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Abstract

We determine sharp bounds on the price of bandit feedback for several variants
of the mistake-bound model. The first part of the paper presents bounds on the
r-input weak reinforcement model and the r-input delayed, ambiguous reinforcement
model. In both models, the adversary gives r inputs in each round and only
indicates a correct answer if all r guesses are correct. The only difference between
the two models is that in the delayed, ambiguous model, the learner must answer
each input before receiving the next input of the round, while the learner receives
all r inputs at once in the weak reinforcement model.

In the second part of the paper, we introduce models for online learning with
permutation patterns, in which a learner attempts to learn a permutation from a
set of permutations by guessing statistics related to sub-permutations. For these
permutation models, we prove sharp bounds on the price of bandit feedback.

1 Introduction

We investigate several variants of the mistake-bound model [11]. In the standard model [1,
12] (also called the standard strong reinforcement learning model [1]), a learner attempts
to classify inputs (in the set X) with labels (in the set Y') based on a set of possible
functions f : X — Y in F. The learning proceeds in rounds, and in each round the
adversary gives the learner an input, and the learner must then guess the corresponding
label. After each round, the adversary informs the learner of the correct answer (and
therefore whether the learner was right or wrong). A variant of this model is the standard
weak reinforcement learning model [1, 2], where the adversary only tells the learner yes
if they were correct and no otherwise. This variant is also commonly called the bandit
model [5, 6, 7, 10, 12].

For any learning scenario, we generally let opt,.....io(F’) represent the optimal worst
case number of mistakes that a learning algorithm can achieve [1]. For example, for the
bandit model and the standard model, the optimal worst case performances of learning
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algorithms would be denoted optye, (F) = 0DPtyaai(F) and optyq(F) = 0Ptegong(F)
respectively. There are some obvious inequalities that follow by definition, such as
OPtgtrong (F1) < 0Ptyear (F), just from the fact that the learner has strictly more information
in one scenario compared to the other.

In [1], Auer and Long defined the r-input delayed, ambiguous reinforcement model and
compare it to a modified version of the standard weak reinforcement model (henceforth
called the r-input weak reinforcement model). The delayed, ambiguous reinforcement
model is a situation where the learner receives a fixed number (r) of inputs each round,
and each input is given to the learner after they have answered the previous one. On
the other hand, the learner receives all r inputs at once for each round in the modified
weak reinforcement model. In both situations, at the end of every round of r inputs,
the adversary says yes if the learner answered all r inputs correctly and no otherwise.
To compare the two situations, Auer and Long defined CART, (F) (where F is a set
of functions f : X — Y) to be a set of functions f' : X" — Y” where each f € F
has a corresponding f' € CART,(F) such that for any zy,xs,...,2, € X, we have
(1, 29,...,2)) = (f(z1), f(x2),..., f(z,)). They used optyeu (CART, (F)) to represent
the optimal worst-case performance in the modified weak reinforcement setting and
0Pty (F) to represent the optimal worst-case performance in the r-input delayed,
ambiguous reinforcement model. Auer and Long proved that the two situations are
not equivalent for the learner in [1] by showing that that there is some input set X and
set [ of functions from X to {0, 1} such that opt, .., (CART:(F)) < opt,, o(F).

In Sections 2 and 3, we obtain sharp bounds on the maximum possible multiplicative
gap between opt,, .(F') and opt., (CART,(F)). In particular, we show that the multiplicative
gap between opt,,,,, .(F') and opt. (CART,(F)) can grow exponentially with r, generalizing
Auer and Long’s result from [1] for r = 2. Combined with a bound from [1], our new
result shows that the maximum possible multiplicative gap between opt,,, .(F) and
0Pt e (CART, (F)) is 2r(1#e() - Moreover, we give sharp bounds on opt,,., (CART,(F))
(in Section 2) and opt,,, .(F) (in Section 3) for all sets F' which are a subset of the
non-decreasing functions from X to {0, 1}.

In a different paper, Long [12] also determined sharp bounds comparing the standard
model and the standard weak reinforcement model for multi-class functions. Long proved
the upper bound opty 4 (F') < (14 0(1))(|Y|In|Y]) optyq(F') and constructed infinitely
many F for which opty,qic (F) > (1—0(1))(|Y|In]Y]) optq(F') as alower bound. Geneson
corrected an error in the proof of the lower bound [9].

In Section 4, we generalize this result to determine a lower bound and upper bound
on the maximum factor gap between opt,,,. (CART,(F)) and optyy(F) for multi-class
functions using probabilistic methods and linear algebra techniques. The proof uses
techniques previously used for experimental design [15, 14] and hashing, derandomization,
and cryptography [4, 13]. We also determine a lower bound and upper bound on the
maximum factor gap between opt,, .(F') and opty,(F'). The bounds in this section are
sharp up to a factor of r(1 + o(1)).

In Section 5, we define several new models where the learner is trying to guess a
function from a set of permutations of length n. In the order model, the adversary
chooses r inputs, and the learner attempts to guess the corresponding sub-permutation.
In the comparison model, the adversary instead chooses r pairs of inputs, and the learner
attempts to guess for each pair whether or not it is an inversion. In the selection
model, the adversary chooses r inputs, and the learner attempts to guess which has



the maximum evaluation. In the relative position model, the adversary chooses r inputs
and an additional distinguished input x, and the learner attempts to guess the relative
position of z in the sub-permutation corresponding to all r 4+ 1 of these inputs. Finally,
in the delayed relative position model, the adversary instead gives the r elements to
be compared to z one at a time. We first establish general upper bounds, and then
we discuss adversary strategies for a few special families of permutations that resemble
sorting algorithms.

Finally, in Section 6, we discuss some future directions based on the results in this
paper.

2 Bounds on opt,,, (CART,(F))

In this section, we establish upper and lower bounds on opt,... (CART, (F')) for families
F' of non-decreasing functions that are within a constant factor of each other. We show
for such families F' that optye(CART,(F)) = (1 £ o(1))r In(| F).

Definition 1. Without loss of generality impose an ordering on the set X, and call its
elements {1,2,...,|X]|}. Let F' = {f1, fo...., fir|} be a subset of the functions from X
to {0,1}. We say that F' is non-decreasing if every function in F' is non-decreasing.

In other words, there are integers 1 < a; < ap < -+ < qp < |X|+ 1 which are the
minimum numbers such that f;(a;) = 1 (with the convention that ajp| = |X|+ 1 if fip is
identically 0) and satisfy the following property for each 1 <i < |F|:

e If x > q;, then fi(z) = 1.
o If z < a;, then f;(x) =0.

Remark 2. Let F' be non-decreasing. For a function f € F and any choice of r
inputs from the set X, there are at most r + 1 possible values of the corresponding
outputs (f(z1),..., f(x,)), namely (0,0,...,0,0), (0,0,...,0,1), ..., (0,1,...,1,1), and
(1,1,...,1,1).

2.1 Bounds on opty,. (CART,.(F))

The following theorem establishes an upper bound on opt.,...(CART, (F')) by exhibiting
a possible learner strategy.

Theorem 3. For non-decreasing F, optyu (CART,.(F)) < (r+1) - In(|F).

Proof. The learner’s strategy: pick the answer that corresponds to the most functions.
By Remark 2, we know that there are at most r + 1 such answers.

Each time the adversary says no, if the learner previously knew that there were T’
possible functions left, then the learner is able to reduce the number of possible functions

left by at least % Thus, each answer of mo means that the number of remaining

possibilities is multiplied by a factor of at most 47 on each turn.
Then, the learner will make at most
In(|F]) _ In(|F])
0N <1
m(1+7) 5

logras (| F]) = = (r+1) - In(|F])



mistakes, as desired. 0

Next we establish a lower bound on opt
the adversary.

(CART,.(F)) by exhibiting a strategy for

weak

Theorem 4. For non-decreasing F', opt e (CART,.(F)) > (1 — o(1))rIn(|F|) as |F| —
0.

Proof. In each round, the adversary will say no. When they do this, some functions fail
to remain consistent with the answers given by the adversary. Let I C F' be the current
set of functions that are consistent with the answers that the adversary has given so far.
Furthermore, with F' = {g1,¢2,...,gp}, define 1 < by < by < -+ < byp| < | X[+ 1 as
the minimum numbers such that g;(b;) = 1 (with the convention that bjp = |X|+ 1 if
fir is identically 0).

In each round, the adversary will choose the inputs

for 1 < ¢ < r. Then, no matter what the learner says, the adversary says no. This

guarantees that the number of remaining consistent functions decreases by at most [%-‘

functions per round. Thus, the adversary can continue for at least

In(|£1)

mT ) > (1= o(1))rIn(|FT)

(1 - 0(1) logess (|FJ) = (1 - o(1)) -

turns. Therefore, the adversary guarantees that they can say no at least (1—o(1))r In(|F|)
times, as desired. O

Combining the above bounds, this implies that for non-decreasing F', we have the
following theorem:

Optweak(CARTT(F)) — 1

Theorem 5. For non-decreasing F', lim lim SI(F]) =

r—00 |F| =00

3 Bounds on opt,,, ()

In this section, we show that opt,,.(F) = (1 — 0o(1))2"In(|F|) as |F|,r — oo for
non-decreasing families F'. The upper bound in this section is applicable to all families of
functions F', but the lower bound is only applicable for non-decreasing sets of functions
F'| as with the bounds established in Section 2.

We prove the following theorem, a general upper bound for opt,, .(F), using a learner
strategy that does not make any assumptions about the set F'. In particular, F' does not
have to be non-decreasing.

Theorem 6. For all F, opt,,;, . (F) < min(2" In(|F|), |F]).

amb,r

Proof. For each input that the adversary gives, the learner picks the answer that corresponds
to the most functions which were consistent with all answers before the round started
and also consistent with all earlier guesses in the current round.

4



Each time the adversary says no, if the learner knew that there were T possible
functions remaining before the round started, then they can guarantee that their answer
for all r inputs is consistent with at least 2% of those functions. To see this, note that
by induction, at least 2% of the functions will be consistent with the k answers they have
given so far for each 1 < k < r. Therefore, each time the adversary says no the number
of remaining possible functions is multiplied by at most £=L. So, the learner makes at

27‘
most

In(lF])  _ In(jF]) _
In (1 - ) L
271 2"

log_or _(|F]) = 2" - In(|F)

or
27 —1

mistakes with this strategy.

The learner’s strategy to get opt,,;, .(F') < [F|—1: Each time the adversary says no,
the learner can eliminate at least 1 function. Once the learner has eliminated |F| — 1
functions, no more errors will be made. O

For the following lower bound on opt (F), we again assume that F'is non-decreasing.

amb,r

Theorem 7. For non-decreasing F, opt,, .(F) > (1 —0(1))(2" —1) In(|F|) as |F| — oc.

Proof. The adversary will say no at the end of each round. For each round, the adversary
will choose a series of input values x; based on the answers given by the learner. In each
subround, the next input x; is determined as follows: suppose that S is the set of all
functions that are consistent with all previous adversary answers from past rounds as
well as all the answers of the learner from the current round.

Since S C F', we can then set S = {g1,092,...,9;5)} and define 1 < b; < by < --- <
bis) < |X|+ 1 as the minimum numbers such that g;(b;) = 1 (with the convention that
bis) = | X| + 1if fg is identically 0).

The adversary then chooses x; = br|sj7 for the current subround. This guarantees

2

that at each subround, the number of functions consistent with all of the adversary’s

previous answers as well as all of the learner’s answers in the current round reduces by
S|
2
answers at the beginning of the current round, then at the end of the round, at most

(QZJ functions become inconsistent with the adversary’s answers. Here, we are repeatedly

at most { —‘ Thus, if T functions were consistent with all of the adversary’s previous

using the fact that {%-‘ = {ﬂ for all positive reals x and positive integers n.

This means that the adversary can continue to say no for at least

In(| £7)

(1 —o(1))log 2 (|F]) = (1 - 0(1))m

> (1 =o(1))(2" = 1) In(|FY)

turns, as desired. O

Combining the above bounds, this implies that for non-decreasing F', we have the
following theorem:

Optamb,r (F)

2rn(|F)) L.

Theorem 8. For non-decreasing F', lim lim
r—oo |F|—oo

Theorem 5 and Theorem 8 imply for non-decreasing families of functions F' that for
sufficiently large r and |F'| that learners who are given all inputs at the beginning of each



round do exponentially better in r than their counterparts who receive inputs one at a
time in each round.

In [1}, Auer and Long proved that opt,,, . (F) < 2(In2r) - 2" - opty,(F). Since
optyq(F) < optyea (CART,.(F)) for all families of functions F', this implies the following
result when combined with our Theorem 5 and Theorem 8.

Optamb,r (F)

Theorem 9. The mazimum possible value of ot (CART, (F
weak T

F with |F| > 1 is 2r(#e()

5y over all families of functions

4 Comparing opty.. (CART,(F')) and opt,, .(F') to optyq(F)
for multi-class functions

In [12], Long compared the standard and bandit model for families of multi-class functions,
and determined a bound on the maximum multiplicative gap between them. There was an
error in Long’s proof of the lower bound, but Geneson fixed this error in [9]. In this section,
we bound the maximum multiplicative gap between opt,...(CART,(F')) and opty,(F)
using similar methods, as well as the maximum multiplicative gap between opt,,, ,.(F')
and optgy(F'). For each of the gaps, the proof of the lower bound employs techniques
previously used for experimental design, hashing, derandomization, and cryptography [13,
4, 15, 14]. We also adapt the proof of the upper bound in [12] to show that our lower
bounds are sharp up to a factor of (1 + o(1)).

In order to obtain the lower bounds, we prove the following three lemmas which
generalize results from [12] and [9]. For the rest of this section, we assume that p is a
prime number.

Lemma 10. Fiz n > 2, suppose that zy,...,2z. € {0,...,p— 1}, and let uy, ..., u, each
be chosen uniformly at random from {0,...,p—1}". For any s € {1,....,p—1}", we
have

1
Pr(s-u; =2 modp foralll<i<r)=—
p?"

Proof. We have
Pr(s-u; =2 modpforalll <i<r)=

Pr (sjum =z — Z sipu; . mod p for all 1 <4 < r) =
k#j
Pr (u” = (2 — Z skui,k)sgl mod p for all 1 <i < r) =
1
pT
O

Lemma 11. Fix n > 2, and let uq,...,u, each be chosen uniformly at random from
{0,...,p—1}". For any s,t € {1,...,p—1}" that are not multiples of each other mod



p and for any z1, ...,z € {0,...,p— 1}, we have

1
Pr(t-u; =2 modp foralll <i<r|s-u;=2z modp foralll<i<r)=—.
p?"

Proof. By Lemma 10 and the definition of conditional probability, we have

Pr(t-u; =2 modpforalll1 <i<r|s-u;=z modpforalll<i<r)=
Pr(t-u; =2 modpforalll1<i<r A s-u;=2 modpforall<i<r)

Pr(s-u; =2 modp forall 1 <i<r)
p'Pr(t-u;=2 modpforalll <i<r A s-u;=2z modpforall<i<r).

Moreover
Pr(t-u; =2 modpforall<i<r A s-u;=2% modpforalll <i<r)=

[{(u1,...,up): t-u;=2 modp A s-u;=2 modp A u; €{0,...,p—1}" foralll <i<r}|
pnr :

In order to calculate
[{(u1,...,up): t-u;=2 modp A s-u;=2 modp A u; €{0,...,p—1}" forall 1 <i<r}|,

we must find the number of solutions (uq,...,u,) to the system of equations t - u; = 2;
mod p and s-u; =2; mod p forall 1 <i <.

We form an augmented matrix M with 2r rows and rn 4 1 columns from this system
of equations. From left to right, the entries of row i are (i — 1)n zeroes, then s, then
(r — i)n zeroes, then z; for each 1 < ¢ < r. The entries of row r + i are (i — 1)n zeroes,
then ¢, then (r — i)n zeroes, then z; for each 1 <i <.

We row-reduce M. Since s and t are not multiples of each other mod p, M has 2r
pivot entries. Therefore the system of equations has 2r dependent variables and (n — 2)r
independent variables. There are p choices for each of the independent variables, and the
dependent variables are determined by the values of the independent variables, so there
are p"~2)" solutions to the system of equations. Thus

" 1
Pr(t-u; =2 modpforalll <i<r|s-u; =z modpforalllgigr):%:—.
pr p"

]

Lemma 12. For any subset S C {1,...,p — 1}", there exists u = (uq,...,u,) with
Uty ur €40,. .., p— 1} such that for all z = (z1,...,2) € {0,...,p—1}",

S
HxeS:z-u;=2 (modp) foralll <i<r} < u+2\/|S|.
pT
Proof. Suppose that S is any subset of {1,...,p—1}", and let uy, ..., u, each be chosen
uniformly at random from {0,...,p —1}". For each z € {0,...,p—1}", let T, be the set
of z € S for which z - u; = z; for all i. By linearity of expectation, we have E(|7}|) = %
for all z.



Consider an arbitrary z € {0,...,p—1}". For each s € S, define the indicator random
variable X, , such that X, =1if s-u; = 2; for all 1 <7 <7, and X, , = 0 otherwise.
If s,t € S are not multiples of each other mod p, then Cov(X;., X;.) = 0 by Lemmas
10 and 11. If s and ¢t are multiples of each other with s # ¢, then Cov(X;,, X;.) =
E(Xs,th,z) - E(XS,Z)E(Xt,z)

If z contains any nonzero z;, then E(X,,X;,) = 0, giving Cov(X; ., X;.) = —I%.
Thus,

Var(|T.|) = Var (Z X, Z) = ZVar(XS,Z) + Z Cov (X5 2, Xt.2)

s€S ses s#t

1 S
< ZV&I’(X&Z) = |S| <F — p) < |pr|

5 . . ﬂ
By Chebyshev’s inequality, P (|TZ\ > 5 +2y |S|> <

_— 4])7’v *
Otherwise, E(X; . X;.) = 1%’ giving Cov (X, ., X .) = 1% — 1% < 1%' Note that there
are at most (p — 2)|S| ordered pairs (s,t) for which s and ¢ are multiples of each other
(mod p) with s # t. Thus,

Var(|T,|) = Var (Z X, z) = ZVar(XS,Z) + Z Cov(Xs 2, Xt.2)

ses ses s#£t

— 92 -9
<3 Var(x, )+ B8 1S1, = 2IS1 181
p" p" pr p"

By Chebyshev’s inequality, P (|TZ\ > % + 24/ |S|> <
By the union bound,

El p—1 1 3 —p+1 1
P(vz: | <212 /]8]) >1— — = > =,
( < | |— pr + | | — 4pr 4pr71 4pr 2

N[

Thus, the conditions are satisfied with probability greater than < when u is chosen
randomly, so there must always exist u satisfying the conditions. O

Next we prove the lower bound on the maximum possible multiplicative gap between
weak(CART ( )) and Optstd(F)'

Theorem 13. For all M > 2r and infinitely many k, there exists a set F' of functions
from a set X to a set’Y with |Y| =k such that optyy(F) = M and

(CART,.(F)) = (1 = o(1)) (Y']"In [Y']) (0ptysa(F) — 27).

Weak

Proof. Fixn >3 and p > 5. Foralla € {0,...,p—1}", we define f, : {0,...,p—1}" —
{0,...,p—1} so that f,(x) = a-x (mod p) and define Fy(p,n) = {f,:a € {0,...,p—1}"}.
It is known that optyy(FL(p,n)) = n for all primes p and n > 0 [17, 2, 3, 12].

We now determine a bound on opt....(CART, (Fr(p,n))). Let S ={1,...,p—1}",s0
|S| = (p—1)". Let Ry ={f,:a €S} C Fr(p,n). In each round ¢ > 1, the adversary will



create a list R; of members of {f, : @ € S} that are consistent with its previous answers.
They will always answer no and choose (x1,...,z,) that minimizes

.....

By Lemma 12, we have

R R 2R 1+ 2
SN Y LS/ S L B LT By Rt v
P p"/Inp p

12\t
as long as |R;| > p*"Inp. Thus, we have |Ry| > <1 — @) (p — 1)". Therefore,

p
-2\
whenever (1 — Tﬁm (p—1)" > p?" In p, the adversary can guarantee t wrong guesses.
This is true for t = (1 — o(1))np" In p, which gives the desired result. O

Remark 14. Since we have the trivial inequality opt,,.(F) > 0opty..(CART,(F))
because the learner has strictly more information in the scenario on the right hand side,
we also have opt,,;, .(F) > (1 —o(1)) (|Y[|"In|Y]) (optgy(F) — 2r) for the families F' =
Fr (p7 TL) :

Next we establish a similar upper bound relating opt ... (CART,(F)) and optgq(F).
For this bound, we use the fact that for all sets F' of functions f : X — Y, we have
optyq(CART,.(F)) = optyy(F'). We also use the bound opt,,, (F) < (140(1))(|Y]In|Y]) optyq(F)
which was proved in [12].

Theorem 15. For any set F' of functions from some set X to {0,1,...,k — 1} and for
anyr > 1,
OPbyear (CART,(F)) < (1 +0(1)) ([Y["rIn[Y]) optyq (F).

Proof. Substituting CART,.(F') for F' (and therefore setting Y in place of Y) in the
upper bound from [12] and using the fact that opty,(CART,(F')) = optyq(F), we get
OPtyea (CART,(F)) < (1 4 o(1))([Y]" In (JY]")) optysa (CART,(F))
= (L4 o) (Y]"rn [Y]) optyq (F).

0

Remark 16. Theorem 13 demonstrates that the upper bound in Theorem 15 is sharp
up to a factor of r(1+ o(1)).

Next we prove an upper bound for opt,,, (/') using a method from [12]. Like the
last bound, this one is sharp up to a factor of r(1 + o(1)).

Theorem 17. For any set F' of functions from some set X to {0,1,...,k — 1} and for
anyr > 1,
0Pt (F7) < (14 0(1)) (Y|"r In[Y']) optiq (F).



Proof. Consider an algorithm B for the r-input delayed, ambiguous reinforcement model
which uses a worst-case optimal algorithm Ay for the standard model and maintains
copies of A, which are given different inputs and answers. In each round, B chooses a
prediction by taking a weighted vote over the predictions of the copies.

Fix a = m Each copy of A, gets a weight, where the current weight is o” if the

copy has contributed to B making x mistakes in the earlier weighted votes. B uses these
weights to make a prediction for the current round by taking a weighted vote over the
predictions of each copy for the outputs of all r inputs. In case of ties, the winner is
chosen uniformly at random among the predictions that tied for the highest weight.

At the beginning, B starts with one copy of A;. Whenever it gets a wrong answer
for the outputs of the r inputs in the current round, any copy of A, which predicted an
answer that did not win the weighted vote is rewound as if the round did not happen, so
they forget the input and their answer. The copies of A, that predicted the wrong answer
which won the weighted vote are cloned to make k" — 1 copies, and each copy is given
a different answer for the outputs of the r inputs, which differs from the wrong answer
which won the weighted vote.

If W, is the total weight of the copies of A, before round ¢, we must have W, >
aPtsa(F) since one copy of A, always gets the correct answers. Moreover, if B makes
a mistake in round ¢, then copies of A with total weight at least % are cloned to
make k" — 1 copies which each have weight « times their old weight. This implies that

Wip1r < (1= 52)We + (k" = W) < (1= 5)W; + alWs.

Thus after B has made = mistakes, we have W, < (1— k% +a)” < e~(r =7 Therefore

n(L)o
e~ (= > OoPtsa(F ), s0x < M, which implies the desired bound. O

kT

5 New Models for Permutation Functions

In this section, we define and explore new models where the family of possible functions
F' is a set of permutations of length n and where the learner tries to guess information
about the relative orders of inputs.

5.1 The Order Model

We first define a new variant model called the order model.

Definition 18. In the order model, for a set F' of permutations of n numbers, the learner
tries to guess a permutation function f € F. On each turn, the adversary chooses r
distinct inputs to f, i.e., a set S C [n] with |S| = r. The learner guesses the permutation
of {1,...,r} which is order-isomorphic to the outputs of f on the given inputs.

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct answer to the learner.
We denote the worst-case amount of mistakes for the learner with weak reinforcement as
OPbyeak < - (F7) and with strong reinforcement as optgg,ong < (F). Note that opty,one < (F) <
OPbtyeak <+ (F7). If 7 = 2, then strong and weak reinforcement are identical, so equality

holds.

10



We first find an upper bound for the order model by presenting a strategy for the
learner which is analogous to Theorem 6.

Theorem 19. Forr > 1, opt (F) <rlln|F|.

weak,<,r

Proof. For each input that the adversary gives, the learner can pick the answer that
corresponds to the most possible permutations. After each incorrect guess, at least an =
fraction of the previously possible permutations get eliminated. Therefore, the number
of incorrect guesses, and consequently the number of mistakes, is at most In = |F| <

rlln |F|. O

When F' = S, Theorem 19 shows that opte.. <2(Sn) < 2nlnn. We find a lower
bound on opt,.,, - (Sn) which is within a factor of 2+ o(1) of the upper bound. In order
to prove this bound, we define a function called p(n) and prove a lemma about it.

Definition 20. For n > 1, we let v, := |logyn| and define p(n) := Z U -

1<m<n

Lemma 21. Forn > 1, p(n) = (n+ 1)v, —2(2" — 1).

Proof. We prove this by induction. The base case n = 1 holds.

If n is not a power of two, then v,_1 = v,, so p(n) = p(n — 1) + v, = (nv, — 2(2" —
1) 4+ v, = (n+ v, —2(2" — 1), as desired.

Otherwise, n = 2™ is a power of two, so v,_1 = v, — 1 and p(2*") = p(2» — 1) + v, =
(2 (v, — 1) = 2(271 = 1)) + v, = (2" + 1)v, — 2(2" — 1), as desired. O

Now we present a strategy resembling insertion sort for the adversary which achieves
a lower bound of p(n).

Theorem 22. Under the order model, the adversary can achieve opt,,... - 2(Sn) > p(n)
for alln > 2.

Proof. The adversary withholds any inquiries about f(i) until the order of the smaller
inputs j < ¢ is known. We use induction to show the desired bound. The base case of
n = 2 clearly holds, since p(2) = 1.

For n > 2, by the inductive hypothesis, the adversary can force the learner to make
at least p(n — 1) mistakes without learning anything about f(n). Assume without loss of
generality that f(1),..., f(n — 1) are in increasing order.

The adversary then prolongs the learner from finding the position of f(n) by making
the learner do a binary search. Specifically, if at some point the learner’s bounds on f(n)
are a < f(n) < b, the adversary asks about (n, m) where m is 5 rounded to the nearest
integer, and says no to the learner’s prediction. In this way, the adversary ensures that
the number of possible values for f(n) is at least L “J after the learner’s guess. Since the
number of possible values starts at n, the adversary will be able to guarantee v,, mistakes
to find the value of f(n). Thus, optweak,<72(5n) > OPbyeak, < 2(Sn1) + 00 = p(n—1)+v, =
p(n), as desired. O

We also get a lower bound on opt. - (Sn) for 7 > 2 with a strategy that resembles
merge sort. This lower bound is within a (1 + o(1))rlnr factor of the upper bound
OPbyeak <+ (Sn) < (I —o(1))r!nInn which follows from Theorem 19.

11



Theorem 23. The adversary can achieve opt e, < (Sn) > (1 —o(1))(r — 1)Inlog, n as
n — oo and then r — oo.

Proof. We use strong induction on n.

First, the adversary divides [n] into L%J sets S; each of size r (ignoring any remaining

elements). For each i, the adversary repeatedly asks for ordering of S;, saying “NO” each
time until the order is known by the learner. This takes a total of L%J (r! — 1) mistakes.

Then, the adversary forms sets C; from the relative j elements of each set, and uses
the induction hypothesis on n; note that knowing any of C}’s orders does not eliminate
possibilities for the orders of other C;. This gives a recursion of the form opt,,... - .(Sn) >

(I —=o(1))n(r—1)!+ TOtheak,<,r(SLgJ) =(1—0(1))(r —1)nlog,.(n), as desired. O

5.2 The Comparison Model

We define a second variant called the comparison model.

Definition 24. In the comparison model, for a set I’ of permutations of n numbers, the
learner tries to guess a permutation function f € F. On each turn, the adversary chooses
r distinct pairs of inputs to f, i.e., aset S C {(i,j) : 4,j € [n],i # j} with |S| =r. The
learner guesses for each pair (7, 7) whether or not f(i) < f(7).

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct choices to the learner.
We denote the worst-case amount of mistakes for the learner with weak reinforcement as
opt (F) and with strong reinforcement as 0pty,ong oo (F). Note that optyone o (F) <
opt F). If r = 1, then both sides of the equation are equal to 0Pty ong < o(F).

weak,c,r

weak,c,r(
We similarly get the following upper bound.
Theorem 25. If FF C S, opt (F) <2 -In|F|.

weak,c,r

Proof. For each input that the adversary gives, the learner can pick the answer that
corresponds to the most possible permutations. After each incorrect guess, at least a 2%
fraction of the previously possible permutations get eliminated. Therefore, the number
of incorrect guesses, and consequently the number of mistakes, is at most log 2r (|F|) <

or
27 —1

2 In|F). O

We present a strategy imitating quicksort to obtain the following lower bound.

Theorem 26. The adversary can achieve opt
and then r — oo.

(Sn) > (1—0(1))%nlogyn asn — oo

weak,c,r

Proof. The adversary first splits [n — 1] into L”—’IJ sets of size r with some leftover

elements. For every such set |S| with |S| = r, the adversary then queries the set of
pairs {(s,n) : s € S} at least 2" times, responding no each time until the answer is forced.
After all queries, the learner has made at least [2=1] (2" — 1) = (1 — o(1))%n mistakes.

The learner now at most knows the set of inputs ¢ for which 7(i) < w(n). The
adversary can therefore force the learner to make at least opt ey .- (Sr(n)-1) +0Pteak c.r (Sn—r(n))

more mistakes.

The total number of mistakes is thus at least 2((1 —o(1))% - 2Z(logyn — 1)) + (1 —
o(1))%n = (1 —o(1))%nlog, n in total, as desired. O

12



5.3 The Selection Model

We define another variant called the selection model.

Definition 27. In the selection model, for a set F' of permutations of n numbers, the
learner tries to guess a permutation function f € F. On each turn, the adversary chooses
r (not necessarily distinct) inputs to f, and the learner guesses the input x among them
that maximizes f(z).

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct choices to the learner.
We denote the worst-case amount of mistakes for the learner with weak reinforcement as
opt (F') and with strong reinforcement as optg,one s (F'). Note that optyong s (F) <
opt F). If r = 2, then both sides of the equation are equal to 0Pty g < o(F).

weak,s,r

weak,s,r(

Note that because the inputs the adversary chooses do not have to be distinct, the
adversary can effectively ask about any set of inputs of size at most r by using duplicates.

Theorem 28. Forr > 1,
Optweak,s,r<F) <rln ‘F|

Proof. For each input that the adversary gives, the learner can pick the input that is

maximal for the most possible remaining permutations. After each incorrect guess, at

least a % fraction of the previously possible permutations get eliminated. Therefore,

the number of incorrect guesses, and consequently the number of mistakes, is at most

log » (|F]) <rn|F]. O

We again imitate merge sort to provide a strategy for the adversary.

Theorem 29. The adversary can achieve opt Sn) > (1 —o(1))nrlog,.(n)/2 as

n — oo and then r — 00.

weak,s,r(

Proof. We use strong induction on n.

First, the adversary divides [n] into r sets S; each of size | 2] (ignoring any remaining

elements). For each i, the adversary uses the optimal strategy for L%J on S;, forcing a

total of at least 7 opt (SLEJ) mistakes.

weak,s,r

Then, the adversary repeatedly asks about the elements z; of each corresponding .5;
for 1 < i < r for which f(z;) is maximal, saying “NO” each time until their maximal
element, say x,,, is known. Then, the adversary deletes z,, from S, and repeats this
process until all sets are empty, which takes r L%J iterations in total.

The number of tries it takes the learner each time to guess correctly is the number of
possibilities for the maximal remaining element, which is the number of nonempty S;’s
remaining. Therefore, until one of the S;’s is empty, which takes at least |S;| = L%J
turns, the adversary can force the learner to make at least (r — 1) mistakes, and after
that (r —2), and so on all the way to 0 mistakes when all but one S; is empty. Therefore,
the learner throughout the process makes an average of at least (r — 1)/2 mistakes per

iteration, for r |2 - (r —1)/2 = (1 — o(1))nr/2 mistakes total.
Ths, 0Dt aenr(S) > (1= 0(1)1r/2 4 10Dty (S| 2 ) = (1~ o(1))r log, () /2,
as desired. 0
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5.4 The Relative Position Model

Next we define a variant called the relative position model.

Definition 30. In the relative position model, for a set I’ of permutations of n numbers,
the learner tries to guess a permutation function f € F. On each turn, the adversary
chooses a set S of r distinct inputs to f and an element x ¢ S, and asks about the
pair (x,S). The learner guesses the relative position of f(z) in the permutation of
{1,...,r 4+ 1} which is order-isomorphic to the outputs of f on {z} U S.

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct position to the learner.
We denote the worst-case amount of mistakes for the learner with weak reinforcement as
opt (F') and with strong reinforcement as opt (F). Note that opt (F) <

strong,p,r strong,p,r —
opt F). If r = 1, then both sides of the equation are equal to 0Pty ong < 2(F)-

weak,p,r

weak,p,r(
We again imitate Theorem 6 to obtain an upper bound for the relative position model.

Theorem 31. If FF C S, opt F)<(r+1)In|F|.

weak,p,r(
Proof. For each input that the adversary gives, the learner can pick the answer that
corresponds to the most possible permutations. After each incorrect guess, at least a %H
fraction of the previously possible permutations get eliminated. Therefore, the number

of incorrect guesses, and consequently the number of mistakes, is at most log.+1 (| F|) <
(r+1)In|F|. O

As with Theorem 22, we use a strategy resembling insertion sort to obtain the following
result.

Optweak,p,r(Sn) _ 1

Theorem 32. Under the relative position model, lim lim s

r—00 N—r00
Proof. The upper bound follows from Theorem 31. For the lower bound, we use strong
induction on n. The adversary withholds any inquiries about f(¢) until the order of the
smaller inputs j < 4 is known. Assume without loss of generality that f(1),..., f(n)
are in increasing order. Let g; be the function on [n] that maps m to 1 if m > i and
0 otherwise, and let G be the family of these functions. Note that these functions are
non-decreasing.

The remaining problem for the learner is equivalent to guessing gf(,+1), where the
adversary queries r values at a time. Thus by Theorem 4, the adversary can force the
learner to make at least opt,...(CART,(G)) = (1 — o(1))rInn mistakes on g1y, as
desired. O

In a similar fashion, we can prove a similar result for pattern-avoiding permutations.

Theorem 33. If S, . is the set of m-avoiding permutations of length n, then opt e p . (Snx) >
(I1—o0(1))rnln(k — 1) as n — oo and then r — oo, where k = || denotes the length of .

Proof. The adversary withholds any inquiries about f(i) until the order of the smaller
inputs j < ¢ is known. We use induction to show the desired bound.

Let N be the set of possible values of f(n + 1). Any number less than 7 (k) or more
than n — &k + (k) must be in N as it would not be able to form the permutation pattern

14



7, 80 |[N| > w(k)+k —1—m(k) =k — 1. Let the elements of N in increasing order be
S1, .. .,S|N‘.

Let g; be the function on [|N]|] that maps m to 1 if m > s; and 0 otherwise, and let
G be the family of these functions. Note that these functions are non-decreasing.

The remaining problem for the learner is equivalent to guessing gf(,+1), where the
adversary queries r values at a time. Thus by Theorem 4, the adversary can force the
learner to make at least opt,..,.(CART,.(G)) = (1 — o(1))rIn|N| > (1 — o(1))rin(k — 1)
mistakes, as desired. O

When 7 = I}, the identity permutation, the size of S, , is (k — 1)° [16]. The next
result follows from combining Theorems 33 and 31.

Corollary 34. For S, 1, the family of I-avoiding permutations of length n, optyea. p - (Sn,1,) =
O(rnlnk) as n — oo and then r — oo.

5.5 The Delayed Relative Position Model

In this subsection, we define delayed reinforcement for the relative position model.

Definition 35. In the delayed relative position model, for a set F' of permutations of
n numbers, the learner tries to guess a permutation function f € F. On each turn, the
adversary picks an input x and proceeds to give the r elements of a set S one by one
(with the requirement that = ¢ S). After each of the adversary’s inquiries, the learner
guesses either higher or lower. At the end of each round, the learner’s final guess for the
relative position of = in S is one plus the number of times they said higher.

Under weak reinforcement, the adversary informs the learner if their final guess is
incorrect, and under strong reinforcement, the adversary gives the correct position to
the learner. We denote the worst-case amount of mistakes for the learner with weak
reinforcement as opty, s, (F) and with strong reinforcement as optg, . .(#). Note that
opt F) < opt F), and that if » = 1, both sides of the equation are equal to
opt (F).

srpos,r( wrpos,r(

strong,<,2
We state the analogs of the relative position model results for the delayed version.

Theorem 36. Given a set of permutations F' C S, and a positive integer r, these analogs
of the results in Section 5.4 hold:

Analog of Theorem 31: opt (F) <2 In|F|.

WI'DOS,T

Analog of Theorem 32: lim lim m%m&) =1.
T—00 N—00

Analog of Theorem 83: 0Pty o, (Snx) = (1 —o(1))2"nIn(k — 1) as n — oo and
then r — oo, where k = |r| denotes the length of .

Analog of Corollary 34: optyypes»(Snz,) = O(2'nInk) asn — oo and then r — oc.

The proofs of these results are nearly identical to those of the previous section, with
r+ 1 replaced by 2" and cited results from Section 2 replaced with analogous results from
Section 3, so we omit them here.
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6 Future Work

In this final section, we outline some possible areas for future work based on the results
in our paper.

In Sections 2 and 3, we mainly focused on the price of feedback for non-decreasing F' in
the r-input weak reinforcement model and the r-input delayed, ambiguous reinforcement

model. What bounds can be obtained for general sets of functions F'? Moreover, is it
Optamb,r(F)
ptweak(CARTT(F))

possible to obtain a sharper bound on the maximum possible value of -
over all families of functions F' with |F| > 17

In a preliminary version of this paper ([8]), we found rough bounds for the r-input
weak reinforcement model and the r-input delayed, ambiguous reinforcement model on

non-decreasing multi-class functions. In particular we proved that opt,..(CART,(F)) <

(TZEI) In(|F]) and optye (CART,(F)) > 52 (1—0(1))r In(| F'|) for any subset of functions
F of the non-decreasing functions from X to {0,1,...,k—1}. We also showed in [8] that
OPbop - (F) < min(k"In(|F|), |F|) and opt,,,,(F) > (1 — o(1))2"*2n(|F]) for all X
and F'. Since the preceding upper and lower bounds for multi-class functions have large

gaps, a natural problem is to narrow these gaps.

In Theorem 23, we described an adversary strategy for the order model that gives a
bound of 0pt e <, (Sn) > (1 —0(1))(r — 1)!nlog, n, whereas Theorem 19 gives an upper
bound of opt, ey «(Sn) < r!Inn! = (1 — o(1))rlnlnn. We conjecture that the latter
bound is sharp, i.e., that opt (Sn) = (1 —o(1))rnlnn.

weak,<,r
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