either pi(v;) N p1(v;) # @ or pa(v;) N p2(v;) # @, then it
contradicts the fact that either pq(v;) C pa(v;) = p(v;) or that pa(v;) C p1(v;) = p(vi).

We have therefore an interval representation p which represents the graph G; U Go
because p(v) N p(u) & {v,u} € By V {v,u} € Ey for any v,u € V. Notice that G; U G
agrees on <y because right ,(v;) = i. <

Using both Lemmas 18 and 19 we arrive at the following corollary.

» Corollary 20. Let G be an order-preserving temporal interval graph, and let A > 1 be some
integer. Then both the A-association and the A-conflict graph of G are interval graphs.

Since both CLIQUE and INDEPENDENT SET can be solved in linear time on interval graphs [21,
44], we get the main result of this subsection.
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(a) Graph representations of the two (b) Two intersection models of G1 — {vs4} and
interval graphs G2 — {v4} which are compatible with <y~

Figure 5 Two interval graphs, G7 (thick) and G2 (thin), that do not have a common RE
ordering. The vertex subset {v4} is an OPVD set of the temporal graph G = [G1, G2] as both G1 —
{va} and G2 — {va} agree on <y/= [v3,v2,v1,V5,v6]. Two compatible interval representations are
illustrated in (b).

» Theorem 21. TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT SET on order-
preserving temporal interval graphs are both solvable in linear time.

5.2 FPT-Algorithms for Vertex Deletion to Order Preservation

Now we generalize Theorem 21 and show how to solve TEMPORAL A CLIQUE and TEM-
PORAL A INDEPENDENT SET on almost order-preserving temporal unit interval graphs, that
is, graphs that most of their vertices agree on a common ordering. To this end, we define a
distance of a temporal graph to order preservation. This distance is measured by the size of
the minimum vertex set that obstructs the compatibility of a total RE order of a temporal
interval graph. We define it as follows and give an illustration in Figure 5.

» Definition 22 (OPVD). Let G = (V,&,7) be a temporal interval graph. A vertex deletion
set for order preservation (OPVD) is a set of vertices V' C 'V such that G — V' is order-
PTESErving.

The size of the minimum OPVD set measures how many vertices obstruct a total RE
order for a temporal interval graph. We denote the cardinality of the minimum OPVD
by ¢. A brute-force algorithm checks every subset of the vertex set to find a solution to
TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT SET. Given an f-sized OPVD set
we can brute-force the power set of the OPVD (which has size 2¢) and then check against
the rest of the order-preserving graph in polynomial time.

» Theorem 23. TEMPORAL A CLIQUE can be decided in 2¢-n®® time when given a size-£
OPVD set of the input temporal graph.

Proof. The idea is as follows. Given an order-preserving vertex deletion set S of size /,

we brute-force its power set. Let G, be the association graph of G —S. The graph Gg,

is, by definition, an interval graph. For each subset X of S we compute in polynomial

time Gx as ( ) Ne(v)\{u | Jw € X , {u,w} ¢ E})\ S. In other words, Gx is the
veX

neighborhood intersection of all vertices in X and contains only vertices that are adjacent
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to all vertices in X and none of the vertices of S, that makes it an interval graph. We then

find the maximum clique C' on Gx, we do that in linear time since it is an interval graph.

If | X |JC| > k then we have a yes-instance, Otherwise it is a no-instance. <

We next show that the same approach works as well for TEMPORAL A INDEPENDENT
SET on almost order-preserving temporal interval graph.

» Theorem 24. TEMPORAL A INDEPENDENT SET can be decided in 2¢ - n®®) time when
given a size-{ OPVD set of the input temporal graph.

Proof. The idea is as follows. Given an order-preserving vertex deletion set S of size £, we
brute-force its power set. Let G, be the conflict graph of G —S. The graph G, is, by
definition, an interval graph. For each subset X of S we compute Gx as Gop — Ng,, (X),
the neighbors of X from the conflict interval graph. As Gx is an interval graph, we can
compute a maximum independent set V' of Gx in linear time, then check in quadratic time
whether X UV’ is an independent set of size k in the conflict graph of G. If X UV’ is an
independent set of size at least k, then we have a yes-instance.

Any independent set of size k must clearly be divisible into two subsets, a subset of X C §
(that includes the trivial subset) and a subset of V' \ S. Any independent set on G must
be also an independent set on the subgraph induced by V \ S. If we exhaust all of the
subsets of S and do not find an independent set of size at least k — | X| on G — (SUNg,, [X])
for X C S, then we can conclude that such set does not exist. In such case the instance is a
no-instance. The power set of S is of size 2¢, which means it takes 2¢-n°™) time to exhaust
all subsets of S. <

Since the FPT algorithm for TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT
SET parameterized by the minimum OPVD ¢ behind Theorem 24 and Theorem 23 requires
access to an f-sized OPVD set, we present an FPT-algorithm to compute a minimum OPVD
for a given temporal unit interval graph. We do this by providing a reduction to the so-called
CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS problem, for which efficient
algorithms are known [12, 42].

Before we describe the reduction, we give an alternative characterization of order-preserving

temporal unit interval graphs. We will use this characterization in our FPT-algorithm to
compute a minimum OPVD. As we show in the next lemma, a temporal unit interval graph G
is order-preserving if and only if its vertices vs. maximal cliques matrix has the so-called
consecutive ones property’ (C1P). Note that it is known that the vertices vs. neighborhoods
matrix also has the consecutive ones property in this case [17].

» Lemma 25. A temporal unit interval graph is order-preserving if and only if its vertices
vs. maximal cliques matrix has the consecutive ones property.

Proof. Testing for the consecutive ones property for a matrix can be done in linear time [46].
To test a temporal unit interval graph for order preservation we compute its vertices vs.

maximal cliques matrix and test it for the consecutive ones property. We say that G’s set
of maximal cliques C is the union of sets of maximal cliques of each layer of G. The vertices
vs. maximal cliques matrix M is a binary matrix in which M;; = 1 if and only if the
vertex v; € V is a member of C; € C. It is left to show that a temporal unit interval graph G

1A 0-1-matrix has the consecutive ones property if there exists a permutation of the columns such that
in each row all ones appear consecutively.
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is order-preserving if and only if its vertices vs. maximal cliques matrix has the consecutive
ones property.

(=) If G is order-preserving, then there exists an ordering <y such that every layer
has an interval representation p in which the right endpoints of all intervals agree on <y .
Let M’s columns be ordered by <y . If M is not in its petrie form 2, then it must mean
that there exists a clique C' in C whose members are not consecutive in <y. In other
words, there exist u,v,w € V such that v <y w <y v, for which u,v € C and w ¢ C.
Since u and v are adjacent and u <y v, we know that left(v) < right(u). We know also
that the length of p(v) is exactly 1. This definitely means that v and w intersect because
right(w) € [right(u), right(v)]. However since w ¢ C', w and u cannot be adjacent. This is a
contradiction since right(v) —right(u) < 1 and right(w)—left(w) = 1. If G is order-preserving,
then M must have the consecutive ones property.

(<) If M has the consecutive ones property, then there exists an ordering <y so
that the vertices vs. maximal cliques matrix M; of every layer G; € G is in its pet-
rie form, when its columns are permuted according to <y. Let J;(v) be the union of
all maximal cliques in layer G; which contain v. We know that for every v € V the
vertices of Ji(v) are consecutive in <y [6]. Let index(v) be the index of v in <y and
let pg, (v) = [min{index(u) | v € J;(v)} — 1 + index(v) - €, index(v)], for some 0 < € < 1/|V].
First, note that no two intervals are contained in each other. This means that there is an
equivalent interval representation where all intervals have unit length [43].

By showing {u,v} € E; & pi(v) N pr(u) # & we effectively show that pg, is an interval
representation of G;. If {u,v} € Ey, then there must exist a maximal clique C so that u,v €
C and thus u € Jy(v) and v € Jy(u). Assume u <y v, then left,;, (v) < right,, (u) and
by that pg,(u) N pg,(v) # @. If {u,v} ¢ E; then there is no clique C so that u,v € C.
Assume that u <y v, then pg, (u) N pg,(v) # @ if and only if left,, (v) < right,, (u). This
cannot be because left, (v) is exactly the right endpoint of v’s lowest neighbors in <y. If
rightpct (u) is right of v’s lowest neighbor’s right endpoint, then the vertices of J;(v) are not
consecutive in <y . This contradicts the fact that M has the consecutive ones property. <«

Since there is a bijection between the columns of the vertices vs. maximal cliques mat-
rix M of G and G’s vertices, we can use M as input for the CONSECUTIVE ONES SUBMATRIX
BY COLUMN DELETIONS problem and apply existing algorithms for that problem [12, 42]
to obtain a vertex-maximal temporal subgraph of G that is order-preserving. This allows us
to obtain the following result.

» Theorem 26. A minimum OPVD for a given temporal unit interval graph can be computed
in 10'n°M) time, where ¢ is the size of a minimum OPVD.

Proof. In Lemma 25 we have shown that a temporal unit interval graph is order-preserving
if and only if its vertices vs. maximal cliques matrix has the consecutive ones property.
We provide a reduction to the CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS
problem. Formally, in CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS we are
given a binary matrix M € {0,1}"*™ and are asked whether there exists a submatrix M’
with the consecutive ones property, such that M’ is obtained with not more than ¢ column
deletions from M. CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS is known
to be FPT with respect to the column deletion set size and it can be decided in 10/n©™)
time [12, 42].

2 A 0-1-matrix is in its petrie form (if it has one) if the columns are permuted in a way such that the
ones appear consecutively in all rows.
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Let G = (V,€) be a temporal unit interval graph with C as maximal cliques set. Let M
be the vertices vs. maximal cliques matrix of G. If M does not have the consecutive ones
property, then we can find a set of ¢ columns in 10‘n®™) time so that when deleted from M,
the resulting matrix M’ has the consecutive ones property. The columns of M are mapped
to vertices of V', the image of the deleted columns V’ is the OPVD set. We can find in linear
time an ordering <{, of M’ columns such that M’ is in its petrie form. All layers of the
graph G — V'’ agree on <j,. <

This provides us with an efficient algorithm for both TEMPORAL A INDEPENDENT SET
and TEMPORAL A CLIQUE on “almost” ordered temporal unit interval graph. Namely, find
in 10‘n°M time a minimum OPVD set in the input temporal unit interval graph using
Theorem 26, then decide in 2n°™) time if we have a yes-instance of TEMPORAL A CLIQUE
or TEMPORAL A INDEPENDENT SET using Theorem 23 or Theorem 24 respectively. Overall,
we arrive at the following result.

» Corollary 27. TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT SET can both
be decided in 10° - n®N) time if the input temporal graph is a temporal unit interval graph,
where £ is the size of a minimum OPVD of the input temporal graph.

5.3 NP-Hardness of Vertex Deletion to Order Preservation

Finally, we show that computing a minimum OPVD for a given temporal unit interval graph
is NP-hard. This complements Theorem 26 as it implies that we presumably cannot improve
Theorem 26 to a polynomial-time algorithm.

» Theorem 28. Computing a minimum OPVD for a given temporal unit interval graph is
NP-hard.

Proof. To show NP-hardness, we present a polynomial time many-one reduction from the
NP-complete CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS problem [25] to
the problem of computing an OPVD of size at most ¢ for a given temporal unit interval
graph. Note that this implies NP-hardness of the optimization problem of finding a minimum
OPVD.

Formally, in CONSECUTIVE ONES SUBMATRIX BY COLUMN DELETIONS we are given a
binary matrix M € {0,1}™*" and are asked whether there exists a submatrix M’ with the
consecutive ones property, such that M’ is obtained with not more than ¢ column deletions
from M. Note that we can assume w.l.o.g. that there are at least two ones in each row of
M, otherwise we can delete the row since its ones are consecutive for all permutations of
the columns.

Our reduction works as follows. Given a binary matrix M € {0,1}™*™ with m rows
and n columns, we create a temporal graph G with n vertices V = {1,...,n}, one for each
column, and m layers, one for each row. In each layer G; for 1 < t < m, we add an edge
between vertices 7 and j if M; ; = 1 and M; ; = 1. This finished the construction of G, which
can clearly be done in polynomial time.

Next, we argue that G is a temporal unit interval graph. To this end, note that every
layer G, of G is a single clique (consisting of vertices ¢ with M, ; = 1) and some isolated ver-
tices (the vertices ¢ with M, ; = 0). Hence, we can clearly find a unit interval representation
for every layer G, of G.

To prove the correctness of the reduction, we first observe that M is the vertices vs.
maximal cliques matrix of G: there is exactly one non-trivial maximal clique in each layer
G containing the vertices ¢ with M, ; = 1. We show ¢ columns can be deleted from M such
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that the remaining matrix M’ has the consecutive ones property if and only if G admits an
OPVD of size ¢.

(=) Assume there are ¢ columns that can be deleted from M such that the remaining
matrix M’ has the consecutive ones property. Then M’ corresponds to vertices vs. maximal
cliques matrix of G’ which is obtained from G by removing the ¢ vertices corresponding to
the deleted columns of M. By Lemma 25 we have that G’ is an order-preserving temporal
unit interval graph. It follows that the removed vertices form an OPVD of size ¢ for G.

(<) Assume G admits an OPVD X of size £. Then let M’ be the matrix obtained
from M by deleting the £ columns corresponding to the vertices in X. Now we have that M’
is the vertices vs. maximal cliques matrix of G — X, which is an order-preserving temporal
unit interval graph. By Lemma 25 we have that M’ has the consecutive ones property
and hence that (M, ) is a yes-instance of CONSECUTIVE ONES SUBMATRIX BY COLUMN
DELETIONS. |

6 Conclusion

We study naturally motivated temporal versions of the classic CLIQUE and INDEPENDENT
SET problems, which are called TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT
SET, respectively. We introduce the latter whereas the former has been investigated before [5,
29, 49]. We focused mostly on the case where all layers of the input temporal graph are
unit interval graphs. For these, we presented a number of algorithms, both approximate
and exact, and hardness results that attempt at given a broad picture of the computational
complexity of both problems.

As even the most basic cases are hard for these problems, we focused also on the case
where the temporal interval graphs are order preserving. We present linear-time algorithms
for both TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT SET for this special
case, and generalized these algorithms to FPT-algorithms for the vertex deletion distance
to order preservation parameter. This generalization heavily relies on our result that order
preservation is retained under edge-union and edge-intersection, which is of independent
interest since it may also be useful in the context of related problem such as TEMPORAL
VERTEX COVER [2] or TEMPORAL COLORING [40].

An immediate future work direction is to generalize our results for temporal (non-unit)
interval graphs. For most of our results it remains open whether they generalize. We believe
that our approximation algorithm does not easily adapt. In fact even for two layers it
is unclear how to approximate MAXIMUM TEMPORAL A INDEPENDENT SET. Our FPT-
algorithm for TEMPORAL A CLIQUE and TEMPORAL A INDEPENDENT SET parameterized
by the vertex deletion distance to order preservation generalizes to the non-unit interval case
assuming the deletion set is part of the input. We leave for future research how to efficiently
compute a minimum vertex deletion set to order preservation for temporal non-unit interval
graphs.
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