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Abstract. A Boolean network is a discrete dynamical system operat-
ing on vectors of Boolean variables. The action of a Boolean network
can be conveniently expressed as a system of Boolean update functions,
computing the new values for each component of the Boolean vector as
a function of the other components. Boolean networks are widely used
in modelling biological systems that can be seen as consisting of enti-
ties which can be activated or deactivated, expressed or inhibited, on or
off. P systems on the other hand are classically introduced as a model
of hierarchical multiset rewriting. However, over the years the commu-
nity has proposed a wide range of P system variants including diverse
ingredients suited for various needs. In this work, we propose a new
variant—Boolean P systems—specifically designed for reasoning about
sequential controllability of Boolean networks, and use it to first establish
a crisp formalization of the problem, and then to prove that the problem
of sequential controllability is PSPACE-complete. We further claim that
Boolean P systems are a demonstration of how P systems can be used to
construct ad hoc formalisms, custom-tailored for reasoning about specific
problems, and providing new advantageous points of view.
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1 Introduction

Membrane computing and P systems are a paradigm of massively parallel com-
puting introduced more than two decades ago by Gh. Păun [27], and inspired by
the structure and the functioning of the biological cell. Following the example
of the cell, a membrane (P) system is a hierarchical membrane structure with
compartments containing multisets of objects, representing in an abstract sense
the biochemical species. Multiset rewriting rules are attached to every membrane
to represent the reactions. Over the last two decades, a considerable number of
variants of P systems have been introduced, inspired by various aspects of cellu-
lar life, or capturing specific computing properties. For comprehensive overviews
we refer the reader to [14,28].

Even though P systems are directly inspired by the biological cell, their
use for actual cellular modelling has encountered relatively little success. On
the other hand, Boolean networks have been quite successful recently, despite
their relative dissimilarity to biological structures—a Boolean network is a set
of Boolean variables equipped with Boolean update functions, describing how to
compute the new value of the variables from their current values. We refer the
reader to [1] for a more detailed impression.

One application of interest of Boolean networks is controllability—the prob-
lem of deciding whether externally modifying some parameters of a system can
make it reach a particular state, and finding the necessary modifications [6,12,25,30,31].
A variant of this problem which has attracted particular attention is sequential
controllability: instead of looking for a particular combination of control inputs,
find a sequence of control inputs to guide the system to a given state [17,18,19,20,22,24].
Sequential controllability is promising because it may allow reducing the total
number of control actions, or may even drive the Boolean network along tra-
jectories which would otherwise be inaccessible. On the other hand, sequential
controllability is PSPACE-hard [24], making it a difficult problem to tackle.

The goal of this paper is to show how to combine the modelling power of
Boolean networks with the richness of P systems to reason about and prove
some properties of sequential controllability of Boolean networks. We construct
a P system variant to satisfy the following two properties simultaneously:

1. represent sequential controllability of Boolean control networks via simple
syntax transformations,

2. have PSPACE-complete reachability.

This formalization of sequential controllability allows us to complete the com-
plexity result from [24] by proving that this problem is PSPACE-complete. We
would like to use this construction to promote P system variants as a general
tool for building ad hoc formalisms specifically tailored for tackling particular
problems.

This paper is structured as follows. Section 2 briefly recalls all the necessary
preliminaries: linear bounded automata, P systems, Boolean networks, sequen-
tial controllability. Section 3 introduces the specific P system variant for tack-
ling sequential controllability: Boolean P systems. Section 4 shows how Boolean



P systems can directly simulate Boolean networks. Section 5 introduces com-
position of Boolean P systems in the spirit of automata theory, and Section 6
shows how composite Boolean P systems can capture a Boolean network together
with the master dynamical system emitting the control inputs. In Section 7, we
show that the reachability problem for Boolean P systems is PSPACE-complete,
and we use this result in Section 8 to show that sequential controllability of
Boolean networks is PSPACE-complete as well. Finally, in Section 9 we exten-
sively discuss the obtained technical results concerning sequential controllability,
the features of Boolean P systems, and the general methodology of designing ad
hoc formalisms custom-tailored to specific problems.

2 Preliminaries

In this section, we briefly recall the necessary preliminaries, in particular de-
terministic bounded automata, P systems, Boolean networks, Boolean Control
Networks (BCN), and sequential controllability of BCN.

Given two sets A and B, we denote by BA the set of all functions f : A→ B.
We denote by 2A the set of all subsets of A (the power set of A) and by |A| the
cardinal of the set A. An indicator function of a subset C ⊆ A is the function
iC : A → {0, 1} with the property that C = {a | iC(a) = 1}. In this paper, we
will often use the same symbol to refer to a subset and to its indicator function.

2.1 Deterministic Linear Bounded Automata (LBA)

A deterministic linear bounded automaton (deterministic LBA or simply LBA)
M is a construct

M = (Q, V, T1, T2, δ, q0, q1, Zl, B, Zr),

where:

– Q is a finite set of states,
– V is the finite tape alphabet,
– T1 ⊆ V \ {Zl, B, Zr} is the input alphabet,
– T2 ⊆ V \ {Zl, B, Zr} is the output alphabet,
– δ : Q× V → Q× V × {L,R, S} is the transition function,
– q0 is the initial state,
– q1 is the final state,
– Zl ∈ V is the left boundary marker,
– B ∈ V is the blank symbol,
– Zr ∈ V is the right boundary marker,

We restrict the transition function such that the automaton can never write over
the boundary markers or exceed them, more precisely:

∀q ∈ Q : δ(q, Zl) ∈ Q× {Zl} × {R,S}, and

∀q ∈ Q : δ(q, Zr) ∈ Q × {Zr} × {L, S}.



A configuration of the automaton will be written as Zlu qa vZr, where a ∈
V \ {Zl, Zr}, u, v ∈ (V \ {Zl, Zr})∗. The state q is written to the left of the
underlined tape symbol a on which the head of the automaton currently stands.

Suppose the LBA is in state q and reads the symbol a on the tape. If δ(q, a) =
(p, b,D), one of the following transitions occurs, depending on the value of D ∈
{L,R, S}:

Zluc qa vZr ⇒ Zlu pc bvZr, if D = L, where c ∈ V,

Zlu qa cvZr ⇒ Zlub pc vZr, if D = R, where c ∈ V,

Zlu qa vZr ⇒ Zlu pb vZr, if D = S.

Due to the restriction of the transition function, the accessible part of the
tape is limited to the input plus the two delimiters Zl and Zr. Another model of
LBA consists in restricting the size of the accessible part of the tape to a linear
function of the input, which is the origin of the name linear bounded automaton.
The two models have the same computational power [13].

An LBA accepts the input x ∈ V ∗ if starting with the configuration Zlq0xZr

it reaches a configuration of the form Zlq1{B}∗Zr. Given an LBA M and an
input x, the LBA–ACCEPTANCE problem consists in deciding whether M ac-
cepts x. This problem is PSPACE-complete [13].

2.2 P Systems

In this subsection, we give a general overview of P systems. For more details, we
refer the reader to [14,28]. A P system is a construct

Π = (O, T, µ, w1, . . . , wn, R1, . . . Rn, hi, ho),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
µ is the membrane structure injectively labelled by the numbers from {1, . . . , n}
and usually given by a sequence of correctly nested brackets, wi are the multisets
giving the initial contents of each membrane i (1 ≤ i ≤ n), Ri is the finite set of
rules associated with membrane i (1 ≤ i ≤ n), and hi and ho are the labels of
the input and the output membranes, respectively (1 ≤ hi ≤ n, 1 ≤ ho ≤ n).

Quite often, the rules associated with membranes are multiset rewriting rules
(or special cases of such rules). Multiset rewriting rules have the form u→ v, with
u ∈ O◦ \ {0} and v ∈ O◦, where O◦ is the set of multisets over O, and 0(a) = 0,
for all a ∈ O. If |u| = 1, the rule u→ v is called non-cooperative; otherwise it is
called cooperative. In communication P systems, rules are additionally allowed
to send symbols to the neighbouring membranes. In this case, for rules in Ri,
v ∈ (O×Tar i)

◦, where Tar i contains the symbols out (corresponding to sending
the symbol to the parent membrane), here (indicating that the symbol should
be kept in membrane i), and inh (indicating that the symbol should be sent
into the child membrane h of membrane i). When writing out the multisets over
O × Tar i, the indication here is often omitted.



In P systems, rules are often applied in a maximally parallel way: in one
derivation step, only a non-extendable multiset of rules can be applied. The rules
are not allowed to consume the same instance of a symbol twice, which creates
competition for objects and may lead to non-deterministic choice between the
maximal collections of rules applicable in one step.

A computation of a P system is traditionally considered to be a sequence
of configurations it can successively visit, stopping at the halting configuration.
A halting configuration is a configuration in which no rule can be applied any
more, in any membrane. The result of a computation of a P system Π as defined
above is the contents of the output membrane ho projected over the terminal
alphabet T .

Example 1. Figure 1 shows the graphical representation of the P system formally
given by

Π = ({a, b, c, d}, {a, d}, [1[2]2]1, R1, R2, 1, 1),
R2 = {a→ aa, b→ b (c, out)},
R1 = ∅.

a→ aa

b→ b (c, out)

ab
2

d

1

Fig. 1. An example of a simple P system.

In the maximally parallel mode, the inner membrane 2 of Π will apply as
many instances of the rules as possible, thereby doubling the number of a, and
ejecting a copy of c into the surrounding (skin) membrane at each step. The
symbol d in the skin membrane is not used. Therefore, after k steps of evolution,

membrane 2 will contain the multiset a2
k

b and membrane 1 the multiset ckd.
Since all rules are always applicable in Π , this P system never halts. ⊓⊔

2.3 Boolean Networks

A Boolean variable is a variable which may only have values in the Boolean do-
main {0, 1}. Let X be a finite set of Boolean variables. A state of these variables
is any function s : X → {0, 1}, s ∈ {0, 1}X = SX assigning a Boolean value
to every single variable. An update function is a Boolean function computing a
Boolean value from a state: f : SX → {0, 1}. A Boolean network over X is a
function F : SX → SX , in which the update function for a variable x ∈ X is
computed as a projection of F : fx(s) = F (s)x.

A Boolean network F computes trajectories on states by updating its vari-
ables according to a (Boolean) mode M ⊆ 2X , defining the variables which



should be updated together in a step. Typical examples of modes are the syn-
chronous mode syn = {X} and the asynchronous mode asyn = {{x} | x ∈ X}.
A trajectory τ of a Boolean network under a given mode M is any finite sequence
of states τ = (si)0≤i≤n such that F can derive si+1 from si under the mode M .

Remark 1. The definition of modes and evolution are quite different in P systems
and Boolean networks. The asynchronous mode in Boolean networks only allows
updating one variable at a time, while the asynchronous mode in P systems
generally allows any combinations of updates. Furthermore, no halting conditions
are generally considered in Boolean networks, and the asymptotic behavior is
often looked at as the important part of the dynamics. ⊓⊔

Example 2. Consider the set of variables X = {x, y} with the corresponding
update functions fx(x, y) = x̄∧y and fy(x, y) = x∧ȳ. Figure 2 shows the possible
state transitions of this network under the synchronous and the asynchronous
modes. The states are represent as pairs of binary digits, e.g. 01 stands for the
state in which x = 0 and y = 1.

00 01

1011

00 01

1011

Fig. 2. The synchronous (left) and the asynchronous (right) dynamics of the Boolean
network in Example 2.

We notice that, under the synchronous mode, this network exhibits three
kinds of behaviors. If initialized to 00, it will stay in this state forever—00 is a
stable state. If initialized to 11, the network will directly converge to 00. Finally,
if it is initialized to any one of the states 01 or 10, it will oscillate between them.
The synchronous mode yields deterministic behavior.

The state transitions are quite different under the asynchronous mode, under
which only one variable may be updated at a time. While state 00 remains
stable, states 01 and 10 can now oscillate to 11, but not directly between them.
Moreover, these states can also converge to 00, but 11 cannot anymore. ⊓⊔

2.4 Boolean Control Networks (BCN)

Boolean networks are often used to represent biological networks in the pres-
ence of external perturbations: environmental hazards, drug treatments, etc.
(e.g., [5,6,24]). To represent network reprogramming, an extension of Boolean
networks can be considered: Boolean control networks (BCN) [6]. Informally, a
BCN is a parameterized Boolean network template; assigning a Boolean value
to every single one of its parameters yields a Boolean network.

Formally, a Boolean control network is a function FU : SU → (SX → SX),
where the elements of U , U ∩ X = ∅, are called the control inputs. To every



valuation of control inputs, FU associates a Boolean network. A control µ of FU

is any Boolean assignment to the control inputs: µ : U → {0, 1}.

While this definition of BCNs is very general, in practice one restricts the
impact the control inputs may have on the BCN to some biologically relevant
classes. One particularly useful class are freeze perturbations, in which a variable
in X is temporarily frozen to 0 or to 1, independently of its normal update
function. These actions mean to model gene knock-outs and knock-ins.

When Boolean update functions are written as propositional formulae, freeze
control inputs can be written directly in the formulae. Consider for example a
Boolean network F over X = {x1, x2} with the update functions f1 = x1 ∧ x2

and f2 = x2. To allow for freezing of x1, we introduce the control variables
U = {u0

1, u
1
1} into the Boolean formula of f1 in the following way: f ′

1 = (x1 ∧

x2) ∧ u0
1 ∨ u1

1. Setting u0
1 to 0 and u1

1 to 1 freezes x1 to 0, independently of the
values of x1 and x2. Symmetrically, setting u1

1 to 0 and u0
1 to 1 freezes x1 to 1.

Setting both u0
1 and u1

1 to 0 is generally disallowed.
In this paper, we will use two notations to indicate which control inputs

correspond to which controlled variable. In the simplest examples in which the
variables have no indices, e.g. x or y, we will directly specify the name of the
variable in the subscript of the corresponding control inputs, like so: u0

x, u
1
x, u

0
y,

or u1
y. In more general cases, we will refer to the variables by indexed names xi,

and we will only specify the respective index as the subscript of the corresponding
control inputs: u0

i and u1
i .

2.5 Sequential Controllability of BCN

In many situations, perturbations of biological networks do not happen once,
but rather accumulate or evolve over time [9,16,24]. In the language of Boolean
control networks, this accumulation can be represented by sequences of controls
(µ1, . . . , µn). More precisely, take a BCN FU with the variablesX and the control
inputs U , as well as a sequence of controls µ[n] = (µ1, . . . , µn), µi : U → {0, 1} ∈
SU . This gives rise to a sequence of Boolean networks (FU (µ1), . . . , FU (µn)). Fix
a mode M and consider a sequence of trajectories (τ1, . . . , τn) of these Boolean
networks. Such a sequence is an evolution of FU under the sequence of controls
µ[n] if the last state of every τi is the first state of τi+1. In this case we can
speak of the trajectory of the BCN FU under the control sequence µ[n] as the
concatenation of the individual trajectories τi, in which the last state of every
single τi is glued together with the first state of τi+1.

Given the 3-tuple (FU , Sα, Sω), where FU is a BCN, Sα is a set of starting
states, and Sω is a set of target states, the sequence inference problem is the
problem of inferring a control sequence driving FU from each state in Sα to
any state in Sω. This problem was called the CoFaSe problem in [24] and was
extensively studied. In particular, is was shown that CoFaSe is PSPACE-hard.

Example 3. Consider again the Boolean network from Example 2, with X =
{x, y} and the update functions fx = x̄∧y and fy = x∧ ȳ. As mentioned before,



a convenient way to express freezing controls is by explicitly including the control
inputs into the update functions in the following way:

f ′
x = (x̄ ∧ y) ∧ u0

x ∨ u1
x,

f ′
y = (x ∧ ȳ) ∧ u0

y ∨ u1
y.

Notice how setting u0
x to 0 essentially sets f ′

x = 0, and setting u1
x to 0 essentially

sets f ′
x = 1, independently of the actual value of x or y.

Consider now the following 3 controls:

µ1 = {u0
x ← 1, u1

x ← 1, u0
y ← 1, u1

y ← 1},

µ2 = {u0
x ← 0, u1

x ← 1, u0
y ← 1, u1

y ← 1},

µ3 = {u0
x ← 1, u1

x ← 1, u0
y ← 1, u1

y ← 0}.

Informally µ1 does not freeze any variables, µ2 freezes x to 0, and µ3 freezes y
to 1. Consider now the BCN FU with the variablesX = {x, y} and the controlled
update functions f ′

x and f ′
y. Fix the synchronous update mode. A trajectory of

this BCN under the control µ1—i.e. a trajectory of FU (µ1)—is τ1 : 01 → 10 →
01. A trajectory of FU (µ2) is τ2 : 01→ 00→ 00; remark that 00 is still a stable
state of FU (µ2). A trajectory of FU (µ3) is τ3 : 00→ 01→ 11. We can now glue
together the trajectories τ1, τ2, and τ3 by identifying their respective ending and
starting states, and we obtain the following trajectory of the BCN FU under the
control sequence µ[3] = (µ1, µ2, µ3):

τ : 01→ 10→ 01→ 00→ 00→ 01→ 11.

It follows from this construction that µ[3] is a solution for the CoFaSe problem
(FU , {01}, {11}). Remark that 11 is not reachable from 01 under the synchronous
mode in the uncontrolled case, as Figure 2 illustrates. ⊓⊔

Remark 2. We follow the approach from [24] which decorrelates the length of
the control sequence from the length of the trajectories it yields. Thus, µ[3] can
yield trajectories of different lengths greater or equal to 3. From the modeling
standpoint, this represents the fact that the time scale on which control inputs
are emitted is not necessarily the same as the time scale of the controlled system.

3 Boolean P Systems

In this section we introduce a new variant of P systems—Boolean P systems—
tailored specifically to capture sequential controllability of Boolean networks
with as little descriptional overhead as possible. We further tackle the differences
between evolution modes in Boolean networks and P systems by introducing
quasimodes.

Rather than trying to be faithful to the original model of P systems as recalled
in Section 2, we here invoke the intrinsic flexibility of the domain to design a
variant fitting to our specific use case.



3.1 Formalism

Boolean P systems are set rewriting systems. A Boolean state s : X → {0, 1} is
represented as the subset ofX obtained by considering s as an indicator function:
{x ∈ X | s(x) = 1}. By abuse of notation, we will sometimes use the symbol s
to refer both to the Boolean state and to the corresponding subset of X .

A Boolean P system is the following construct:

Π = (V,R),

where V is the alphabet of symbols, and R is a set of rewriting rules with
propositional guards. A rule r ∈ R is of the form

r : A→ B | ϕ,

where A,B ⊆ X and ϕ is the guard—a propositional formula with variables
from V . The rule r is applicable to a set W ⊆ V if A ⊆ W and W ∈ ϕ, where
by abuse of notation we use the same symbol ϕ to indicate the set of subsets
of V which satisfy ϕ. Formally, for W ⊆ V , we denote by ϕ(W ) the truth
value of the formula obtained by replacing all variables appearing in W by 1 in
ϕ, and by 0 all variables from V \W . Then the set of subsets satisfying ϕ is
ϕ = {W ⊆ V | ϕ(W ) ≡ 1}.

Applying the rule r : A → B | ϕ to a set W results in the set (W \ A) ∪ B.
Applying a finite set of separately applicable rules {ri : Ai → Bi | ϕi} to W

results in the new set
(

W \
⋃

i

Ai

)

∪
⋃

i

Bi.

Note how this definition excludes competition between the rules, as only indi-
vidual applicability is checked. Further note that applying a rule multiple times
to the same configuration has exactly the same effect as applying it once.

In P systems, the set of multisets of rules of Π applicable to a given config-
uration W is usually denoted by Appl (Π,W ) [11]. Since in Boolean P systems
multiple applications of rules need not be considered, we will only look at the
set of sets of rules applicable to a given configuration W of a Boolean P system
Π = (V,R), and use the same notation Appl (Π,W ). A mode M of Π will then
be a function assigning to any configuration W of Π a set of sets of rules appli-
cable to W : M(W ) ⊆ Appl (Π,W ). If |M(W )| ≤ 1 for any W ⊆ V , the mode M
is called deterministic6. Otherwise it is called non-deterministic.

An evolution of Π under the mode M is a sequence of states (Wi)0≤i≤k with
the property that Wi+1 is obtained from Wi by applying one of the sets of rules
R′ ∈ M(Wi) prescribed by the mode M in state Wi. This is usually written as

Wi
R′

−→Wi+1. If no rules are applicable in state Wk, it is called the halting state,
and (Wi)0≤i≤k is called a halting evolution.

6 More precisely, this is the definition of strong determinism, see [3].



Example 4. Take V = {a, b} and consider the following rules r1 : {a, b} → {a} | 1
and r2 : {a} → ∅ | b̄, where 1 is the Boolean tautology. Construct the Boolean
P system Π = (V, {r1, r2}). Informally, r1 removes b from a configuration which
contains a and b, and r2 removes a from the configuration which does not already
contain b. A possible trajectory of Π under the maximally parallel mode—which
applies non-extendable applicable sets of rules—is {a, b} → {a} → ∅. Note that
only r1 is applicable in the first step, since r2 requires the configuration to not
contain b. ⊓⊔

Remark 3. Boolean P systems as defined here are very close to other set rewrit-
ing formalisms, and in particular to reaction systems [8]. A reaction system A
over a set of species S is a set of reactions (rules) of the form a : (Ra, Ia, Pa),
in which Ra ⊆ S is called the set of reactants, Ia ⊆ S the set of inhibitors, and
Pa ⊆ S the set of products. For a to be applicable to a set W , it must hold that
Ra ⊆ W and Ia ∩ W = ∅. Applying such a reaction to W yields Pa, i.e. the
species which are not explicitly sustained by the reactions disappear.

We claim that despite their apparent similarity and tight relationship with
Boolean functions, reaction systems are not so good a fit for reasoning about
Boolean networks as Boolean P systems. In particular:

1. Reaction systems lack modes and therefore non-determinism, which may
appear in Boolean networks under the asynchronous Boolean mode.

2. The rule applicability condition is more powerful in Boolean P systems, and
closer to Boolean functions than in reaction systems.

3. Symbols in reaction systems disappear unless sustained by a rule, which rep-
resents the degradation of species in biochemistry, but which makes reaction
systems harder to use to directly reason about Boolean networks.

We recall that our main goal behind introducing Boolean P systems is reasoning
about Boolean networks in a more expressive framework. This means that zero-
overhead representation of concepts from Boolean networks is paramount. ⊓⊔

Remark 4. Reaction systems [8] are intrinsically interesting for discussing con-
trollability, because they are defined as open systems from the start, via the
explicit introduction of context. Note however that contexts only allow adding
symbols to the configuration, not removing them. We refer to [15] for an in-depth
discussion of controllability of reaction systems. ⊓⊔

3.2 Quasimodes

An update function in a Boolean network can always be computed, but a rule
in a Boolean P system need not always be applicable. This is the reason behind
the difference in the way modes are defined in the two formalisms: in Boolean
networks a mode is essentially a set of subsets of update functions, while in
Boolean P systems a mode is a function incorporating applicability checks. This
means in particular that Boolean network modes are not directly transposable
to Boolean P systems.



To better bridge the two different notions of modes, we introduce quasimodes.
A quasimode M̃ of a P system Π = (V,R) is any set of sets of rules: M̃ ⊆ 2R.
The mode M corresponding to the quasimode M̃ is derived in the following way:

M(W ) = M̃ ∩Appl (Π,W ).

Given a configuration W of Π , M picks only those sets of rules from M̃ which
are also applicable to W . Thus, instead of explicitly giving the rules to be applied
to a given configuration of a P system W , a quasimode advises the rules to be
applied.

In the rest of the paper, we will say “evolution ofΠ under the quasimode M̃”
to mean “evolution of Π under the mode derived from the quasimode M̃”.

4 Boolean P Systems Simulate Boolean Networks

Consider a Boolean network F over the set of variables X , and take a variable
x ∈ X with its corresponding update function fx. The update function fx can
be simulated by two Boolean P systems rules: the rule corresponding to setting
x to 1, i.e. introducing x into the configuration, and the rule corresponding to
setting x to 0, i.e. erasing x from the configuration:

Rx = { ∅ → {x} | fx, {x} → ∅ | fx }.

Consider now the following Boolean P system:

Π(F ) =

(

X,
⋃

x∈X

Rx

)

.

We claim that Π(F ) faithfully simulates F .

Theorem 1. Take a Boolean network F and a Boolean mode M . Then the
Boolean P system Π(F ) constructed as above and working under the quasimode
M̃ =

{
⋃

x∈mRx | m ∈M
}

faithfully simulates F : for any evolution of F under

M there exists an equivalent evolution of Π(F ) under M̃ , and conversely, for any
evolution of Π(F ) under M̃ there exists an equivalent evolution of F under M .

Proof. Take two arbitrary states s and s′ of F such that s′ is reachable from
s by the update prescribed by an element m ∈ M . Consider now the subsets
of variables W,W ′ ⊆ X defined by s and s′ taken as the respective indicator
functions. It follows from the construction of M̃ that it contains an element m̃
including the update rules for all the variables of m: m̃ =

⋃

x∈m Rx. Therefore,

Π(F ) can derive W ′ from W under the quasimode M̃ .
Conversely, consider two subsets of variables W,W ′ ⊆ X such that Π(F )

can derive W ′ from W under the update prescribed by an element m̃ ∈ M̃ . By
construction of M̃ , there exists a subset m ⊆ X such that m̃ =

⋃

x∈m Rx. Take
now the indicator functions s, s′ : X → {0, 1} describing W and W ′ respectively.
Then F can derive s′ from s by updating the variables in m.

We conclude that the transitions of Π(F ) exactly correspond to the transi-
tions of F , which proves the statement of the theorem. ⊓⊔



Example 5. Consider the Boolean network FU from Example 2:

fx = x̄ ∧ y,

fy = x ∧ ȳ.

This Boolean network can be translated to the Boolean P system Π = (V,R)
with V = {x, y} and the following rules:

R = Rx ∪Ry,

Rx = { ∅ → {x} | x̄ ∧ y, {x} → ∅ | x̄ ∧ y },

Ry = { ∅ → {y} | x ∧ ȳ, {y} → ∅ | x ∧ ȳ }.

The first rule in Rx ensures that x is introduced whenever the current state
satisfies x̄ ∧ y = fx, and the second rule ensures that x is removed whenever
the current state does not satisfy x̄ ∧ y. Similarly, the rules in Ry introduce or
remove y depending on whether the current state satisfies fy.

To simulate FU under the Boolean synchronous mode, Π should run under
the quasimode M̃syn = {R}, i.e. the quasimode allowing all rules in R to be
applied at all times. To simulate FU under the Boolean asynchronous mode, Π
should run under the quasimode M̃asyn = {Rx, Ry}, i.e. the quasimode allowing
the application of either both rules in Rx, or both rules in Ry, but not all 4 rules
at a time. ⊓⊔

Remark 5. Incidentally, Boolean P systems also capture reaction systems (see
also Remarks 3 and 4). Indeed, consider a reaction a = (Ra, Ia, Pa) with the
reactants Ra, inhibitors Ia, and products Pa. It can be directly simulated by
the Boolean P system rule ∅ → Pa | ϕa, where ϕa =

∧

x∈Ra
x ∧

∧

y∈Ia
ȳ. The

degradation of the species in reaction systems can be simulated by adding a rule
{x} → ∅ | 1 for every species x, where 1 is the Boolean tautology. ⊓⊔

5 Composition of Boolean P Systems

In this section, we define the composition of Boolean P systems in the spirit
of automata theory. Consider two Boolean P systems Π1 = (V1, R1) and Π2 =
(V2, R2). We will call the union of Π1 and Π2 the Boolean P system Π1 ∪Π2 =
(V1 ∪ V2, R1 ∪ R2). Note that the alphabets V1 and V2, as well as the rules R1

and R2 are not necessarily disjoint.
To talk about the evolution of Π1 ∪Π2, we first define a variant of Cartesian

product of two sets of sets A and B: A ×̇B = {a∪ b | a ∈ A, b ∈ B}. We remark
now that

∀W ⊆ V1 ∪ V2 : Appl (Π1 ∪Π2,W ) = Appl(Π1,W ) ×̇Appl(Π2,W ).

Indeed, since the rules of Boolean P systems do not compete for resources among
them, the applicability of any individual rule is independent of the applicabil-
ity of the other rules. Therefore, the applicability of a set of rules of Π1 to a
configuration W is independent of the applicability of a set of rules of Π2 to W .



For a mode M1 of Π1 and a mode M2 of Π2, we define their product as
follows:

(M1 ×M2)(W ) = M1(W ) ×̇M2(W ).

The union of Boolean P systems Π1∪Π2 together with the product mode M1×
M2 implement parallel composition of the two P systems. In particular, if the
alphabets of Π1 and Π2 are disjoint, the projection of any evolution of Π1 ∪Π2

under the mode M1 ×M2 on the alphabet V1 will yield a valid evolution of Π1

under M1 (modulo some repeated states), while the projection on V2 will yield a
valid evolution of Π2 under the mode M2 (modulo some repeated states). Note
that this property may not be true if the two alphabets intersect V1 ∩ V2 6= ∅.

Quasimodes fit naturally with the composition of modes, as the following
lemma shows.

Lemma 1. If the mode M1 can be derived from the quasimode M̃1 and M2 from
the quasimode M̃2, then the product mode M1×M2 can be derived from M̃1 ×̇ M̃2:

M1 ×M2

M̃1 ×̇ M̃2
M̃1 M̃2

M1 M2

where a dashed arrow from a quasimode to a mode indicates that the mode
is derived from the quasimode, and the arrows are the respective projections.

Proof. Consider the mode M12 derived from M̃1 ×̇ M̃2:

M12(W ) =
(

M̃1 ×̇ M̃2

)

∩ Appl(Π,W ).

Pick an arbitrary element m12 ∈ M12(W ) and remark that it can be seen as a
union m = m1 ∪m2 where m1 is a subset of applicable rules with the property
that m1 ∈ M̃1, and m2 is a subset of applicable rules with the property that
m2 ∈ M̃2. Thus m1 ∈ M̃1 ∩ Appl (Π,W ) and m2 ∈ M̃2 ∩ Appl (Π,W ), implying
that

M12(W ) ⊆
(

M̃1 ∩ Appl(Π,W )
)

×̇
(

M̃2 ∩Appl (Π,W )
)

.

Consider on the other hand an arbitrary m1 ∈ M̃1 ∩ Appl (Π,W ) and an
arbitrary m2 ∈ M̃2 ∩Appl(Π,W ). By definition of ×̇, m1 ∪m2 ∈ M̃1 ×̇ M̃2. Re-
mark that every rule in m1 and m2 is individually applicable, meaning that they
are also applicable together and that m1 ∪m2 ∈ Appl (Π,W ). Combining this
observation with the reasoning from the previous paragraph we finally derive:

M12(W ) =
(

M̃1 ∩ Appl(Π,W )
)

×̇
(

M̃2 ∩Appl (Π,W )
)

= M1(W ) ×̇M2(W ),

which implies that M12 = M1 ×M2 and concludes the proof. ⊓⊔



6 Boolean P Systems for Sequential Controllability

Underlying sequential controllability of Boolean control networks (Section 2.5) is
the implicit presence of a master dynamical system emitting the control inputs
to the network and thereby driving it. This master system is external with re-
spect to the controlled BCN. The framework of Boolean P systems is sufficiently
general to capture both the master system and the controlled BCN in a single
homogeneous formalism. In this section, we show how to construct such Boolean
P systems for dealing with questions of controllability.

Any BCN FU : SU → (SX → SX) can be written as a system of propositional
formulae over X ∪ U . First, note that a control µ ∈ SU can be described by the
conjuction

∧

u∈µ u ∧
∧

v∈U\µ v̄. Now fix an x ∈ X and consider the formula

∨

µ∈SU

µ ∧ F (µ)x, (1)

in which µ enumerates all the conjuctions corresponding to the controls in SU and
F (µ)x is the propositional formula of the update function which F (µ) associates
to x. Using (1), we can translate any BCN FU : SU → (SX → SX) into the
system of Boolean functions F ′ : SX∪U → SX and use the set Rx from Section 4
to further translate the individual components of F ′ to pairs of Boolean P system
rules. Denote Π = (X∪U,R) the Boolean P system whose set of rules is precisely
the union of the sets Rx mentioned above, for x ∈ X . Finally, construct the
Boolean P system ΠU (U,RU ) with the following rules whose guards are always
true:

RU = R0
U ∪R1

U ,

R0
U = { {u} → ∅ | 1 | u ∈ U },

R1
U = { ∅ → {u} | 1 | u ∈ U }.

Suppose now that the original BCN FU runs under the mode M , and con-
sider the corresponding quasimode M̃ =

{
⋃

x∈mRx | m ∈M
}

, as well as the
quasimode

M̃U = {R0
U} ×̇ 2R

1

U .

Every element mU ∈ M̃U is a union of R0
U and a subset of R1

U , meaning that
mU enables all rules removing the control inputs, and enables some of the rules
adding back control inputs.

We claim that the Boolean P system Π ∪ΠU running under the quasimode
M̃ ×̇ M̃U faithfully simulates the BCN FU running under the mode M . The
following theorem formalizes this claim.

Theorem 2. Consider a BCN FU running under the mode M . Then the Boolean
P system Π∪ΠU constructed as above and running under the quasimode M̃ ×̇ M̃U

faithfully simulates FU :

1. For any evolution of FU under M there exists an equivalent evolution of
Π ∪ΠU under M̃ ×̇ M̃U .



2. For any evolution of Π ∪ΠU under M̃ ×̇ M̃U there exists an equivalent evo-
lution of FU under M .

Proof. (1) Consider two states s, s′ ∈ SX and a control µ ∈ SU such that FU (µ)
reaches s′ from s in one step. Take W,W ′ ⊆ X and WU ⊆ U by respectively
taking s, s′, and µ as indicator functions. Then, as in Theorem 1, there exists
an m̃ ∈ M̃ such that Π reaches W ′∪WU from W ∪WU in one step. This follows
directly from the construction of the rules in Π and from the fact that WU

contains exactly the symbols corresponding to the control inputs activated by µ.

Take now M̃ ×̇ M̃U and remark that its elements are of the form m̃ ∪ m̃U ,
where m̃U = m̃1

U ∪R
0
U and m̃1

U ⊆ R1
U . Under such an element m̃∪ m̃U , Π ∪ΠU

reaches a state W ′ ∪ W ′
U from W ∪ WU in one step, where W ′

U contains the
symbols from U introduced by the rules selected by m̃1

U . Further note that all
elements of WU are always erased by the rules R0

U , but may be immediately
reintroduced by m1

U .

Suppose now that FU (µ) reaches s
′ from s in multiple steps. Then Π reaches

W ′ ∪ WU from W ∪ WU in the same number of steps, provided that m̃1
U is

always chosen such that the rules it selects reintroduce exactly the subset WU .
If FU reaches s′ from s in multiple steps, but the control evolves as well, it
suffices to choose m̃1

U such that it introduces the correct control inputs before
each step. Finally, the control µ0 applied in the first step of a trajectory of FU

must be introduced by setting the starting state of Π ∪ΠU to W ∪W 0
U , where

W corresponds to the initial state of the trajectory of FU .

(2) The converse construction is symmetric. A state W ∪ WU of Π ∪ ΠU is
translated into the state s ∈ SX and the control µ ∈ SU corresponding to WU .
A step of Π ∪ΠU under m̃∪ m̃U is translated to applying µ to FU and updating
the variables corresponding to the rules activated by m̃. In this way, for any
trajectory of Π∪ΠU under the quasimode M̃ ×̇ M̃U there exists a corresponding
trajectory in the controlled dynamics of FU . ⊓⊔

We now give an extensive example showing how the composite systemΠ∪ΠU

from the proof above is constructed for a concrete BCN, and detailing how
Π ∪ΠU simulates its sequentially controlled trajectories.

Example 6. Consider the BCN FU from Example 3 with the following update
functions modified to include the control inputs:

f ′
x = (x̄ ∧ y) ∧ u0

x ∨ u1
x,

f ′
y = (x ∧ ȳ) ∧ u0

y ∨ u1
y,

and recall that X = {x, y} and U = {u0
x, u

1
x, u

0
y, u

1
y}. Since the control inputs

are already explicitly present in the propositional formulae, we can put these
together directly to obtain F ′ : SX∪U → SX , bypassing equation 1.



Construction of Π ∪ΠU . First construct the Boolean P system Π = (X ∪U,R)
with the following rules:

R = Rx ∪Ry,

Rx = { ∅ → {x} | f ′
x, {x} → ∅ | f

′
x },

Ry = { ∅ → {y} | f ′
y, {y} → ∅ | f

′
y }.

Now, define ΠU = (U,RU ) with the following rules:

RU = R0
U ∪R1

U ,

R0
U = { {u0

x} → ∅ | 1, {u
1
x} → ∅ | 1, {u

0
y} → ∅ | 1, {u

1
y} → ∅ | 1 },

R1
U = { ∅ → {u0

x} | 1, ∅ → {u
1
x} | 1, ∅ → {u

0
y} | 1, ∅ → {u

1
y} | 1 }.

Suppose that FU runs under the synchronous mode. This is translated into
the quasimode M̃syn = {R} for the Boolean P system Π . The quasimode M̃U

for ΠU will be as follows:

M̃U = {R0
U ∪ m̃1

U | m̃
1
U ⊆ R1

U}.

Finally, the composite P system Π∪ΠU will run under the following quasimode:

M̃ ×̇ M̃U = {R ∪R0
U ∪ m̃1

U | m̃
1
U ⊆ R1

U}.

Simulation of sequential control. The 3 controls introduced in Example 3 can be
written as sets in the following way:

µ1 = {u0
x, u

1
x, u

0
y, u

1
y},

µ2 = { u1
x, u

0
y, u

1
y},

µ3 = {u0
x, u

1
x, u

0
y }.

The trajectory τ1 : 01→ 10→ 01 of FU (µ1) will be simulated as the following
evolution of Π ∪ΠU :

{y} ∪ µ1 → {x} ∪ µ1 → {y} ∪ µ1,

where the rules to be applied in each transition are picked from the set R∪R0
U ∪

R1
U ∈ M̃ ×̇ M̃U . Note how µ1 is explicitly included as a set of symbols in the

configuration of the composite Boolean P system Π ∪ΠU .
Similary, the trajectory τ2 : 01 → 00 → 00 of FU (µ2) will be simulated as

follows:
{y} ∪ µ2 → ∅∪ µ2 → ∅ ∪ µ2,

where the rules to be applied in each transition are picked from the set R ∪
R0

U ∪ { ∅ → {u} | 1 | u ∈ µ2} ∈ M̃ ×̇ M̃U . Note how all symbols corresponding
to control inputs are removed at every step, and then specifically the control
inputs from µ2 are reintroduced.



Finally, the trajectory τ3 : 00 → 01 → 11 of FU (µ3) will be simulated as
follows by Π ∪ΠU :

∅ ∪ µ3 → {y} ∪ µ3 → {x, y} ∪ µ3.

To simulate the final trajectory under the control sequence µ[3] = (µ1, µ2, µ3),
we glue together the final and the initial states of the above simulations, always
anticipating the control from the subsequent simulation:

{y} ∪ µ1 → {x} ∪ µ1 → {y} ∪ µ2 → ∅ ∪ µ2 → ∅ ∪ µ3 → {y} ∪ µ3 → {x, y} ∪ µ3.

Underlined elements are the states in which the control inputs change. Thus,
the transition {x} ∪ µ1 → {y} ∪ µ2 for example is governed by the set of rules

R ∪ R0
U ∪ { ∅ → {u} | 1 | u ∈ µ2} ∈ M̃ ×̇ M̃U already, instead of R ∪ R0

U ∪ R1
U

which was used in the first step. ⊓⊔

The componentΠU in the composite P system of Theorem 2 and Example 6 is
an explicit implementation of the master dynamical system driving the evolution
of the controlled system Π . The setting of this theorem captures the situation
in which the control can change at any moment, but ΠU can be designed to
implement other kinds of control sequences. We give the construction ideas for
the kinds of sequences introduced in [24]:

– Total Control Sequence (TCS): all controllable variables are controlled at all
times.

The quasimode of ΠU will be correspondingly defined to always freeze the
controlled variables: M̃U = {R0

U} ×̇ 2P
1

U , where P 1
U ⊆ R1

U with the property
that for every xi ∈ X every set p ∈ P 1

U either introduces u0
i or u1

i , but not
both.

– Abiding Control Sequence (ACS): once controlled, a variable stays controlled
forever, but the value to which it is controlled may change.

The rules of ΠU will be constructed to never erase the control symbols which
have already been introduced, but will be allowed to change the value to
which the corresponding controlled variable will be frozen: RU = R1

U ∪ PU ,
with the new set of rules defined as follows:

PU =
{

{ua
i } → {u

b
i} | 1 | xi ∈ X, a, b ∈ {0, 1}

}

.

ΠU will able to rewrite some of the control symbols, or to introduce new
control symbols: M̃U = 2RU .

7 Reachability in Boolean P Systems

In this section we focus on reachability in Boolean P systems, which we define
in the following way: given a Boolean P system Π , a mode M (or a quasimode
M̃), a set of starting states Sα and a set of target states Sω, decide whether an



evolution of Π exists under the mode M (or the quasimode M̃) driving it from
each state in Sα to some state in Sω. We refer to such a decision problem by the
4-tuple (Π,M †, Sα, Sω), whereM

† may be a mode or a quasimode. In the rest
of the paper, we will mainly deal with reachability under quasimodes.

Remark 6. Unlike the CoFaSe problem in which the synchronous mode is im-
plicitly assumed, we explicitly include here the mode or the quasimode into the
reachability problem. Indeed, the size of the quasimode may be as much as expo-
nential in the number of symbols, while the complexity of a mode may be even
bigger, since it depends on the current configuration. Furthermore, the mode
choice impacts the answer of the problem. For example the problem under the
quasimode M̃ = ∅ has a solution if and only if Sα ⊆ Sω.

In this section we will show that the reachability problem for Boolean P sys-
tems is PSPACE-complete. We start by showing that this reachability problem
is at least as hard as LBA–ACCEPTANCE.

Lemma 2. LBA–ACCEPTANCE is reducible in polynomial time to reachability
for Boolean P systems.

Proof. We will first show how to construct a Boolean P system simulating a
given LBA, and will then evaluate the size complexity of the construction.

Construction. LetM = (Q, V, T1, T2, δ, q0, q1, Zl, B, Zr) be an LBA and x ∈ T ∗
1

an input word of length n. We construct in polynomial time a Boolean P system
Π = (Ṽ , R) that simulates the computation ofM on the input x. The alphabet
of Π contains the following symbols

Ṽ = {Av,j | v ∈ V, 0 ≤ j ≤ n+ 1} ∪ {Cq,j | q ∈ Q, 0 ≤ j ≤ n+ 1},

where the symbols Av,j describe which symbols appear in which tape cells ofM
and Cq,j describes the position and the state of the LBA head. More precisely:

– Av,j represents the situation in which cell j contains the symbol v,
– Cq,j represents the situation in which the head is on cell j and in state q.

We construct the rules of Π as the union R =
⋃

ρ∈δ Rρ, where each instruc-
tion ρ = (q,X ; p, Y,D) ofM is simulated by a set of Boolean P system rules in
the following way, depending on the direction of the movement of the head:

D = R : R(q,X;p,Y,R) = { {AX,j , Cq,j} → {AY,j, Cp,j+1} | 1 | 0 ≤ j ≤ n },
D = S : R(q,X;p,Y,S) = { {AX,j, Cq,j} → {AY,j, Cp,j} | 1 | 0 ≤ j ≤ n+ 1 },
D = L : R(q,X;p,Y,L) = { {AX,j, Cq,j} → {AY,j, Cp,j−1} | 1 | 1 ≤ j ≤ n+ 1 }.

The evolution of Π is governed by the quasimode M̃ = {R}. Due the form
of the left-hand sides of the rules above, if the current state contains exactly one
state symbol of the form Cq,j , at most one rule in R will be applicable.

We finally define the singleton set of target states:

Sω = {{AB,j | 1 ≤ j ≤ n} ∪ {Cq1,0, AZl,0, AZr ,n+1}}.



The only state appearing in Sω therefore corresponds to the halting configuration
of M in which all tape cells are blank except cells 0 and n + 1 which contain
the left and right end delimiters Zl and Zr respectively, and the head is on cell
0 and in state q1.

It is a direct consequence of the definition of the rules in R that the LBAM
accepts a word x = v1v2 . . . vn of length n if and only if the reachability problem
(Π, M̃, {sx}, Sω) has a solution, where sx = {Avj ,j | 1 ≤ j ≤ n} ∪ {Cq0,1}.

Complexity. The number of symbols in Π is |Ṽ | = (n + 2)(|V | + |Q|) and
the number of rules is |R| = O(n|V ||Q|), so the Boolean P system Π can be
constructed in time O(n|V ||Q|).

Since M̃ is a singleton and its only element is of cardinal |R| = O(n|V ||Q|),
the quasimode can be constructed in time O (n|V ||Q| · log(n|V ||Q|))—roughly,
the number of rules times the number of bits necessary to describe a rule. Because
there is only one starting state and one target state, and since a state can be
described by a sequence of n+3 symbols (n+ 2 for the tape and 1 for the state
of the head), the whole description (Π, M̃, Sα, Sω) can be constructed in the
following time:

O (n|V ||Q| · log(n|V ||Q|)) = O
(

(n|V ||Q|)2
)

.

This expression is polynomial in the size of the specification of M and in the
length n of the input x, which concludes the proof. ⊓⊔

We will now show the symmetrical statement that reachability in Boolean
P systems is at most as hard as LBA–ACCEPTANCE.

Lemma 3. Reachability for Boolean P systems is in PSPACE.

Proof. We will prove that reachability for Boolean P systems is in NPSPACE,
which implies the required statement by Savitch’s theorem [29].

Let (Π, M̃, Sα, Sω), with Π = (V,R), be an instance of the reachability
problem. Algorithm 1 is a non-deterministic algorithm that solves this problem
in polynomial space. The function UPDATEΠ takes a state s of Π and an
element of a quasimode m ∈ M̃ , and returns the state updated according to the
rules R of Π and the chosen element of the quasimode, as defined in Section 3.2.

Since the number of possible states of Π is 2|V |, the shortest evolution be-
tween two states is of length at most 2|V |, if it exists. Algorithm 1 therefore
non-deterministically tests all possible evolutions of length at most 2|V |, start-
ing from all states in Sα. At the end Reachable gets the value true if and only if a
state in Sω can be reached from every state in Sα, which ensures the correctness
of the algorithm.

This algorithm runs in polynomial space in the size of the reachability prob-
lem. Note that several states, a counter up to 2|V |, and |Sα| Boolean flags are
stored, all of which takes up O(|V | + |Sα|) space. Furthermore, the function
UPDATEΠ can be evaluated in polynomial space. Indeed, to determine the set



Algorithm 1 Solving reachability for Boolean P systems in NPSPACE

Require: (Π,M̃, Sα, Sω), Π = (V,R)
Ensure: Reachable = true ⇐⇒ (Π, M̃, Sα, Sω) has a solution

for all x ∈ Sα do

i← 0
s← x

Reachablex ← false

while i < 2|V | do

i← i+ 1
if s ∈ Sω then

Reachablex ← true

end if

Pick non-deterministically m ∈ M̃

s← UPDATEΠ(s,m)
end while

end for

Reachable←
∧

x∈Sα
Reachablex

of applicable rules in a state s, one needs to check for each rule if the guard is
true and if the left part of the rule is present in s. Both operations, the evaluation
of a Boolean function and a comparison, can be carried out in polynomial space
with respect to |V |. Only the rules in m are then applied, and these applications
can be carried out in polynomial space with respect to |V | and |R|. ⊓⊔

Remark 7. The argument of Lemma 3 focuses on reachability under quasimodes.
This argument can be trivially extended to modes derivable from quasimodes,
and more generally to any mode for which non-deterministically picking a set m
of rules to apply can be done in polynomial space.

The following theorem brings together Lemmas 2 and 3 to show the main
result with respect to the complexity of reachability.

Theorem 3. Reachability for Boolean P systems is PSPACE-complete

8 Complexity of Sequential Controllability

In this section we first extend the CoFaSe problem with some additional details
necessary to properly reason about its complexity, and then show that sequential
controllability of BCN is PSPACE-complete.

8.1 CoFaSe and Control Modes

Theorem 2 shows that Boolean P systems can directly simulate Boolean networks
together with the master control system, and Theorem 3 shows that reachability



for Boolean P systems is PSPACE-complete. Nevertheless, we cannot immedi-
ately conclude that CoFaSe is PSPACE-complete because of the role modes and
quasimodes play in evaluating the size of the problem.

Consider a BCN FU with the variablesX and the control inputs U , and recall
that the CoFaSe problem is given by the triple (FU , Sα, Sω), where Sα, Sω ⊆ SX

are the sets of starting and target states respectively. The simulating Boolean
P system Π ∪ΠU constructed in Theorem 2 uses the quasimode

M̃U = {R0
U} ×̇ 2R

1

U ,

for which |M̃U | = 2|U|, meaning that size of the reachability problem for Π ∪ΠU

is always exponential in the size of U , independently of the sizes of the individ-
ual elements of the triple (FU , Sα, Sω)

7. As a consequence, directly combining
Theorems 2 and 3 is not guaranteed to yield a polynomial bound on space in
terms of the size of the CoFaSe problem (FU , Sα, Sω).

We believe that the correct way to deal with this issue is to include a spec-
ification of the master system emitting the controls into the description of the
problem of sequential controllability. Indeed, CoFaSe is formulated for the situ-
ation in which the control can change at any moment [24], and this information
is not explicitly included in its definition, while it is explicitly present in the P
system Π ∪ΠU from Theorem 2.

We propose to describe the possible changes in controls by defining a relation
on 2U—the control mode. A control mode for a BCN FU is a relation RU ⊆
2U × 2U describing the possible evolutions of control inputs. More precisely,
consider the following trajectory of the BCN FU :

s1
FU (µ1)
−−−−−→ s2

FU (µ2)
−−−−−→ s3

FU (µ3)
−−−−−→ . . .

FU (µn)
−−−−−→ sn+1.

This trajectory complies with the control modeRU if and only if (µi, µi+1) ∈ RU ,
for every 1 ≤ i ≤ n.

Example 7. Control modes naturally capture the types of control sequences given
at the end of Section 6 and initially discussed in [23]. To streamline the definitions
of the corresponding control modes, we introduce the following helper function:

idx : 2U → 2{1,...,|U|}, idx(µ) = {i | u⋆
i ∈ µ, ⋆ ∈ {0, 1}}.

In other words, idx produces the set of control input indices appearing in a
control µ, irrespectively of the nature of the control input (freeze to 0 or freeze
to 1).

We can now define the control modeRTCS
U capturing Total Control Sequences

(TCS) as follows:

∀µ, ν ∈ 2U : (µ, ν) ∈ RTCS
U ⇐⇒ idx(µ) = idx(ν) = idx(U).

7 In general, the description of FU is of size O(2|X||U|), because some Boolean functions
may require an exponential number of Boolean connectors ∧, ∨, ·̄ to be represented.
Sα and Sω are of size O(|X|) by their definition. In practice, however, the sizes of
these entities are often well under the respective upper bounds [6,24].



Informally, RTCS
U includes all those pairs of controls which act on every single

controlled variable by activating one of the corresponding control inputs.
Similarly, in the case of Abiding Control Sequences (ACS), the control mode

RACS
U can be defined as follows:

∀µ, ν ∈ 2U : (µ, ν) ∈ RTCS
U ⇐⇒ idx(µ) ⊆ idx(ν).

Thus, RACS
U only allows to transition from µ to ν if ν acts at least on the same

controlled variables as µ. Note that ν is allowed to change the value to which a
controlled variable xi is frozen by replacing u0

i by u1
i or vice versa. ⊓⊔

We now define an extension of CoFaSe to capture sequential controllability
of BCN in a more general framework. The SEQ–CONTROL problem is given
by the 5-tuple (FU ,M,RU , Sα, Sω) and consists in deciding whether for every
starting state in Sα there exists an initial control µ0 and a trajectory of the
BCN FU under the mode M and the control mode RU ending up in a target
state from Sω. µ0 must appear as a the first term in at least a pair of RU :
∃ν ⊆ U : (µ0, ν) ∈ RU .

Example 8. Consider the Boolean network FU described in Figure 3, as well
as the controls µ110 = {u1

1, u
1
2}, freezing both x1 and x2 to 1, and µ∅ = ∅. If

(µ110, µ110), (µ110, µ∅) ∈ RU then the following trajectory is possible:

000
FU (µ110)
−−−−−−→ 110

FU (µ110)
−−−−−−→ 111

FU (µ∅)
−−−−−→ 001.

f1 = x̄1x2x3 ∨ x1x̄2x3 ∨ x1x2x̄3

f2 = x̄2x3 ∨ x1x2x̄3

f3 = x1x2 ∨ x3

000

010 100

001

110011 111

101

Fig. 3. The update functions of the Boolean network from Example 8 (left) as well as
its uncontrolled synchronous dynamics (right).

Suppose now that only freezing x1 or x2 separately is permitted, i.e. i ∈
idx(µ) ∩ {1, 2} =⇒ idx(µ) = {i}, for any µ appearing in a pair in RU . In this
case, FU can reach 100 or 010 from 000 by respectively controlling x1 or x2 to 1.
The following 3 scenarios are possible afterwards:

1. maintain the control of x1 or x2 and stay in the same state;
2. freeze the other variable—x2 if x1 was controlled or x1 if x2 was controlled,

and switch to the other state—010 or 100 respectively;
3. release all controls and go back to 000.



In any of these cases, FU is not able to reach 001 with the above restriction on
the control mode.

Finally, suppose that once µ110 is employed, it must be maintained for the
rest of the trajectory, i.e. (µ110, ν) ∈ RU =⇒ ν = µ110. The previous paragraph
shows that the only way for FU to leave the connected component consisting of
the states {000, 100, 010} while starting from 000 is to apply µ110. On the other
hand, since µ110 cannot be deactivated once applied, this means that FU cannot
reach 001 from 000 with this restriction on the control mode. ⊓⊔

8.2 SEQ–CONTROL and CoFaSe Are PSPACE-complete

We start by combining Theorems 2 and 3 to characterize the complexity of
SEQ–CONTROL.

Theorem 4. SEQ–CONTROL is PSPACE-complete.

Proof. SEQ–CONTROL is PSPACE-hard, since by taking U = ∅ it is reduced
to the problem of reachability for Boolean networks, known to be PSPACE-
complete [7,23].

Let now (FU ,M,RU , Sα, Sω) be an instance of SEQ–CONTROL and consider
the following set of rules:

RU = {µ1 → µ2 | 1 | (µ1, µ2) ∈ RU },

as well as the quasimode M̃U = {r | r ∈ RU}. The Boolean P system ΠU =
(U,RU ) running under the quasimode M̃U will therefore simulate the changes in
controls allowed by the control mode RU .

We can now construct the reachability problem (Π ∪ΠU , M̃×̇M̃U , Sα, Sω) in
the same way as in Theorem 2. The entire construction, including that of RU ,
happens in polynomial time with respect to the size of the initial instance of
SEQ–CONTROL. This allows us to conclude the proof by invoking the fact that
reachability in Boolean P systems is PSPACE-complete (Theorem 3). ⊓⊔

As explained in the previous section, SEQ–CONTROL being PSPACE-complete
does not immediately imply that CoFaSe is PSPACE-complete, since translat-
ing from CoFaSe to SEQ–CONTROL may require exponential increase in space.
However, it is possible to directly prove that CoFaSe is in PSPACE by using a
variation of Algorithm 1 from Lemma 3.

Theorem 5. CoFaSe is PSPACE-complete.

Proof. Similarly to the proof of Lemma 3, we show here a non-deterministic
polynomial-space algorithm solving the instance of CoFaSe given by the triple
(FU , Sα, Sω): Algorithm 2.

Algorithm 2 has very similar properties to Algorithm 1. Note that no re-
quirements on the values of control inputs are imposed in the CoFaSe problem,



Algorithm 2 Solving CoFaSe in NPSPACE

Require: (FU , Sα, Sω)
Ensure: Reachable = true ⇐⇒ (FU , Sα, Sω) has a solution

for all x ∈ Sα do

i← 0
s← x

Reachablex ← false

while i < 2|X| do

i← i+ 1
if s ∈ Sω then

Reachablex ← true

end if

Pick non-deterministically µ ∈ SU

s← FU (µ)(s)
end while

end for

Reachable←
∧

x∈Sα
Reachablex

meaning that only the state space SX needs to be explored, excluding the con-
trol inputs. Since |SX | = 2|X|, exploring trajectories of length at most 2|X| is
sufficient to conclude about the reachability of a state in Sω for all states in Sα.

Algorithm 2 stores a constant number of intermediate states and controls, a
counter up to 2|X|, and |Sα| Boolean flags, all of which takes upO(|V |+|U |+|Sα|)
space. Furthermore, FU can be computed in polynomial space in |X | and |U |,
meaning that Algorithm 2 requires polynomial space in the size of the triple
(FU , Sα, Sω). Finally, we conclude the proof by invoking Savitch’s theorem [29],
stating that NPSPACE = PSPACE. ⊓⊔

9 Conclusion and Discussion

We structure the conclusion into three subsections, focusing on three main take-
aways and future research directions stemming from this paper.

9.1 Complexity of Sequential Controllability

The central technical result of this work is proving that sequential controlla-
bility of Boolean control networks (BCN) is PSPACE-complete, thereby closing
the question left open in [24]. One important intuition that this result yields
is that sequential controllability of BCN is not in fact harder computationally
speaking than simple reachability, in spite of the much heftier two-level setup
with a master dynamical system driving the Boolean network. While no ex-
plicit construction is given, it is to be expected that the evolution of a BCN
under a control sequence may be simulated by a Boolean network, modulo a
polynomial transformation. This implies that reasoning about sequential con-
trollability is as hard as reasoning about pure reachability in Boolean networks,



opening a promising direction of future work about using the most permissive
semantics [26] for sequential controllability of BCN.

We stress nevertheless that sequential controllability and reachability being
in the same complexity class does not necessary imply that the techniques for
efficiently solving reachability in practical situations can be immediately trans-
posed to controllability. Exploring such possibilities is an important direction for
future research on sequential controllability of BCN.

While we extensively deal with CoFaSe in this work, it should be noted that
the ConEvs semantics explored in [24] is not treated. The ConEvs semantics of
the control sequence constraints the moments at which the control may change
to the stable states of the driven Boolean network. This places the master system
in a feedback loop with the driven network and changes the architecture substan-
tially. In particular, the computational complexity of sequential controllability
under the ConEvs semantics still remains to be characterized.

9.2 Boolean P Systems

Most of the technical results presented in this paper are obtained via Boolean
P systems, a framework specifically designed for dealing with sequential con-
trollability in Boolean networks. We particularly emphasize one of our central
goals: designing ad hoc formalisms very tightly suited for a specific problem and
thereby giving new relevant viewpoints.

One of the advantages in relying on Boolean P systems is that the language
of individual rules is more flexible than that of propositional formulae in Boolean
networks. In particular, having set rewriting directly available allows for natu-
rally expressing the notions of adding, removing, or depending on resources, while
the propositional guards allow for easy checking of Boolean conditions whenever
necessary. These two ingredients shine in Section 6, in which we show how a
Boolean P system can capture both the BCN and the master dynamical system
emitting the control inputs. On the other hand, we construct Boolean P systems
without indulging too much into computationally expensive ingredients, which
keeps the complexity of reachability in PSPACE.

We would like to dwell specifically on the difference between Theorems 4
and 5, in particular on the fact that the latter directly shows that CoFaSe is in
PSPACE, completely eliding Boolean P systems. First, remark that Theorem 4
showing that SEQ–CONTROL is PSPACE-complete is in fact more general, as
it holds for any mode and for any control mode, incorporating en passant dif-
ferent kinds of control sequences such as TCS, ACS, etc. Secondly, remark that
Algorithm 2 in Theorem 4 is directly derived from (and is a special case of)
Algorithm 1 in Lemma 3, which arguably needed some general framework like
Boolean P systems to be conceived.

Going back to the ConEvs semantics mentioned in the previous subsection,
we expect that considering it in the framework of Boolean P systems will bring
new valuable insight both concerning the characterization of its complexity and
its other properties, as well as possible optimizations for specific use cases. Ob-
serve that ConEvs cannot be captured as a control mode, because it introduces a



backward dependency of the control sequence on the state of the BCN. Boolean
P systems on the other hand should allow to express this feedback elegantly,
since the master system ΠU and the driven system Π are both part of the same
composite system Π ∪ ΠU (Theorem 2), and can therefore communicate both
ways. In fact, just from this informal reasoning we can make a conjecture with
respect to the upper bound on the complexity of sequential controllability under
the ConEvs semantics.

Conjecture 1. Sequential controllability of BCN under the ConEvs semantics is
in PSPACE.

Finally, we stress once again the point of Remark 3: while Boolean P systems
are very closely related to reaction systems [8], they have distinctive features
which make them a much better fit for reasoning about sequential controllability—
specifically, explicit Boolean guards and permanency of the resources.

9.3 Lineage of (Polymorphic) P Systems, Homoiconicity, and Lisp

As we have already insisted, one central point that we bring forward with this
work is conceiving ad hoc formalisms specialized for solving particular problems.
This approach is partially inspired by the venerable Lisp family of programming
languages, and more particularly by language-oriented programming—amethod-
ology proposing to start solving problems by developing specifically-tailored pro-
gramming languages—domain-specific languages or DSLs [10,32].

When adopting this approach, it is important that such bespoke construc-
tions be done within a particular general framework, lest the design costs grow
too high and the new formalisms too obscure. In this paper, we promote P sys-
tems as such a general framework. The community around this model of com-
puting has been producing a wide spectrum of variants, a far-from-exhaustive
glimpse of which can be seen in [2,14,21,28]. The rich body of literature pro-
vides many ingredients and various tools for easily assembling different new
formalisms. This is why we believe that P systems are particularly well suited
for the ad hoc formalism methodology.

We conclude this work by underlining that Boolean P systems are far from
being a frontier of how far one can go in designing specialized formalisms. We
recall as an example polymorphic P systems [4], in which the rules are given by
pairs of membranes rather than being part of the static description of the system,
as is classically done in automata and language theory. Polymorphic P systems
thus implement a form of homoiconicity—code-as-data, similarly to the Lisp
languages. A lot more can be done in terms of customizing P systems, and we
expect to see and invest further effort into the ad hoc formalism methodology.
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28. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford

Handbook of Membrane Computing. Oxford University Press, 2010.
29. Walter J. Savitch. Relationships between nondeterministic and deterministic tape

complexities. Journal of computer and system sciences, 4(2):177–192, 1970.
30. Cui Su, Soumya Paul, and Jun Pang. Controlling large Boolean networks with

temporary and permanent perturbations. In International Symposium on Formal

Methods, pages 707–724. Springer, 2019.
31. Silvia Von der Heyde, Christian Bender, Frauke Henjes, Johanna Sonntag, Ulrike

Korf, and Tim Beissbarth. Boolean ErbB network reconstructions and perturba-



tion simulations reveal individual drug response in different breast cancer cell lines.
BMC Systems Biology, 8(1):75, 2014.

32. Martin Ward. Language oriented programming. Software — Concepts and Tools,
15(4):147–161, 1994.

33. eMathHelp Math Solver — Boolean Algebra Calculator.
https://www.emathhelp.net/calculators/discrete-mathematics/boolean-algebra-calculator/ .

34. dds: A home-made toolkit for discrete dynamical systems in Racket.
https://git.marvid.fr/scolobb/dds.

https://www.emathhelp.net/calculators/discrete-mathematics/boolean-algebra-calculator/
https://git.marvid.fr/scolobb/dds

	A P Systems Variant for Reasoning about Sequential Controllability of Boolean Networks 

