
Matroid-Constrained Vertex Cover

Chien-Chung Huang
CNRS, DI ENS, École normale supérieure, Université PSL, France

François Sellier
Université Paris Cité, CNRS, IRIF, Paris, France

Mines Paris, Université PSL, Paris, France

Abstract

In this paper, we introduce the problem of Matroid-Constrained Vertex Cover : given a graph
with weights on the edges and a matroid imposed on the vertices, our problem is to choose a
subset of vertices that is independent in the matroid, with the objective of maximizing the total
weight of covered edges. This problem is a generalization of the much studied max k-vertex
cover problem, in which the matroid is the simple uniform matroid, and it is also a special case
of the problem of maximizing a monotone submodular function under a matroid constraint.

In the first part of this work, we give a Fixed-Parameter Tractable Approximation Scheme
(FPT-AS) when the given matroid is a partition matroid, a laminar matroid, or a transversal
matroid. Precisely, if k is the rank of the matroid, we obtain (1 − ε) approximation using(
1
ε

)O(k)
nO(1) time for partition and laminar matroids and using

(
1
ε
+ k

)O(k)
nO(1) time for

transversal matroids. This extends a result of Manurangsi for uniform matroids [34]. We
also show that these ideas can be applied in the context of (single-pass) streaming algorithms.
Besides, our FPT-AS introduces a new technique based on matroid union, which may be of
independent interest in extremal combinatorics.

In the second part, we consider general matroids. We propose a simple local search algorithm
that guarantees 2

3
≈ 0.66 approximation. For the more general problem where two matroids are

imposed on the vertices and a feasible solution must be a common independent set, we show
that a local search algorithm gives a 2

3
·
(
1− 1

p+1

)
approximation in nO(p) time, for any integer

p. We also provide some evidence to show that with the constraint of one or two matroids, the
approximation ratio of 2/3 is likely the best possible, using the currently known techniques of
local search.

Keywords Vertex cover, matroid, kernel, local search

Acknowledgements This work was funded by the grants ANR-19-CE48-0016 and ANR-18-CE40-
0025-01 from the French National Research Agency (ANR).

Related version The first part of the present work has been presented at SWAT 2022 [27].

1 Introduction
The Matroid-Constrained Vertex Cover Problem Let G = (V,E) be a graph. A weight
w(e) is associated with each edge e ∈ E. By convention, we set n = |V | and m = |E|. For
a vertex v ∈ V we define δ(v) the set of edges that are incident to v. The degree of a vertex
v ∈ V , denoted deg(v), is the size of δ(v), and we define the weighted degree of a vertex v ∈ V
as the sum degw(v) =

∑
e∈δ(v) w(e). For two sets of vertices S, T ⊆ V in a graph G, we denote

1

ar
X

iv
:2

30
6.

04
34

2v
1

 [
cs

.D
S]

 7
 J

un
 2

02
3

EG(S, T) =
∑

e∈E,e∩S ̸=∅,e∩T ̸=∅ w(e) the sum of the weights of the edges that have at least one
endpoint in S and at least one endpoint in T . Then EG(S, S), abbreviated EG(S), denotes the sum
of the weights of the edges that are covered by S (i.e. having at least one of its endpoints in S).

Let M = (V, I) be a matroid on the ground set V . Recall that M = (V, I) is a matroid
if the following three conditions hold: (1) ∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if
X,Y ∈ I, |Y | > |X|, there exists an element e ∈ Y \X so that X ∪ {e} ∈ I. The sets in I are
the independent sets and the rank k of the matroid M is defined as maxX∈I |X|. For more details
about matroids, we refer the reader to [41]. In this paper, given a set S ⊆ V and v ∈ V , we will
denote S ∪ {v} by S + v and S\{v} by S − v for conciseness.

The problem that we consider in this paper is to choose an independent set of vertices S ∈ I,
with the objective of maximizing EG(S), namely, the total weight of the edges covered by S.

Let us put our problem in a larger picture. When the given matroidM is a uniform matroid (see
below for a formal definition), our problem reduces to the max k-vertex-cover problem, where
we want to choose k arbitrary vertices so as to maximize the total weight of covered edges. This is a
classical problem with a long history: the greedy heuristic is known to give 1−1/e approximation as
shown by Hochbaum and Pathria [26]. Ageev and Sviridenko [1] propose an LP-based approach and
the technique of pipage rounding to obtain 3/4 approximation. Using SDP, Feige and Langberg [15]
improve this ratio to 3/4 + δ for some small constant δ > 0. The current best approximation ratio
is 0.92, achieved by Manurangsi [34]. For some special cases of the problem, different ratios are also
obtained, e.g., see [4, 24, 25]. On the hardness side, to our knowledge, the best inapproximability
ratio is due to Austrin and Stankovic [2], which is 0.929.

The max k-vertex-cover has also been studied through the lens of fixed-parameterized-
tractability. Guo et al. [22] show the problem to be W [1]-hard with k as parameter, thus showing
the unlikelihood of getting an exact solution in FPT time. Nonetheless, Marx [36] shows that it
is possible to get a near-optimal solution in FPT time. Precisely, he gives an FPT approximation
scheme (FPT-AS), that delivers a (1 − ε)-approximate solution in (k/ε)O(k3/ε)nO(1) time. This
running time is later improved by Gupta et al. [23] and Manurangsi [34].

Here we recall the definition of an FPT-AS [36]:

Definition 1. Given a parameter function κ associating a natural number to each instance x ∈ I
of a given problem, a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) is an algorithm
that can provide a (1− ε) approximation in f(ε, κ(x)) · |x|O(1) time.

In our case, the instances are made of a graph and a matroid, and the parameter of an instance
is the rank k of its matroid.

Regarding the more general case of an arbitrary matroid of rank k, one can obtain 3/4 ap-
proximation in polynomial time by combining known techniques.1 This is also a special case of
maximizing a submodular function (more precisely, a coverage function) under matroid constraint,
for which a 1− 1/e approximation can be achieved in polynomial time [7, 20]. In this work, we try
to do better than this ratio for some special cases of matroids, in the context of fixed-parameter
algorithms. We also show that the ideas developed here can be applied in the streaming setting [39].
In streaming, maximizing a submodular function under a general matroid constraint has received
much attention recently [9, 11, 16]. Then we also show how local search can be used to obtain simple
algorithms for this problem and what are the limitations of local search algorithms.

1Ageev and Sviridenko [1] show that, for the case of a uniform matroid, the optimal fractional solution x∗ of the
LP has at least 3/4 of the optimal value. They then use the pipage rounding to transform it into an integral solution
with value no less than x∗. The same LP approach can be generalized for arbitrary matroids. The optimal fractional
solution can be obtained by the Ellipsoid algorithm: even though the linear program to describe the independent sets
of an arbitrary matroid may use exponentially many constraints, we can design a separation oracle using an algorithm
of Cunningham [13]. What remains is just the pipage rounding with a general matroid—this is already known to be
do-able by Calinescu et al. [8]. We thank Pasin Manurangsi for communicating to us this method.

2

FPT-AS for Special Cases of Matroids Let us recall some definitions. A uniform matroid of
rank k is a matroid where the independent sets are the sets S of cardinality at most k. A partition
matroid is a matroid where we are given a partition V1, . . . , Vr of the ground set V and bounds
k1, . . . , kr such that a set S is independent if for all 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki. A laminar matroid is
given as a laminar family V1, . . . Vr of V , i.e. given Vi ̸= Vj , then either Vi ∩ Vj = ∅, or Vi ⊂ Vj , or
Vj ⊂ Vi, along with bounds k1, . . . , kr; a set S ⊆ V is independent if for all 1 ≤ i ≤ r, |S ∩ Vi| ≤ ki.
Finally, a transversal matroid is given in a family V1, . . . , Vk ⊆ V , where Vis are not necessarily
disjoint, and a set S = {u1, · · · , ut} is independent if and only if for each element ui, there exists a
distinct ϕ(i) so that ui ∈ Vϕ(i). These simple types of matroid have been extensively studied in a
large variety of contexts.

A uniform matroid is a special case of a partition matroid, which is again a special case of
a laminar or a transversal matroid. However, laminar matroids and transversal matroids are not
inclusive of each other [40]. Transversal matroids were introduced in the 60s, by Edmonds and
Fulkerson [14] and by Mirsky and Perfect [38]. They unified many results in transversal theory and
are generally considered an important class of matroids, e.g., see [43]. Laminar matroids receive
much attention recently in the community of theoretical computer science, especially in the context
of matroid secretary problem, e.g., see [3, 10, 17, 28, 42]. Our FPT-AS involves these kinds of
matroids.

Theorem 2. For every ε > 0, we can extract an approximate kernel V ′ ⊆ V in polynomial time
so that a (1− ε)-approximate solution is contained in V ′. The size of the kernel V ′ depends on the
type of the given matroid M.

(i) |V ′| ≤ k
ε when M is a partition matroid;

(ii) |V ′| ≤ 2k
ε when M is a laminar matroid;

(iii) |V ′| ≤ k
ε + k(k − 1) when M is a transversal matroid.

Furthermore, by a brute force enumeration, we can find the desired (1 − ε) approximation in(
1
ε

)O(k)
nO(1) time for partition and laminar matroids and

(
1
ε + k

)O(k)
nO(1) time for transversal

matroids.

Note that the result for transversal matroids has since been improved in [29] to get a kernel of
size k

ε . Besides, by a straightforward modification of our proofs in Section 2 (see Appendix A), we
can show the following corollary.

Corollary 3. Suppose that we are given a hypergraph G = (V,E) with edge size bounded by a
constant η ≥ 2. We can compute a (1 − (η − 1) · ε) approximation using

(
1
ε

)O(k)
nO(1) time for

partition and laminar matroids and
(
1
ε + k

)O(k)
nO(1) time for transversal matroids.

Put slightly differently, when G is a hypergraph with edge size at most η, we can obtain a (1−ε)

approximation in
(
η
ε

)O(k)
nO(1) or

(
η
ε + k

)O(k)
nO(1) time, depending on the type of matroid. To see

the interest of this corollary, we recall that recently Manurangsi [35] showed that if η is unbounded,
one cannot obtain an approximation ratio better than 1 − 1/e + ε, assuming GAP-ETH, in FPT
time (where the matroid rank k is the parameter). This result holds even for the simplest uniform
matroid. Thus Corollary 3 implies that one can circumvent this lower bound by introducing another
parameter η, even for more general matroids.

Our algorithm is inspired by that of Manurangsi [34] for the case of uniform matroid. So let us
briefly summarize his approach: an approximate kernel2 V ′ is first extracted from V , where V ′ is

2In the rest of the paper, we will just say kernel, dropping the adjective. Roughly speaking, a (1− ε)-approximate
kernel is a kernel which contains a (1− ε)-approximate solution of the original problem. The interest for this kind of
kernel has risen recently [18, 33].

3

simply made of the k/ε vertices with the largest weighted degrees. Let O be an optimal solution.
Apparently, a vertex of O is either part of the kernel V ′, or its weighted degree is dominated by all
vertices in V ′\O. To recover the optimal value, we can potentially use the vertices in V ′\O to replace
the vertices in O\V ′. However, there is a risk in doing this: an edge among the vertices in V ′\O can
be double-counted, if both of its endpoints are chosen to replace the vertices in O\V ′. To circumvent
this issue, Manurangsi uses a random sampling argument to show that in expectation such double
counting is negligible. Therefore, by the averaging principle, there exists a (1 − ε)-approximate
solution in the kernel V ′, which can be found using brute force.

To generalize the approach of Manurangsi for more general matroids, one has to answer the
quintessential question: how does one guarantee that the sampled vertices, along with O ∩ V ′, are
independent in M? To overcome this difficulty, we introduce a new technique. We take the union
of some number τ of matroids M. Such a union is still a matroid, which we denote as τM. We
then apply a greedy algorithm on τM (based on non-increasing weighted degrees) to construct an
independent set V ′ in τM. We show that such a set V ′ is “robust” (see Definition 6) in the sense
that we can sample vertices from V ′ so that they, along with O ∩ V ′, are always independent and
in expectation cover edges of weight at least (1− ε) times that of O.

We note that the value of τ automatically gives an upper bound on the kernel size V ′, which is
τk. Theorem 8 shows the required scale of τ , depending on the type of the given matroid. We leave
as an open question whether, for matroids more general than considered in the paper, a larger τ
can always yield the kernel.

In Section 4 we consider the problem in the semi-streaming model [39]. In that context, the edges
in E arrive over time but we have only limited space (for instance, O(n · polylog(n)) = o(m)) and
cannot afford to store all edges in E. In this context we can also obtain a (1−ε) approximation using
O(nkε) space in a single pass.3 The idea of using (parameterized) kernels for streaming algorithms has
recently been introduced, for instance in [12, 37]. We also show that an FPT-streaming algorithm
can be derived from our ideas to get a (1 − ε) approximation for a special form of maximization
of a coverage function with bounded frequency (see Theorem 16, Remark 17 and Appendix B for
details).

Local Search for General Matroids In the second part of the paper, we consider general
matroids. As mentioned above, we aim for a ratio better than 1−1/e. Combining known techniques
involving LP, 3/4 approximation can be achieved in polynomial time, as we mentioned earlier.
However, the aforementioned LP-based approach involves quite heavy machinery, and is likely to be
slow and hard to implement. Here we seek for simple approaches. A natural candidate is the local
search technique. However, if we try to optimize according to the original objective function EG(S)
(in the literature, this is called oblivious local search [19]), we show in Appendix C that one cannot
achieve better than 1/2 approximation, even if we allow large exchanges.

What we do is an adaptation of a technique of Filmus and Ward [19], originally designed for
a general coverage function. Their idea is to optimize a special potential function, which takes
the form of a linear sum of the covered elements, but with the modification that elements covered
multiple times have larger coefficients.

Theorem 4. Given a general matroid M as constraint, we can obtain:

(i) A 2/3−O(kε) approximation algorithm using O
(
mk
ε

)
arithmetic operations and O

(
nk
ε

)
ma-

troid oracle calls.

(ii) A 2/3 approximation algorithm using O(nmk3) arithmetic operations and O(n2k3) matroid
oracle calls.

3Here we assume that the matroid is given in the form of an oracle, which can be accessed by the algorithm
freely—this is a standard assumption in the streaming setting when matroids are involved.

4

See Section 5.1 for this result. Here we have fast running time thanks to the fact that small
exchanges (of 1 element) are enough to establish the desired ratio. In Section 5.2, we show that
by a slight modification, we can improve the approximation ratio to 3/4 in FPT time–precisely, in
O(k! ·nO(1)) time. Thus if k = O(log n/ log log n), we still use only polynomial time.

We next consider the more general case where two matroids are imposed on the graph vertices.
A solution is feasible only if it is a common independent set in both matroids.

Theorem 5. Given two general matroids M1 and M2 as constraints, we can obtain 2
3 · (1− 1

p+1)

approximation, using nO(p) arithmetic operations and matroid oracle calls.

This result is presented in Section 5. To see the interest of Theorem 5, observe that it implies that
when the submodular function is a coverage function of frequency 2, we can obtain an approximation
ratio significantly better than 1/2 − ε [6, 31], which is known for a general submodular function,
under the constraint of two matroids. The only other special case where this ratio is improved upon
that we are aware of, is when the submodular function is a weighted rank function [32], where the
ratio of exactly 1/2 is attained.

Our main tool is a characterization theorem of Lee et al. [31] based on a certain exchange
graph [41, Section 41.2], originally used for matroid intersection. The much higher running time is
due to the fact that here we are obliged to use larger exchanges (of up to θ(p) elements).

Some Remarks on Local Search Considering the closeness of the approximation ratios with
regard to one or two matroids, it is tempting to ask if one can do better than 2/3 if there is just
one matroid—maybe by trying larger exchanges.

We show in Section 5.3 that using the same type of potential functions [19] (linear sum with
modified coefficients based on the number of times an edge is covered), 2/3 approximation is the
best possible even if we allow larger O(1) exchanges.

Besides, another naturally related question is whether one can do better when the graphs are
simpler, for instance, when the vertex degree is bounded by some constant d. Again we show
in Section 5.3 that the same type of potential functions cannot achieve better than 2/3 + θ(1/d)
approximation, even if large exchanges are allowed.

These examples seem to indicate a certain limitation on the power of currently known local
search techniques. Other than the approach of [19, 21], we are unaware of any other type of local
search for coverage (or general submodular) functions. To do better than 2/3 (say up to 3/4), a
significantly different new idea may be required.

2 Kernelization Framework
In this section, we give a general framework to construct the kernel by a greedy procedure and show
how such a kernel contains a (1− ε)-approximate solution.

Definition 6. Let M = (V, I) be a matroid with weights ω : V → R+. We say V ′ ⊆ V is t-
robust if given any base O ∈ I, there is a bijection from the elements u1, · · · , ur ∈ O\V ′ to subsets
Uu1

, · · · , Uur
⊆ V ′\O so that

(i) the Uui
s are mutually disjoint and |Uui

| = t,

(ii) all elements in Uui have weights no less than ui,

(iii) by taking an arbitrary element u′
i ∈ Uui

for all i, (V ′ ∩O) ∪ {u′
i}ri=1 is a base in M.

We next recall the definition of matroid union.

5

O

Oin

Oout : u1 · · · ur

V ′ : Uu1
:

v1

v2

v3

· · ·

Uur
:

v7

v8

v9

v10
v11

v12
· · ·

Figure 1: Representation a robust decomposition, for t = 3, with Oin = V ′ ∩O and Oout = O\Oin.
We have that (i) the Uui

s are disjoint, (ii) ∀ 1 ≤ i ≤ r, ∀ v ∈ Uui
, ω(ui) ≤ ω(v), and (iii) taking an

arbitrary element u′
i ∈ Uui

for all i, (V ′ ∩O) ∪ {u′
i}ri=1 is independent inM.

Definition 7. Suppose that M = (V, I) is a matroid. Then we can define τM = (V, Iτ) as the
union of τ matroids M, as follows: S ∈ Iτ if S can be partitioned into S1 ∪ · · · ∪ Sτ so that each
Si ∈ I.

Recall that the union of matroids is still a matroid and here the rank of τM is at most τ times
the rank of M, e.g., see [41, Chapter 42]. We can now state our main theorem.

Theorem 8. Let M = (V, I) be a matroid with weights ω : V → R+ and rank k. Consider the
following greedy procedure on τM = (V, Iτ) to construct V ′: initially V ′ = ∅. Process the elements
in V by non-increasing weights ω. For each element u, if V ′ + u ∈ Iτ , add u into V ′, otherwise,
ignore it. The final V ′ is t-robust

(i) if M is a partition matroid and τ ≥ t,

(ii) if M is a laminar matroid and τ ≥ 2t,

(iii) if M is a transversal matroid and τ ≥ t+ k − 1.

Notice that the rank of the matroid τM gives an upper-bound on the size of V ′. The next
section will give the proof of this theorem for each type of matroid considered. In the following we
show how it can be used to construct the (1− ε) approximation.

Let the weight ω : V → R+ be the weighted degrees in the graph G = (V,E), that is, ω(u) =
degw(u). Apply Theorem 8 by setting t = 1

ε . Then V ′ is 1
ε -robust. Note that we suppose that 1

ε is
an integer, otherwise we could take t = ⌈ 1ε⌉.

Based on V ′, we create a new graph G′ = (V ′, E′), where an original edge e = {u, v} is retained
in E′ if both of its endpoints are in V ′. In case only one endpoint, say u is in V ′, we add a self-loop
to u in E′ to represent this edge.

Lemma 9. Suppose that V ′ is the constructed set that is 1
ε -robust. Then V ′ contains a set S such

that S ∈ I and EG(S) ≥ (1− ε) ·EG(O) where O denotes an optimal solution of the problem.

Proof. Let O ∈ I be an optimal solution. We denote Oin = O ∩ V ′, Oout = O\Oin. Then by
1
ε -robustness, we have mutually disjoint sets Uv ⊆ V ′\O for each v ∈ Oout, each of size 1

ε . We set
U = ∪v∈OoutUv. We construct a set S ⊆ V ′ as follows: S is initialized as Oin. Then from each set
Uv, for all v ∈ Oout, pick an element at random and add it into S. By definition of 1

ε -robustness, S
is independent inM.

Next we will show that
E[EG(S)] ≥ (1− ε) ·E[EG(O)].

6

Let U∗ = S\Oin, i.e. those elements that are added into S randomly. First, we have that:

EG(S) = EG(O
in) + EG(U

∗)− EG(O
in, U∗).

We bound E[EG(O
in, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(O
in, U∗)] =

∑
u∈U

∑
v∈Oin

w({u, v}) ·P[u ∈ U∗] = ε
∑
u∈U

∑
v∈Oin

w({u, v}) ≤ ε ·EG(O
in).

Furthermore, the value E[EG(U
∗)] can be rearranged as follows:

E[EG(U
∗)] = E

∑
u∈U∗

degw(u)−
1

2

∑
v∈U∗\{u}

w({u, v})

=
∑
u∈U

degw(u) ·P[u ∈ U∗]− 1

2

∑
v∈U\{u}

w({u, v}) ·P[u ∈ U∗ ∧ v ∈ U∗]

≥
∑
u∈U

degw(u) · ε− 1

2

∑
v∈U\{u}

w({u, v}) · ε2

 ≥ ε · (1− ε/2)

(∑
u∈U

degw(u)

)
,

where the first inequality comes from the fact that P[u ∈ U∗ ∧ v ∈ U∗] ≤ P[u ∈ U∗] ·P[v ∈ U∗].
Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degrees no less

than that of u. Therefore,

E[EG(U
∗)] ≥ ε · (1− ε/2)

(∑
u∈Oout

∑
v∈Uu

degw(v)

)
≥ ε · (1− ε/2)

(∑
u∈Oout

1

ε
· degw(u)

)
≥ (1− ε/2) ·EG(O

out).

As a result, we get:

E[EG(S)] ≥ EG(O
in) + (1− ε/2) ·EG(O

out)− ε ·EG(O
in) ≥ (1− ε) ·EG(O).

By averaging principle, there exists S ⊆ V ′ such that S ∈ I and EG(S) ≥ (1− ε) ·EG(O).

3 Proof of Theorem 8

3.1 Partition Matroids
Consider a partition matroid M = (V, I) defined by a partition V1, . . . , Vr of V and bounds
k1, . . . , kr. Given t ∈ N, we take in each set Vi of the partition the min{|Vi|, t · ki} elements having
the largest weighted degrees. We denote these extracted sets as V ′

i and their union as V ′. Clearly,
this is the same as the greedy algorithm stated in Theorem 8 applied on tM.

To see that V ′ is t-robust, let O ∈ I be a base. We denote Oin = O ∩ V ′, Oout = O\Oin,
Oi = O ∩ Vi, Oin

i = O ∩ V ′
i , Oout

i = Oi\Oin
i , and we set U i ⊆ V ′

i \Oin
i as an arbitrary subset of

cardinality t · |Oout
i |, for 1 ≤ i ≤ r (it is possible as Oi ̸= Oin

i implies that |V ′
i | = t · ki). We then

partition U i into U1
i , . . . , U |Oout

i |
i , each one of size t. It is easy to verify that the generated sets

{U j
i }i,j satisfy the three conditions stated in Definition 6.

7

T0

T1 T2

T3 · · ·

u

|V ′ ∩ V1| = k1 · τ

|V ′ ∩ V3| < k3 · τ

Figure 2: The node T1 is the deepest in the tree blocking u (preventing it to be in the kernel).

3.2 Laminar Matroids
Recall that a laminar matroidM = (V, I) is given as a laminar family V1, . . . , Vr along with bounds
k1, . . . , kr. Without loss of generality, we can assume that V = V0 with bound k0 = k (being the
rank ofM) is a member in the family. Furthermore, we can also assume that each vertex v ∈ V by
itself is also a member Vi = {v} with bound ki = 1 in this family.

Such a laminar matroid M can be naturally associated with a laminar tree T where each tree
node Ti = (Vi, ki) corresponds to Vi, and the structure of the tree reflects the inclusion relationship
of the members Vi in the laminar family. In such a tree T0 = (V, k) corresponds to the root of the
tree.

For ease of our study, we will assume that such a tree T is binary (so in total T contains 2n− 1
nodes, with n = |V |). Such an assumption can be easily justified by adding more sets Vi into the
laminar family with the appropriately defined bounds ki.

In the following, the elements of {Ti = (Vi, ki)}0≤i≤2n−2 will be referred as “nodes”, whereas the
elements of V will be referred as “vertices”. We are given t ∈ N. To choose the vertices that are
to be added into the kernel, we employ the following greedy procedure. We process the vertices in
non-increasing order with respect to their weighted degrees. At the beginning, V ′ is empty. When
we consider a new vertex v, if for all i such that v ∈ Vi, we have |V ′ ∩ Vi| < 2t · ki, then v is added
to V ′, otherwise v is simply ignored. This procedure is equivalent to the greedy algorithm described
in Theorem 8 applied on 2tM.

A node Tj of the tree {Ti = (Vi, ki)}0≤i≤2n−2 is called saturated if |V ′ ∩ Vj | = 2t · kj . Let O
be an arbitrary solution. As in the previous subsection we will use the notations V ′

i = Vi ∩ V ′,
Oin = V ′ ∩ O, and Oout = O\V ′. In the following, we say that a vertex or a set of vertices is
“contained” in a tree node Ti if they are part of V ′

i (equivalently, the leaves corresponding to these
elements of V ′ are in the subtree of root Ti).

For every element v ∈ V , there exists a leaf Tiv in the laminar tree such that Viv = {v}, and we
have a unique path from the root T0 to Tiv . If a vertex v ∈ O is not in V ′, it means that some node
along the path from T0 to Tiv was already saturated when v was processed: the blocking node of v
is the deepest saturated node along this path (see Figure 2). For each node Ti, we denote by Bi the
set of vertices of O that are blocked by the node Ti, and we set bi = |Bi|. Then, bi = 0 when Ti is
not saturated. Moreover, the Bis are mutually disjoint and

⋃
Bi = Oout.

Then for each vertex v ∈ Oout, we construct a set Uv of at least t vertices drawn from V ′. Then
an arbitrary subset Uv ⊆ Uv of t vertices is retained. We will argue that the generated sets Uvs
ensure the robustness.

Constructing the sets Uvs for all v ∈ Oout We want the constructed sets Uvs to satisfy the
following three properties.

(i) The sets Uvs are mutually disjoint and are drawn from V ′\Oin.

8

(ii) For each v ∈ Oout and each u ∈ Uv, degw(u) ≥ degw(v).

(iii) Choosing an arbitrary v ∈ Uv for each v ∈ Oout, the set S = Oin ∪ {v}v∈Oout is independent
in the laminar matroidM.

The formal algorithm for constructing the sets {Uv}v∈Oout is given in Algorithm 1. Here we give
the intuition behind it.

To guarantee Property (i), we first mark all elements in Oin as unusable. Then, each Uv is
chosen among the usable vertices. Once a set Uv is allocated, all its vertices will be marked as
unusable.

To guarantee Property (ii), first recall that each vertex v ∈ Oout has a corresponding blocking
node Ti (and v ∈ Bi). By our greedy procedure to build the kernel V ′, we know that there exist
2t · ki vertices u in the set V ′

i , all of whom are contained in Ti and degw(u) ≥ degw(v). What we
do is to choose a deepest blocking node Ti and to process one of its vertex v ∈ Bi (Lines 6-7). As
we will show later (Claim 12), such a blocking node must contain at least 2t usable vertices. We
climb down the tree from the blocking node Ti until we reach a node Tj neither of whose child
nodes contains more than t usable vertices (Lines 9-10). Recall that our tree is binary, as a result,
the number of usable vertices contained in Tj is between t and 2t − 2. All these usable vertices
constitute a new set Uv and then are marked as unusable.

How to guarantee Property (iii) is the most tricky part of the algorithm. Recall that we will
choose an arbitrary vertex from Uv to construct a solution S stated in (iii). Apparently we have
no control over the choice of the arbitrary vertex from Uv, nonetheless, we need to ensure that S
does not violate any of the rank constraints ki. What we do is to associate a variable si with each
tree node Ti. This variable indicates how many vertices contained in Ti will certainly be part of S,
according to Oin and the sets Uvs that have been constructed so far. Once si is set to ki, it is a
warning that we should not use any more remaining usable vertices contained in Ti to construct the
future sets Uv.

Initially, si = |V ′
i ∩ Oin|. Each time that we have decided on a tree node Tj to form a new set

Uv (Lines 9-12), we increase the value of sj from Tj all the way up to the root (Lines 13-14). If any
node Tj has its variable sj = kj , we say such a node is fully-booked and we mark all its (remaining)
usable vertices as unusable (Lines 15-16).

Algorithm 1 Algorithm constructing the sets Uv

1: ∀v ∈ O\V ′, Uv ← ∅
2: ∀1 ≤ i ≤ 2n− 2, si ← |V ′

i ∩Oin|
3: the elements of V ′\Oin are marked as usable
4: the elements of Oin are marked as unusable
5: while there exists a set Bi which is not empty do
6: let Ti be one of the deepest nodes such that Bi ̸= ∅
7: let v ∈ Bi be an arbitrary vertex
8: Bi ← Bi − v
9: while Ti has a child Tj containing at least t usable vertices in V ′

j do
10: i← j

11: set Uv as the set of usable elements in V ′
i

12: mark all the elements of Uv as unusable
13: for all nodes Tj on the path from Ti to the root of the tree do
14: sj ← sj + 1
15: if sj = kj then ▷ in that case, we say that Tj is fully-booked
16: mark all the elements of V ′

j as unusable

9

We want to show that Algorithm 1 manages to build the sets Uvs of size at least t satisfying the
aforementioned properties.

Claim 10. At any time during the execution of Algorithm 1, for a saturated node Ti that is not a
descendant of a fully-booked node (no node above it is fully-booked), the number of usable vertices
in V ′

i is at least 2t · (ki − si).

Proof. As Ti is saturated, V ′
i contains exactly 2t · ki vertices. The unusable vertices in V ′

i fall into
three categories:

(i) the vertices in V ′
i ∩Oin (see Line 4), but that are not contained in any fully booked descendent

node of Ti,

(ii) the vertices made unusable during the allocation of a set Uv (see Line 12), but that are not
contained in any fully booked descendent node of Ti,

(iii) the vertices that are contained in a fully-booked descendent node of Ti (see Line 16).

The vertices v1, . . . , vl1 in the first category each has a contribution of +1 in the value of si. Then,
we can observe that an allocated set Uv is either entirely contained in a fully-booked node or has
no element at all in any fully-booked node. Let us denote Uv1

, . . . , Uvl2
the allocated sets contained

in Ti that are not contained in any fully-booked node. In addition, by construction, each set Uvj

contains at most 2t − 2 vertices (otherwise we would be able to go deeper in the binary tree for
the allocation, see Lines 9-10, because at least one child would contain at least t usable elements).
Each set Uvj has a contribution of +1 in the value of si. Finally, among the fully-booked nodes
in the subtree of root Ti, we consider the nodes Ti1 , . . . , Til3

that are inclusion-wise maximal (i.e.
the roots of the fully-booked parts of the subtree). A fully-booked subtree of root Tj has to bring
a +kj contribution to si (otherwise it would not be fully-booked, and observe that a set Uv is
included in at most one such fully-booked maximal node), and is making at most 2t · kj vertices of
V ′
i unusable (the worst case being that Tj was also a saturated node). We also have the equality

si = l1+ l2+
∑l3

j=1 kij . As a result, we have at most l1+(2t−2) · l2+
∑l3

j=1 2t · kij ≤ 2t · si unusable
vertices in V ′

i .

Claim 11. At any time during the execution of the algorithm, for all i ∈ J1, 2n − 2K, we have
ki ≥ si + bi +

∑
Tj below Ti

bj as an invariant.

Proof. As O ∈ I, these inequalities hold at the beginning of Algorithm 1. To see this, note that
si = |Vi ∩ Oin| and bi +

∑
Tj below Ti

bj ≤ |Vi ∩ Oout|. For the induction step, observe that Line 6
guarantees that the node Ti selected is the only one with a non-zero bi value in the subtree of
root Ti. As a result, when the set Uv is allocated, for the nodes Tj between Ti and the allocated
node, the augmentation by one of the values s is not an issue because these nodes are chosen to be
non-fully-booked, i.e. kj > sj . For each node Tj above Ti, the value sj is increased by one but as
bi was decreased by one, the total value sj + bj +

∑
Tj′ below Tj

bj′ remains unchanged.

Claim 12. If Bi ̸= ∅, Ti contains at least 2t usable vertices. Consequently, Algorithm 1 (Lines
6-11) always builds the set Uv of size at least t.

Proof. In fact, as Bi ̸= ∅, bi is still non-zero, and by Claim 11 we get ki − si ≥ bi, so V ′
i contains at

least 2t usable vertices because of Claim 10. Then the set Uv can be built as required, containing
at least t elements.

The above claim lower-bounds the size of each Uv. The fact that the constructed Uvs are
mutually disjoint follows from the algorithm (Line 12). Now we want to show that the Uvs have
the desired properties regarding independence and weighted degrees.

10

Claim 13. At any time during the execution of Algorithm 1, if we build a set S by taking the
elements of Oin and one arbitrary element in each set Uv that has already been constructed, then
S is independent. Moreover, for a node Ti that does not contain only unusable vertices in V ′

i , any
arbitrary choice of elements in the Uvs will lead to the equality |S ∩ V ′

i | = si.

Proof. We proceed by induction. These properties are clearly satisfied at the beginning of the
algorithm (because then S = Oin). Now suppose that these properties hold at some time, and then
we allocate a new set Uv′ for some v′ ∈ Oout. Let S be made of Oin and an arbitrary choice for
the Uvs that were constructed so far (excluding Uv′). By the induction hypothesis, S ∈ I. The
vertices of Uv′ are supposed to be usable, so the nodes containing them are not fully-booked and
these nodes contain usable vertices. By induction on the second part of the claim, a usable element
in such a node Tj can be selected, as any choice for the other Uvs will use exactly sj < kj vertices
of the laminar constraint of that node. Therefore any vertex u ∈ Vv′ added to S does not cause any
constraint to be violated, and S ∪ {u} ∈ I. Let Ti be the node used for the allocation at Line 11 of
Algorithm 1. All the nodes in the subtree of root Ti will be subsequently ignored by the algorithm,
as all the nodes inside it are marked as unusable. The values sj of the nodes Tj in that subtree
are not updated by the algorithm, but it is not an issue given that the second part of the claim
does not affect them. The nodes above Ti are updated, and it is true that for any vertex chosen in
Uv′ , that vertex will count in the laminar inequalities for these nodes as a +1. This concludes the
induction.

Claim 14. For all v ∈ O\V ′, for all u ∈ Uv, it holds that degw(u) ≥ degw(v).

Proof. By construction, Uv ⊆ V ′
i where Ti is the blocking node of v. As Ti is the blocking node of

v, all the elements in V ′
i have a larger weighted degree than v.

Finally we construct the sets Uvs by choosing arbitrarily t vertices from Uv. By Claims 12, 13,
and 14, they satisfy the properties of robustness in Definition 6.

3.3 Transversal Matroids
Recall that a transversal matroidM = (V, I) can be represented as a bipartite graph G = (A∪V,E)
with A = {A1, · · · , Ak} representing the transversal sets. A subset V ′ ⊆ V is independent in M
if and only if there is a matching where all of V ′ are matched to some subset of A. Let t ∈ N.
The matroid union (t + k − 1)M can be regarded as making the capacity of each vertex Ai in A
increased to t + k − 1 (equivalently, create t + k − 1 copies of each Ai and modify the edge set E
accordingly). Our algorithm is as follows. Again process the vertices in non-increasing order of their
weighted degrees. We start with an empty matching, and we maintain a matching throughout the
execution of the algorithm. For each new vertex v ∈ V , try to find an augmenting path so that it
can be matched. If we cannot find such a path, v is discarded. At any time during the execution of
the algorithm, the current kernel V ′ ⊆ V is simply the set of vertices in V that are matched in the
current matching. We can observe that a vertex in V ′ cannot be evicted once it belongs to V ′. In
the following, we write V ′

i ⊆ V ′ to denote the vertices in V that are matched to Ai in the current
kernel V ′.

First we argue that our procedure is the same as the greedy described in Theorem 8 applied on
(t + k − 1)M. We need to show that a vertex v, if discarded, is spanned by vertices in V ′ that
arrived earlier than it. To see this, observe that, at the moment v arrives, V ′ is independent in
(t + k − 1)M. Moreover, as we cannot find an augmenting path when v is added to V ′, is means
that V ′+v is not independent, i.e. v is spanned by V ′ and this holds until the end of the algorithm.

Now let us consider the robustness. Let O = {o1, . . . , ok} be an arbitrary base in M. We can
assume that oi is assigned to Ai for all i in the corresponding matching. For an element oi ∈ O\V ′,
when it was discarded, some V ′

i ⊆ V ′ elements (exactly t+ k − 1) that arrived earlier were already

11

assigned to Ai. As no augmenting path could go through Ai when oi was discarded, the set of
elements assigned to Ai would not have changed till the end: otherwise, that would mean that at
some point an augmenting path passed through Ai, which is not possible as oi was discarded because
no augmenting path passing through Ai was found at that point. As a result the t+ k− 1 elements
of V ′

i assigned to Ai are all of weighted degrees larger than that of oi. As |V ′
i ∩ O| ≤ |V ′ ∩ O| < k

there remain at least t elements of V ′
i that can be used to build a set Uoi of cardinality t as stated

in Definition 6.

4 Streaming Algorithms
In this section, we turn our algorithms into streaming form.

First, we show that it is easy to compute a (1− ε) approximation in two passes, using O(n+ τ2)
space (τ depends on the type of matroids involved, as defined in Theorem 8). In the first pass,
we compute the weighted degrees degw(v) of all vertices v to define the kernel V ′ ⊆ V . This
requires O(n) space. In the second pass, we retain a subset of edges E′ ⊆ E, those both of
whose end-points are in V ′. Clearly, |E′| = O(τ2). Using E′, we can compute the exact value
EG(S) =

∑
v∈S degw(v) −

∑
e∈(S×S)∩E′ w(e) for each feasible independent set S ⊆ V ′. Then an

enumeration of all such sets gives the desired (1− ε) approximation.
We now explain how to achieve the same goal in one pass, at the expense of higher space

requirement.

Theorem 15. In the edge arrival streaming model (each edge appearing exactly once in the stream),
one can extract a (1 − ε)-approximate solution of the matroid-constrained maximum vertex cover
using O(nkε) variables for uniform, partition, laminar, and transversal matroids.

Proof. Let ε > 0. During the streaming phase, we keep track of the weighted degrees of all the
vertices, as well as for each vertex v the set of the 2k

ε edges incident to v that have the largest
weight. We denote the set of memorized edges as E′.

Then, we can choose, depending on the type of matroid, the value τ corresponding to the right
type of matroid (as prescribed in Theorem 8) for the parameter ε

2 and we build the kernel V ′ that
is supposed to contain a (1 − ε

2) approximation of the maximum cover. However, we do not know
all the edges between the elements in V ′, as only the 2k

ε heaviest incident edges are known for each
vertex.

We will compute the value of S pretending that the edges in ((S × S) ∩ E)\E′ are not present.
Precisely, for each set S ⊆ V , we define

ẼG(S) =
∑
v∈S

degw(v)−
∑

e∈(S×S)∩E′

w(e) = EG(S) +
∑

e∈((S×S)∩E)\E′

w(e).

Notice that ẼG(S) ≥ EG(S). Let S∗ ⊆ V ′ be the independent set reaching the maximum
ẼG(S

∗). This set S∗ will be our final output. We next lower-bound its real value EG(S
∗).

Let O denote the original optimal solution (with respect to the entire graph), and S′ denote
the optimal vertex cover in the kernel V ′ (also with respect to the entire graph), so that S′ ⊆ V ′,
S′ ∈ I, and EG(S

′) ≥ (1− ε
2) ·EG(O). Then

ẼG(S
∗) ≥ ẼG(S

′) ≥ EG(S
′) ≥

(
1− ε

2

)
·EG(O).

To compare the real value of EG(S
∗) with ẼG(S

∗), we just need to compute the total weight of
the edges in ((S∗ × S∗) ∩ E)\E′:

12

∑
(u,v)∈((S∗×S∗)∩E)\E′

w(u, v) =
1

2

∑
v∈S∗

 ∑
u∈S∗:(u,v)∈E\E′

w(u, v)

≤ 1

2

∑
v∈S∗

k · degw(v) ·
ε

2k

=
ε

4

∑
v∈S∗

degw(v) ≤
ε

2
· ẼG(S

∗),

where the first inequality comes from the fact that the edges that are not among the 2k
ε heaviest

edges incident on v must be of weight at most degw(v) · ε
2k . Therefore the real value EG(S

∗) is at
least (1− ε

2) · ẼG(S
∗) ≥ (1− ε

2)
2 ·EG(O) ≥ (1− ε) ·EG(O).

Next we consider a particular kind of stream of edges, where each edge appears twice: given an
arbitrary order of the vertices, for each vertex, all its incident edges are given in a row. For this
incidence streaming model [5] (sometimes called adjacency list model [37]), the next theorem shows
that we can use much less space with just a single pass.

Theorem 16. In the incidence streaming model, one can extract a (1 − ε)-approximate solution
using O((kε)

2) variables for uniform, partition, laminar, and O((kε + k)2) for transversal matroids.

Proof. Let ε > 0. Given the type of the matroidM, choose the corresponding value of τ as prescribed
in Theorem 8. Start with an empty kernel V ′ = ∅. Through the execution of the algorithm, V ′ will
contain the largest independent set in τM with respect to the sum of the weighted degrees. When
we process a vertex v (i.e. its set of incident edges) we can compute its weighted degree degw(v) and
store the edges linking v to elements of V ′. If V ′+v is not independent in τM, consider the element
with the smallest weighted degree u in the circuit formed in V ′ + v. Then, set V ′ ← (V ′ + v)− u.
If v is added into V ′, we keep in memory all the edges linking v to other vertices of V ′. When
an element is discarded or evicted from V ′, all its incident edges are deleted. As a result, at any
time during the execution of the algorithm, only O(τ2) edges are stored, so the overall memory
consumption is O(τ2).

In the end, we obtain exactly the approximate kernels described in the previous sections, and
because we know all the values of the weighted degrees of V ′ as well as the weights of the edges
between them we can find the largest vertex cover in that kernel using brute force.

Remark 17. This model has an interesting interpretation in the context of coverage function4

maximization in the streaming setting— here the sets arrive over time in such a way that the values
of singletons f({v}), for v ∈ V , are revealed one by one. In case where a coverage function has
bounded frequency larger than 2, we also present in Appendix B a streaming algorithm.

5 Local Search Algorithms for General Matroids

5.1 A 2/3 Polynomial-Time Local Search Approximation Algorithm
In this part we borrow ideas from [19], using a non-oblivious local search technique, meaning that
instead of optimizing our objective function EG we use a potential function to guide the algorithm.

4A coverage function f over a ground set {1, . . . ,m}, associated with a universe U of weighted elements and m
sets A1, . . . , Am, where Ai ⊆ U for all i, is defined over all S ⊆ {1, . . . ,m} so that f(S) is the sum of the weight of
the elements in ∪i∈SAi. The frequency of an element of the universe is the number of sets Ai it appears in. Here in
our problem of maximum vertex cover, the vertices correspond to the ground set and the edges to the universe U .
Note that for the special case of a vertex cover, the frequency (the maximum number of sets where an element of the
universe appears in) is exactly 2, as an edge has only two endpoints.

13

Precisely, we define a potential function g:

g(S) =
∑
e∈E

α#(e,S)w(e) (1)

where #(e, S) denotes the number of times the edge e is covered by vertices of S (hence, #(e, S) ∈
{0, 1, 2} in practice). The values α0, α1, and α2 have to be chosen carefully to optimize the approxi-
mation ratio. We suppose that α2−α1 ≤ α1−α0, which is a quite intuitive assumption of decreasing
marginal returns. Moreover, this guarantees that the function g is submodular (as in [19]). We set
α0 = 0 and α1 = 1 and will decide the value of α2 later.

Let ε > 0. The algorithm starts by a standard greedy step, which outputs a 1/2 approximation
S of the maximum value of g for a basis of M. Then, we have a local search phase that tries
to improve S by exchanging an element of s ∈ S with another element s′ ∈ V \S if the following
inequality holds:

g(S − s+ s′) > (1 + ε)g(S),

where the factor (1 + ε) allows us to bound the number of improvement steps by log1+ε 2.

Algorithm 2 Local search algorithm for maximum vertex cover under matroid constraint

1: function Local-Search(M, V, E, ε)
2: S ← a basis inM obtained by the standard greedy algorithm for maximizing g
3: while ∃(s, s′) ∈ S × V \S such that g(S − s+ s′) > (1 + ε)g(S) and S − s+ s′ ∈ I do
4: S ← S − s+ s′

5: return S

Suppose that the optimal base of our initial problem is O, and that our local search algorithm
stopped at some solution S. Then there exists a bijection π : S → O such that for all s ∈ S we have
S − s+ π(s) ∈ I and elements of S ∩O are fixed points of π (Corollary 39.12a in [41]). Hence,

∀s ∈ S, (1 + ε)g(S) ≥ g(S − s+ π(s)),

and therefore
k(1 + ε)g(S) ≥

∑
s∈S

g(S − s+ π(s)).

Now we define a partition of Ex,y,z of E, where x, y, z ∈ {0, 1, 2}, as follows: the set Ex,y,z

contains the elements e ∈ E if e is covered by x vertices in S\O, by y vertices in S ∩ O, and by z
vertices in O\S. By this definition of the partition of E, we can re-write the previous inequality as

k(1 + ε)
∑
x,y,z

αx+yw(Ex,y,z) ≥
∑
x,y,z

βx,y,zw(Ex,y,z), (2)

where the values of βx,y,z are:

β2,0,0 = (k − 2)α2 + 2

β0,2,0 = kα2

β0,0,2 = 2

β1,0,1 = min{(k − 2) + α2, k} = (k − 2) + α2

β1,1,0 = (k − 1)α2 + 1

β0,1,1 = (k − 1) + α2

β1,0,0 = (k − 1)

β0,1,0 = k

14

β0,0,1 = 1

The only tricky case is when x = 1, y = 0, and z = 1 because we do not know whether the two
elements s ∈ S and o ∈ O covering e satisfy π(s) = o or π(s) ̸= o, giving respectively coefficients of
kα1 or (k−2)α1+α2+α0, and so we choose the smaller one, using the fact that α2−α1 ≤ α1−α0.

By adding w(O) to both sides of (2) and re-arranging terms, we have∑
x,y,z

(k(1 + ε)αx+y − βx,y,z + 1y+z≥1) ·w(Ex,y,z) ≥ w(O). (3)

We define the coefficients on the left-hand side as

γx,y,z = k(1 + ε)αx+y − βx,y,z + 1y+z≥1.

If, for all x+ y ≥ 1 we have γx,y,z ≤ θ and γx,y,z ≤ 0 when x = y = 0,
then θ ·w(S) ≥ w(O). Now we write down all these coefficients:

γ2,0,0 = (k + kε)α2 − ((k − 2)α2 + 2) = (2 + kε)α2 − 2 ≤ θ

γ0,2,0 = (k + kε)α2 − kα2 + 1 = kεα2 + 1 ≤ θ

γ0,0,2 = −2 + 1 = −1 ≤ 0

γ1,0,1 = (k + kε)− ((k − 2) + α2) + 1 = 3 + kε− α2 ≤ θ

γ1,1,0 = (k + kε)α2 − ((k − 1)α2 + 1) + 1 = (1 + kε)α2 ≤ θ

γ0,1,1 = (k + kε)− ((k − 1) + α2) + 1 = 2 + kε− α2 ≤ θ

γ1,0,0 = (k + kε)− (k − 1) = 1 + kε ≤ θ

γ0,1,0 = (k + kε)− k + 1 = 1 + kε ≤ θ

γ0,0,1 = −1 + 1 = 0 ≤ 0

By setting α2 = 3/2 we get θ = 3/2 · (1 + kε). We have thus a 2
3(1+kε) approximation. To get a

clean 2
3 approximation, we can use the partial enumeration technique of Filmus and Ward [19]. For

the sake of completeness, we provide the details here.
Algorithm 3 proceeds by guessing the vertex u ∈ O with the largest weighted degree and then

applying the previous algorithm on the subgraph Gu = (V − u,E − δ(u)), with the contracted
matroid Mu = (V − u, Iu) as constraint, and the error term ε = 1

(3k)2 . For an element u ∈ V we
setMu = (V −u, Iu) as the contracted matroid ofM by u such that Iu = {S ⊆ V −u : S+u ∈ I}.
Note that Mu is still a matroid.

Algorithm 3 Algorithm providing an approximation guarantee of 2/3

1: function Contracted-matroid-search(M, V, E)
2: Sopt ← ∅
3: for v ∈ V do
4: Scur ← v ∪ Local-Search(Mv, V − v,E − δ(v), 1/(3k)2)
5: if w(Scur) > w(Sopt) then Sopt ← Scur

6: return Sopt

Let Su be the solution returned by the procedure Local-Search(Mu, V −u,E−δ(u), 1/(3k)2)
and Ou = O − u. Then 3

2 · (1 + 1
3k) ·EGu(Su) ≥ EGu(Ou). Adding degw(u) to both sides we obtain

3

2
·
(
1 +

1

3k

)
·EGu

(Su) + degw(u) ≥ EG(O).

15

The left-hand side can be re-written 3
2 · (1+ 1

3k) ·EGu
(Su)+degw(u) =

3
2 ·EG(S)+

1
2k ·EGu

(Su)−
1
2 · degw(e) ≤ 3

2EG(S), where the inequality holds because as u is the vertex with the largest
weighted degree in O, EGu(Su) ≤ EG(O) ≤ k · degw(u). We have thus established that Algorithm 3
gives a 2/3 approximation.

In terms of time complexity, Algorithm 3 performs a total of O
(
n · k ·m · log 2

log(1+(3k2)−1)

)
=

O(nmk3) arithmetic operations and O(n2k3) oracle queries. To see this, observe that a local im-
provement step in Algorithm 2 sees each edge at most twice, thus taking O(k ·m) arithmetic oper-
ations and O(k ·n) matroid oracle queries. Moreover, there are at most log(1+ε) 2 such steps after
the greedy step, which takes O(k ·m) arithmetic operations and oracle queries.

Theorem 18. Algorithm 3 is a local search algorithm providing a 2/3 approximation, and uses
O(nmk3) arithmetic operations and O(n2k3) matroid oracle queries.

5.2 A 3/4 FPT Approximation Algorithm
We show how to improve the approximation ratio to 3/4, if one is allowed to use FPT time. The
key insight here is that if the local optimal S is totally disjoint from the optimal O, then in the
preceding proof, we no longer need to be concerned with the coefficients γ0,2,0, γ1,1,0, γ0,1,1, γ0,1,0
and their corresponding constraints.

We can slightly modify our algorithm as follows (formally stated in Algorithm 4): each time
a local optimum is reached, we guess one of its vertices to be part of the optimal solution and
proceed recursively. There can be at most k! guesses. By setting α2 = 5/3 we can ensure that
θ = 4/3 · (1 + kε). Again, using the partial enumeration technique allows us to get a clean 3/4
approximation.

Algorithm 4 Variant of the local search algorithm

1: function Local-Search-3/4(M, V, E, ε) S ← a basis in M obtained by the standard greedy
algorithm for maximizing g

2: while ∃(s, s′) ∈ S × V \S such that g(S − s+ s′) > (1 + ε)g(S) and S − s+ s′ ∈ I do
3: S ← S − s+ s′

4: Sopt ← S
5: for s ∈ S do
6: Scur ← Local-Search-3/4(Ms, V − s, E − δ(s), ε) + s
7: if w(Scur) > w(Sopt) then Sopt ← Scur

8: return Sopt

5.3 Allowing Exchanges of Size p Does Not Improve the Ratio
One could think that exchanging p > 1 elements at the same time instead of only one during an
improvement step might allow us to get a better ratio than in Section 5.1. We show in this section
that it is not possible, for any choice of α2.

When α2 ≥ 3/2, let ε > 0 and consider the example in Figure 3, where the constraint is imposed
by a uniform matroid of rank 2. In fact, the subset S ⊆ V of size 2 which optimizes g is {v1, v2}, as
g({v1, v2}) ≥ 3, but the optimal solution for the maximum cover problem is {v1, v3}, giving a value
g({v1, v3}) = 3− ε. Therefore the solution given by a local search algorithm using α2 ≥ 3/2 cannot
have a better approximation guarantee than 2/3.

When α2 < 3/2, we use the example depicted in Figure 4, where the constraint is a uniform
matroid of rank k. We show that for any p, if k is large enough, the set S = {ai}1≤i≤k is a local
optimum of g, even if p simultaneous exchanges at the same time are allowed. As the solution S

16

v1 v2

v3 v4

w(e1) = 2

w(e2) = 1− ε

Figure 3: Example when α2 ≥ 3/2.

has value EG(S) = k2 while the optimal solution O = {bi}1≤i≤k has value EG(O) = k2 + k2/2, the
approximation guarantee of such an algorithm cannot be better than 2/3.

We can observe that the most interesting exchanges have to be of the form ai ↔ bi. If we perform
p such exchanges, for instance a1, . . . , ap ↔ b1, . . . , bp then the gain for the value of g is:

g(S + {b1, . . . bp} − {a1, . . . ap})− g(S)

= p(k − p)(α2 − 1) for {ai, bi} such that i > p, j ≤ p

− p(k − p) for {ai, bi} such that i ≤ p, j > p

+ pk/2 for {bi, ci} such that i ≤ p

= p(k − p)(α2 − 2) + pk/2

= pk(α2 − 3/2) + p2(2− α2)

as α2 < 3/2, when k is big enough the gain becomes negative. Therefore, with a large k, S =
{ai}1≤i≤k is a local optimum even if p exchanges are allowed.

a1 a2 a3 · · · ak

b1 b2 b3 · · · bk

c1 c2 c3 · · · ck

Figure 4: Example when α2 < 3/2. The edges between the ais and the bis are of weight 1, and
those between the bis and the cis are of weight k/2.

What if the degrees are bounded? Our previous example uses vertices of large degrees, so one
is naturally led to ask what happens if the vertex degree is bounded. Could one obtain approximation
ratios significantly better than 2/3 in this case? In the following, we can assume that α2 < 3/2
(otherwise the first example in Figure 3 shows the approximation ratio cannot be better than 2/3).

Let d ≥ 2 be the desired bound for the degrees in our graph. We proceed somehow similarly to
Lee et al. [31]. Using the result of [30], we know there exists a bipartite, d-regular graph G = (V,E)
of girth at least 2p + 1 (i.e. the smallest circuit in the graph is of length at least 2p + 1).5 Let A

5In [30] the construction is specific for a prime power d′, but we can use their construction to obtain our d-regular
bipartite graph for some d ≤ d′ easily: by removing iteratively a perfect matching from the graph. Such a perfect
matching exists because of Hall’s marriage theorem, e.g., [41].

17

and B be the bi-partition of the graph, so that V = A∪B. As it is a bipartite regular graph, there
exists a perfect matching M in that graph. We denote {a1, b1}, . . . , {ak, bk} such a matching. We
build a graph H = (V ′, E′) as follows: we take the vertices and the edges of G, we add a set of
vertices C = {c1, . . . , ck}, then we add edges {bi, ci} for 1 ≤ i ≤ k and we delete the edges of the
matching {ai, bi} for 1 ≤ i ≤ k. Clearly in H the degree bound is still d. We define the weights
w({ai, bj}) = 1 for 1 ≤ i, j ≤ k and w({bi, ci}) = λ (we will set the value of λ later).

We define a partition matroid M = (V ′, I) with the partition V1 = {a1, b1, c1}, . . . , Vk =
{ak, bk, ck} and a bound of one element per set Vi.

We want to show that A is a local optimum, whereas the real optimum is B. In fact, EH(A) =
k(d− 1) and EH(B) = k(λ+ d− 1). The only relevant exchanges are of the form ai ↔ bi, as taking
ci is clearly less interesting. Consider the indexes i1, . . . , ip of the exchanges tried during a local
search step.

g(A+ {bi1 , . . . , bip} − {ai1 , . . . , aip})− g(A)

= −(p(d− 1)− s) edges in {ai1 , . . . , aip} ×B\{bi1 , . . . , bip}
+ p ·λ for {bij , cij}, for 1 ≤ j ≤ p

+ (α2 − 1)(p(d− 1)− s) edges in {bi1 , . . . , bip} ×A\{ai1 , . . . , aip}
= (α2 − 2)(p(d− 1)− s) + p ·λ
≤ (α2 − 2)(p(d− 2) + 1) + p ·λ As s ≤ p− 1 and α < 2/3

where s denote the number of “saved” edges. Precisely, these are the edges between {ai1 , . . . , aip}
and {bi1 , . . . , bip} in the graph H. We call them “saved” because they are still covered after the
exchange, unlike other edges incident to the aij s. We now claim that s ≤ p − 1. Recall that
as the original graph G has girth at least 2p + 1, there cannot be a cycle among the vertices in
{ai1 , . . . , aip} ∪ {bi1 , . . . , bip}. So the subgraph of G induced by these vertices forms a forest, with
at most 2p− 1 edges. Recall that when constructing H, we have removed the edges {ai, bi} for all
i. Therefore p edges in the subgraph are gone. We conclude that at most p− 1 edges of that forest
can be the saved edges.

Setting λ = (2 − α2) ((d− 2) + 1/p), the gain becomes non-positive, and EH(B) = k((2 −
α2) ((d− 2) + 1/p) + d− 1) = (3− α2)EH(A)− k(2− α2)(1− 1/p), so

EH(B)

EH(A)
= (3− α2)−

(2− α2)(1− 1/p)

d− 1
.

This implies that the approximation ratio is bounded by 2/3 + θ(1/d), as α2 ≤ 3/2.

6 Local Search Algorithm for Two Matroids
In this section, we assume that two matroids M1 = (V, I1) and M2 = (V, I2) are imposed on the
vertex set V .

The idea of the exchange graph [41, Section 41.2], is defined as follows. Given I ∈ I1 ∩ I2, an
oriented (bipartite) digraph DM1,M2

(I) has the following two types of edges:

• for i ∈ I and j ∈ V \I there is an arc (i, j) if I − i+ j ∈ I1

• for i ∈ I and j ∈ V \I there is an arc (j, i) if I − i+ j ∈ I2

In this exchange graph, a dipath/dicycle A (whose vertices are denoted V (A)) is called feasible if
I∆V (A) is in I1 ∩ I2 and if for any sub-dipath A′ of A such that the endpoints of A′ are in I (or
are the endpoints of A) then I∆V (A′) is also in I1 ∩ I2.

The following exchange lemma from [31] will be extremely useful for our purpose.

18

Lemma 19 (Lemma 2.5 in [31]). Let I, J ∈ I1∩I2. Then there exists an integer s ≥ 0 and a collec-
tion of dipaths/dicycles {D1, . . . , Dt} (possibly with repetitions), feasible in the digraph DM1,M2

(I),
using only elements of I∆J , so that each element of I∆J appears in exactly 2s dipaths/dicycles Di.

Suppose that we have a solution S ∈ I1 ∩ I2. Let O ∈ I1 ∩ I2 be the global optimum.
By Lemma 19 with I = S and J = O, there exists s ≥ 0 and a collection of dipaths/dicycles
{D1, . . . , Dt} such that each element of S∆O appears exactly 2s times in these dipaths/dicycles.
We could potentially perform local search exchanges corresponding to these dipaths and dicycles to
improve our solution S. However, such paths and cycles can be arbitrarily long, thus implying a
prohibitively high running time. To overcome this issue, we will use an idea of Lee et al. [31, Lemma
3.1], in which these long paths and cycles are cut into pieces of length O(p) for some constant p.
Such pieces will then allow us to perform local search in polynomial time.

Precisely, for each dipath/dicycle Di, we number the vertices of O\S along the path consecutively.
For each Di, we create p+ 1 copies Di,0, . . . , Di,p and in the copy Di,q we throw away vertices that
are labeled q modulo p + 1. By cutting these dipaths/dicycles, now the corresponding exchanges
contain only up to 2p vertices from O\S and at most 2p + 1 vertices from S\O. Notice that these
shortened paths A remain feasible, i.e., I∆V (A) ∈ I1 ∩ I2.

Algorithm 5 Local search algorithm for maximum vertex cover under two matroid constraints

1: function Local-Search-2Matroids(M, V, E, p, ε)
2: S ← a common independent set in I1 ∩ I2 obtained in polynomial time and providing a

constant approximation ratio (for instance the algorithm in [31], or just greedy)
3: while ∃A ⊆ S,B ⊆ V \S such that g(S −A+B) > (1 + ε)g(S), |A| ≤ 2p+ 1, |B| ≤ 2p, and

S −A+B ∈ I1 ∩ I2 do
4: S ← S −A+B

5: return S

Algorithm 5, a local search algorithm allowing exchanges size up to 2p, exploits exactly the above
idea. Here the potential function g is defined by (1) as in Section 5.1. Again α0 = 0, α1 = 1, and
we decide the value of α2 later.

Consider the family {Di,q}1≤i≤t,0≤q≤p and all the exchanges they contain, which are denoted
{(Ai, Bi) ⊆ S\O × O\S}1≤i≤t′ . Each element of O\S appears in exactly p2s exchanges and each
element of S\O in (p + 1)2s exchanges. As S is a local optimum, all these exchanges satisfy the
inequality of Algorithm 5:

∀1 ≤ i ≤ t′, (1 + ε)g(S) ≥ g(S −Ai +Bi),

and summing over all these inequalities:

t′(1 + ε)g(S) ≥
t′∑

i=1

g(S −Ai +Bi).

Using the sets Ex,y,z as defined in Section 5, we have the inequality analogous to inequality (2):

t′(1 + ε)g(S) = t′(1 + ε)
∑
x,y,z

αx+yw(Ex,y,z) ≥
t′∑

i=1

g(S −Ai +Bi) ≥
∑
x,y,z

β′
x,y,zw(Ex,y,z)

where the β′
x,y,z are equal to:

β′
2,0,0 = (t′ − (p+ 1)2s)α2

β′
0,2,0 = t′α2

19

β′
0,0,2 = p2sα2

β′
1,0,1 = t′ − (2p+ 1)2s + p2sα2

β′
1,1,0 = (t′ − (p+ 1)2s)α2 + (p+ 1)2s

β′
0,1,1 = t′ − p2s + p2sα2

β′
1,0,0 = t′ − (p+ 1)2s

β′
0,1,0 = t′

β′
0,0,1 = p2s

There are only two nontrivial cases: when (x, y, z) = (2, 0, 0), the worst situation is when, for a
given edge e, all the exchanges involve both of its two endpoints. To see this, recall that the two
endpoints appear in total of 2(p + 1)2s times in the family {Di, q}1≤i≤t,0≤q≤p, so if l exchanges
involve both endpoints, the coefficient for this edge is (t′ − 2(p + 1)2s + l)α2 + (2(p + 1)2s − 2l),
which is minimized when l = p2s. For the other case (x, y, z) = (0, 0, 2), the worst situation for an
edge e is similarly when all the exchanges involve both of its endpoints.

Similar to the previous section, we can derive an inequality analogous to (3):∑
x,y,z

(k(1 + ε)αx+y − β′
x,y,z + p2s ·1y+z≥1) ·w(Ex,y,z) ≥ p2s ·w(O).

Similar to the previous section, we define

γ′
x,y,z = k(1 + ε)αx+y − βx,y,z + p2s ·1y+z≥1.

If for all x + y + z ≥ 2 we have γ′
x,y,z ≤ θ, and if x = y = 0 we have r′x,y,z ≤ 0, then

θ ·w(S) ≥ p2s ·w(O). We write down all these coefficients and their corresponding constraints:

γ′
2,0,0 = (t′ + t′ε)α2 − (t′ − (p+ 1)2s)α2 = (p+ 1)2sα2 + t′εα2 ≤ θ

γ′
0,2,0 = (t′ + t′ε)α2 − t′α2 + p2s = p2s + t′εα2 ≤ θ

γ′
0,0,2 = −p2sα2 + p2s = −p2sα2 + p2s ≤ 0

γ′
1,0,1 = (t′ + t′ε)− (t′ − (2p+ 1)2s + p2sα2) + p2s = (3p+ 1)2s − p2sα2 + t′ε ≤ θ

γ′
1,1,0 = (t′ + t′ε)α2

− ((t′ − (p+ 1)2s)α2 + (p+ 1)2s) + p2s = (p+ 1)2sα2 − 2s + t′εα2 ≤ θ

γ′
0,1,1 = (t′ + t′ε)− (t′ − p2s + p2sα2) + p2s = 2p2s − p2sα2 + t′ε ≤ θ

γ′
1,0,0 = (t′ + t′ε)− (t′ − (p+ 1)2s) = (p+ 1)2s + t′ε ≤ θ

γ′
0,1,0 = (t′ + t′ε)− t′ + p2s = p2s + t′ε ≤ θ

γ′
0,0,1 = −p2s + p2s = 0 ≤ 0

setting α2 = 3/2 we get θ = (p+ 1)2s · 3/2 + t′ε · 3/2, and therefore(
3

2

(
1 +

1

p

)
+

3t′ε

2p2s

)
·w(S) ≥ w(O).

If we denote k = min{k1, k2} the minimum rank among the two matroids, then we know that
t′ ≤ k2s, therefore we get: (

3

2

(
1 +

1

p

)
+

3kε

2p

)
·w(S) ≥ w(O).

Using the same partial enumeration technique as in Section 5, one can get, for a fixed p, a polynomial-
time algorithm providing a 2/3 · (1− 1/(p+ 1)) approximation.

Theorem 20. Algorithm 5 is a local search algorithm providing a 2/3 · (1−1/(p+1)) approximation
using nO(p) arithmetic operations and matroid oracle calls.

20

7 Conclusion and Open Questions
Theorem 8 allows us to generalize the cardinality constraint to some special cases of matroid con-
straints, and these ideas could be useful for other kernelization algorithms. Regarding the bounds of
Theorem 8, tight examples can be built to show that the values of τ provided are the best possible
for partition and laminar matroids. For transversal matroids it is less clear whether the bound
for τ can be improved or not. The most important open question regarding this result is whether
Theorem 8 can be generalized to other types of matroids.

Regarding local search, we have shown some limitations of the current techniques, which cannot
exceed a 2/3 approximation. Thus to close the gap between local search and LP techniques one
would have to use new techniques, for instance by introducing a new type of objective function for
this problem.

References
[1] Alexander A. Ageev and Maxim Sviridenko. Approximation algorithms for maximum coverage

and max cut with given sizes of parts. In Gérard Cornuéjols, Rainer E. Burkard, and Gerhard J.
Woeginger, editors, Integer Programming and Combinatorial Optimization, 7th International
IPCO Conference, Graz, Austria, June 9-11, 1999, Proceedings, volume 1610 of Lecture Notes
in Computer Science, pages 17–30. Springer, 1999.

[2] Per Austrin and Aleksa Stankovic. Global cardinality constraints make approximating some
max-2-CSPs harder. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA,
USA, volume 145 of LIPIcs, pages 24:1–24:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019.

[3] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans,
Louisiana, USA, January 7-9, 2007, pages 434–443. SIAM, 2007.

[4] Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos, and Georgios Stamoulis. Purely com-
binatorial approximation algorithms for maximum k-vertex cover in bipartite graphs. Discret.
Optim., 27:26–56, 2018.

[5] Vladimir Braverman, Zaoxing Liu, Tejasvam Singh, N. V. Vinodchandran, and Lin F. Yang.
New bounds for the CLIQUE-GAP problem using graph decomposition theory. Algorithmica,
80(2):652–667, 2018.

[6] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 649–658. IEEE Computer Society, 2012.

[7] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodu-
lar set function subject to a matroid constraint (extended abstract). In Matteo Fischetti and
David P. Williamson, editors, Integer Programming and Combinatorial Optimization, 12th In-
ternational IPCO Conference, Ithaca, NY, USA, June 25-27, 2007, Proceedings, volume 4513
of Lecture Notes in Computer Science, pages 182–196. Springer, 2007.

21

[8] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

[9] Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: Matchings,
matroids, and more. In Jon Lee and Jens Vygen, editors, Integer Programming and Combina-
torial Optimization - 17th International Conference, IPCO 2014, Bonn, Germany, June 23-25,
2014. Proceedings, volume 8494 of Lecture Notes in Computer Science, pages 210–221. Springer,
2014.

[10] Sourav Chakraborty and Oded Lachish. Improved competitive ratio for the matroid secre-
tary problem. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
1702–1712. SIAM, 2012.

[11] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming algorithms for submodu-
lar function maximization. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 318–330. Springer, 2015.

[12] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344.
SIAM, 2016.

[13] William H. Cunningham. Testing membership in matroid polyhedra. J. Comb. Theory, Ser.
B, 36(2):161–188, 1984.

[14] Jack Edmonds and D.R. Fulkerson. Transversals and matroid partition. Journal of Research
National Bureau of Standards Section B, 69:147–153, 1965.

[15] Uriel Feige and Michael Langberg. Approximation algorithms for maximization problems aris-
ing in graph partitioning. J. Algorithms, 41(2):174–211, 2001.

[16] Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Streaming
submodular maximization under matroid constraints. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 59:1–
59:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[17] Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1189–1201. SIAM, 2015.

[18] Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020.

[19] Yuval Filmus and Justin Ward. The power of local search: Maximum coverage over a matroid.
In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on Theoretical
Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France,
volume 14 of LIPIcs, pages 601–612. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

22

[20] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization
subject to a matroid constraint. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 659–668. IEEE
Computer Society, 2012.

[21] Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-
oblivious local search. SIAM J. Comput., 43(2):514–542, 2014.

[22] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized complexity of generalized
vertex cover problems. In Frank K. H. A. Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack,
editors, Algorithms and Data Structures, 9th International Workshop, WADS 2005, Waterloo,
Canada, August 15-17, 2005, Proceedings, volume 3608 of Lecture Notes in Computer Science,
pages 36–48. Springer, 2005.

[23] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for
k-cut. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 113–123. IEEE Computer Society,
2018.

[24] Qiaoming Han, Yinyu Ye, Hantao Zhang, and Jiawei Zhang. On approximation of max-vertex-
cover. Eur. J. Oper. Res., 143(2):342–355, 2002.

[25] Qiaoming Han, Yinyu Ye, and Jiawei Zhang. An improved rounding method and semidefinite
programming relaxation for graph partition. Math. Program., 92(3):509–535, 2002.

[26] Dorit S Hochbaum and Anu Pathria. Analysis of the greedy approach in covering problems.
Naval Research Quarterly, 45:615–627, 1998.

[27] Chien-Chung Huang and François Sellier. Matroid-constrained maximum vertex cover: Ap-
proximate kernels and streaming algorithms. In Artur Czumaj and Qin Xin, editors, 18th
Scandinavian Symposium and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022,
Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022.

[28] Sungjin Im and Yajun Wang. Secretary problems: Laminar matroid and interval scheduling.
In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 1265–1274. SIAM, 2011.

[29] Naoyuki Kamiyama. A note on robust subsets of transversal matroids. CoRR, abs/2210.09534,
2022.

[30] Felix Lazebnik, Vasiliy A Ustimenko, and Andrew J Woldar. A new series of dense graphs of
high girth. Bulletin of the American mathematical society, 32(1):73–79, 1995.

[31] Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple ma-
troids via generalized exchange properties. Mathematics of Operations Res., 35(4):795–806,
2010.

[32] André Linhares, Neil Olver, Chaitanya Swamy, and Rico Zenklusen. Approximate multi-
matroid intersection via iterative refinement. In Andrea Lodi and Viswanath Nagarajan, editors,
Integer Programming and Combinatorial Optimization - 20th International Conference, IPCO
2019, Ann Arbor, MI, USA, May 22-24, 2019, Proceedings, volume 11480 of Lecture Notes in
Computer Science, pages 299–312. Springer, 2019.

23

[33] Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224–237. ACM, 2017.

[34] Pasin Manurangsi. A note on max k-vertex cover: Faster fpt-as, smaller approximate kernel
and improved approximation. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA,
volume 69 of OASIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[35] Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k -coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62–81. SIAM, 2020.

[36] Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–
78, 2008.

[37] Andrew McGregor, David Tench, and Hoa T. Vu. Maximum coverage in the data stream
model: Parameterized and generalized. In Ke Yi and Zhewei Wei, editors, 24th International
Conference on Database Theory, ICDT 2021, March 23-26, 2021, Nicosia, Cyprus, volume 186
of LIPIcs, pages 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[38] L. Mirsky and H. Perfect. Applications of the notion of independence to problems of combina-
torial analysis. Journal of Combinatorial Theory, 2:327–357, 1965.

[39] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends Theor. Comput.
Sci., 1(2), 2005.

[40] András Recski. Matroid Theory and its Applications in Electric Network Theory and in Statics.
Springer-Verlag, 1989.

[41] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer, 2003.

[42] José A Soto. A simple ptas for weighted matroid matching on strongly base orderable matroids.
Electronic Notes in Discrete Mathematics, 37(0):75–80, 2011.

[43] D.J.A Welsh. Transversal theory and matroids. Canadian Journal of Mathematics, 21:1323–
1302, 1969.

A An FPT-AS for Hypergraphs
Suppose that we are given a hypergraph G = (V,E) with edge size bounded by a constant η ≥ 2.
We proceed as in Section 2. First, notice that:

EG(S) = EG(O
in) + EG(U

∗)− EG(O
in, U∗).

We bound E[EG(O
in, U∗)] as follows. By construction, P[u ∈ U∗] = ε for all u ∈ U . Then,

E[EG(O
in, U∗)] =

∑
e∈E,e∩Oin ̸=∅

w(e) ·1[e ∩ U∗ ̸= ∅] ≤
∑

e∈E,e∩Oin ̸=∅

w(e) · (η − 1) · ε

= ε · (η − 1) ·E[EG(O
in)].

24

using union bound and the fact that at most η − 1 endpoints can be in U . Furthermore, the value
E[EG(U

∗)] can be rearranged as follows:

E[EG(U
∗)] = E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) ·
|e ∩ U∗| − 1

|e ∩ U∗|

≥E

∑
u∈U∗

degw(u)−
∑

e∈δ(u)

w(e) ·
η − 1

η
·1[e ∩ U∗\{u} ≠ ∅]

≥E

∑
u∈U

degw(u) ·1[u ∈ U∗]−
∑

e∈δ(u)

w(e) ·
η − 1

η
·1[u ∈ U∗ ∧ e ∩ U∗\{u} ≠ ∅]

≥E

∑
u∈U

degw(u) · ε− η − 1

η

∑
e∈δ(u)

w(e) · (η − 1) · ε2

≥ ε · (1− ε · (η − 1))

(∑
u∈U

degw(u)

)
.

Recall that by robustness, for all u ∈ Oout, the elements of Uu have weighted degree no less than
the one of u. Therefore,

E[EG(U
∗)] ≥ ε · (1− ε · (η − 1))

(∑
u∈Oout

∑
v∈Uu

degw(v)

)

≥ ε · (1− ε · (η − 1))

(∑
u∈Oout

1

ε
· degw(u)

)
≥ (1− ε · (η − 1)) ·EG(O

out).

As a result, we get:

E[EG(S)] ≥ EG(O
in) + (1− ε · (η − 1)) ·EG(O

out)− ε · (η − 1) ·EG(O
in)

≥ (1− ε · (η − 1)) ·EG(O).

By averaging principle, there exists a set S ⊆ V ′ such that S ∈ I and such that EG(S) ≥ (1− (η −
1) · ε) ·EG(O).

B Streaming FPT-AS Algorithm for Hypergraphs
Here we suppose that we are given a hypergraph G = (V,E) with edge size bounded by a constant
η ≥ 2 as an adjacency list stream. Using the idea of Theorem 16 and the result of Appendix A,
one can get in the incidence streaming model a (1− (η− 1) · ε) approximation using O(τη) memory,
where τ depends on the type of matroid, as prescribed in Theorem 8. In fact, we can maintain
through the execution of the algorithm for each subset of at most η elements S ⊆ V ′ the sum of
the weight of the hyper-edges e such that e ∩ V ′ = S (just like in the proof of Theorem 16 where
we keep track of these values for pairs in V ′). For instance, for a uniform, a partition, or a laminar
matroid, we could get a (1− ε) approximation using O((2η · k

ε)η) variables. This shows that for the
special matroids that we studied of rank k, a weighted coverage function with bounded frequency η
can be (1− ε) approximated in streaming. This extends a result of [37] to matroids.

25

C Local Search with the Objective Function EG

Let ε > 0. When the cover function EG is used for the local search, we use the example depicted in
Figure 5, where the constraint is a uniform matroid of rank k. This example is very similar to the
one in Section 5.3. We show that for any p, if k is large enough, the set S = {ai}1≤i≤k is a local
optimum of EG, even if p simultaneous exchanges at the same time are allowed. As the solution S
has value EG(S) = k2 while the optimal solution O = {bi}1≤i≤k has value EG(O) = k2+k2 · (1−ε),
the approximation guarantee of such an algorithm cannot be better than 1/2.

We can observe that the most interesting exchanges have to be of the form ai ↔ bi. If we perform
p such exchanges, for instance a1, . . . , ap ↔ b1, . . . , bp then the gain for the value of g is:

EG(S + {b1, . . . bp} − {a1, . . . ap})− EG(S)

= −p(k − p) for {ai, bi} such that i ≤ p, j > p

+ pk · (1− ε) for {bi, ci} such that i ≤ p

= −p(k − p) + pk · (1− ε) = −pkε+ p2

as ε > 0, when k is big enough the gain becomes negative. Therefore, when k is big enough,
S = {ai}1≤i≤k is a local optimum even if p exchanges are allowed.

a1 a2 a3 · · · ak

b1 b2 b3 · · · bk

c1 c2 c3 · · · ck

Figure 5: Example when the function used for local search is EG. The edges between the ais and
the bis are of weight 1, and those between the bis and the cis are of weight k · (1− ε).

26

	Introduction
	Kernelization Framework
	Proof of Theorem 8
	Partition Matroids
	Laminar Matroids
	Transversal Matroids

	Streaming Algorithms
	Local Search Algorithms for General Matroids
	A 2/3 Polynomial-Time Local Search Approximation Algorithm
	A 3/4 FPT Approximation Algorithm
	Allowing Exchanges of Size p Does Not Improve the Ratio

	Local Search Algorithm for Two Matroids
	Conclusion and Open Questions
	An FPT-AS for Hypergraphs
	Streaming FPT-AS Algorithm for Hypergraphs
	Local Search with the Objective Function EG

